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Today 

Today: we describe four programming problems that 
a satisfiability constraint solver can mechanize once 
the program is translated to a logical formula.   

 

Next lecture: translation of programs to formulas. 

 

Subsequent lecture: solver algorithms. 
 

 

 

 

Z3 files for this lecture can be found in http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/z3-encodings/ 
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Outline 

Recap: the versatile solver  

– solver as interpreter, inverter, synthesizer 

Specifications, briefly revisited 

– from 𝜙 to pre- and post-conditions 

Four programming problems solvable with solvers 

– verification; fault localization; synthesis; angelic 
programming 

– constructing formulas for the four problems 

– decomposing programs into assertions 
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Advanced challenge 

Is this lecture familiar material?  Entertain yourself by 
thinking through how to carry out this style of 
program reasoning for programming models other 
than functional, eg: 

- imperative 

- Datalog  

- Prolog 

- attribute grammars 

- distributed and concurrent programming 

- combination of the above, eg concurrent Prolog 
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Recall L1: program as a formula 

Assume a formula SP(x,y) which holds iff program P(x) 
outputs value y 

 

program:  f(x) { return x + x } 

 

formula:  𝑆𝑓 𝑥, 𝑦 :  𝑦 = 𝑥 + 𝑥 
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With program as a formula, solver is versatile 

 

Solver as an interpreter: given x, evaluate f(x) 

 
𝑆 𝑥, 𝑦 ∧ 𝑥 = 3             solve for 𝑦         𝒚 ↦ 𝟔 

 

Solver as a execution inverter: given f(x), find x 

 
𝑆 𝑥, 𝑦 ∧ 𝑦 = 6            solve for 𝑥           𝒙 ↦ 𝟑 

 

This solver “bidirectionality” enables synthesis 
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Search of candidates as constraint solving  

𝑆𝑃(𝑥, ℎ, 𝑦) holds iff sketch 𝑃[ℎ](𝑥) outputs 𝑦. 
spec(x) { return x + x }  

sketch(x) { return x << ?? }     𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ :  𝑦 = 𝑥 ∗ 2
ℎ 

 

The solver computes h, thus synthesizing a program 
correct for the given x (here, x=2) 
 

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4          solve for ℎ     𝒉 ↦ 𝟏 
 

Sometimes h must be constrained on several inputs 
 

𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧                                            
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6        solve for ℎ       𝒉 ↦ 𝟏 
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Specifications  

From 𝜙 to pre- and post-conditions: 

 

A precondition (denoted 𝑝𝑟𝑒(𝑥)) of a procedure f is a 
predicate (Boolean-valued function) over f’s 
parameters 𝑥 that always holds when f is called. 

f can assume that pre holds 

 

A postcondition (𝑝𝑜𝑠𝑡(𝑥, 𝑦)) is a predicate over 
parameters of f and its return value 𝑦 that holds when 
f returns 

f ensures that post holds 
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pre and post conditions 

Facilitate modular reasoning  

– so called “assume/ guarantee” 

 

Pre/postconditions can express multimodal specs 

– invariants,  

– input/output pairs,  

– traces,  

– equivalence to another program 
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modern programming 
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assume pre(x) 

P(x) { 

… 

} 

assert post(P(x)) 

write spec, 
then 

implement! 

pre- and post-conditions are known 
as contracts.  They are supported 
by modern languages and libraries, 
including Racket.  Usually, these 
contracts are tested (ie, evaluated 
dynamically, during execution). 
 



modern programming with a solver 
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SAT/SMT 

solver 
translate(…) 

assume pre(x) 

P(x) { 

… 

} 

assert post(P(x)) 

write spec, 
then write 

code 

With solvers, we want to test these 
contracts statically, at design time. 



Verification 
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programming with a solver:  verification 

13 

assume pre(x) 

P(x) { 

         … 

} 

assert post(P(x)) 

Is there a valid 

input x for which 

P(x) violates the 

spec? 

CBMC [Oxford], Dafny [MSR], Jahob 

[EPFL], Miniatur / MemSAT [IBM], etc.  

what is the verification formula  

that we send to solver? 

SAT/SMT 

solver 



Background: satisfiability solvers 

A satisfiability solver accepts a formula 𝜙(𝑥, 𝑦, 𝑧) and 
checks if 𝜙 is satisfiable (SAT).   

