
Ras Bodik
Emina Torlak

Division of Computer Science
University of California, Berkeley

Advanced encoding of programs
CS294: Program Synthesis for Everyone

We show, by example, how to encode the four
programming problems from Lecture 2 in bounded
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as
models, enabling both synthesis and diagnosis of
synthesis failures

Next lecture: why small languages are useful

Subsequent lecture: project problem statements
(what we want to synthesize)

today

2

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/

We show, by example, how to encode the four
programming problems from Lecture 2 in bounded
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as
models, enabling both synthesis and diagnosis of
synthesis failures

Next lecture: why small languages are useful

Subsequent lecture: project problem statements
(what we want to synthesize)

today

2

ENCODING SOLVER TIME (SEC)

QF_AUFLIAQF_AUFLIA

QF_AUFBVQF_AUFBVQF_AUFBV

QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)

REL_BV
REL

CVC3 >600
Z3 159
Boolector 409
Z3 287
CVC3 119
CVC3 >600
Boolector >600
Z3 25
STP 11
Rosette 9
Kodkod 5

Lecture 3

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf

We show, by example, how to encode the four
programming problems from Lecture 2 in bounded
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as
models, enabling both synthesis and diagnosis of
synthesis failures

Next lecture: why small languages are useful

Subsequent lecture: project problem statements
(what we want to synthesize)

today

2

ENCODING SOLVER TIME (SEC)

QF_AUFLIAQF_AUFLIA

QF_AUFBVQF_AUFBVQF_AUFBV

QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)

REL_BV
REL

CVC3 >600
Z3 159
Boolector 409
Z3 287
CVC3 119
CVC3 >600
Boolector >600
Z3 25
STP 11
Rosette 9
Kodkod 5

Lecture 3

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf

We show, by example, how to encode the four
programming problems from Lecture 2 in bounded
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as
models, enabling both synthesis and diagnosis of
synthesis failures

Next lecture: why small languages are useful

Subsequent lecture: project problem statements
(what we want to synthesize)

today

2

ENCODING SOLVER TIME (SEC)

QF_AUFLIAQF_AUFLIA

QF_AUFBVQF_AUFBVQF_AUFBV

QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)

REL_BV
REL

CVC3 >600
Z3 159
Boolector 409
Z3 287
CVC3 119
CVC3 >600
Boolector >600
Z3 25
STP 11
Rosette 9
Kodkod 5

Lecture 3

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf

We show, by example, how to encode the four
programming problems from Lecture 2 in bounded
relational logic and solve them with Kodkod.
‣ An eager SAT-based solver optimized for reasoning

over finite domains, as used in inductive synthesis

‣ Logic designed for easy modeling of graph-like
structures such as heaps and linked data structures

‣ first-order logic with relational algebra, transitive
closure, bitvector arithmetic and partial models

‣ Provides minimal unsatisfiable cores as well as
models, enabling both synthesis and diagnosis of
synthesis failures

Next lecture: why small languages are useful

Subsequent lecture: project problem statements
(what we want to synthesize)

today

2

ENCODING SOLVER TIME (SEC)

QF_AUFLIAQF_AUFLIA

QF_AUFBVQF_AUFBVQF_AUFBV

QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)
QF_AUFBV (non
extensional)

REL_BV
REL

CVC3 >600
Z3 159
Boolector 409
Z3 287
CVC3 119
CVC3 >600
Boolector >600
Z3 25
STP 11
Rosette 9
Kodkod 5

Lecture 3

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L3/L3.pdf

alloy.mit.edu/kodkod

s

3

http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/

some applications of kodkod

checking theorems & designs
‣ Alloy4 (Alloy), Nitpick (Isabelle/HOL), ProB (B,

Event-B, Z and TLA+), ExUML (UML)

checking code & memory models
‣ Forge, Karun, Miniatur, TACO, MemSAT

declarative programming, fault recovery &
data structure repair
‣ Squander, PBnJ, Tarmeem, Cobbler

declarative configuration
‣ ConfigAssure (networks), Margrave (policies)

test-case generation
‣ Kesit, Whispec

4

MemSAT

SQUANDER

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data; }

example: reversing a linked list

5

?





