DyC: An Expressive Annotation-Directed Dynamic Compiler for C

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington

Technical Report UW-CSE-97-03-03
Last Update: May 12, 1999

http://www.cs.washington.edu/research/dyncomp/
{grant,mock,matthai,chambers,eggers}@cs.washington.edu

Abstract should be applied. “C [Engler et al. 96, Poletto et al. 97] and its
predecessodcg [Engler & Proebsting 94] take a procedural

We present the design of DyC, a dynamic-compilation system for C approach to user direction, requiring the user to write programs that

based on run-time specialization. Directed by a few declarative user

. . . . -~ explicitly manipulate, compose, and compile program fragments at
annotations that specify the vanablgas gnd pode on Wh.'Ch dynamlcrun time. These systems offer great flexibility and control to the
compilation should take place, a binding-time analysis computes

the set of run-time constants at each program point in the annotated’roJrammer, but at the cost of significant programmer effort and

, ; . debugging difficulty.
procedure’s control-flow graph; the analysis supports program-
point-specific polyvariant division and specialization. The results of Alternatively, Fabius [Leone & Lee 96], Tempo [Consel & Noél
the analysis guide the construction of a run-time specializer for 96], and our previous system [Auslander et al. 96] take a declarative
each dynamically compiled region; the specializer supports various approach, employing user annotations to guide dynamic
caching strategies for managing dynamically generated code andcompilation. Fabius uses function currying, in a purely functional
mixes of speculative and demand-driven specialization of dynamic subset of ML; Tempo uses function-level annotations, annotations
branch successors. Most of the key cost/benefit trade-offs in theon global variables and structure types, and alias analysis on
binding-time analysis and the run-time specializer are open to userprograms written in C; and our previous system uses
control through declarative policy annotations. intraprocedural annotations, also in C. Each of these declarative
DyC has been implemented in the context of an optimizing @PProaches adapts ideas from partial evaluation, expressing
compiler, and initial results have been promising. The speedups wedynamic compilation as run-time offline specialization (i.e.,
have obtained are good, and the dynamic-compilation overhead isCOMPpile-time binding-time analysis and run-time specialization),
among the lowest of any dynamic-compilation system, typically where static values corres_pond to run-time state for which programs
20-200 cycles per instruction generated on a Digital Alpha 21164, &re Specialized. Declarative approaches offer the advantages of an
The majority of DyC’s functionality has been used to dynamically €aSier interface to dynamic compilation for the programmer (since
compile an instruction-set simulator. Only three annotations were dynamic —optimizations are derived from the annotations
required, but a few other changes to the program had to be made du@utomatically, rather than being programmed by hand) and easier
to DyC'’s lack of support for static global variables. This deficiency Program understanding and debugging (since declarative
and DyC'’s rudimentary support for partially static data structures &nnotations can be designed to avoid affecting the meaning of the

are the primary obstacles to making DyC easy to use. underlying pr_ograms). However, declarative systems usually_ of_fer
less expressiveness and control over the dynamic compilation
Keywords process than imperative systems.

Dynamic compilation, specialization, partial evaluation, constant We have developed a new declarative annotation language and

folding, run-time code generation, program optimization, dataflow underlying run-time specialization primitives that are more

analysis, C language. expressive, flexible, and controllable than previous annotation-
based systems, but are still easy to use. Our system, dayji€d

1 Introduction supports the following features:

Dynamic compilation offers the potential for increased program * support for both polyvariant specialization and polyvariant
performance by delaying some parts of program compilation until division’, with the degree of specialization for different
run time, and then exploiting run-time state to generate code thatis ~ Vvariables under programmer control,

specialized to actual run-time behavior. The principal challenge in intra- (program-point-specific) and interprocedural (function-

dynamic compilation is achieving high-quality dynamically level) specialization, with the caller and callee separately
generated code at low run-time cost, since the time to perform run- compilable,

time compilation and optimization must be recovered before any
benefit from dynamic compilation can be obtained. Consequently,
a key design issue in developing an effective dynamic compilation
system is the method for determining where, when, and on what < automatic caching, reuse, and reclamation of dynamically
run-time state to apply dynamic compilation. Ideally, the compiler generated code, with cache policies under programmer control,
would make these decisions automatically, as in other compiler

optimizations; however, this ideal is beyond the current state-of- - Polyvariant division allows the same program point to be analyzed for
the-art for general-purpose programs. different combinations of variables being treated as static, and polyvariant

Instead, current dynamic compilation systems rely on some form of specialization allows multiple compiled versions of a division to be
programmer direction to indicate where dynamic compilation Produced, each specialized for different values of the static variables.

arbitrarily nested and overlapping regions of dynamically
generated code,

automatic interleaving of specialization and dynamic execution
to avoid unbounded static specialization for terminating
programs, with the exact trade-off between speculative
specialization and demand-driven specialization under
programmer control,

automatic interleaving of specialization and dynamic execution
to delay specialization of some code until the appropriate run-
time values have been computed, and

 run-time optimizations, including constant propagation and
folding, conditional-branch folding and dead-code elimination,

merge splitting, complete loop unrolling, procedure-call

specialization, and strength reduction.

