
Abstractions and small
languages in synthesis
CS294: Program Synthesis for Everyone

Ras Bodik
Emina Torlak

Division of Computer Science
University of California, Berkeley

Today

Today: we describe why high-level or domain-specific
programming abstractions, provided as language
constructs, make synthesis more efficient and easier
to use.

Next lecture: Student presentations (problem stmt).

Subsequent lecture: Language implementation Part I.
Racket macros. Language embedding.

2

Instructions for classroom presentation

Topic: problem statement (refinement of HW1)

Elaborate on synthesis artifacts:

- what will be synthesized

- what are the specs (this item is important!)

3-minutes per student/team ==> practice!

Email Ras .ppt(x) slides by 9am before lecture.

3

Outline

Review of HW2

description of staff solution

Lessons from HW2

motivate synthesis at high level of abstraction

Reducing the candidate space (tree rotation)

prune with domain constrains

Reducing the formula size (graph classifiers)

synthesis followed by code generation

Synthesis at functional level (time permitting)

followed by data structure generation

4

Advanced challenge

Is this lecture familiar material? Entertain yourself by
designing a small language L that can

- express distributed protocols and

- can model message loss and reordering

How to translate programs in L to formulas, or
otherwise find L programs that meet a spec.

Oh yes, when you are done, what is a good spec
language for distributed protocols?

5

HW2 feedback

6

Description of solutions

We sped up the encoding by

- using smallest bit vectors possible for each variable

- not relying on the extensional theory of arrays

- eliminating redundant constraints on 2-bit variables
represented as bit vectors of length 2

- eliminating constant arrays

- replacing macros with explicit let statements; and

- telling the solver which logic the encoding is in.

7

Lessons (encoding)

why using bitvectors helps

– bounded by the type ==> can save some explicit constraints
on values of bitvector variables

– different decision procedure (eg blasting to SAT)

why must also drop Ints?

– absence of Ints allows bitblasting because no need to reason
about (infinite) ints

– essentially, a different algorithm is used

why not relying on extensional theory helps

– (= a b) insists that entire arrays a,b are equal, which could be
infinitely many if indexes are Ints

– a[0]=b[0] … insists only on bounded number of equalities
==> enumerate what needs to hold

8

Lessons (the input constraint for ind. synth.)

one perfect input vs. identify sufficient inputs

– Def: perfect ==> correct on a perfect input implies
correct on all inputs

– a good input accelerates solving

careful about selecting the perfect input

– we were wrong in Part 2

– Q: how to overcome the danger of weak input?

9

Results (z3)

description Emina’s

laptop

(sec)

Ras’s

laptop

(sec)

xpose3-QF_AUFLIA.smt2 xpose3 encoding using the extensional theory of

arrays and theory of integers

168 95

xpose3-QF_AUFBV.smt2 xpose3 encoding using the non-extensional

theory of arrays and theory of bitvectors; this is a

straightforward modification of xpose3-

QF_AUFLIA.smt2

148 90

xpose3-QF_AUFBV.smt1 xpose3 encoding using the extensional theory of

arrays and theory of integers; this is an

optimization of xpose3-QF_AUFBV.smt2, with no

array constants, with no function macros, and

with an explicit specification of the logic being

used

27 15

xpose2-QF_AUFBV.smt2 xpose2 encoding that is a straightforward

extension of xpose3-QF_AUFBV.smt2; the key

difference is the introduction of additional

variables and the use of larger bitvectors to

account for the new input matrix

>3600 >3600

xpose2-QF_AUFBV.smt1 xpose2 encoding that is a straightforward

extension of xpose3-QF_AUFBV.smt1; the key

difference is the introduction of additional

variables and the use of larger bitvectors to

account for the new input matrix

108 58

10

Results (Kodkod)

