

Programming with
Constraint Solvers
CS294: Program Synthesis for Everyone

Ras Bodik

Emina Torlak
Division of Computer Science
University of California, Berkeley

Today

Today: we describe four programming problems that
a satisfiability constraint solver can mechanize once
the program is translated to a logical formula.

Next lecture: translation of programs to formulas.

Subsequent lecture: solver algorithms.

Z3 files for this lecture can be found in http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/z3-encodings/

2

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/z3-encodings/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/z3-encodings/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/z3-encodings/

Outline

Recap: the versatile solver

– solver as interpreter, inverter, synthesizer

Specifications, briefly revisited

– from 𝜙 to pre- and post-conditions

Four programming problems solvable with solvers

– verification; fault localization; synthesis; angelic
programming

– constructing formulas for the four problems

– decomposing programs into assertions

3

Advanced challenge

Is this lecture familiar material? Entertain yourself by
thinking through how to carry out this style of
program reasoning for programming models other
than functional, eg:

- imperative

- Datalog

- Prolog

- attribute grammars

- distributed and concurrent programming

- combination of the above, eg concurrent Prolog

 4

Recall L1: program as a formula

Assume a formula SP(x,y) which holds iff program P(x)
outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 𝑦 = 𝑥 + 𝑥

5

With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3 solve for 𝑦 𝒚 ↦ 𝟔

Solver as a execution inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6 solve for 𝑥 𝒙 ↦ 𝟑

This solver “bidirectionality” enables synthesis

6

Search of candidates as constraint solving

𝑆𝑃(𝑥, ℎ, 𝑦) holds iff sketch 𝑃[ℎ](𝑥) outputs 𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? } 𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 𝑦 = 𝑥 ∗ 2
ℎ

The solver computes h, thus synthesizing a program
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4 solve for ℎ 𝒉 ↦ 𝟏

Sometimes h must be constrained on several inputs

𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6 solve for ℎ 𝒉 ↦ 𝟏

7

Specifications

From 𝜙 to pre- and post-conditions:

A precondition (denoted 𝑝𝑟𝑒(𝑥)) of a procedure f is a
predicate (Boolean-valued function) over f’s
parameters 𝑥 that always holds when f is called.

f can assume that pre holds

A postcondition (𝑝𝑜𝑠𝑡(𝑥, 𝑦)) is a predicate over
parameters of f and its return value 𝑦 that holds when
f returns

f ensures that post holds

8

pre and post conditions

Facilitate modular reasoning

– so called “assume/ guarantee”

Pre/postconditions can express multimodal specs

– invariants,

– input/output pairs,

– traces,

– equivalence to another program

9

modern programming

10

assume pre(x)

P(x) {

…

}

assert post(P(x))

write spec,
then

implement!

pre- and post-conditions are known
as contracts. They are supported
by modern languages and libraries,
including Racket. Usually, these
contracts are tested (ie, evaluated
dynamically, during execution).

modern programming with a solver

11

SAT/SMT

solver
translate(…)

assume pre(x)

P(x) {

…

}

assert post(P(x))

write spec,
then write

code

With solvers, we want to test these
contracts statically, at design time.

Verification

12

programming with a solver: verification

13

assume pre(x)

P(x) {

 …

}

assert post(P(x))

Is there a valid

input x for which

P(x) violates the

spec?

CBMC [Oxford], Dafny [MSR], Jahob

[EPFL], Miniatur / MemSAT [IBM], etc.

what is the verification formula

that we send to solver?

SAT/SMT

solver

Background: satisfiability solvers

A satisfiability solver accepts a formula 𝜙(𝑥, 𝑦, 𝑧) and
checks if 𝜙 is satisfiable (SAT).

If yes, the solver returns a model 𝑚, a valuation of
𝑥, 𝑦, 𝑧 that satisfies 𝜙, ie, 𝑚 makes 𝜙 true.

If the formula is unsatisfiable (UNSAT), some solvers
return minimal unsat core of 𝜙, a smallest set of
clauses of 𝜙 that cannot be satisfied.