The next section illustrates many of these capabilities using an

void interp_program(int bytecodes][], int arg) {
printf(“%d\n”, interp_fn(bytecodes, 0, arg));

int interp_fn(int bytecodes][], int pc, int arg) {
unsigned int inst, rs, rt, rd, offset, reg[32];
make_static(bytecodes,pc:

p_cache_one_unchecked,eager);

/I bytecodes,pc promoted

reg[1] =arg;
for (;;){ // specializable loop-head merge

inst = bytecodes @pc++];

rs = R1(inst); rt = R2(inst); rd = R3(inst);
offset = IMMEDIATE(inst);
switch(OPCODE(inst)) {

case Ll: // load immediate value

annotated bytecode interpreter as an example. Section 3 provides a reg[rt 1= offset; continue;
overview of the design of the DyC dynamic-compilation system, carieg[’w%]' = (int) reg| rs]* (int) reg| n:
which is then detailed in sections 4 through 7. Section 5 presents continue; ’
DyC’s annotation language. Section 8 describes our experiences case SUBI:
with the system, and section 9 compares DyC to related work. We reg[rt]=(int) reg[rs]- offset .
conclude with our plans for future work. continue,
case IF_GOTO:
2 Example I e
Figure 1 presents a simple interpreter like those for the Smalltalk Ca‘;%"g’g?b: // specializable merge
and Java virtual machines [Goldberg & Robson 83, Lindholm & pc = offset; continue;
Yellin 97] or the mipsi simulator [Sirer 93]. We will use this case COMPUTED_GOTO:
example to explain DyC’s capabilities, to illustrate the conciseness pc ; ?79[rs]; continue; II' pc promoted
case N

of the annotations, and to demonstrate the steps in DyC’s dynamic-
compilation process. In boldface are the annotations we added to
turn the interpreter into a run-time compiler, i.e. a program that
produces at run time an interpreter that is specialized for the 3
particular array of bytecodes.

Note that while the interpreter appears simple, its successful
dynamic compilation requires most of DyC's features, many of
which are unique to DyC. The example is representative of the int count[N];
structure of a large class of interpreters and simulators that loop #define threshold ...
over run-time-constant arrays of operations, dispatching on the type specialize interp_fn(bytecodes, pc, arg)
of operation. __on (bytecodes, pc); . .
int interp_fn(int bytecodes[], int pc, int arg) {
unsigned Int inst, rs, rt,rd,offset,reg[32],callee;
if (++count[pc] >= threshold) {
make_static(bytecodes, pc);
}else {
make_dynamic(bytecodes, pc);

return reg[31];

Figure 1: Simple Bytecode Interpreter

2.1 Basic Functionality

The main control annotation imake_static , whose argument
list of variables the system treats mm-time constantsvhen run-
time execution reaches that point. By default, DyC will apply
interprocedural polyvariant division and specialization as needed
on all control-flow paths downstream of thmake_static
annotation, until the variables go out of scoge order to preserve
the run-time constant bindings of each annotated variable. For

reg[1] =arg;

for (;;){ // specializable loop-head merge
... //same as above
switch (OPCODE(inst)) {
... [[same as above

example, the variablpc is annotated as static. DyC specializes case GOSUB:

code so that, at each program point in the specialized qadej;ll callee = offset + pc++;

have a known run-time constant value. The incremenpgdh the reg[rd]= .
switch body do not cause problems, since the value of a run-time break;mterp_fn(bytecodes , callee ,reg[rs])

constant after an increment is also a run-time constant. The loop
head at the top of thier loop requires additional work: DyC will }
automatically produce a separate specialized version of the loop }
body for each distinct value gbc at the loop head, in effect,
unrolling the loop completely. (In Figure 1, we have written all run-
time constant operations in italics.)

LI r31, #1

The @symbol annotates the contents of thdecodes array as Ll r2 #0

static, implying that the contents of a referenced, run-time-constant | o- |F GOTO r1,r2, L1

memory location is a run-time-constanihis enables DyC to MUL r31, r1, r31
SUBI r1,r1,#1

*) L GOTO LO
DyC currently does not continue specialization upwards past return | 1- RET

statements, so specialization stops at the end of each function.

T DyC currently does no automatic alias or side-effect analysis, unlike some
other systems, so these annotations are necessary to achieve the desire
effect.

Figure 2: Interprocedural and Conditional Specialization

#ri=1
#r2=0
#ifrl ==r2 goto L1
#r31=r31*rl
#rl=rl-1
goto LO
return result in r31

Figure 3: Factorial Interpreter Program

constant-fold theswitch branch within each iteration (since Idq 24 , 440(sp) #reg[1] = arg

bytecodes , pc and the loaded bytecode are all run-time Idl r18, 416(sp)
constants), selecting just onase arm and eliminating the others stl r18, 4(r24)
as dead code. The code that manipuldtgecodes andpc is fnop

also eliminated as dead, once the variables’ interpretation overhead

is constant-folded away. ldg 124, 440(sp) #LIr3lL 1

lda r27 , 124(zero)

The IF_GOTO bytecode conditionally rebinds the value jof, Ida r25, 1(zero)
based on the run-time variable outcome of a previous test. At the addq r24, r27, r27
merge after thaf , pc may hold one of two possible run-time stl 125, 0(r27)
constant values, depgnding on whif:h arm was selec_ted. We call lda r27 , 8(zero) #L112,0
merges such as this one, which have (potentially) different lda r25 , O(zero)
incoming values of run-time constargpecializable merge points addq r24, r27, r27
By default, becauspc is annotated bynake_static , DyC will stl r25, 0(r27)
apply polyvariant specialization to the merge and all downstream
code, potentially making two copies of the merge and its % I?él ;% ig%ig #IF_GOTOTL, 2, L1
successors, one for each run-time constant valygcofThe loop cmpeq 127, 125, 125
head is another such specializable merge point, which enables the bne r25, L1
loop to be unrolled as described above. Thus, for an input program
that contains a tree dF _GOTObytecodes, this specialization will I r27 , 4(r24) #MUL 31, r1, 131
produce a tree of unrolled interpreter loop iterations, reflecting the ldi i r%g ' %24“24))
expected structure of a compiled version of the input program. We Qlu r2r5 1’2r4?r’24) 25
call the ability to perform more than simple linear unrollings of '
loops multi-way loop unrolling DyC allows the programmer to Idl 127, 4(r24) #SUBITL, r1, 1
specify less aggressive specialization policies for static variables, to lda r27 ,-1(r27)
provide finer control over the trade-offs between cost and benefit of stl 127, 4(r24)
run-time specialization. br LO #GOTO L0
At each of these specializable merge points, by default DyC
maintains a cache of all previously specialized versions, indexed by L1: 1dl 10, 124(r24) #RET
the values of the static variables at the merge point. When a ldg ra, 128(sp)
specializable merge point is encountered during run-time Ifggp s
LT - - p, 544(sp)
specialization, DyC examines the cache to see whether a version of ret zero, (ra), 1