 

If yes, the solver returns a model 𝑚, a valuation of 
𝑥, 𝑦, 𝑧 that satisfies 𝜙, ie, 𝑚 makes 𝜙 true.  

 

If the formula is unsatisfiable (UNSAT), some solvers 
return minimal unsat core of 𝜙, a smallest set of 
clauses of 𝜙 that cannot be satisfied. 
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SAT vs. SMT solvers 

SAT solvers accept propositional Boolean formulas 

typically in CNF form 

 

SMT (satisfiability modulo theories) solvers accept 
formulas in richer logics, eg uninterpreted functions, 
linear arithmetic, theory of arrays 

more on these in the next lecture 
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Code checking (verification) 

Correctness condition 𝜙 says that the program is 
correct for all valid inputs: 

 
∀𝑥 . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦) 

 

 

How to prove correctness for all inputs x?  Search for 
counterexample 𝑥 where 𝜙 does not hold. 

 
∃𝑥 . ¬ 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦  
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Verification condition 

Some simplifications: 

 
∃𝑥 . ¬ 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦  

∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ ¬ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦  

 

Sp always holds (we can always find y given x since SP 

encodes program execution), so the verification 
formula is: 

 
∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ 𝑆𝑃 𝑥, 𝑦 ∧ ¬𝑝𝑜𝑠𝑡 𝑥, 𝑦  
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programming with a solver:  code checking 
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assume pre(x) 

P(x) { 

         … 

} 

assert post(P(x)) 

Is there a valid 

input x for which 

P(x) violates the 

spec? 

CBMC [Oxford], Dafny [MSR], Jahob 

[EPFL], Miniatur / MemSAT [IBM], etc.  

model 

x = 42 

counterexample 

∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ 𝑆𝑃 𝑥, 𝑦 ∧ ¬𝑝𝑜𝑠𝑡(𝑦) 

SAT/SMT 

solver 



Example: verifying a triangle classifier 

Triangle classifier in Rosette (using the Racket lang): 
 

(define (classify a b c) 

  (if (and (>= a b) (>= b c)) 

      (if (or (= a c) (= b c)) 

          (if (and (= a b) (= a c)) 

              'EQUILATERAL 

              'ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) 

                  'ACUTE 

                  'OBTUSE) 

              'RIGHT)) 

      'ILLEGAL)) 

 

This classifier contains a bug. 
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Specification for classify 

𝑝𝑟𝑒(𝑎, 𝑏, 𝑐): 

𝑎, 𝑏, 𝑐 >  0 ∧ 𝑎 < 𝑏 + 𝑐   

 

𝑝𝑜𝑠𝑡 𝑎, 𝑏, 𝑐, 𝑦 :  

- where 𝑦 is return value from classify(a,b,c) 

- we’ll specify 𝑝𝑜𝑠𝑡 functionally, with a correct 
implementation of classify.  Think of alternative ways to 
specify the classifier.  

 

 

 

20 



Verification formula for Z3 (and other solvers for SMT2 standard) 

(declare-datatypes () ((TriangleType EQUILATERAL ISOSCELES ACUTE 
OBTUSE RIGHT ILLEGAL))) 

 

; this is the formula buggy triangle classifier  

 

(define-fun classify ((a Int)(b Int)(c Int)) TriangleType 

  (if (and (>= a b) (>= b c)) 

      (if (or (= a c) (= b c)) 

          (if (and (= a b) (= a c)) 

              EQUILATERAL 

              ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) 

                  ACUTE 

                  OBTUSE) 

              RIGHT)) 

      ILLEGAL)) 
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Continued 

; precondition: triangle sides must be positive and  

; must observe the triangular inequality 

 

(define-fun pre ((a Int)(b Int)(c Int)) Bool 

   (and (> a 0) 

        (> b 0) 

        (> c 0) 

       (< a (+ b c)))) 

 

; our postcondition is based on a debugged version of classify 

 

(define-fun spec ((a Int)(b Int)(c Int)) TriangleType 

   … ; a correct implementation comes here 

) 

 

(define-fun post ((a Int)(b Int)(c Int)(y TriangleType)) Bool 

   (= y (spec a b c))) 
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Continued 

; the verification condition 

 

(declare-const x Int) 

(declare-const y Int) 

(declare-const z Int) 

 

(assert (and (pre x y z)  

             (not (post x y z (classify x y z))))) 

 

(check-sat) 

(get-model) 

 

See file classifier-verification.smt2 in the Lecture 2 directory. 

