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We show, by example, how to encode the four 
programming problems from Lecture 2 in bounded 
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning 

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like 
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive 
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as 
models, enabling both synthesis and diagnosis of 
synthesis failures 

Next lecture:  why small languages are useful

Subsequent lecture:  project problem statements 
(what we want to synthesize)

today
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alloy.mit.edu/kodkod

s
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some applications of kodkod

checking theorems & designs
‣ Alloy4 (Alloy), Nitpick (Isabelle/HOL), ProB (B, 

Event-B, Z and TLA+), ExUML (UML)

checking code & memory models
‣ Forge, Karun, Miniatur, TACO, MemSAT

declarative programming, fault recovery & 
data structure repair
‣ Squander, PBnJ, Tarmeem, Cobbler

declarative configuration
‣ ConfigAssure (networks), Margrave (policies)

test-case generation
‣ Kesit, Whispec

4

MemSAT

SQUANDER



class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data; }

example:  reversing a linked list
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@invariant no ^next ∩ iden 

invariants, pre and post conditions
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@requires 
this.head != null && 
this.head.next != null

@invariant no ^next ∩ iden 

invariants, pre and post conditions
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a relational view of the heap
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@invariant Inv(next)
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fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, …  }
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mid = far;
far = far.next;

}

mid.next = near;
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



 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, …  }

types as sets (unary relations)
‣ List ≡ { <this> }, Node ≡ { <n0>, <n1>, <n2> } 

objects as scalars (singleton unary relations)
‣ this ≡ { <this> }, null ≡ { <null> }

field access as relational join (.)
‣ this.head ≡ { <this> } . { <this, n2> } = { <n2> }

field update as relational override (++)

‣ this.head = null ≡  head ++ (this × null) = 
{ <this, n2> } ++ { <this, null> } = { <this, null> }
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head0 = update(head, this, mid2);
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@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

http://dl.acm.org/citation.cfm?id=1146251
http://dl.acm.org/citation.cfm?id=1146251
http://sdg.csail.mit.edu/pubs/theses/gdennis-phd.pdf
http://sdg.csail.mit.edu/pubs/theses/gdennis-phd.pdf
http://dl.acm.org/citation.cfm?id=1287653
http://dl.acm.org/citation.cfm?id=1287653
http://dl.acm.org/citation.cfm?id=1806635
http://dl.acm.org/citation.cfm?id=1806635


this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

translating code to relational logic 

9
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void reverse() {
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next0 = update(next, near0, far0);
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next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

introduce a unary relation for each reference  
and  type, and a binary relation for each field
‣ constrain reference relations to be singletons
‣ constrain field relations to be functions

encode the post-state relations in terms of the 
pre-state, using relational joins and overrides

use the pre- and post-state relations to 
encode invariants, preconditions, and negated 
postconditions
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head ⊆ List × (Node ∪ null) ∧(∀ l: List | one l.head)

encode the post-state relations in terms of the 
pre-state, using relational joins and overrides
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@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);
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this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > } 
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> } 

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

finite universe of uninterpreted 
elements
‣ e.g., 1 List object, 3 of everything else

upper bound on each relation
‣ set of tuples, drawn from the universe, 

that the relation may contain

lower bound on each relation
‣ set of tuples, drawn from the universe, 

that the relation must contain

‣ lower bounds collectively form a partial 
model 



this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > } 
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> } 

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe



this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > } 
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> } 

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds
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universe

upper bound
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far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > } 
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> } 

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe

upper bound

lower bound

null = { <null> }



code checking demo
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a bug!  what to do about it?
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 



data repair:  fallback to the specification
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}
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express it as a partial model
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data repair:  fallback to the specification

given a (valid) pre-state and a bad 
post-state at runtime, solve for a 
post-state that satisfies the 
specification and continue 
executing

don’t solve for the pre-state; 
express it as a partial model

for details see 
‣ Cobbler [Zaeem et al. 2012]
‣ Squander [Milicevic et al. 2011]
‣ PBnJ [Samimi et al. 2010]
‣ Tarmeem [Zaeem et al. 2010]
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@ensures Post(this, old(head), head, old(next), next)

void reverse() {
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next1 = update(next0, mid0, near0);
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}

https://webspace.utexas.edu/rn4294/tacas12.pdf
https://webspace.utexas.edu/rn4294/tacas12.pdf
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1884015
http://dl.acm.org/citation.cfm?id=1884015
http://dl.acm.org/citation.cfm?id=1884016
http://dl.acm.org/citation.cfm?id=1884016


this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state
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pre-state

encoding of 
the repair



this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

encoding of 
the repair

post-state as 
variables



this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

encoding of 
the repair

post-state as 
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data repair demo
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but the bug is still lurking in the code …
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