the code has already been produced, and, if so, reuses it. In the
interpreter example, the cache checks at the loop head merge have Figure 4: Dynamically Generated Code for Factorial
the effect of connecting backward-branching bytecodes directly to

previously generated iterations, forming loops in the specialized ldl rl,416(sp) #reg[1] = arg
code. Similarly, the cache checks allow iterations to be shared, if the Ida r2, 1(zero) #1131, 1
input interpreted program contains other control-flow merge points. Ida r3, O(zero) #LIr2,0
DyC allows the programmer to specify alternative caching policies LO: cmpeqri, r3, r2s #IF_GOTO 1,12, L1
or even that no caching be used, to provide finer control to the bne 25, L1
. : . s mull r1, r2, r2 #MUL r31, r1, r31
programmer over this potentially expensive primitive. da 11 ,-1(r1) #SUBITL, L 1
The COMPUTED_GOTytecode, which represents a computed br LO #GOTO LO
jump, assigns a dynamic expression fio. By default, DyC L1: orr2, zero, r0 #RET
suspends program specialization when the bytecode is encountered llfrj]g ra, 128(sp)
and then resumes specialization when execution of the specialized |dap sp, 544(sp)
code reaches this point and assigms its actual value. As with ret zero, (ra), 1

specializable merge points, each sdginamic-to-static promotion)))
point has an associated cache of specialized versions, indexed by ~ Figure 5: Generated Code After Register Actions
the values of the promoted variables. The specializer consults this

cache to see whether a previous version can be reused or a new

version must be producedAgain, programmer-supplied policies This is typically done by suspending specialization at each

support finer control over the aggressiveness of dynamlc-to-statlcSuccessor of a dynamic (non-run-time-constant) branch in the

promotion and the caching scheme to be used at promotion points; h L -
program being specialized, and resuming only when that successor

Because DyC performs specialization at run time rather than atis actually taken. This strategy avoids non-termination problems
compile time, we have the option of choosing when to specialize and unneeded specialization, but incurs the cost of suspension and
control-flow paths ahead of aCtUa”y reaching them during normal resumption of specia"zationl DyC allows the programmer to
program execution. Aggressispeculativespecialization has the gpecify policies to control speculative specialization; the (safe)

lowest cost, assuming that all specialized paths will eventually be default introduces suspension points at each specializable loop
taken at run time. However, it incurs the cost of specializing any head.

path not executed, and can lead to non-termination in the presence - o
of loops or recursion. Alternativelgemand-driverspecialization 2.2 Interprocedural and Conditional Specialization

only specializes code that definitely will be executed at run time. Figure 2 extends the simple single-procedure interpreter to support

interpreting programs made up of multiple procedures. It also

" Eachmake_static ~ annotation is also a dynamic-to-static promotion illustrates several other DyC capabilities, in particular, how it
point, with an associated ca(_:he o_f versions specialized for different run- exploits polyvariant division to support conditional specialization,
time values of the newly static variables. and annotations that support interprocedural specialization.

In the modifiedinterp_fn routine, acount array associates 3 System Overview

with eachpc that corresponds to a function entry point the number

of times that function has been invoked. In order to apply dynamic DYC expresses dynamic compilation as run-time specialization.
compilation only to heavily used functions, the programmer has Directed by a few declarative user annotations that specify the
made the originalmake_static annotation from Figure 1 variables for which portions of a program should be specialized,
conditional- specialization occurs only when the invocation count DyC'’s static compiler produces an executable that includes both
of some interpreted procedure reaches a threshold. At the mergestatically compiled code and a run-time specializer for code that is
after theif , bytecodes andpc are static along one predecessor, to be dynamically compiled. Section 4 describes our run-time
but dynamic along the other. By default, DyC applies polyvariant Specializer and its capabilities.

dIVISIOI’].tO produce two separate versions of the remz.ilnder of the 14 5chieve the fastest possible dynamic compilation, DyC does
body ofinterp_fn . In one, the two variables are static and lead y,chy of the analysis and planning for run-time specialization
to run-time specialization, as in Figure 1. In the other, they are during static compile time. An offline binding-time analysis (BTA)
dynamic, and no run-time specialization takes place; the input is getermines which operations can be performed at dynamic compile
interpreted normally, at no extra run-time cost. time, and the run-time specializer is implemented by constructing
The specialize annotation directs the compiler to produce an generating extensions (GEs), that is, custom specializers, one for
alternate entry point to thnterp_fn procedure that is used each piece of code to be dynamically compiled. These GEs perform
when its first two parameters are run-time constants. At
interp_fn call sites, where the corresponding actual arguments
are static, a specialized versioninferp_fn is produced (and
cached for later reuse) for the run-time constant values of the actual
arguments. The body of the specializaterp_fn is compiled

as if its formal parameters were annotatedrake_static at Annotated
entry. (The callee procedure and each of its call sites can be “sSaurc

Executabl

Static Dynamic

. : - L O Compiler Program Code
compiled separately, given specialize annotation in the
shared header file.) This specialization has the effect of
streamlining the calling sequence for specialiGgaSUBytecodes
to specialized callees: neithbytecodes nor callee will be Static Compile Time Run Time
passed in the specialized call, and the specialized interpreter for the
target function (i.e., the compiled code for the target function) will 3
be invoked directly. If the callee function is not yet heavily m Input Execute

executed, then after entry threake_dynamic annotation will
turn off specialization for that input procedure; all bodies of Figure 6: DyC'’s Static and Dynamic Components
infrequently executed procedures will branch to the same
precompiled (and unspecialized) version of the interpreter.