14

SAT vs. SMT solvers

SAT solvers accept propositional Boolean formulas

typically in CNF form

SMT (satisfiability modulo theories) solvers accept
formulas in richer logics, eg uninterpreted functions,
linear arithmetic, theory of arrays

more on these in the next lecture

15

Code checking (verification)

Correctness condition 𝜙 says that the program is
correct for all valid inputs:

∀𝑥 . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦)

How to prove correctness for all inputs x? Search for
counterexample 𝑥 where 𝜙 does not hold.

∃𝑥 . ¬ 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦

 16

Verification condition

Some simplifications:

∃𝑥 . ¬ 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦

∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ ¬ 𝑆𝑃 𝑥, 𝑦 ∧ 𝑝𝑜𝑠𝑡 𝑥, 𝑦

Sp always holds (we can always find y given x since SP

encodes program execution), so the verification
formula is:

∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ 𝑆𝑃 𝑥, 𝑦 ∧ ¬𝑝𝑜𝑠𝑡 𝑥, 𝑦

17

programming with a solver: code checking

18

assume pre(x)

P(x) {

 …

}

assert post(P(x))

Is there a valid

input x for which

P(x) violates the

spec?

CBMC [Oxford], Dafny [MSR], Jahob

[EPFL], Miniatur / MemSAT [IBM], etc.

model

x = 42

counterexample

∃𝑥 . 𝑝𝑟𝑒 𝑥 ∧ 𝑆𝑃 𝑥, 𝑦 ∧ ¬𝑝𝑜𝑠𝑡(𝑦)

SAT/SMT

solver

Example: verifying a triangle classifier

Triangle classifier in Rosette (using the Racket lang):

(define (classify a b c)

 (if (and (>= a b) (>= b c))

 (if (or (= a c) (= b c))

 (if (and (= a b) (= a c))

 'EQUILATERAL

 'ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c)))

 'ACUTE

 'OBTUSE)

 'RIGHT))

 'ILLEGAL))

This classifier contains a bug.
19

Specification for classify

𝑝𝑟𝑒(𝑎, 𝑏, 𝑐):

𝑎, 𝑏, 𝑐 > 0 ∧ 𝑎 < 𝑏 + 𝑐

𝑝𝑜𝑠𝑡 𝑎, 𝑏, 𝑐, 𝑦 :

- where 𝑦 is return value from classify(a,b,c)

- we’ll specify 𝑝𝑜𝑠𝑡 functionally, with a correct
implementation of classify. Think of alternative ways to
specify the classifier.

20

Verification formula for Z3 (and other solvers for SMT2 standard)

(declare-datatypes () ((TriangleType EQUILATERAL ISOSCELES ACUTE
OBTUSE RIGHT ILLEGAL)))

; this is the formula buggy triangle classifier

(define-fun classify ((a Int)(b Int)(c Int)) TriangleType

 (if (and (>= a b) (>= b c))

 (if (or (= a c) (= b c))

 (if (and (= a b) (= a c))

 EQUILATERAL

 ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c)))

 ACUTE

 OBTUSE)

 RIGHT))

 ILLEGAL))
21

Continued

; precondition: triangle sides must be positive and

; must observe the triangular inequality

(define-fun pre ((a Int)(b Int)(c Int)) Bool

 (and (> a 0)

 (> b 0)

 (> c 0)

 (< a (+ b c))))

; our postcondition is based on a debugged version of classify

(define-fun spec ((a Int)(b Int)(c Int)) TriangleType

 … ; a correct implementation comes here

)

(define-fun post ((a Int)(b Int)(c Int)(y TriangleType)) Bool

 (= y (spec a b c)))
22

Continued

; the verification condition

(declare-const x Int)

(declare-const y Int)

(declare-const z Int)

(assert (and (pre x y z)

 (not (post x y z (classify x y z)))))

(check-sat)

(get-model)

See file classifier-verification.smt2 in the Lecture 2 directory.