11

description SAT solver Emina’s laptop

(sec)

xpose3-unary xpose3 hand-crafted

encoding, using a unary

representation of numbers

MiniSat 6

xpose3-binary xpose3 encoding generated

by Rosette, using a binary

representation of numbers

MiniSat 23

MIniSat with a

carefully chosen

random seed

1

xpose2-unary xpose2 hand-crafted unary

encoding, which is a

straightforward extension of

xpose3-unary

MiniSat 89

Lingeling 9

Wish list from HW2

Wish list:

– start the solver earlier

– start the homework earlier

– use faster solvers

– get feedback on where the solver is wasting time

– debug encoding on 2x2 matrix, then scale up

– facilitate easier tweaking of constraints

12

Reducing the Size of Candidate Space

13

Example: Synthesis of tree rotation

We want to suitably rotate tree A into tree B.

We don’t know exactly how to rotate.

So we ask the synthesizer.
14

b

ca

α β γ 𝛿

p

b

c

a

α β γ 𝛿

p

Partial program for rotation

We have to update (up to) 7 memory locations.

We have seven pointer values available.

A straightforward partial program:

r.left := {| p | a | b | c | 𝛼 | 𝛽 | 𝛾 | 𝛿 |}

a.left := {| p | a | b | c | 𝛼 | 𝛽 | 𝛾 | 𝛿 |}

…

c.right := {| p | a | b | c | 𝛼 | 𝛽 | 𝛾 | 𝛿 |}

Search space: 77, about 1017
15

Reducing the search space

Encode that the pointer rotation is a permutation.

(p.left, a.left, …, c.right) :=

synth_permutation(p, a, b, c, 𝛼, 𝛽, 𝛾, 𝛿)

Search space: 7! < 77

16

Implementing the permutation construct

def synth_permutation(lst):

retval = empty list

chosen = empty set

repeat len(lst) times

ix = ??(0..len(lst)-1)

append lst[ix] to retval

assert ix not in chosen

add ix to chosen

return retval

How many choices exist for len(lst) = 7? 77

so does using the permutation reduce search space to 7! ?
17

Locally ruled out choices

In synth_permutation, selecting ix that has been
chosen is immediately ruled out by the assertion

We call this locally ruled out choice.

there are 7!, not 77 , choices that satisfy the assertion

Compare this with a globally ruled out choice

such a choice fails only after the solver propagates its
effects to assertions in the postcondition.

18

Further space reduction

In addition to a permutation, we insist that the
reordered nodes form a binary search tree

(p.left, a.left, …, c.right) :=

synth_permutation(p, a, b, c, 𝛼, 𝛽, 𝛾, 𝛿)

assert bst_to_depth_4(p)

def bst_to_depth_4(p):

assert p.d >= p.left.d

…

and p.d <= p.right.right.right.d
19

How is this a small language?

What do permutation, bst_to_depth_4 have to do
with abstractions or languages?

These are constructs of a tree manipulation language

We defined them inside the host language

ie, they are embedded in the host

and compiled to formulas

20

Summary

Effective size of candidate space ≠ 2bits of holes

Because local assertions prune the search space

In fact, recall L4: more bits in encoding often better

21

Reducing the Size of Encoding

22

Graph classifiers

Synthesize graph classifiers (ie, repOK checkers), eg:

- singly linked list

- cyclic linked list

- doubly linked list

- directed tree

- tree with parent pointer ---->

- strongly connected

Ensure linear running time.

[Izthaky et al, OOPSLA 2010]
23

Specification (tree with parent pointer)

Precondition (integrity assumption):

root r via C ∧ functional R

Postcondition (classification):

𝐶 is 1:1 ∧ ∀ 𝑢 . ¬𝐶 𝑢, 𝑟 ∧ ¬𝑅 𝑟, 𝑢 ∧ 𝑢 ≠ 𝑟 ⇒ 𝑅 𝑢, 𝑟

24

Synthesized linear-time classifier

The classifier (not a simple paraphrase of the spec!):

#𝑝𝐶 𝑟 = 0 ∧ 𝑝𝑅 𝑟 = 𝑠𝐶+ 𝑟 ∧ ∀𝑣 (#𝑝𝐶 𝑣 ≤ 1)

Explained:

25

#𝑝𝐶 𝑟 = 0 The cardinality of the set of C-
predecessors of the root r is 0.