. the dynamic compilation when provided the values of the annotated
2.3 A Compiling Interpreter variables. To enable arbitrary interleaving of execution and

Figure 3 presents a program input for the bytecode interpreter. Thespecialization and arbitrarily overlapping regions of dynamically
program computes the factorial of its input, which is assumed to be compiled code dynamic codk DyC is capable of invoking GEs
in registerrl . Figure 4 illustrates the code produced when the from dynamic code as well as from statically compiled caatatic
dynamically compiling interpreter executes the factorial bytecode codg. Figure 6 illustrates the interactions among DyC’s compile-
program on a Digital Alpha 21164. Although the actual code time and run-time components.

produced at run time is executable machine code, we have Figyre 7 depicts DyC's organization. We have implemented the
presented it in assembly language for readability. binding-time analysis (BTA) and most of the generating-extension
The structure of the run-time-generated code reflects the structureconstruction in the optimizing Multiflow compiler [Lowney et al.
of the bytecode program used as input to the interpreter. The code93]. We did so to enable static global optimization of dynamic code
contains a conditional branch as a result of multi-way unrolling the with a minimum of restrictions. We believe that performing regular
interpreter loop beyond th#=_GOTO bytecode. Following the compiler optimizations over both statically compiled and
specialization of theGOTObytecode, a backward branch is dynamically compiled code is crucial for generating high-quality
generated to the cached specialized loop iteration corresponding tocode.

the labelL0, creating a loop in the run-time-generated code. Our analyses and transformations follow traditional dataflow
Since Figure 4 is obtained by straightforward specialization of the optimizations, such as common-subexpression elimination, and
interpreter, each reference to a virtual register in the interpreter loop unrolling, because our transformations would otherwise
results in a load to or a store from the array that implements the interfere with these optimizations. Unfortunately, these
registers. Better code could be generated by addigigter actions optimizations also interfere with our analyses, mainly by obscuring
to DyC [Auslander et al. 96]. Register actions permit memory the intended meaning of the annotations, so some modifications to
locations to be assigned registers through pre-planned localthem were required to preserve information. This issue is discussed
transformations. In this case, elements of the register amegy, further in section 8.1.

can be allocated to registers, because all offsets into the array ar
run-time-constant, and all loads and stores can be rewritten as direc
references to the corresponding registers. Figure 5 shows the resul
of applying register actions to the dynamically compiled factorial

ollowing DyC’s core analyses and transformations, Multiflow’s

ombined register allocator and instruction scheduler optimizes the

rdinary static code, the static code to be executed by the run-time
specializer, and the dynamic code. Modifications to this phase were

program. required to handle run-time constants in the dynamic code, to

- introduce certain scheduling constraints, and to propagate
Result operands are shown in boldfaice[l /q] = load 32/64 bitsst * = information to the assembly-code outpuitegrate, a post-pass
store.mul* = multiply. Ida = add with 16-bit signed immediate. that follows assembly-code generation, integrates the dynamic code

Annotated C Program

/ Multiflow Compiler \

Dataflow & loop
optimizations
v
/ DyC'’s Core \
(Binding-time analysis)
v
/ GEgen \
(Split divisions)

(Identify t":lzy edges)

X
(Identify units)
¥

Separate static &
dynamic subgraphs
(Insert explicators)

(Insert DCLoperationg
N 2/
Back end
\ (Bekend)

Integrate

C Link with DyC'’s run-time library)

!

Executable Program
(Static code) (GEs)

Figure 7: DyC’s Compile-Time Phases

into the static specializer code so that the dynamic code is emitted

Specialize(unit:Unit,
context:Context,
backpatch_addr:Addr):Addr {
* see if we've already specialized this unit for
this particular context */
(found:bool, start_addr:Addr) :=
CacheLookup(unit, context);
if not found then
/* need to produce & cache the specialization */
(start_addr,
edge_contexts:List<Context>,
edge_addrs:List<Addr>) :=
unit.ReduceAndResidualize(context);
CacheStore(unit, context, start_addr);
/* see how to handle each successor of the
specialized unit */
foreach edge:UnitEdge,
edge_context:Context,
edge_addr:Addr
in unit.edges, edge_contexts, edge_addrs do
if edge.eager_specialize then
/* eagerly specialize the successor now */
Specialize(edge.target_unit,
edge_context,
edge_addr);
else
/* lazily specialize the successor by
emitting code to compute the values of
promoted variables and then call the
specializer with the revised context */
addr:Addr :=
edge.ResolvePromotions(edge_context);
Backpatch(edge_addr, addr);
patch_addr:Addr :=
if edge.one_time_lazy
then edge_addr else NULL;
Emit(“pc := Specialize("edge.target_unit’,
promoted_context,
“patch_addr?)");
Emit(“jump pc”);
endif
endfor
endif
/* make the predecessor unit branch to this code */
Backpatch(backpatch_addr, start_addr);
return start_addr;

Figure 8: Run-Time Specializer, Part |

executable contains both ordinary, static code and the generating
extensions.

The following sections describe DyC in more detail. We discuss the
run-time specializer first, in section 4, in order to specify the
functionality of the generating extensions produced by DyC's
compile-time phases. Section 5 then presents the annotation
language in more detail than in the motivating example in section 2,
section 6 describes our BTA, and section 7 details our approach to
producing generating extensions from the information the BTA
derives, including descriptions of the subphases show& Egen.
Section 7 also includes a discussionndégrate.

