
1

Lecture 17

Static Types
type safety, static vs dynamic checks, subtyping

Ras Bodik
Ali and Mangpo

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013
UC Berkeley

Announcements

Final project next steps:

peer feedback:

- proposals to be assigned by tomorrow

- Due after spring break

feedback from Ras:

- after spring break

- Watch for sign up email

Ras’ office hours cancelled today

- Schedule a meeting via email
2

Outline

Motivation:

- Performance: better compilation via types

- Correctness: catching errors at compile time

Semantic analysis

symbol analysis + type analysis

Static vs. dynamic typing

also vs. no typing

Static type checks

For objects with subclassing; casts; and arrays

Dynamic checks

Why realistic static languages rely on static checks

3

Definitions

4

Static vs. dynamic; value vs. variable

Dynamic = known at run time

specific to a given program input

Static = known at compile time

not specific to given input => must be true for all inputs

Type = set of values and operations on them

example: ints are -232, …, 0, … 232-1, with operations +, -, …

Dynamic type of a variable

is the type of the value stored in the variable at runtime

Static type of a variable

- Annotated by programmers or inferred by the compiler

- type of all values that the variable might hold at runtime
5

Why do we use static types?

6

Motivation: Why are some languages faster?

Performance as measured on “language shootout”

An incomplete list of languages. See web site for more.

http://shootout.alioth.debian.org/

Norm. performance language + implementation (2007)

1.0 C / gcc

1.2 Pascal Free Pascal

1.5 Java 6 -server

1.6 Lisp SBCL

1.8 BASIC FreeBASIC

3.1 Fortran G95

7

11 Lua
14 Scheme MzScheme
17 Python
21 Perl
23 PHP
44 JavaScript SpiderMonkey
48 Ruby

http://shootout.alioth.debian.org/

Performance differences form equivalence classes

Notice the huge step between 3x and 10x

What might be the source of the difference?

8

2007

For comparison, more recent results (2012)

compilers for dynamically typed languages improved since 2007
partly motivated by browser performance wars (JavaScript JITs)

9

2012 results

10

Why static types allow compilation to efficient code

How to compile Python/Lua/JS to efficient C code?

try compiling, by hand, the statement a = b + c

Ideally, we need to know if b, c will hold ints or strings

But in JS we don’t know types of values in b, c until runtime

So the compiler must emit C code that

i) Obtains (at run time, of course) the (dynamic) type of
values in variables b and c.

ii) Based on these types, the code dispatches to either
integer addition or to string concatenation or other

11

Why static types allow compilation to efficient code

Compare to code produced by a Java compiler

12

Lesson

Programs in languages with static typing run faster.

Reason: the compiler has more information about the
program and can thus generate more efficient code.

- Better layout of objects: structs rather than dictionaries

- No dynamic examination of types of values of base types
such as ints, floats

Performance is one reason why we use static types.

- But JIT (runtime) compilers for dynamically typed
languages can obtain some of this information at
runtime, and produce better code.

13

Motivation 2: catching bugs w/out running the code

I ran into this bug (my own) in GCalc. Can you see it?

class unit:

def __init__(self, u):

"create a unit, such as m^2, represented as {'m':2}"

self.u = u

def equal(self, u):

return self.u == u

Would a compiler with static type checking catch the error?

14

Type safety

15

A type-safe language

What does “type safe language” mean?

It means that “things won’t go wrong” during execution

What sorts of errors are eliminated by type safety?

It can’t possibly mean that logical errors are eliminated!?!

So what notion of correctness do type checks guarantee?

A well-typed program will not

– add integer and list data types, etc

– access fields that do not exist in an object

– access array elements past the end of the array

– write an int into a location and later read it as a pointer

We’ll show the dangers of not catching these errors
16

When are these errors caught?

These errors could be prevented with

static checks or dynamic checks or left unnoticed (unsafe)

Example: accessing a field in an object

In Lua, expression p.f is not guaranteed to find f in object p.
p.f will throw a (runtime) exception when f is not in the object

In Java, p.f will always succeed at runtime
if the object has no field f, the compiler would reject the program;
think of this as “compile-time exception”

In assembly, p.f will be always executed
If, due to programmer error, p points to an object that has no field f,
then the code for p.f=123 will write 123 into some unpredictable
location

17

Lesson from the previous slide

Exceptions (runtime or compile time) are better than silent
failures which manifest the error much later in the execution

Interestingly, Lua and Python are type safe just like Java.

They just check for errors at different times (runtime vs in the compiler)

Java is statically typed. Python is dynamically typed.

