
1

Lecture 14

Data Abstraction
Objects, inheritance, prototypes

Ras Bodik
Ali and Mangpo

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Schedule for next two weeks

Midterm I:

- March 19

- topics: all up to objects (L1-L13)

PA:

- no PA assigned next week (midterm study period)

- PA6 to be assigned on March 19

Final project proposals:

- due Sunday, March 17 (description link)

- feedback: March 19-31 (you will study other proposals)

Schedule of due dates

- link
2

https://sites.google.com/a/bodik.org/cs164/final-project/final-project-proposal
http://www.cs.berkeley.edu/~bodik/cs164/sp13/cs164 sp13 schedule.htm

Reading

Required reading:

Chapter 16 in PiL:

http://www.lua.org/pil/contents.html#16

3

http://www.lua.org/pil/contents.html#16

Objects

4

Where are we?

Our constructs concerned control abstraction:

hiding complex changes to program control flow under
suitable programming language constructs

Examples:

- iterators, built on closures

- backtracking in regexes, built with coroutines

- search for a proof tree, hidden in the Prolog interpreter

5

Data abstraction

If there are control abstractions, there must also be
data abstractions

- for hiding complex data representations

Constructs that abstract data representations:

6

Language construct for data

abstraction

Hides what details of

implementation

Objects (review from CS61B)

What are objects

- state (attributes) and

- code (methods)

Why objects?

abstraction: hide implementation using encapsulation

Why inheritance?

reuse: specialization of an object’s behavior reuses its code

7

What’s the minimal core language ?

Can we implement objects as a library?

that is, without changes to the interpreter?

It’s the very familiar question:

What is the smallest language on which to build to objects?

Our language already supports closures

which are similar to objects: they carry code and state

Can we build objects from this existing mechanism?

rather than any adding “native” support for objects?
8

Summary

Data abstractions support good software engineering

- ie, writing large software that can be maintained

- easing maintenance thanks to code modularity

Modularity is achieved by:

- reuse: use existing libraries by extending/modifying them

- code evolution: change implementation without
changing the interface, leaving client code unchanged

Objects carry code and state

- like closures

- so we will try to build them on top of closures first

9

Closures as objects

10

We have seen closure-based objects already

Where did we use closures as objects?

Iterators are single-method objects

- on each call, an iterator returns the next element and
advances its state to the next element

- you could say they support the next() method

11

Multi-method closure-based objects

Can we overcome the single-method limitation?

Yes, of course:

d = newObject(0)

print d("get") --> 0

d("set", 10)

print d("get") --> 10

12

Multi-method object represented as a closure

function newObject (value)

function (action, v) {

if (action == "get“) {

value

} else if (action == "set“) {

value = v

} else {

error("invalid action")

} } }

13

Summary

Closures carry own state and code

so we can use them as objects

Closures support only one operation (function call)

so we can support only one method

By adding an argument to the call of the closure

we can dispatch the call to multiple “methods”

But unclear if we can easily support inheritance

ie, specialize an object by replacing just one of its methods

14

Objects as tables

straw man version

15

Recall Lua tables

Create a table

{}

{ key1 = value1, key2 = value2 }

Add a key-value pair to table (or overwrite a k/w pair)

t = {}

t[key] = value

Read a value given a key

t[key]

16

Object as a table of attributes

Account = {balance = 0}

Account[“withdraw”] = function(v) {

Account[“balance”] = Account[“balance”] - v
}

Account[“withdraw”](100.00)

This works but is syntactically ugly
What syntactic sugar we add to clean this up?

17

Let’s improve the table-based object design

Method call on an object:

Account[“withdraw”](100.00)

This works semantically but is syntactically ugly

Solution?
Add new constructs through syntactic sugar

18

The design discussion

19

Question 1: What construct we add to the
grammar of the surface language?

Question 2: How do we rewrite (desugar) this
construct to the base language?