4 Run-Time Specializer

Our run-time specializer (Figures 8, 9, and 10) is an adaptation of
the strategy for polyvariant program-point specialization of a flow
chart language described by Jones, Gomard, and Sestoft [Jones et
al. 93]. The main process produces specialized code foritaa
generalization of a basic block that has a single entry but possibly
multiple exits), given itscontext(the run-time values of the static
variables on entry to the unit). The static compiler is responsible for

at run ti.me when _the cc_Jrresponding ste_:ttic code _is executed by apreaking up dynamically compiled regions of the input program
generating extension. Finally, the resulting code is assembled andinto units of specialization, producing the static data structures and
linked with DyC’s run-time library. The resulting stand-alone code that describe units and their connectivity, and generating the

CacheLookup(unit:Unit, context:Context)
:(found:bool, start_addr:Addr) {
if CacheAllUnchecked U unit.cache_policies then
/* always produce a new specialization */
return (false, NULL);
else
[* first index on CacheAll values */
let cache_alls :=
elements of context with CacheAll policy;
(found, sub_cache) :=
cache.lookup(unit.id, cache_alls);
if not found then return (false, NULL);
* then index on CacheOne values
in nested cache */
let cache_ones =
elements of context with CacheOne policy;
(found, start_addr) :=
sub_cache.lookup(cache_ones);
* no need to index on CacheOneUnchecked */
return (found, start_addr);
endif

CacheStore(unit:Unit, context:Context,
start_addr:Addr):void {

if CacheAllUnchecked O unit.cache_policies then
/* don't store it, since we won't reuse it */
else

[* first index on CacheAll values */
let cache_alls :=
elements of context with CacheAll policy;
(found, sub_cache) :=
cache.lookup(unit.id, cache_alls);
if not found then
sub_cache := new SubCache;
cache.add(unit.id, cache_alls, sub_cache);
endif
* then index on CacheOne values
in nested cache */
let cache_ones =
elements of context with CacheOne policy;
[* store the new specialization in the cache,
replacing any there previously */
sdqu_cache.replace(cache_ones, start_addr);
endi

}
Backpatch(source:Addr, target:Addr):void {
/* if source != NULL, then backpatch the branch
instruction at source to jump to target */

Emit(instruction:Code) {
/* append a single instruction to the current
code-generation point */

Figure 9: Run-Time Specializer, Part II:

Helper Functions

type Context = Tuple<Value>;
class Unit {
id:int,
cache_policies:Tuple<CachePolicy>;
edges:List<UnitEdge>;
ReduceAndResidualize(context:Context)
‘(start_addr:Addr,
out_contexts:List<Context>,
edge_addrs:List<Addr>);
* Take the the values of the static vars and
produce specialized code for the unit.
Return the address of the start of the unit's
specialized code and, for each successor unit,
the new values of the static variables at that
edge and the address of the exit point in the
specialized code for the unit */

}

class UnitEdge {
target_unit:Unit;
eager_specialize:bool;
one_time_lazy:bool;
ResolvePromotions(context:Context):Addr;

/* Generate code to extract the current run-time
values of any static variables being promoted
at this edge, updating the input
context and leaving the result in the
“promoted_context” run-time variable.

Return the address of the start of the
generated code. */

enum CachePolicy {
CacheAll, CacheAllUnchecked,
CacheOne, CacheOneUnchecked

}

Figure 10: Run-Time Specializer, Part IlI:
Data Structures

to lazy edges between units; here code is generated that will inject
the promoted run-time values into the context before invoking the
specializer.

To implement demand-driven specialization, DyC makes lazy the
branch successor edges that determine execution of the code that is
to be specialized on demand (identification of these edges is
described in section 7.1). DyC dynamically overwrites calls to the
Specialize function placed on these edges with direct jumps to
the dynamically generated code for the target units, which achieves
a one-time suspension and resumption of specialization at each
such point.

The caching structure for units is one of the chief points of
flexibility in DyC. Each of the variables in the context has an

associated policy QacheAllUnchecked , CacheAll ,
CacheOne, and CacheOneUnchecked , listed in decreasing
order of specialization aggressiveness), that is derived from user
annotations and static analysgacheAllUnchecked variables
TheSpecialize function first consults a cache to see if code for are considered to be rapidly changing and their values unlikely to
the unit and entry context has already been produced (using therecur, so that there is no benefit in checking and maintaining a cache
unit's caching policy to customize the cache lookup process), and, of specializations to enable code sharing or reuse; each time the unit
if so, reuses the existing specialization. If not, the unit's is specialized, a new version of code is produced, used, and either
ReduceAndResidualize function is invoked to produce code connected directly to the preceding code or, in the case of dynamic-
for the unit that is specialized to the input context. The updated to-static promotions, thrown away. F@acheAll variables, the
values of the contexts at program points that correspond to unit exitssystem caches one version for each combination of their values for
are returned. The specialized code is added to the cache (agairpotential future reuse, assuming that previous combinations are
customized by the unit’s caching policy). likely to recur. ForCacheOne variables, only one specialized
version is maintained, for the current values of those variables. If
the values of any of the variables change, the previously specialized
code is dropped from the cache, assuming that that combination of
values is not likely to recur. The values@acheOneUnchecked

initial calls to the Specialize function at the entries to
dynamically compiled code.