23 



Output from the verifier is a of formula 

Model of verification formula = counterexample input  
 

sat 

(model 

  (define-fun z () Int 

    1) 

  (define-fun y () Int 

    2) 

  (define-fun x () Int 

    2) 

) 

 

This counterexample input refutes correctness of classify 
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Debugging 
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programming with a solver:  debugging 
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Given x and y, 

what subset of P 

is responsible for 

P(x) ≠ y? 

debugging formula 

MAXSAT/ 

MIN CORE 

repair 

candidates 

assume pre(x) 

P(x) { 

v = x + 2 

… } 

assert post(P(x)) 

BugAssist [UCLA / MPI-SWS] 

SAT/SMT 

solver 

We need a formula that is 
UNSAT and the reason for 
UNSAT are the buggy 
statements that need to be 
repaired.   



programming with a solver:  debugging 
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Given x and y, 

what subset of P 

is responsible for 

P(x) ≠ y? 

𝑝𝑟𝑒 𝑥𝑓 ⇒ 𝑆𝑃 𝑥𝑓, 𝑦 ∧ 𝑝𝑜𝑠𝑡(𝑥𝑓, 𝑦) 

MAXSAT/ 

MIN CORE 

repair 

candidates 

assume pre(x) 

P(x) { 

v = x + 2 

… } 

assert post(P(x)) 

BugAssist [UCLA / MPI-SWS] 

SAT/SMT 

solver 

𝑥𝑓 is a concrete failing input 
computed during verification, 
or found during testing.  The 
debugging formula below is 
hence UNSAT. 



Computing unsat core in Z3 

We can give names to top-level assertions 

 

(assert (! (EXPR) :named NAME)) 

 

Z3 gives the unsat core as a subset of named 
assertions. Dropping any of these assertions makes 
the formula satisfiable. 
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Debugging formula in Z3 (Step 1) 

We need to decompose the function classify into small parts to see which of them are in 
the unsat core.  Each “part” will be one assertion.  First, we inline the function call by 
assigning values to “globals” a, b, c.  This make the formula a top-level assertion. 

 

(set-option :produce-unsat-cores true) 

 

(declare-const a Int) (assert (= a 2))  ; a, b, c are the failing input 

(declare-const b Int) (assert (= b 2))  ; this input was computed during  

(declare-const c Int) (assert (= c 1))  ; verification 

 

(assert (! (= ISOSCELES                 ; ISOSCELES is the expected output for 2,2,1 

  (if (and (>= a b) (>= b c)) 

      (if (! (or (= a c) (= b c)) :named a2)        

          (if (! (and (= a b) (= a c)) :named a3)   

              EQUILATERAL                           

              ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) ACUTE OBTUSE) 

              RIGHT)) 

      ILLEGAL)) :named a1)) 

(check-sat) 

(get-unsat-core)  ; for details, see file classifier-unsat-core-1-course-grain.smt2 
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Debugging formula in Z3 (Step 2) 

We now break the large expression into smaller assertions using 
temporary variables t1 and t2. 
 

(declare-const a Int) (assert (= a 26)) 

(declare-const b Int) (assert (= b 26)) 

(declare-const c Int) (assert (= c  7)) 

 

(declare-const t1 Bool) (assert (! (= t1 (or (= a c) (= b c)))  :named a1))   

(declare-const t2 Bool) (assert (! (= t2 (and (= a b) (= a c))) :named a2)) 

 

(assert (= ISOSCELES 

  (if (and (>= a b) (>= b c)) 

      (if t1 

          (if t2 

              EQUILATERAL 

              ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) ACUTE OBTUSE) RIGHT)) 

      ILLEGAL))) 

 

(check-sat) 

(get-unsat-core) ; -> Unsat core is (a1), the list of one assertion named a1. 30 



Discussion 

Unsat core comprises of the sole assertion a1. 

 

Commenting out the assertion a1 makes the formula SAT.  (Try it!) 

 

In other words, the program becomes correct on the failing input 
used in computing the core (2,2,1).  

 

The execution on (2,2,2) became correct because commenting out 
a1 makes t1 unconstrained, which allows the solver to pick any value 
for t1.  It picks a value that makes the program correct on this 
execution.   