 




 


 















class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data; }

example: reversing a linked list

5





 




 


 















@invariant no ^next ∩ iden

invariants, pre and post conditions

6

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data;

}





 




 


 















@requires
this.head != null &&
this.head.next != null

@invariant no ^next ∩ iden

invariants, pre and post conditions

6

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data;

}





 




 


 















@ensures
this.head.*next = this.old(head).*old(next) &&
let N = (this.head.*next − null), bound = N × N |

next ∩ bound = ~old(next) ∩ bound

@requires
this.head != null &&
this.head.next != null

@invariant no ^next ∩ iden

invariants, pre and post conditions

6

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data;

}





 




 


 















@ensures
this.head.*next = this.old(head).*old(next) &&
let N = (this.head.*next − null), bound = N × N |

next ∩ bound = ~old(next) ∩ bound

@requires
this.head != null &&
this.head.next != null

@invariant no ^next ∩ iden

invariants, pre and post conditions

6

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data;

}





 




 


 















@ensures
this.head.*next = this.old(head).*old(next) &&
let N = (this.head.*next − null), bound = N × N |

next ∩ bound = ~old(next) ∩ bound

@requires
this.head != null &&
this.head.next != null

@invariant no ^next ∩ iden

invariants, pre and post conditions

6

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;!!

}
}

class Node {
Node next;
String data;

}

Inv(next)

Pre(this, head, next)

Post(this, old(head), head, old(next), next)

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, … }

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, … }

types as sets (unary relations)
‣ List ≡ { <this> }, Node ≡ { <n0>, <n1>, <n2> }

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, … }

types as sets (unary relations)
‣ List ≡ { <this> }, Node ≡ { <n0>, <n1>, <n2> }

objects as scalars (singleton unary relations)
‣ this ≡ { <this> }, null ≡ { <null> }

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, … }

types as sets (unary relations)
‣ List ≡ { <this> }, Node ≡ { <n0>, <n1>, <n2> }

objects as scalars (singleton unary relations)
‣ this ≡ { <this> }, null ≡ { <null> }

field access as relational join (.)
‣ this.head ≡ { <this> } . { <this, n2> } = { <n2> }

a relational view of the heap

7

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}





 




 


 

fields as binary relations

‣ head ≡ { <this, n2> }, next ≡ { <n2, n1>, … }

types as sets (unary relations)
‣ List ≡ { <this> }, Node ≡ { <n0>, <n1>, <n2> }

objects as scalars (singleton unary relations)
‣ this ≡ { <this> }, null ≡ { <null> }

field access as relational join (.)
‣ this.head ≡ { <this> } . { <this, n2> } = { <n2> }

field update as relational override (++)

‣ this.head = null ≡ head ++ (this × null) =
{ <this, n2> } ++ { <this, null> } = { <this, null> }

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

finitize loops
‣ e.g., unwind once

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

finitize loops
‣ e.g., unwind once

convert to SSA
‣ SSA for both locals and fields

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

finitize loops
‣ e.g., unwind once

convert to SSA
‣ SSA for both locals and fields

encode program semantics in
relational logic

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

finitize loops
‣ e.g., unwind once

convert to SSA
‣ SSA for both locals and fields

encode program semantics in
relational logic

specify analysis bounds

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

code checking with kodkod

finitize loops
‣ e.g., unwind once

convert to SSA
‣ SSA for both locals and fields

encode program semantics in
relational logic

specify analysis bounds

for details see
‣ Forge [Dennis 2006, Dennis 2009]
‣ Miniatur [Dolby et al. 2007]
‣ MemSAT [Torlak et al. 2010]

8

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;! !

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

http://dl.acm.org/citation.cfm?id=1146251
http://dl.acm.org/citation.cfm?id=1146251
http://sdg.csail.mit.edu/pubs/theses/gdennis-phd.pdf
http://sdg.csail.mit.edu/pubs/theses/gdennis-phd.pdf
http://dl.acm.org/citation.cfm?id=1287653
http://dl.acm.org/citation.cfm?id=1287653
http://dl.acm.org/citation.cfm?id=1806635
http://dl.acm.org/citation.cfm?id=1806635