Finally, the specializer determines how to process each of the exits
of a specialized unit. Each exit edge can eitheehger in which

case the successor unit is specialized right awalgayr indicating

that specialization should be suspended until run-time execution
reaches that edge; lazy edges are implemented by generating stu-
code that will call back into the specializer when the edge is This requires the edge bear no change in cache context and no dynamic-
executed. Points of dynamic-to-static promotion always correspond to-static promotions.

variables are invariants or are pure functions of other non- A convenient syntactic sugar for a nested dynamic region is
CacheOneUnchecked variables, so the redundant cache checks make_static ~ followed by a compound statement enclosed in
for those variables are suppressed. braces, for instance

. . . make_static(x, y) {
Our run-time caching system supports mixes of these cache .
policies. If any variable in the context GacheAllUnchecked }
the system skips cache lookups and stores. Otherwise, it performs arhis shorthand placemake_dynamic annotations for the listed
lookup in an unbounded-sized cache based onGheheAll variables at each of the exits of the compound statement.
variables (if any); if this is successful, it is followed by a lookup in o
the returned single-entry cache based or@heheOne variables, 5.2 Policies
which, if successful, returns the address for the appropriate goch variable listed in anake static
specialized codeCacheOneUnchecked variables are ignored e
during cache lookup. If all variables have the
CacheOneUnchecked policy, then a single version of the code
is cached with no cache key.

annotation can have an
associated list of policies. These policies control the aggressiveness
of specialization, division, and dynamic-to-static promotion, the
caching policies, and the laziness policies. The semantics of these
policies is described in Table 1, with the default policy in each

Since invoking the specializer is a source of overhead for run-time

c e A) Policy Description
specialization, DyC performs a number of optimizations of this — : e
general structure, principally by producing a generating extension, | Poly_divide perform polyvariant division
which is essentially a specialized version of tBpecialize mono_divide perform monovariant division

function, for each unit. Section 7 describes these optimizations in
more detail.

poly_specialize

perform polyvariant specialization at merges

within dynamic regions (specialization is always

polyvariant at promotion points)

5 Annotations

mono_specialize

perform monovariant specialization at merges

Given the target run-time specializer described in the previous
section, we now present the programmer-visible annotation

auto_promote

automatically insert a dynamic-to-static promp
tion when the annotated static variable is poss

bly assigned a dynamic value

language (in this section) and then the analyses to construct the run
time specializer based on the annotations (in sections 6 and 7).

manual_promote

introduce promotions only at explicit
make_static annotations

Appendix A specifies the syntax of our annotations, expressed as
extensions to the standard C grammar rules [Kernighan & Ritchie
88].

lazy

suspend specialization at all dynamic branchgs,

avoiding all speculative code generation

5.1 make_static and make_dynamic

The basic annotations that drive run-time specialization are

specialize_lazy

suspend specialization at all dynamic branch
successors dominating specializable merge

points and specializable call sites, avoiding spec-

ulative specialization of multiple versions of
code after merges

make_static and make_dynamic . make_static takes a
list of variables, each of which is treated as a run-time constant at

loop_specialize

suspend specialization at all dynamic branch

all subsequent program points until DyC reaches either a azy successors dom'nat'ng.Spec'al'zable.lo‘)p'head
make_dynamic annotation that lists the variable or the end of the merge p0||ntt§ and Spgtr_lallt;able call fltehs, aII%w-
variable’s scope (which acts as an impliciake_dynamic). We :?1? zficu at';/ © Szefj'a Ization exceptwhere |
call the region of code betweemsake_static for a variable and ght be un ,Ou_n °

the corresponding (explicit or implicimake_dynamic a eager eagerly specialize successors of branches, |
dynamic specialization regignor dynamic regionfor short. assuming that no unbounded specialization will
Because the placement ofake_static ~ andmake_dynamic result, allowing full speculative specialization
annotations is arbitrary, the dynamic region for a variable can have| m_cache_all specialize at merges, assuming that the context is
multiple entry points (if separateake_static ~ annotations for a _unchecked different than any previous or subsequent spe-
variable merge downstream) and multiple exit points. A dynamic cialization

region can be nested inside or overlap with dynamic regions for m_cache_all cache each specialized version at merges

other variables, as in the following graph fragment (static variables
shown in boldface):

m_cache_one

cache only the latest version at merges, throwfi
away the previous version if context changes

make_static(x); |

make_static(x); |

m_cache_one

cache one version, and assume the context ig

make_dynamic(x); make_dynamic(y);

points

ng

the

XY XY _unchecked same for all future executions of this merge
p_cache_none specialize at promotion points, assuming that the
Take_staticty); _unchecked promoted value is different than any previous| or
X, Y subsequent specialization
p_cache_all cache all specialized versions at promotion

X e XY - .
make_dynamic(y): make._dynamic(x): p_cache_one cache only the latest version at promotion pojnts
XY XY p_cache_one cache one version, and assume the promoted

_unchecked

value is the same for all future executions of thi

promotion

This flexibility for dynamic regions is one major difference
between DyC and other dynamic-compilation systems.

Table 1: Policies

IS

category in bold. Annotations in italics are unsafe; their use can result should be treated as a run-time constant, the following code

lead to changes in observable program behavior or non-terminationcan be written:

of specialization, if their stated assumptions about program make_static(t);

behavior are violated. All of our default policies are safe, so the t="p;

novice programmer need not worry about simple uses of run-time - /* lateruses of t are specialized for t 's value */ ...

specialization. Unsafe policies are included for sophisticated usersThis will introduce an automatic promotion and associated cache

who wish to have finer control over dynamic compilation for better check at each execution of the load. If the programmer knows that

performance. the result of the dereference will always be the same for a particular

run-time constant address, the programmer can use the

The polyvariant vs. monovariant division policy controls whether p cache one_unchecked annotation:

merge points should be specialized for a variable that may not be axe static(t:p_cache_one_unchecked);

static along all merge predecessors. Similarly, the polyvariant vs. t=+*p:" - - T

monovariant specialization policy controls whether merge points ... /* later uses of t are specialized for t’s first value */ ...

should be specialized for different values of a variable that flow in However, the semantics of this annotation still delays specialization

along different merge predecessors. Promotion points, such asuntil program execution reaches the dereference point the first time.