18

Clarification on silent type errors in C

Memory safety:
- Program will never access memory outside an object (incl. an array)

Why is memory safety important
– we compile “p.f” into “LD r1, offset(r2)”

– what could go wrong here?

19

Safe vs unsafe vs Static vs Dynamic

Two axes:

– statically checked types vs dynamically checked types

– safe vs. unsafe

static dynamic

safe

unsafe

20

The mechanics of type checking

21

How is static typing performed? Two phases

Also called semantic analysis

1) symbol analysis

2) type analysis

22

Examples

Design simple type checking rules and visualize type
checking on the AST of a program

Language 1: + operation ranging over int, float, string

Language 2: as L1 but coercion is inserted by type checker,
by calling toString(), to add ints and floats to strings

23

Types for OO Languages

24

Static and dynamic types for OO languages

Static type: declared type of a variable

Dynamic type: class of object referenced by the variable

Example: A a = new B()

– static type of a is A; dynamic type of a is B (B subclass of A)

What assignments are legal?

a = a

a = b

b = a

b = b

25

Subtyping. Compatible types.

Compatible static types: tell us when x := y is legal

– it’s legal when static type of y is compatible with that of x

– type(y) is compatible with type(x) iff type(y) ≤ type(x)

– where t1 ≤ t2 means t1 is a subclass of t2 or t1=t2

Example: given class A extends B {}; A a; B b;

b = a is legal

a = b is illegal (rejected by type checker)

26

Why notion of compatible types guarantees safety?

Safety:
– when p.f is executed, object pointed to by p will contain field f

– and that field will be in the expected location

– same for methods

The static check based on compatible types work because

static types conservatively overestimate dynamic types of
values that will be stored in variables at run time

static type assumes a may point to an A or a B object

27

Pros and Cons of Static Type Checking

28

Pros: Type checking proves a theorem

When a program type checks, the compiler has
proven a theorem stating that the program won’t go
wrong, e.g. we’ll definitely find the field in the object

29

Cons: Static Type Checker Rejects Good Programs

This would run OK in Python, but rejected by Java type checker
class B extends A { int b; }

A a = new B()

a.b // error: class A does not contain field b

Reason for error: the checker does not know that dynamic type of a is B

Static checker uses limited reasoning:
considers only the declared types of variables (static types)

not the dynamic types

checks operations independently from others

does not track flow of pointers through the program

30

Java type rules for arrays

31

Exercise for you from an AP study guide

class Bar { int b; }

class Foo extends Bar { int f; }

Foo[] A = new Foo[2];

A[0] = new Foo(); A[1] = new Foo();

Object X = A;

Bar B = A;

Foo[] C = (Foo[]) B;

Foo[] Y = (Foo[]) X;

Rejected because something could go wrong at run-time.
At which line does the static type checker rejects the program?

What static type checking rule is violated? (What is the reported error?)

What could go wrong at run time if the checker did not reject the program?
Extend the program with a few statements to show the run-time failure or silent error.

See the assigned reading notes for detailed discussion 32

http://www.developer.com/tech/article.php/978791/Java-Advanced-Placement-Study-Guide-More-on-Arrays.htm#14a

See assigned reading

The rest of the slides contains exercises and questions
that you should be able to answer.

Please see assigned reading and the linked AP Study
guide for explanation of answers.

The assigned reading, linked from the course web
page, also explains how omitting a safety check can
lead to an exploit.

33

why static types
review

34

What does the compiler know with static types?

dynamically typed languages (Python/Lua/JS):

function foo(arr) {

return arr[1]+2

}

statically typed languages (Java/C#/Scala):

function foo(arr:int[]) : int {

return arr[1]+2

}

35

How do compilers exploit compile-time knowledge?

dynamically typed languages (Python/Lua/JS):

function foo(arr) {

return arr[1]+2

}

statically typed languages (Java/C#/Scala):

function foo(arr:int[]) : int {

return arr[1]+2

}

36

why we want dynamic checks
in a statically typed language

downcasts

37

Downcasts. Why are downcasts needed?

Foo f = (Foo) p;

Why do we need them in a Java program?

Disallowing downcasts would make some programs
impossible to write

Downcasts need to be checked at runtime. Why?

Why are downcasts not needed in dynamically typed
languages? 38

Run-time checks in Java

If we want to ensure memory safety, we need some checks

Which of these checks are performed before p.f =r at runtime?

if (p==null)

throw NullPointerException

if (class(p) does not contain a field “f”)

throw MissingFieldException

if (type(r) not compatible with type(f))

throw IncompatibleAssignmentException

39

Discussion

The last two checks are not needed

– these properties are ensured by checking types at
compile time

An exercise for you:

– the null-pointer check may be expensive

– Q1: how would you implement it cheaply (or for free)?