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

translating code to relational logic

9

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

introduce a unary relation for each reference
and type, and a binary relation for each field
‣ constrain reference relations to be singletons
‣ constrain field relations to be functions

encode the post-state relations in terms of the
pre-state, using relational joins and overrides

use the pre- and post-state relations to
encode invariants, preconditions, and negated
postconditions

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

translating code to relational logic

9

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

encode the post-state relations in terms of the
pre-state, using relational joins and overrides

use the pre- and post-state relations to
encode invariants, preconditions, and negated
postconditions

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

translating code to relational logic

9

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

head ⊆ List × (Node ∪ null) ∧(∀ l: List | one l.head)

encode the post-state relations in terms of the
pre-state, using relational joins and overrides

use the pre- and post-state relations to
encode invariants, preconditions, and negated
postconditions

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

translating code to relational logic

9

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > }
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

finite universe of uninterpreted
elements
‣ e.g., 1 List object, 3 of everything else

upper bound on each relation
‣ set of tuples, drawn from the universe,

that the relation may contain

lower bound on each relation
‣ set of tuples, drawn from the universe,

that the relation must contain

‣ lower bounds collectively form a partial
model

this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > }
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe

this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > }
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe

upper bound

this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > }
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe

upper bound

lower bound

this ⊆ List ∧ one this
head ⊆ List → (Node ∪ null)
next ⊆ Node → (Node ∪ null)
data ⊆ Node → (String ∪ null)

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ <null> } ⊆ null ⊆ { <null> }

{} ⊆ this ⊆ { < this > }
{} ⊆ List ⊆ { < this > }
{} ⊆ Node ⊆ { <n0>, <n1>, <n2> }
{} ⊆ String ⊆ { <s0>, <s1>, <s2> }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

specifying analysis bounds

10

universe

upper bound

lower bound

null = { <null> }

code checking demo

11

a bug! what to do about it?

12









 












 




 


 

data repair: fallback to the specification

13

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

data repair: fallback to the specification

given a (valid) pre-state and a bad
post-state at runtime, solve for a
post-state that satisfies the
specification and continue
executing

13

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

data repair: fallback to the specification

given a (valid) pre-state and a bad
post-state at runtime, solve for a
post-state that satisfies the
specification and continue
executing

don’t solve for the pre-state;
express it as a partial model

13

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

data repair: fallback to the specification

given a (valid) pre-state and a bad
post-state at runtime, solve for a
post-state that satisfies the
specification and continue
executing

don’t solve for the pre-state;
express it as a partial model

for details see
‣ Cobbler [Zaeem et al. 2012]
‣ Squander [Milicevic et al. 2011]
‣ PBnJ [Samimi et al. 2010]
‣ Tarmeem [Zaeem et al. 2010]

13

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

https://webspace.utexas.edu/rn4294/tacas12.pdf
https://webspace.utexas.edu/rn4294/tacas12.pdf
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1985863
http://dl.acm.org/citation.cfm?id=1884015
http://dl.acm.org/citation.cfm?id=1884015
http://dl.acm.org/citation.cfm?id=1884016
http://dl.acm.org/citation.cfm?id=1884016

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

encoding of
the repair

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

encoding of
the repair

post-state as
variables

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

head0 ⊆ List → (Node ∪ null) ∧
next3 ⊆ Node → (Node ∪ null) ∧

Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

data repair using partial models

14

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }

this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }





 




 


 

pre-state

encoding of
the repair

post-state as
variables

pre-state as a
partial model;
solve for post-
state only

data repair demo

15

but the bug is still lurking in the code …

16





 




 


 















fault localization with minimal unsat cores

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

fault localization with minimal unsat cores

given a buggy program, a valid input and
the expected output, find a minimal
subset of program statements that
prevents the execution on the given input
from reaching the desired output state

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

fault localization with minimal unsat cores

given a buggy program, a valid input and
the expected output, find a minimal
subset of program statements that
prevents the execution on the given input
from reaching the desired output state

introduce additional “indicator” relations
into the encoding

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

fault localization with minimal unsat cores

given a buggy program, a valid input and
the expected output, find a minimal
subset of program statements that
prevents the execution on the given input
from reaching the desired output state

introduce additional “indicator” relations
into the encoding

the resulting formula, together with the
input/output partial model, will be
unsatisfiable