 

Assertion is a repair candidate because we want to change the code 
that computes the value of t1. 
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Buggy classifier bug identified via unsat core 

This code is in the source language (Racket): 
 

(define (classify a b c) 

  (if (and (>= a b) (>= b c)) 

      (if (or (= a c) (= b c)) 

          (if (and (= a b) (= a c)) 

              'EQUILATERAL 

              'ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) 

                  'ACUTE 

                  'OBTUSE) 

              'RIGHT)) 

      'ILLEGAL)) 
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Unsat core depends on how we name asserts 

Note: If we broke the assertion a1 further, the core 
would contain three assertions, underlined: 

 

(define (classify a b c) 

  (if (and (>= a b) (>= b c)) 

      (if (or (= a c)  (= b c)) 

          (if (and (= a b) (= a c)) 

              'EQUILATERAL 

              'ISOSCELES) 

          (if (not (= (* a a) (+ (* b b) (* c c)))) 

              (if (< (* a a) (+ (* b b) (* c c))) 

                  'ACUTE 'OBTUSE) 'RIGHT)) 

      'ILLEGAL)) 

 

Changing the value of the or expression, or either of the equalities, 
can rescue this failing run. 33 



Mapping unsat core back to source code 

34 

This is how Rosette maps the unsat to src. 



Synthesis 
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programming with a solver:  synthesis 
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assume pre(x) 

P(x) { 

     v = E? 

     … } 

assert post(P(x)) 

Replace E? with 

expression e so 

that Pe(x) satisfies 

the spec on all 

valid inputs. 

synthesis formula 

model 

expression 

x − 2 

Comfusy [EPFL],  

Sketch [Berkeley / MIT] 

SAT/SMT 

solver 



Let’s correct the classifier bug with synthesis 

We ask the synthesizer to replace the buggy expression, (or 

(= a c))(= b c), with a suitable expression from this grammar 

 

 hole --> e and e | e or e 

 e    --> var op var 

 var  --> a | b | c 

 op   --> = | <= | < | > | >= 
 

We want to write a partial program (sketch) that 
syntactically looks roughly as follows: 

(define (classify a b c) 

  (if (and (>= a b) (>= b c)) 

      (if (hole) ; this used to be (or (= a c))(= b c) 

          (if (and (= a b) (= a c)) 

          … 
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The sketch in Z3: Part 1, derivations for the hole grammar 

First we define the “elementary” holes.   

These are the values computed by the solver.   

These elementary holes determine which expression 
we will derive from the grammar (see next slides): 

(declare-const h0 Int) 

(declare-const h1 Int) 

(declare-const h2 Int) 

(declare-const h3 Int) 

(declare-const h4 Int) 

(declare-const h5 Int) 

(declare-const h6 Int) 
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part 2: encoding the hole grammar 

The call to function hole expands into an expression 
determined by the values of h0, …, h6, which are 
under solver’s control. 

(define-fun hole((a Int)(b Int)(c Int)) Bool  

   (synth-connective h0 

      (synth-comparator h1 

         (synth-var h2 a b c) 

         (synth-var h3 a b c))  

      (synth-comparator h4 

         (synth-var h5 a b c) 

         (synth-var h6 a b c)))) 
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Part 3: the rest of the hole grammar 

(define-fun synth-var ((h Int)(a Int) 

                       (b Int)(c Int)) Int 

    (if (= h 0)  

        a 

        (if (= h 1) b c))) 

    

(define-fun synth-connective ((h Int)(v1 Bool) 

                              (v2 Bool)) Bool 

    (if (= h 0)  

        (and v1 v2) 

        (or v1 v2))) 

 

You can find synth-comparator in classifier-synthesis.smt2. 
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Part 4: replace the buggy assertion with the hole 

The hole expands to an expression from the grammar 
that will make the program correct (if one exists).  

 

The expression is over variables a,b,c, hence the 
arguments to the call to hole. 

 

(define-fun classify ((a Int)(b Int)(c Int)) 

                      TriangleType 

  (if (and (>= a b) (>= b c)) 

      (if (hole a b c) 

          (if (and (= a b) (= a c)) 

          ... 41 



The synthesis formula 

The partial program is now translated to a formula.   

Q: how many parameters does the formula have? 