Get vs. put

Reading an object field:

p.f → p[“f”] → get(p, “f”)
surface language base language bytecode

Careful: we need to distinguish between reading p.f

translated to get

and writing into p.f

translated to put

20

Additional construct

We will desugar

function Account.withdraw (v) {
Account.balance = Account.balance - v

}

into

Account.withdraw = function (v) {
Account.balance = Account.balance - v

}

21

Objects as tables

a more robust version

22

Object as a table of attributes, revisited

Account = {balance = 0}

function Account.withdraw (v) {
Account.balance = Account.balance - v

}

Account.withdraw(100.00)

a = Account

-- this code will make the next expression fail

Account = nil

a.withdraw(100.00) -- ERROR!

23

Solution: introduce self

Account = {balance = 0}

-- self “parameterizes” the code

function Account.withdraw (self, v) {
self.balance = self.balance - v

}

a1 = Account

Account = nil

a1.withdraw(a1, 100.00)

a2 = {balance=0, withdraw = Account.withdraw}
a2.withdraw(a2, 260.00) 24

The colon notation

-- method definition

function Account:withdraw (v) {
self.balance = self.balance - v

}

a:withdraw(100.00) -- method call

Which construct to add to the surface
grammar to support the method call?

E ::= E:E

E ::= E:ID

E ::= E:ID(args)
25

Rewriting E:ID()

26

Discussion

What is the inefficiency of our current object design?

Each object carries its attributes and methods.

If these are the same across many objects, a lot of
space is wasted.

We will eliminate this in the next subsection.

27

Summary of desugaring for objects

Access to an attribute

e.x → e[“x”] -- get

e.x = v → e[“x”] = v -- put

Method definition and call

function e:f(params) body -- def

→

e.f = function (self,params) body

expr:f(args) -- call

→

def t = expr; t.f(t,args) 28

Meta-Methods

29

Meta-methods and meta-tables

Meta-methods and meta-tables:

Lua constructs for meta-programing with tables

Meta-programming:

creating a new construct within a language

Meta-tables will be used for shallow embedding

ie, constructs created by writing library functions

(sugar can be added to make them look prettier)

30

The __index meta-method

When a lookup of a field fails, interpreter consults the
__index field:

setmetatable(a, {__index = b})

31

Prototypes
poor man’s classes

32

Prototype

Prototype:

- a template for new objects with common properties

- it’s a regular object (as far as the interpreter can tell)

The prototype stores the common attributes

- objects refer to the prototype

33

Runtime setup of objects and prototypes

How are objects and prototypes linked?

34

Can we avoid the extra meta-table?

Let’s use the prototype also as a meta-table:

35

Define the prototype and its methods

Account = {balance = 0}
function Account:new (o) {

o = o or {}

setmetatable(o, self)
self.__index = self
o

}

function Account:deposit (v) {
self.balance = self.balance + v

}
function Account:withdraw (v) {

if (v > self.balance) {

error"insufficient funds"

}
self.balance = self.balance - v

}
36

Create an object

-- we repeat new() from previous slide

function Account:new (o) {
-- create new object if not provided

o = o or {}

self.__index = self
setmetatable(o,self)
o

}

a = Account:new()

a:deposit(100.00)
37

Call a method of an object

-- we repeat deposit() from a previous slide

function Account:deposit (v) {
self.balance = self.balance + v

}

a:deposit(100.00)

38

Note about cs164 projects

We may decide not to use metatables, just the
__index field. The code

function Account:new (o) {

o = o or {}

setmetatable(o,self)
self.__index = self
o

}

Would become

function Account:new (o) {

o = o or {}
o.__index = self
o } 39

Which attrs will remain in the prototype?

After an object is created, it has attrs given in new()

a = Account:new({balance = 0})

What if we assign to the object later?

a.deposit = value?

Where will the attribute deposit be stored?

40

Discussion of prototype-based inheritance

Notice the sharing:

- constant-value object attributes (fields) remain stored in
the prototype until they are assigned.

- After assignment, the object stores the attribute rather
than finding it in the prototype

41

Inheritance

42

Inheritance allows reuse of code …

… by specializing existing class (prototype)

How to accomplish this with a little “code wiring”?