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

fault localization with minimal unsat cores

given a buggy program, a valid input and
the expected output, find a minimal
subset of program statements that
prevents the execution on the given input
from reaching the desired output state

introduce additional “indicator” relations
into the encoding

the resulting formula, together with the
input/output partial model, will be
unsatisfiable

a minimal unsatisfiable core of this
formula represents an irreducible cause
of the program’s failure to meet the
specification
‣ there may be (and usually are) more than

one such core

‣ a fully fleshed out approach would take
advantage of additional cores and cores
from multiple failing input/output pairs

17

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

fault localization encoding

18

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

start with the
encoding for
validation

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

fault localization encoding

18

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}
Inv(next3) ∧ Post(this, head, head0, next, next3)

post-
condition
must hold

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

fault localization encoding: indicator relations

19

introduce free
variables for
source-level
expressions

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

fault localization encoding: indicator relations

19

introduce free
variables for
source-level
expressions

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding: partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 















valid input state

desired output state

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding: partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding: partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)





 




 


 















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding: partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)















{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

fault localization encoding: partial model

20

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

fault localization demo

21

minimal unsatisfiable core

22

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

head0 = { <this, n0> }
next3 = { <n0, n1>, <n1, n2>, <n2, null> }

{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

constraints that
are UNSAT (with
respect to bounds)
but become SAT if
any member is
removed

minimal unsatisfiable core

22

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}





 




 


 















synthesizing a sketch-like fix

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

synthesizing a sketch-like fix

drill a hole in one of the localized
statements
‣ e.g., at the earliest opportunity for a fix

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

synthesizing a sketch-like fix

drill a hole in one of the localized
statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an
expression from a (small) grammar so that
the program satisfies its spec on all inputs
‣ e.g., [variable | null]

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

synthesizing a sketch-like fix

drill a hole in one of the localized
statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an
expression from a (small) grammar so that
the program satisfies its spec on all inputs
‣ e.g., [variable | null]

encode the synthesis problem (for one
input) using relations that represent syntax,
together with a “meaning” expression
connecting syntax to semantics

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

synthesizing a sketch-like fix

drill a hole in one of the localized
statements
‣ e.g., at the earliest opportunity for a fix

we want to replace the hole with an
expression from a (small) grammar so that
the program satisfies its spec on all inputs
‣ e.g., [variable | null]

encode the synthesis problem (for one
input) using relations that represent syntax,
together with a “meaning” expression
connecting syntax to semantics

wrap into a CEGIS loop (not done here)

23

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

http://people.csail.mit.edu/asolar/papers/thesis.pdf
http://people.csail.mit.edu/asolar/papers/thesis.pdf

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

synthesis encoding

24

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

start with the
first step of the
repair encoding

this ⊆ List ∧ one this ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

synthesis encoding

24

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, ??);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

boolean guard = (far0 != null);
near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

this ⊆ List ∧ one this ∧ one hole ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

meaning = (null × null) ∪ (“head” × this.head) ∪	

(“near0” × near0) ∪ (“mid0” × mid0) ∪	
 (“far0” × far0)

next0 = next ++ (near0 × hole.meaning),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

encode the hole
using syntax
relations

synthesis encoding: partial model

25

this ⊆ List ∧ one this ∧ one hole ∧
head ⊆ List → (Node ∪ null) ∧
next ⊆ Node → (Node ∪ null) ∧
data ⊆ Node → (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

meaning = (null × null) ∪ (“head” × this.head) ∪	

(“near0” × near0) ∪ (“mid0” × mid0) ∪	
 (“far0” × far0)

next0 = next ++ (near0 × hole.meaning),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

{ this, n0, n1, n2, s0, s1, s2, null,
 “head”, “near0”, “mid0”, “far0” }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

“head” = { <“head”> }
“near0” = { <“near0”> }
“mid0” = { <“mid0”> }
“far0” = { <“far0”> }

{} ⊆ hole ⊆ { <null>, <“head”>, <“near0”>,
<“mid0”>, <“far0”> }





 




 


 

synthesis demo

26

patched list reversal

27

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = null;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;! !

}

alloy.mit.edu/kodkod

28

questions?

http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/

alloy.mit.edu/kodkod

28

questions?

http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/