make_static , always perform polyvariant specialization of the To avoid any run-time overhead in the specialized code for this

promoted value, beginning at the promotion point. dereference, the programmer must state that the load instruction
] L) itself is a static computation, returning a run-time constant result if

The eagerness vs. laziness policies indicate which code should bgts argument address is a run-time constant. In our annotation

specialized speculatively or on demand. DyC uses these policies 0language, a memory-reference operation can be prefixed witBthe

determine which branch successor edges to make lazy, as describegympol, indicating that the associated memory load should be done

insection 7.1. DyC's default policy is to unroll loops on demand but - ot specialization time, assuming the pointer or array is static at that

to specialize other code speculatively, which minimizes the cost point. The programmer can use a static dereference in this example,
incurred by suspension and resumption of specialization, while g5 follows:

avoiding unbounded specialization. make._static(p):

The cache policies specified by the annotations determine the cache = g+ p;
policies, described in section 4, that govern how the run-time ../ later uses of t are specialized for t 's value
specializer caches and re-uses dynamically generated code. Each at specialization time */ ...
policy controls how many specialized versions of code are cachedThe @ prefix is a potentially unsafe programmer assertion.
(One vs.All), and whether the values of the static variables are used Alternatively, we could attempt to perform alias and side-effect
to determine which cached version to use (checked vs. analysis to determine automatically which parts of data structures
Unchecked). Our policies currently support either caches of size are run-time constants. Unfortunately, it is extremely challenging to
one or caches of unbounded size. It is reasonable to wish for produce a safe yet effective alias and side-effect analysis for this
caching policies that take an argument that indicates the desiredtask, because the analysis would have to reason about aliasing
cache size. However, bounded multiple-entry caches necessitate aelationships over the whole program (not just within dynamic
non-trivial cache replacement policy, over which we would want to regions) and also about the temporal order of execution of different
offer programmer control. More generally, we might wish to parts of the program (e.g., side-effects that occur when constructing
provide programmers with direct access to the various caches thatthe run-time data structures before the dynamic region is first
the run-time specializer maintains. We leave the design of such entered should be ignored). Sound, effective interprocedural alias
interfaces to future work. analysis for lower-level languages like C is an open problem and the
subject of ongoing research [Wilson & Lam 95, Steensgaard 96],
The annotations support two sets of cache policies because wWeand so we do not attempt to solve the full problem as part of our
frequently desired different policies to be used at the two kinds of dynamic compilation system; our current system includes only
program points where new specialized versions were spawned,simple, local information, such as that local variables that have not
dynamic-to-static promotion points and specializable merge points. had their addresses taken are not aliases of any other expression.
For example, theCacheOneUnchecked policy is useful at when effective alias analyses are developed, we can include them
dynamic-to-static promotion points when the promoted variable is as a component of our system; even so, there may still be a need for
invariant, but is seldom useful at specializable merge points. explicit programmer annotations to provide information that the
Conversely, th&€acheAllUnchecked policy is of use primarily at automatic analysis is unable to deduce. Other dynamic compilation

specializable merge pointsThose policies prefixed by_apply at systems either include an analysis that operates only within a
specializable merge points, and those prefixedpbyapply at module and rely on programmer annotations to describe the effects
dynamic-to-static promotion points. Section 6.3.6 explains how of rest of the program (Tempo), disallow side-effects entirely
caching policies are derived at other program points. (Fabius), or rely on the programmer to perform only legal

.) optimizations ("C).
5.3 Partially Static Data Structures Instead of, or in addition to, providing annotations at individual

dereference operations, we could provide higher-level annotations
of static vs. dynamic components along with variable or type
declarations. For example, the variapleould be declared with a

Frequently, the result of a memory reference operation (reading a
variable, dereferencing a pointer, or indexing an array) is intended
to be a run-time constant. This occurs, for example, when type such asconstant* rather than*, to indicate that all

manipulating a (perhaps partially) static data structure. By default, jo eferences would result in run-time constant values; the
the result of a load operation is not a run-time constant, even if its bytecodes array in the initial example in Figure 1 could be

address is a run-time constant. To inform our system that the loadeddeclared agonstant int bytecodes|] to indicate that its

contents were run-time constants, thereby eliminating the need for

* The p_cache_none_unchecked annotation policy maps to the @prefix annotation on theytecodes array index expression.
CacheAllunchecked at promotion points, and implies the dynamically ~ Tempo follows this sort of approach, at least for fieldswéict
compiled code should be produced, used once, and thrown away. types. This syntactic sugar may be a worthwhile addition to DyC.

Currently, the@annotation does not enable stores at specialization that would leave a zero-argument call whose result was a dynamic
time, and significant extensions to DyC would be required to do so. value in the specialized code.

Some of these extensions are sketched in section 8.3. We also allow the programmer to prefix individual function calls
with the @annotation to specify that the result of a function call
should be treated as a run-time constant if its arguments are run-
Run-time specialization normally applies within the body of a time constants. For instance, to indicate that a call to the cosine
single procedure: calls to a proced®erom within a dynamic function is a pure function, a programmer could write:

region or specialized function all branch to the same unspecialized ke static(x);

version of P. P itself may have another specialized region in its y = cos@(x);

5.4 Interprocedural Annotations

body, but this break in the specialization will cause all the different — x |ater uses of y are specialized for y's value
specialized calls o to merge together at the entryRponly to be at specialization time */ ...
split back apart again by the cache checks attiaée_static This is a per-call-site version of theonstant annotation. We

annotation irP's body. To avoid this overhead, calls can themselves included this annotation because the programmer may know, for
be specialized, branching to correspondingly specialized versionsexample, that particular uses of a function will not generate side
of the callee procedure, thereby extending dynamic regions acrosseffects, although the function may produce side effects in general.