𝑝𝑅 𝑟 = 𝑠𝐶+ 𝑟 The set of R-predecessors of the
root equals the set of nodes
forward reachable from the root.

∀𝑣 (#𝑝𝐶 𝑣 ≤ 1) Each node is a child of no more than
one node.

This classifier still looks declarative to me!

This classifier can be compiled to an operational pgm.

with guaranteed linear time performance

First, using DFS, compute inverse edges

so that we can compute predecessor sets 𝑝𝐶, 𝑝𝑅

Next, compute these conditions with DFS:

26

#𝑝𝐶 𝑟 = 0 𝑂(1)

𝑝𝑅 𝑟 = 𝑠𝐶+ 𝑟 𝑂(𝐸)

∀𝑣 (#𝑝𝐶 𝑣 ≤ 1) 𝑂(𝐸)

The partial program

Recall that a partial program (sketch) is a grammar.

each classifier is a <stmt> from this grammar

27

How is linear time guaranteed?

The partial program contains only one variable, v

hence we cannot form properties over, say, pairs of nodes

Reachability across label strings only from the root

𝑠𝐶+ 𝑟 is legal but 𝑠𝐶+ 𝑣 is not

why? evaluating, say, ∀𝑣 #𝑝A∗(v) = 1 needs 𝑂(𝑛2 lg 𝑛) time

Regular expressions are bounded in length, of course

𝑠B+C∗A+ 𝑟 hence they can be computed during DFS

28

Discussion

What did we gain with this high-level program?

encoding:

solver efficiency:

engineering complexity:

29

Their inductive synthesis algorithm

Simple thanks to the structure of the language:

1. assume you have positive and negative instance sets P, N.

2. enumerate all clauses C

3. find clauses CP that are true on each graph in P

4. find smallest subset {𝑐𝑖1, 𝑐𝑖2, … ,
𝑐𝑖𝑘} of CP such that 𝑐𝑖1 ∧

𝑐𝑖2 ∧ ⋯ ∧
𝑐𝑖𝑘 is false for all graphs from N

30

Summary of Izhaky et al

The key concept we have seen is

synthesis at high-level of abstraction

- guarantees resource constraints (here, linear time)

- a simpler synthesis algorithm

followed by deterministic compilation

- essentially, this is just pattern-driven code generation

- eg, translate #pC(v) to some fixed code

31

Other uses of languages?

32

Summary

synthesis followed by deterministic compile

the compiler could benefit from synthesis, though

higher-level abstraction ==> smaller programs and
thus smaller formulas

not by itself smaller search spaces

reduce search space via domain constraints

eg, what rotations are legal

33

Concepts not covered

constructs for specs, including examples

ex: angelic programming could create examples inputs

reduce ambiguity

if your spec is incomplete (eg examples), then smaller
candidate space reduces ambiguity in the spec

feedback to the user/programmer in familiar domain

eg describing the localized bug using unsat core

support abstraction that will be used in synthesis

ignore actual value in AG, actual multiplication in HPC
codes

implicitly codify domain properties

– so that you can automatically determine that a single
matrix is sufficient for xpose

34

Looking ahead

Languages that will be built in cs294 projects:

– distributed protocols (asynchrony, lost messages)

– distributed protocols (bounded asynchrony)

– web scraping (how to name DOM elements)

– spatial programming in forth

– attribute grammar evaluators

– distributed memory data structures and operations

– parsers for programming contests

35

Next lecture (Tuesday)

Read Fudging up Racket

Implementing a language in Racket

Optimizations

36

