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Today

Scheme refresher

Church is an extension of Scheme

Generative Models

Conditioning
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Scheme Refresher

http://projects.csail.mit.edu/church/wiki/Church_Basics:_Exercises
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Scheme

Define symbols (variables)

(define x 3)
(define y 4)

Define functions

;; long way
(define f2 (lambda (a b) (expt (+ a b) 3)))

;; short way
(define (f1 a b) (expt (+ a b) 3))
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Generative Models

http://projects.csail.mit.edu/church/wiki/Generative_Models
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Random Samples

Flip a coin

(flip)

Flip a biased coin

(flip 0.7)

Draw a histogram of 1000 samples

(hist (repeat 1000 flip) "Flips")

6



A Causal Model for Medical Diagnosis

representing causal knowledge:  

(define lung-cancer (flip 0.01))
(define cold (flip 0.2))

(define cough (or cold lung-cancer))

cough

This program generates random conditions for a patient in a doctor's office. It first 
specifies the base rates of two diseases the patient could have: lung cancer is rare 
while a cold is common, and there is an independent chance of having each disease. 
The program then specifies a process for generating a common symptom of these 
diseases -- an effect with two possible causes: The patient coughs if they have a cold 
or lung cancer (or both). 7



A more complex model

(define lung-cancer (flip 0.01))
(define TB (flip 0.005))
(define cold (flip 0.2))
(define stomach-flu (flip 0.1))
(define other (flip 0.1))

(define cough (or (and cold (flip 0.5))

(and lung-cancer (flip 0.3))

(and TB (flip 0.7))

(and other (flip 0.01))))

(define fever (or (and cold (flip 0.3)) (and stomach-flu (flip 0.5)) (andTB (flip 0.1)) (and other (flip 0.01))))
(define chest-pain (or (and lung-cancer (flip 0.5)) (and TB (flip 0.5))(and other(flip 0.01))))
(define shortness-of-breath (or (and lung-cancer (flip 0.5)) (and TB (flip0.2)) (and other (flip 0.01))))

(list "cough" cough

"fever" fever

"chest-pain" chest-pain

"shortness-of-breath" shortness-of-breath)
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Modeling coins

(define (make-coin weight)

(lambda () (if (flip weight) 'h 't)))

(define fair-coin (make-coin 0.5))
(define trick-coin (make-coin 0.95))
(define bent-coin (make-coin 0.25))

(hist (repeat 20 fair-coin) "20 fair coin flips")
(hist (repeat 20 trick-coin) "20 trick coin flips")
(hist (repeat 20 bent-coin) "20 bent coin flips")

"done"
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Bending a coin

(define (make-coin weight)

(lambda () (if (flip weight) 'h 't)))

(define (bend coin)
(lambda () (if (equal? (coin) 'h)

( (make-coin 0.7) )
( (make-coin 0.1) ) )))

(define fair-coin (make-coin 0.5))
(define bent-coin (bend fair-coin))

(hist (repeat 100 bent-coin) "bent coin")

"done" 10



Persistent Randomness

http://projects.csail.mit.edu/church/wiki/Generative_Models
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Persisting random decisions

What is the value of this expression?

(equal? (flip) (flip))

And this one?

(define (eye-color person) (uniform-
draw '(blue green brown)))

(list
(eye-color 'bob)
(eye-color 'alice)
(eye-color 'bob) )
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Persitence

The mem high-order function:

(define mem-flip (mem flip))
(equal? (mem-flip) (mem-flip))

The second example

(define eye-color
(mem

(lambda (person) (uniform-draw '(blue green brown)))))

(list
(eye-color 'bob)
(eye-color 'alice)
(eye-color 'bob) )
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Tug of War

(define strength (mem (lambda (person) (if (flip) 10 5))))

(define lazy (lambda (person) (flip (/ 1 3))))

(define (total-pulling team)
(apply +

(map (lambda (person)

(if (lazy person) (/ (strength person) 2)(strength person)))
team)))

(define (winner team1 team2)

(if (< (total-pulling team1) (total-pullingteam2))

team2

team1)) 14



Tug of War

…

(list "Tournament results:"
(winner '(alice bob) '(sue tom))
(winner '(alice bob) '(sue tom))
(winner '(alice sue) '(bob tom))
(winner '(alice sue) '(bob tom))
(winner '(alice tom) '(bob sue))
(winner '(alice tom) '(bob sue)))
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Conditioning 

http://projects.csail.mit.edu/church/wiki/Conditioning
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query

(query

generative-model

what-we-want-to-know

what-we-know)
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Model

(define A (if (flip) 1 0))
(define B (if (flip) 1 0))
(define C (if (flip) 1 0))
(define D (+ A B C))
D
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query

(define (take-sample)
(rejection-query

(define A (if (flip) 1 0))
(define B (if (flip) 1 0))
(define C (if (flip) 1 0))
(define D (+ A B C))

A

(equal? D 3)
)

)
(hist (repeat 100 take-sample) "Value of A, given that D is 3")
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Answer this

• "The probability of breast cancer is 1% for a woman 
at 40 who participates in a routine screening. If a 
woman has breast cancer, the probability is 80% 
that she will have a positive mammography. If a 
woman does not have breast cancer, the 
probability is 9.6% that she will also have a positive 
mammography. A woman in this age group had a 
positive mammography in a routine screening. 

• What is the probability that she actually has breast 
cancer?"
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Model

(define samples
(mh-query 100 100

(define breast-cancer (flip 0.01))

(define positive-mammogram (if breast-
cancer (flip 0.8) (flip 0.096)))

breast-cancer

positive-mammogram
)

)
(hist samples "breast cancer")
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