Let’s draw the desired run-time organization:

Assume class A, subclass B, and b an instance of B

43

We will set up this org in the constructor

Tasks that we need to perform:

44

Define a prototype (a “class”)

-- This is exactly as before

Account = {balance = 0}
function Account:new (o) {

o = o or {}

setmetatable(o, sel)
self.__index = self
o

}

function Account:deposit (v) {
self.balance = self.balance + v }

function Account:withdraw (v) {
if (v > self.balance) {

error"insufficient funds" }
self.balance = self.balance - v

}
45

Create “subclass” of Account

SpecialAccount = Account:new()

function SpecialAccount:withdraw (v)
if (v - self.balance >= self:getLimit()) {
error"insufficient funds"

}
self.balance = self.balance - v

}

function SpecialAccount:getLimit () {
self.limit or 0

}

s = SpecialAccount:new({limit=1000.00})

s:deposit(100.00)

46

Notes

The constructor is inherited from the “super”
prototype, as we want

47

Multiple Inheritance

48

Uses for multiple inheritance

When would want to inherit from two classes?

Create an object that is

- a triangle: supports methods like compute_area()

- a renderable object: methods like draw()

This might inherit from classes

- geometricObject

- renderableObject

49

Implementation

Tasks:

1) Design: define meaningful semantics

- what if both prototypes have attrs of same name?

2) Create an object that uses 2+ prototypes:

- what runtime data structures do we set up?

3) Read or write to attribute of such object:

- how do we look up the object?

50

“Privacy”

protecting the implementation

51

Our goal

Support large programmer teams.

Bad scenario:

– programmer A implements an object O

– programmer B uses O relying on internal details of O

– programmer A changes how O is implemented

– the program now crashes on customer’s machine

How do OO languages address this problem?

- private fields

52

Language Design Excercise

Your task: design an analogue of private fields

Lua/164 supports meta-programming

it should allow building your own private fields

53

Object is a table of methods

function newAccount (initialBalance)
def self = {balance = initialBalance}

def withdraw (v) {

self.balance = self.balance – v }
def deposit (v) {

self.balance = self.balance + v }
def getBalance () { self.balance }

{
withdraw = withdraw,
deposit = deposit,
getBalance = getBalance

} }
54

Use of this object

-- same code

function newAccount (initialBalance)
def self = {balance = initialBalance}
def withdraw (v) { … }
def getBalance () { self.balance }
{ withdraw = withdraw, … }

}

acc1 = newAccount(100.00)
acc1.withdraw(40.00)
print acc1.getBalance() --> 60

55

Discussion of Table of methods approach

This approach supports private data

Users of the object cannot access the balance except via
objects methods.

Why is this useful?

implementation is hidden in functions and can be swapped

because the client of this object is not relying on its attrs

How can we extend the object with private methods?

56

We can safely change the implementation

function newAccount (initialBalance)
def self = {

balance = initialBalance,

LIM = 1000,

}

def extra() {

if (self.balance > self.LIM)

{ self.balance * 0.1 } else { 0 }

}

def getBalance () { self.balance + extra() }

// as before
{ /* methods */ }

} 57

More discussion

The object has private attributes but the client code
can still mess up the object. How? How can we guard
against it?

Can the table-of-methods objects be extended to
support inheritance?

58

Towards Static Types
static == checked at compile time

59

Motivation

Cost of objects built from dictionaries

Such objects are in Lua or JavaScript

Reading/writing an attribute residing in the object:

Reading an attribute in a prototype:

Includes inherited methods and constants (class vars):

These hashtable lookups use string-valued keys

The JIT compiler might be able to optimize them

60

Ideal object runtime organization

How do we layout object attributes in memory?

So that the access time is minimal

First we need to answer this important question:

What info do we assume to have at compile time?

Versus what information is available only at runtime?

61

Object layout under these assumptions

Assume we have

• class A with attributes a1, a2

• class B that extends A, which adds attributes b1, b2

Layout of objects from:

class A class B

62

Obtaining necessary guarantees

How to obtain the guarantees from two slides ago?

Declare types of variables and attributes.

These static types are available to the compiler

and thus can be used for compilation and error finding

These static types introduce certain crucial invariants

Restrict values that these variables can have runtime

63