23

Output from the verifier is a of formula

Model of verification formula = counterexample input

sat

(model

 (define-fun z () Int

 1)

 (define-fun y () Int

 2)

 (define-fun x () Int

 2)

)

This counterexample input refutes correctness of classify

24

Debugging

25

programming with a solver: debugging

26

Given x and y,

what subset of P

is responsible for

P(x) ≠ y?

debugging formula

MAXSAT/

MIN CORE

repair

candidates

assume pre(x)

P(x) {

v = x + 2

… }

assert post(P(x))

BugAssist [UCLA / MPI-SWS]

SAT/SMT

solver

We need a formula that is
UNSAT and the reason for
UNSAT are the buggy
statements that need to be
repaired.

programming with a solver: debugging

27

Given x and y,

what subset of P

is responsible for

P(x) ≠ y?

𝑝𝑟𝑒 𝑥𝑓 ⇒ 𝑆𝑃 𝑥𝑓, 𝑦 ∧ 𝑝𝑜𝑠𝑡(𝑥𝑓, 𝑦)

MAXSAT/

MIN CORE

repair

candidates

assume pre(x)

P(x) {

v = x + 2

… }

assert post(P(x))

BugAssist [UCLA / MPI-SWS]

SAT/SMT

solver

𝑥𝑓 is a concrete failing input
computed during verification,
or found during testing. The
debugging formula below is
hence UNSAT.

Computing unsat core in Z3

We can give names to top-level assertions

(assert (! (EXPR) :named NAME))

Z3 gives the unsat core as a subset of named
assertions. Dropping any of these assertions makes
the formula satisfiable.

28

Debugging formula in Z3 (Step 1)

We need to decompose the function classify into small parts to see which of them are in
the unsat core. Each “part” will be one assertion. First, we inline the function call by
assigning values to “globals” a, b, c. This make the formula a top-level assertion.

(set-option :produce-unsat-cores true)

(declare-const a Int) (assert (= a 2)) ; a, b, c are the failing input

(declare-const b Int) (assert (= b 2)) ; this input was computed during

(declare-const c Int) (assert (= c 1)) ; verification

(assert (! (= ISOSCELES ; ISOSCELES is the expected output for 2,2,1

 (if (and (>= a b) (>= b c))

 (if (! (or (= a c) (= b c)) :named a2)

 (if (! (and (= a b) (= a c)) :named a3)

 EQUILATERAL

 ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c))) ACUTE OBTUSE)

 RIGHT))

 ILLEGAL)) :named a1))

(check-sat)

(get-unsat-core) ; for details, see file classifier-unsat-core-1-course-grain.smt2
29

Debugging formula in Z3 (Step 2)

We now break the large expression into smaller assertions using
temporary variables t1 and t2.

(declare-const a Int) (assert (= a 26))

(declare-const b Int) (assert (= b 26))

(declare-const c Int) (assert (= c 7))

(declare-const t1 Bool) (assert (! (= t1 (or (= a c) (= b c))) :named a1))

(declare-const t2 Bool) (assert (! (= t2 (and (= a b) (= a c))) :named a2))

(assert (= ISOSCELES

 (if (and (>= a b) (>= b c))

 (if t1

 (if t2

 EQUILATERAL

 ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c))) ACUTE OBTUSE) RIGHT))

 ILLEGAL)))

(check-sat)

(get-unsat-core) ; -> Unsat core is (a1), the list of one assertion named a1. 30

Discussion

Unsat core comprises of the sole assertion a1.

Commenting out the assertion a1 makes the formula SAT. (Try it!)

In other words, the program becomes correct on the failing input
used in computing the core (2,2,1).

The execution on (2,2,2) became correct because commenting out
a1 makes t1 unconstrained, which allows the solver to pick any value
for t1. It picks a value that makes the program correct on this
execution.

Assertion is a repair candidate because we want to change the code
that computes the value of t1.