– Q2: could you extend Java types to ensure that a pointer
is not null?

• What language constructs (types) would you add?

• What compile time checks would you add?

• What run-time time checks would you add?

40

Discussion

Q1:

Q2:

41

why we want dynamic checks
in a statically typed language

assignment to arrays

42

Checks in Java, for arrays

Like downcasts, arrays also have static and dynamic
checks:

– What static checks do we perform?

– What runtime checks do we perform??

To answer, let’s answer these questions first:

– what invariants do static checks enforce?

– what invariants do dynamic checks enforce?

– what type information do arrays carry at run-time, if any?

43

Array checks in Java

Some type properties are checked statically, some dynamically.
Let’s ask what rationale was used to guide this division of labor

Consider a fragment of our previous example:
class Foo extends Bar { int f; }

Bar[] b = new Foo[2]; // (2)

Foo[] c = (Foo[]) b;

If language designers allowed (2) to type check:
– what changes to compiled code would have to be made?

• More dynamic check would be needed? What checks specifically?

– To determine what checks are needed, ask yourself what could go
wrong at run time

44

Exercise: mark static and dynamic checks that fail

For each check, write a stmt that could go wrong if check was
ignored:

class A { int a; } class B extends A { int b; }

A[] a = new A[2]; B[] b = new B[2];

a[1] = b[1]; b[1] = a[1];

b = (B[]) a; a = (B[]) a;

b = a; a = b;

45

Static checks for arrays

What invariants do static checks enforce?
– a variable of static type A[] will point to null or an Array object that

contains objects compatible with A.

What do we check statically? Which ops needs static checks?
Expression Statically valid if (assume a is of type A[])

– a = b

– a[e1] = e2

– p = a[e]

46

Dynamic checks for arrays

What invariants do dynamic checks enforce?
– same as the static check

What do we check dynamically? Which ops need checks?

(B[]) e (cast)
if (type(e) Array or type(r) = T[] where T is incompatible with B)

throw CastException

p[i]=r
if (p==null) throw NullPointerException

if (type(r) Array or type(r) = T[] where T is incompatible with A)

throw IncompatibleAssignmentException
47

Exercise: mark static and dynamic checks that fail

For each check, write a stmt that could go wrong if check was
ignored:

class A { int a; } class B extends A { int b; }

A[] a = new A[2]; B[] b = new B[2];

a[1] = new A();

a = b;

a[1] = new A();

48

Dynamic checks for arrays (revisited)

What invariants do dynamic checks enforce?

– same as the static check

What do we check dynamically? Which ops need
checks?

p[i]=r CORRECT SOLUTION assume p is type A[]

if (p==null) throw NullPointerException

if (type(r) is incompatible with A)

throw IncompatibleAssignmentException

49

How about array bounds checks?

• We also need to insert checks for A[e]

– at both reads and writes

– requires more meta data to carry with arrays

50

Fully static typing of array accesses: possible?

One way to eliminate dynamic array checks is by providing the
range of index variables in the type

int(0,10) i // type of i guarantees that i ranges over 0..10

int[20] A // array of ints; index range is 0..19

for i in i.range do: A[i] += 1 // value of i is in bounds of array A

Bounds check removed!
– But programming became clumsy.

Can types remove all checks?
– how about “int(0,10) i; while (…) { i := i+1 }” ?

– we can’t statically determine the value of i from its type alone

– hence we need a run-time check

51

Implementic downcasts in multiple inheritance

• Example

C extends A, B { … }

C c = new C();

B b = c;

C c2 = (C) b;

• How to implement the cast expression?

52

Back slides for section discussion

53

Implementation of interfaces in Java

54

List of semantic checks for an OO language

• Get this from an old project

55

Dynamic checks for arrays

What invariants do dynamic checks enforce?

– same as the static checks, actually

What do we check dynamically? Which ops need
checks?

(B[]) e (cast)

if (type(e) Array or type(r) = T[] where T is incompatible
with B)

throw CastException

p[i]=r

if (p==null) throw NullPointerException

if (type(r) Array or type(r) = T[] where T is incompatible
with A)

throw IncompatibleAssignmentException
56

From dynamic to static typing

JS and Lua:
– objects are dictionaries

Let’s fix the class structure (fields and methods)
– construct “class Foo { int field; int method() { return 1;} }

– now we know that instances of Foo always have field, method

– and hence can layout objects as structs, not as dictionaries

– so at new Foo, we create an object that is a struct

Are we done?
– we want to compile p.field efficiently, with a single load instruction

– here, p is declared to be of type “Foo p”

57