A: h0, …, h6, a, b, c, (and, technically, also the return value) 

We are now ready to formulate the synthesis formula 
to be solved. It suffices to add i/o pair constraints: 

(assert (= (classify  2 12 27) ILLEGAL)) 

(assert (= (classify  5  4  3) RIGHT)) 

(assert (= (classify 26 14 14) ISOSCELES)) 

(assert (= (classify 19 19 19) EQUILATERAL)) 

(assert (= (classify 9  6   4) OBTUSE)) 

... ; we have 8 input/output pairs in total 
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The result of synthesis 

These i/o pairs sufficed to obtain a program correct on 
all inputs. The program 

h0 -> 1 

h1 -> 0 

h2 -> 0 

h3 -> 1 

h4 -> 0 

h5 -> 1 

h6 ->2 

which means the hole is  

(or ( = a b)( = b c))  
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programming with a solver:  synthesis 
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assume pre(x) 

P(x) { 

     v = E? 

     … } 

assert post(P(x)) 

Replace E? with 

expression e so that 

Pe(x) satisfies the 

spec on all valid 

inputs. 
We want to solve: 
∃𝑒 .  ∀𝑥 . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦) 

 
We instead solve the I.S. variant: 

∃𝑒 .   𝑆𝑃 𝑥𝑖, 𝑦𝑖, 𝑒  
𝑖

 

model 

expression 

x − 2 

Comfusy [EPFL],  

Sketch [Berkeley / MIT] 

SAT/SMT 

solver 

Q: Why doesn’t the inductive synthesis variant say 
∃𝑒 .  𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦)𝑖 ?  
A: Because pre- and postconditions on pairs 𝑥𝑖, 𝑦𝑖  have been 
checked when these pairs were selected. 

 



Why is this an incorrect synthesis formula? 

; hole grammar defined as previously, including the 7 hole vars 

(declare-const h0 Int) … (declare-const h6 Int) 

; the partial program is the same  

(define-fun classify ((a Int)(b Int)(c Int)) TriangleType 

  (if (and (>= a b) (>= b c)) 

      (if (hole a b c) 

          (if (and (= a b) (= a c)) 

; now we change things, reusing the formula from the verification problem 

(declare-const x Int) 

(declare-const y Int) 

(declare-const z Int) 

 

(assert (and (pre x y z)  

             (not (post x y z (classify x y z))))) 

 

(check-sat) 

(get-model) 
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Why is this an incorrect synthesis formula? 

What problem did we solve? 

 
∃𝑥, 𝑦, 𝑧, ℎ . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦) 

 

The solver finds a hole value and just one input on 
which this hole yields a correct program.   

we want holes that are correct on all inputs 
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Advanced topic: enumerate all solutions 

We can ask the solver for alternative programs, by 
insisting that the solution differs from the first one: 

; ask for a solution different from “(or (= a b)(= b c))” 

(assert (not (and (= h0 1)(= h1 0)(= h2 0)(= h3 1) 

                  (= h4 0)(= h5 1)(= h6 2)))) 

 

The second synthesized program may be a simple 
algebraic variation (eg, (or (= b a)(= b c))), so we 
suppress such variations with lexicographic ordering:  

; example: a=b is legal but b=a is not 

(assert (and (< h2 h3)(< h5 h6))) 

 

; (or ( = a b)( = b c)) is legal but (or ( = b c)( = a b)) is not 

(assert (<= h2 h5)) 

 47 



Four alternative solutions 

(Manual) enumeration leads to four solutions for the hole: 
 

1. (or ( = a b)( = b c))  

2. (or ( = a b)(<= b c)) 

3. (or (<= a b)(<= b c)) 

4. (or (<= a b)( = b c)) 

 

Some of these solutions may be surprising.  Are they all correct on 
all inputs or only on the small set of eight input/output pairs? 

 

To find out, verify these solutions.  

Our verifier says thay are all correct. 
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Angelic Programming 
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programming with a solver:  angelic execution 
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Given x, choose v 

at runtime so that 

P(x, v) satisfies 

the spec. 

∃𝑣  . 𝑝𝑟𝑒(𝑥)  𝑝𝑜𝑠𝑡(𝑦)  𝑺𝑷(𝑥, 𝑦, 𝑣 ) 

assume pre(x) 

P(x) { 

v = choose() 

… } 

assert post(P(x)) 

model 𝑣 = 0, 2,… 

trace 

Kaplan [EPFL], PBnJ [UCLA], Skalch 

[Berkeley], Squander [MIT], etc. 