31

Buggy classifier bug identified via unsat core

This code is in the source language (Racket):

(define (classify a b c)

 (if (and (>= a b) (>= b c))

 (if (or (= a c) (= b c))

 (if (and (= a b) (= a c))

 'EQUILATERAL

 'ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c)))

 'ACUTE

 'OBTUSE)

 'RIGHT))

 'ILLEGAL))

32

Unsat core depends on how we name asserts

Note: If we broke the assertion a1 further, the core
would contain three assertions, underlined:

(define (classify a b c)

 (if (and (>= a b) (>= b c))

 (if (or (= a c) (= b c))

 (if (and (= a b) (= a c))

 'EQUILATERAL

 'ISOSCELES)

 (if (not (= (* a a) (+ (* b b) (* c c))))

 (if (< (* a a) (+ (* b b) (* c c)))

 'ACUTE 'OBTUSE) 'RIGHT))

 'ILLEGAL))

Changing the value of the or expression, or either of the equalities,
can rescue this failing run. 33

Mapping unsat core back to source code

34

This is how Rosette maps the unsat to src.

Synthesis

35

programming with a solver: synthesis

36

assume pre(x)

P(x) {

 v = E?

 … }

assert post(P(x))

Replace E? with

expression e so

that Pe(x) satisfies

the spec on all

valid inputs.

synthesis formula

model

expression

x − 2

Comfusy [EPFL],

Sketch [Berkeley / MIT]

SAT/SMT

solver

Let’s correct the classifier bug with synthesis

We ask the synthesizer to replace the buggy expression, (or

(= a c))(= b c), with a suitable expression from this grammar

 hole --> e and e | e or e

 e --> var op var

 var --> a | b | c

 op --> = | <= | < | > | >=

We want to write a partial program (sketch) that
syntactically looks roughly as follows:

(define (classify a b c)

 (if (and (>= a b) (>= b c))

 (if (hole) ; this used to be (or (= a c))(= b c)

 (if (and (= a b) (= a c))

 …

37

The sketch in Z3: Part 1, derivations for the hole grammar

First we define the “elementary” holes.

These are the values computed by the solver.

These elementary holes determine which expression
we will derive from the grammar (see next slides):

(declare-const h0 Int)

(declare-const h1 Int)

(declare-const h2 Int)

(declare-const h3 Int)

(declare-const h4 Int)

(declare-const h5 Int)

(declare-const h6 Int)

 38

part 2: encoding the hole grammar

The call to function hole expands into an expression
determined by the values of h0, …, h6, which are
under solver’s control.

(define-fun hole((a Int)(b Int)(c Int)) Bool

 (synth-connective h0

 (synth-comparator h1

 (synth-var h2 a b c)

 (synth-var h3 a b c))

 (synth-comparator h4

 (synth-var h5 a b c)

 (synth-var h6 a b c))))

39

Part 3: the rest of the hole grammar

(define-fun synth-var ((h Int)(a Int)

 (b Int)(c Int)) Int

 (if (= h 0)

 a

 (if (= h 1) b c)))

(define-fun synth-connective ((h Int)(v1 Bool)

 (v2 Bool)) Bool

 (if (= h 0)

 (and v1 v2)

 (or v1 v2)))

You can find synth-comparator in classifier-synthesis.smt2.

40

Part 4: replace the buggy assertion with the hole

The hole expands to an expression from the grammar
that will make the program correct (if one exists).

The expression is over variables a,b,c, hence the
arguments to the call to hole.

(define-fun classify ((a Int)(b Int)(c Int))

 TriangleType

 (if (and (>= a b) (>= b c))

 (if (hole a b c)

 (if (and (= a b) (= a c))

 ... 41

The synthesis formula

The partial program is now translated to a formula.

Q: how many parameters does the formula have?

A: h0, …, h6, a, b, c, (and, technically, also the return value)

We are now ready to formulate the synthesis formula
to be solved. It suffices to add i/o pair constraints:

(assert (= (classify 2 12 27) ILLEGAL))

(assert (= (classify 5 4 3) RIGHT))

(assert (= (classify 26 14 14) ISOSCELES))

(assert (= (classify 19 19 19) EQUILATERAL))

(assert (= (classify 9 6 4) OBTUSE))

... ; we have 8 input/output pairs in total

42

The result of synthesis

These i/o pairs sufficed to obtain a program correct on
all inputs. The program

h0 -> 1

h1 -> 0

h2 -> 0

h3 -> 1

h4 -> 0

h5 -> 1

h6 ->2

which means the hole is

(or (= a b)(= b c))

43

programming with a solver: synthesis

44

assume pre(x)

P(x) {

 v = E?

