
1

Lecture 18

Subverting a Type System
turning a bit flip into an exploit

Ras Bodik
Ali and Mangpo

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013
UC Berkeley

Today

Type safety provides strong security guarantees.

But certain assumptions must hold first:

- banning some constructs of the language

- integrity of the hardware platform

These are critical. Failure to provide these permits
type system subversion.

Today: type system subversion

- means and consequences
2

why static types?
review

3

What do compilers know thanks to static types?

Dynamically-typed languages (Python/Lua/JS):

function foo(arr) {

return arr[1]+2

}

Statically-typed languages (Java/C#/Scala):

function foo(arr:int[]) : int {

return arr[1]+2

}

4

Declared types lead to compile-time facts

Let’s discuss our example.

The + operator/function:

In Java: we know at compile time that + is an integer
addition, because type declarations tell the compiler the
types of operands.

In JS: we know at compile time that + could be either int
addition or string concatenation. Only at runtime, when we
know the types of operand values, we know which of the
two functions should be called.

5

Declared types lead to compile-time facts

Does a Python compiler know that variable arr will
refer to a value of indexable type?

It looks like it should, because arr is used in the indexing
expression arr[1].

But Python does not even know this fact for sure. After all,
foo could be legally called with a float argument, say
foo(3.14). Yes, foo will throw an exception in this case, at
arr[1], but the point is that the compiler must generate
code that checks (at runtime) whether the value in arr is an
indexable type. If not, it will throw an exception.

6

How do compilers exploit compile-time knowledge?

dynamically typed languages (Python/Lua/JS):

function foo(arr) {

return arr[1]+2

}

statically typed languages (Java/C#/Scala):

function foo(arr:int[]) : int {

return arr[1]+2

}

7

Data structure rerepsentation

In Python, arr[i] must check at runtime:

- is (the value of) arr an indexable object (list or a
dictionary)?

- what is type (of value in) of arr[1]?

The representation of array of ints must facilitate
these runtime questions:

8

Compare this with array of ints in Java

Java arrays must be homogeneous

- All elements are of the same type (or subtype)

We know these types at compile time

- So the two questions that Python asks at runtime can be
skipped at Java runtime, because they are answered
from static type declarations at compile time

Hence Java representation of arrays of ints can be:

9

Private fields

10

Private object fields

Recall the lecture on embedding OO into Lua

We can create an object with a private field

the private field stores a password that can be checked
against a guessed password for equality but the stored
password cannot be leaked

Next slide shows the code

11

Object with a private field

// Usage of an object with private field

def safeKeeper = SafeKeeper(“164rocks”)

print safeKeeper.checkPassword(“164stinks”) --> False

// Implementation of an object with private field

function SafeKeeper (password)
def pass_private = password

def checkPassword (pass_guess) {

pass_private == pass_guess

}

// return the object, which is a table
{ checkPassword = checkPassword }

}

12

Let’s try to read out the private field!

Assume I agree to execute any code you give me.
Can you print the password (without trying all passwords)?

def safeKeeper = SafeKeeper(“164rocks”)

def yourFun = <paste any code here>

// I am even giving you a ref to keeper

yourFun(safeKeeper)

This privacy works great, under certain assumptions. Which
features of the 164 language do we need to disallow to
prevent reading of pass_private?

1. overriding == with our own method that prints its arguments

2. access to the environment of a function and printing the content of
the environment

(such access could be allowed to facilitate debugging, but it destroys privacy)

13

Same in Java, using private fields

class SafeKeeper {

private long pass_private;

SafeKeeper(password) { pass_private = password }

Boolean checkPassword (long pass_guess) {

return pass_private == pass_guess

} }

SafeKeeper safeKeeper = new SafeKeeper(920342094223942)

print safeKeeper.checkPassword(1000000000001) --> False

Redoing the exercise in Java illustrates that the issues
exist in a statically typed language, too.

14

Challenge: how to read out the private field?

Different language. Same challenge.

SafeKeeper safeKeeper = new SafeKeeper(19238423094820)

<paste your code here; it can refer to ‘safeKeeper’>

Compiler rejects program that attemps to read the private field
That is, p.private_field will not compile to machine code

But some features of Java need to be disallowed to prevent
reading of pass_private.

- Reflection, also known as introspection
read about the ability to read private fields with java reflection API)

15

http://tutorials.jenkov.com/java-reflection/private-fields-and-methods.html

Summary of privacy with static types?

It’s frustrating to the attacker that

(1) he holds a pointer a to the Java object, and

(2) knows that password is at address a+16 bytes

yet he can’t read out password_private from that
memory location.