 




 


 





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
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



fault localization with minimal unsat cores

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}
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from reaching the desired output state
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introduce additional “indicator” relations 
into the encoding 
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into the encoding 

the resulting formula, together with the 
input/output partial model, will be 
unsatisfiable
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given a buggy program, a valid input and 
the expected output, find a minimal 
subset of program statements that 
prevents the execution on the given input 
from reaching the desired output state

introduce additional “indicator” relations 
into the encoding 

the resulting formula, together with the 
input/output partial model, will be 
unsatisfiable

a minimal unsatisfiable core of this 
formula represents an irreducible cause 
of the program’s failure to meet the 
specification
‣ there may be (and usually are) more than 

one such core

‣ a fully fleshed out approach would take 
advantage of additional cores and cores 
from multiple failing input/output pairs

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
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this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

fault localization encoding

18

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

start with the  
encoding for 
validation



this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧
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mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
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next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 
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fault localization encoding
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}
Inv(next3) ∧ Post(this, head, head0, next, next3)

post-
condition 
must hold



@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

fault localization encoding: indicator relations

19

introduce free 
variables for 
source-level 
expressions 



@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

fault localization encoding: indicator relations
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variables for 
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expressions 



{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding:  partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 















valid input state

desired output state



{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding:  partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 

















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding:  partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 

















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding:  partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding:  partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)



fault localization demo
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minimal unsatisfiable core
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this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

constraints that 
are UNSAT (with 
respect to bounds) 
but become SAT if 
any member is 
removed



minimal unsatisfiable core

22

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧ 
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}





 




 


 

















synthesizing a sketch-like fix

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}



synthesizing a sketch-like fix

drill a hole in one of the localized 
statements
‣ e.g., at the earliest opportunity for a fix

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}
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statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an 
expression from a (small) grammar so that 
the program satisfies its spec on all inputs
‣ e.g., [ variable | null ]
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}



synthesizing a sketch-like fix

drill a hole in one of the localized 
statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an 
expression from a (small) grammar so that 
the program satisfies its spec on all inputs
‣ e.g., [ variable | null ]

encode the synthesis problem (for one 
input) using relations that represent syntax, 
together with a “meaning” expression 
connecting syntax to semantics
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}



synthesizing a sketch-like fix

drill a hole in one of the localized 
statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an 
expression from a (small) grammar so that 
the program satisfies its spec on all inputs
‣ e.g., [ variable | null ]

encode the synthesis problem (for one 
input) using relations that represent syntax, 
together with a “meaning” expression 
connecting syntax to semantics

wrap into a CEGIS loop (not done here)
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

http://people.csail.mit.edu/asolar/papers/thesis.pdf
http://people.csail.mit.edu/asolar/papers/thesis.pdf


this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

synthesis encoding
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

start with the  
first step of the 
repair encoding



this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

synthesis encoding
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);
 
assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧ one hole ∧
head ⊆ List → (Node ∪ null) ∧  
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

meaning = (null × null) ∪ (“head” × this.head) ∪	
 
(“near0” × near0) ∪ (“mid0” × mid0) ∪	
 (“far0” × far0)

next0 = next ++ (near0 × hole.meaning),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

encode the hole 
using syntax 
relations



synthesis encoding:  partial model
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this ⊆ List ∧ one this ∧ one hole ∧
head ⊆ List → (Node ∪ null) ∧  
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

meaning = (null × null) ∪ (“head” × this.head) ∪	
 
(“near0” × near0) ∪ (“mid0” × mid0) ∪	
 (“far0” × far0)

next0 = next ++ (near0 × hole.meaning),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2)  | 

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧ 
Inv(next3) ∧ Post(this, head, head0, next, next3)

{ this, n0, n1, n2, s0, s1, s2, null, 
  “head”, “near0”, “mid0”, “far0” }

null = { <null> }
this = { <this> } 
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> } 

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>,  <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

“head” = { <“head”> }
“near0” = { <“near0”> }
“mid0” = { <“mid0”> }
“far0” = { <“far0”> }

{} ⊆ hole ⊆ { <null>, <“head”>, <“near0”>, 
<“mid0”>, <“far0”> }





 




 


 



synthesis demo
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patched list reversal
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@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = null;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}
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