SAT/SMT 

solver 

the choose statements may be executed 
several times during the execution (due to 
a loop), hence the model is mapped to a 
trace of choose values. 



Example 1: Angelic Programming 

The n-queens problem with angelic programming 

 
for i in 1..n 

           ; place queen 𝑖 in a suitable position in the 𝑖th column.  

           ; the position is selected by the oracle from the domain {1, … , n} 

    position[i] = choose(1..n) 

end for 

; now check for absence of conflicts (this is our correctness condition) 

for i in 1..n 

    for j in 1..i-1 

        assert queens 𝑖, 𝑗 do not conflict  

    end for 

end for 
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Synthesis vs. constraint solving 

Constraint solving: solves for a value 

- this value satisfies given constraints 

- this is a FO value (Bool, Int, Vector of Int, …) 
- FO=first order, SO=second order 

Synthesis: solves for a program 

- this program must meet the specification 

- program is a SO value – a function from value to value 

- in our synthesis approach, we reduce SO to FO with holes 

Angelic programming is runtime constraint solving 

- choose’n values must meet the constraint that the 
program terminates without failing any assertion 
- termination may be optional, depending on the setting 
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Why the name “angelic programming”? 

The choose expression is angelic nondeterminism 

- the oracle chooses the value to meet the spec if possible 

 

Compare with demonic nondeterminism 

- used to model an adversary in program verification 
- eg, an interleaving of instructions 

- here, we want from the oracle a counterexample 
interleaving, one that that breaks the spec 
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Applications of angelic programming 

Choose is used during program development  

- choose expressions return values to be eventually 
computed by code (that we haven’t yet implemented) 

- example: choose is used to construct a binary search tree 
data structure for given data and a repOK procedure that 
checks if data structure is a bst (see code on next slide) 

Choose expressions remain in final code 

- in n-queens, the choose expr remains in finished code  

- we have no intention to replace it with classical 
operational code 

- that code would anyway just perform search; the code 
might do it better than our solver, but often the solver 
suffices even in real applications 
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Angelic BST insertion procedure 

Node insertT(Node root, int data) {  

    if (root == null) return new Node(data);  

    Node nn = new Node(data);  

    // ask oracle for Node n, where nn will be inserted 

    Node n = choose(set of Nodes created so far) 

    // oracle tells us whether to insert as left/right child 

    if (choose(Bool)) n.left = nn  

    else n.right = nn 

    return root 

} 
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Other ideas for using angelic execution 

Imagine you are writing an interpreter for a dataflow 
language (the DSL in your project), eg 

- actor language 

- attribute grammar evaluator 

This interpreter must choose an order in which to fire 
executions of nodes, assignments, etc 

 

Your interpreter can compute this order or it can ask 
choose to compute it given a spec of what partial 
order must be met by a correct execution 
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Summary 

Constraint solving solves several problems: 

- invert the program execution (yields input, given output) 
it’s not the same as inverting the program (yields a program) 

- verify the program 
by asking if a violating input exists 

- localize the fault 
by asking which assertions need to be relaxed to meet the spec 

- synthesize a program fragment 
we can synthesize expressions, statements, not just constants 

- angelic execution 
ask an oracle for a suitable value at runtime 
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Summary (cont) 

A program P is translated into the same formula SP but 
the formulas for the various problems are different. 

 

Sometimes it is suitable to translate the program 
differently for each problem, for performance 
reasons. 
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Next lecture overview 

Solvers accepts different logics and encoding in these 
logics has vastly different performance.   

 

Here, a comparison of encoding of SIMD matrix 
transpose in various solvers and logics. 
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encoding solver time (sec) 

QF_AUFLIA cvc3 >600 

z3 159 

QF_AUFBV boolector 409 

z3 287 

cvc3 119 

QF_AUFBV-ne cvc3 >600 

boolector >600 

z3 25 

stp 11 

REL_BV rosette 9 

REL kodkod 5 



Next lecture (cont) 

Intro to the solver logics 

 

Encoding arrays and loops 

 

Using Racket as a formula code generator 

 

Ideas for the semester project 
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References  

SMT2 language guide: http://rise4fun.com/z3/tutorial/guide 

 

Practical Z3 questions: http://stackoverflow.com/questions/tagged/z3 
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