16

17

Why can’t any program read that field?

0. Compiler will reject program with p.private_field

1. Type safety prevents variables from storing
incorrectly-typed values.

B b = new A() disallowed by compiler unless A extends B

2. Array-bounds checks prevent buffer overflows

3. Can’t manipulate pointers (addresses) and hence
cannot change where the reference points.

Together, these checks prevent execution of arbitrary
user code…

Unless the computer breaks!

Manufacturing a Pointer in C

18

Attack in C language

Before we describe the attack in Java, how would one
forge (manufacture) a pointer in C

union { int i; char * s; } u;

Here, i and s are names for the same location.

u.i = 1000

u.s[0] --> reads the character at address 1000

http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union

19

http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union

How to create a hardware error?

20

21

Memory Errors

A flip of some bit in memory

Can be caused by cosmic ray, or deliberately through
radiation (heat)

22

Effects of memory errors

0x4400 0x4400

0x4404

0x4408

0x440C

0x4410

after bit 3 is flipped: 0x4408

Exploitable!

Bitflip manufactures a pointer
except that we cannot control what pointer and in which
memory location.

Manufacturing a Pointer in Java and
Exploiting it

23

24

Overview of the Java Attack

Step 1: use a memory error to obtain two variables p
and q, such that

1. p == q (i.e., p and q point to same memory loc) and

2. p and q have incompatible, custom static types

Cond (2) normally prevented by the Java type system.

Step 2: use p and q from Step 1 to write values into
arbitrary memory addresses

– Fill a block of memory with desired machine code

– Overwrite dispatch table entry to point to block

– Do the virtual call corresponding to modified entry

We’ll cover Step 2 first.

25

The two custom classes will form C-like union

class A {

A a1;

A a2;

B b; // for Step 1

A a4;

int i; // for address

// in Step 2

}

class B {

A a1;

A a2;

A a3;

A a4;

A a5;

}

Assume 3-word object header

Step 2 (Writing arbitrary memory)

int offset = 8 * 4; // Offset of i field in A
A p; B q; // Initialized in Step 1, p == q;

// assume both p and q point to an A

void write(int address, int value) {
p.i = address – offset;
q.a5.i = value; // q.a5 is an integer treated as a pointer

}

Example: write 337 to address 0x4020

A header

A

A

B

A

0x4000

p

q

0x4020

0x4004

0x4000

337

p.iq.a5

…

q.a5.i

this location can be accessed
as both q.a5 and p.i

Step 1 (Exploiting The Memory Error)

A header

A

A

B

A

int

B header

A

A

A

A

A

0x6000

0x600C

0x6010

0x6014

0x6018

0x601C

0x6020

0x602C

0x6030

0x6034

0x6038

0x603C

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig

tmp1

bad

The heap has one A object, many B objects. All fields of type A point to the
only A object that we need here. Place this object close to the many B objects.

B header

28

Step 1 (Exploiting The Memory Error)

A header

A

A

B

A

int

B header

A

A

A

A

A

0x6000

0x600C

0x6010

0x6014

0x6018

0x601C

0x6020

0x602C

0x6030

0x6034

0x6038

0x603C

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig flip bit 0x40 in orig.a1

tmp1

bad

Now bad points to an A object!

Note: it is a coincidence that orig.a points to
the top of the object header. It could equally
likely point into an object of type B.

B header

A

A

A

A

A

0x6040

0x604C

0x6050

0x6054

0x6058

0x605C

tmp1.b

Step 1 (cont)

A p; // pointer to the single A object
while (true) {
for (int i = 0; i < b_objs.length; i++) {
// iterate over all B objects
B orig = b_objs[i];

A tmp1 = orig.a1; // Step 1, really check a1, a2, a3, …
B q = tmp1.b;

Object o1 = p; Object o2 = q; // check if we found a flip
// must cast p,q to Object to allow comparison
if (o1 == o2) {
writeCode(p,q); // now we’re ready to invoke Step 2

} } }

Iterate until you find that a flip happened and was exploited.

29

30

Results (paper by Govindavajhala and Appel)

With software-injected memory errors, took over
both IBM and Sun JVMs with 70% success rate

think why not all bit flips lead to a successful exploit

Equally successful through heating DRAM with a lamp

Defense: memory with error-correcting codes

– ECC often not included to cut costs

Most serious domain of attack is smart cards
Paper: http://www.cs.princeton.edu/~sudhakar/papers/memerr.pdf

http://www.cs.princeton.edu/~sudhakar/papers/memerr.pdf