 … }

assert post(P(x))

Replace E? with

expression e so that

Pe(x) satisfies the

spec on all valid

inputs.
We want to solve:
∃𝑒 . ∀𝑥 . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦)

We instead solve the I.S. variant:

∃𝑒 . 𝑆𝑃 𝑥𝑖, 𝑦𝑖, 𝑒
𝑖

model

expression

x − 2

Comfusy [EPFL],

Sketch [Berkeley / MIT]

SAT/SMT

solver

Q: Why doesn’t the inductive synthesis variant say
∃𝑒 . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦)𝑖 ?
A: Because pre- and postconditions on pairs 𝑥𝑖, 𝑦𝑖 have been
checked when these pairs were selected.

Why is this an incorrect synthesis formula?

; hole grammar defined as previously, including the 7 hole vars

(declare-const h0 Int) … (declare-const h6 Int)

; the partial program is the same

(define-fun classify ((a Int)(b Int)(c Int)) TriangleType

 (if (and (>= a b) (>= b c))

 (if (hole a b c)

 (if (and (= a b) (= a c))

; now we change things, reusing the formula from the verification problem

(declare-const x Int)

(declare-const y Int)

(declare-const z Int)

(assert (and (pre x y z)

 (not (post x y z (classify x y z)))))

(check-sat)

(get-model)

45

Why is this an incorrect synthesis formula?

What problem did we solve?

∃𝑥, 𝑦, 𝑧, ℎ . 𝑝𝑟𝑒 𝑥 ⇒ 𝑆𝑃 𝑥, 𝑦, 𝑒 ∧ 𝑝𝑜𝑠𝑡(𝑥, 𝑦)

The solver finds a hole value and just one input on
which this hole yields a correct program.

we want holes that are correct on all inputs

46

Advanced topic: enumerate all solutions

We can ask the solver for alternative programs, by
insisting that the solution differs from the first one:

; ask for a solution different from “(or (= a b)(= b c))”

(assert (not (and (= h0 1)(= h1 0)(= h2 0)(= h3 1)

 (= h4 0)(= h5 1)(= h6 2))))

The second synthesized program may be a simple
algebraic variation (eg, (or (= b a)(= b c))), so we
suppress such variations with lexicographic ordering:

; example: a=b is legal but b=a is not

(assert (and (< h2 h3)(< h5 h6)))

; (or (= a b)(= b c)) is legal but (or (= b c)(= a b)) is not

(assert (<= h2 h5))

 47

Four alternative solutions

(Manual) enumeration leads to four solutions for the hole:

1. (or (= a b)(= b c))

2. (or (= a b)(<= b c))

3. (or (<= a b)(<= b c))

4. (or (<= a b)(= b c))

Some of these solutions may be surprising. Are they all correct on
all inputs or only on the small set of eight input/output pairs?

To find out, verify these solutions.

Our verifier says thay are all correct.

48

Angelic Programming

49

programming with a solver: angelic execution

50

Given x, choose v

at runtime so that

P(x, v) satisfies

the spec.

∃𝑣 . 𝑝𝑟𝑒(𝑥) 𝑝𝑜𝑠𝑡(𝑦) 𝑺𝑷(𝑥, 𝑦, 𝑣)

assume pre(x)

P(x) {

v = choose()

… }

assert post(P(x))

model 𝑣 = 0, 2,…

trace

Kaplan [EPFL], PBnJ [UCLA], Skalch

[Berkeley], Squander [MIT], etc.

SAT/SMT

solver

the choose statements may be executed
several times during the execution (due to
a loop), hence the model is mapped to a
trace of choose values.

Example 1: Angelic Programming

The n-queens problem with angelic programming

for i in 1..n

 ; place queen 𝑖 in a suitable position in the 𝑖th column.

 ; the position is selected by the oracle from the domain {1, … , n}

 position[i] = choose(1..n)

end for

; now check for absence of conflicts (this is our correctness condition)

for i in 1..n

 for j in 1..i-1

 assert queens 𝑖, 𝑗 do not conflict

 end for

end for

51

Synthesis vs. constraint solving

Constraint solving: solves for a value

- this value satisfies given constraints

- this is a FO value (Bool, Int, Vector of Int, …)
- FO=first order, SO=second order

Synthesis: solves for a program

- this program must meet the specification

- program is a SO value – a function from value to value

- in our synthesis approach, we reduce SO to FO with holes

Angelic programming is runtime constraint solving

- choose’n values must meet the constraint that the
program terminates without failing any assertion
- termination may be optional, depending on the setting

52

Why the name “angelic programming”?

The choose expression is angelic nondeterminism

- the oracle chooses the value to meet the spec if possible

Compare with demonic nondeterminism

- used to model an adversary in program verification
- eg, an interleaving of instructions

- here, we want from the oracle a counterexample
interleaving, one that that breaks the spec

53

Applications of angelic programming

Choose is used during program development

- choose expressions return values to be eventually
computed by code (that we haven’t yet implemented)

- example: choose is used to construct a binary search tree
data structure for given data and a repOK procedure that
checks if data structure is a bst (see code on next slide)

Choose expressions remain in final code

- in n-queens, the choose expr remains in finished code

- we have no intention to replace it with classical
operational code

- that code would anyway just perform search; the code
might do it better than our solver, but often the solver
suffices even in real applications

54

Angelic BST insertion procedure

Node insertT(Node root, int data) {

 if (root == null) return new Node(data);

 Node nn = new Node(data);

 // ask oracle for Node n, where nn will be inserted

 Node n = choose(set of Nodes created so far)

 // oracle tells us whether to insert as left/right child

 if (choose(Bool)) n.left = nn

 else n.right = nn

 return root

}

55

Other ideas for using angelic execution

Imagine you are writing an interpreter for a dataflow
language (the DSL in your project), eg

- actor language

- attribute grammar evaluator

This interpreter must choose an order in which to fire
executions of nodes, assignments, etc

Your interpreter can compute this order or it can ask
choose to compute it given a spec of what partial
order must be met by a correct execution

56

Summary

Constraint solving solves several problems:

- invert the program execution (yields input, given output)
it’s not the same as inverting the program (yields a program)

- verify the program
by asking if a violating input exists

- localize the fault
by asking which assertions need to be relaxed to meet the spec

- synthesize a program fragment
we can synthesize expressions, statements, not just constants

- angelic execution
ask an oracle for a suitable value at runtime

57

Summary (cont)

A program P is translated into the same formula SP but
the formulas for the various problems are different.

Sometimes it is suitable to translate the program
differently for each problem, for performance
reasons.

58

Next lecture overview

Solvers accepts different logics and encoding in these
logics has vastly different performance.

Here, a comparison of encoding of SIMD matrix
transpose in various solvers and logics.

59

encoding solver time (sec)

QF_AUFLIA cvc3 >600

z3 159

QF_AUFBV boolector 409

z3 287

cvc3 119

QF_AUFBV-ne cvc3 >600

boolector >600

z3 25

stp 11

REL_BV rosette 9

REL kodkod 5

Next lecture (cont)

Intro to the solver logics

Encoding arrays and loops

Using Racket as a formula code generator

Ideas for the semester project

60

References

SMT2 language guide: http://rise4fun.com/z3/tutorial/guide

Practical Z3 questions: http://stackoverflow.com/questions/tagged/z3

61

http://rise4fun.com/z3/tutorial/guide
http://rise4fun.com/z3/tutorial/guide
http://stackoverflow.com/questions/tagged/z3
http://stackoverflow.com/questions/tagged/z3