procedure boundaries.)
. . , : 5.5 Global Variables
The specialize annotation names a procedure with a given

number of arguments and provides a list of divisions for the DyC is not currently capable of specializing for the values of global
procedure. Each division lists a non-empty subset of the formal variables. Extensions to the function-annotation syntax to support
parameters of the procedure that will be treated as run-time specialization for global variables would be relatively minor
constants; a division can specify the same policies for listed (simply specifying globals in addition to parameters). However, the
variables as anake_static annotation. As described in section necessary changes to the rest of the system would be comparable to
7, for each division, DyC'’s static compiler produces a code- the support (described in section 8.3) required for permitting static
generation procedure (i.e., a generating extension) for that division writes to memory.

that takes the static formals as arguments and, when invoked on

their run-time values, produces a specialized residual procedureG Analysis of the Annotations

that takes the remaining arguments of the original procedure (if

any), in classical partial-evaluation style. Given the programmer annotations described in the previous

section, DyC performs dataflow analysis akin to binding-time

At each call site in a specialized region to a procedeith an analysis over each procedure’s control-flow graph representation to
associatedspecialize annotation, DyC will search for the compute where and how run-time specialization should be
division specified folP that most closely matchethe division of performed. The output of this analysis is information associated

actual arguments at the call site (favoring divisions listed earlier in with each program point (formally, each edge between instructions
P's specialize annotation in case of ties). If one is found, the in the control-flow graph); the domain of the informatidBiT.

static compiler produces code that, when specializing the call site atalong with some constraints on its form, is specified in Figug 11.
run time, (1) invokes the generating extension for the selected This output is used to produce the generating extension which

division of P, passing the necessary run-time constant arguments, inyokes the run-time specializer, as described in section 7.
and (2) generates code that will invoke the resulting specialized

version forP, passing any remaining arguments. Thus, when the
specialized call is eventually executed, the call will branch directly
to the specialized callee and pass only the run-time variable
arguments. If no division specified férmatches the call, then the
general unspecialized version®fs called. Calls td outside any The analysis computes a set of divisions for each program point.
dynamic region continue to invoke the unspecialized versi®h of Each division maps variables annotated as static by
make_static or specialize to their associated policies at
Vthat program point. Two divisions are distinct iff there is some
variable in one division that is annotated with the polyvariant
division policy and is either not found (i.e., it is dynamic) or
annotated differently in the other division; divisions that do not
differ in the policies of any variables annotated with the polyvariant
division policy will be merged together by the analysis.

) - . For each division the analysis computes the following pieces of
The constant prefix to the specialize annotation is an information:

unsafe) assertion by the programmer that the annotated procedure
() y brog P * The analysis computes the set of static variables (run-time

acts like a pure function; in other words, it returns the same result o= :
P constants) at that program point, including both user-annotated

given the same arguments without looping forever, making ; > 3 . ;
externally observable side-effects, or generating any exceptions or static variables (calledoot variables) and any derived static

faults. DyC exploits this information by calling a constant function
from call sites whose arguments are static at specialization time and" In our notation, - constructs the domain of partial finite maps (sets of
treating its result as a run-time constant, i.e., reducing the call rather ordered pairs) from one domain to anothgom andrange project the
than specializing or residualizing the call. This behavior is different ~ first and second elements, respectively, of the ordered pairs in the map,

than simply providing a division where all formals are static, since ~ "d @pplying a mapto an element idom(f) returns the corresponding
range element. We useto construct cross-product domains. We write

D(p) to project from the producp the element that corresponds to

* The most closely matching division is the one with the greatest number of component domai, and we writep[D— V] to compute a new produpt
formal parameters annotated as static that correspond to static actual thatis likep but whoseD element has value. Pow denotes the powerset
arguments and no static formals that correspond to dynamic actuals. domain constructor. Note thats B [Pow(AxB).

The analysis essentially reasons only about scalar local variables
and compiler temporaries, and annotated data structures are treated
as static pointers. The binding times of memory locations are not
computed.

The callee procedure and any call sites can be compiled separatel
All that they need to agree on is tlspecialize annotation,
which typically is put next to the proceduresstern declaration

in a header file. Since call boundaries across which specialization
should take place are explicitly identified by the programmer, we
avoid the interprocedural analysis that would be required to identify
(and propagate run-time-constants through) specializable callees.

Domains:
BTA = Division - DivisionInfo
DivisionInfo = StaticVarlnfo x Promotions x DiscordantVars x
Demotions
Division = Var - Policies
Var = finite set of all variables in scope of procedure being compiled
Policies = DivisionPolicy x SpecializationPolicy x
PromotionPolicy x

MergeCachingPolicy x PromotionCachingPolicy x
LazinessPolicy

DivisionPolicy = {PolyDivision, MonoDivision}
SpecializtionPolicy = {PolySpecialization, MonoSpecialization}
PromotionPolicy = {AutoPromote, ManualPromote}

MergeCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

PromotionCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

LazinessPolicy =
{Lazy, SpecializeLazy, LoopSpecializeLazy, Eager}
StaticVarlnfo = Var . CachingPolicy x SourceRoots
CachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}
SourceRoots = Pow(Var)
Promotions = Pow(Var)
Demotions = Pow(Var)
DiscordantVars = Pow(Var)
LiveVars = Pow(Var)
UsedVars = Pow(Var)
MayDefVars = Pow(Var)
Specializations = Proc - Specializationinfo
Proc = finite set of all procedures in scope of function being compiled
SpecializationInfo = IsConstant x Divisions
IsConstant = {Constant, NotConstant}
Divisions = Pow(Division)
Constraints:
BTALegal(bta:BTA) =
LegalDivisions(dom(bta)) O
0(d,i)Obta.
StaticVars(i)Odom(d) O
OvOStaticVars(i).
(SourceRoots(v, i)Odom(d) O
vOdom(d) O
CachingPolicy(StaticVarlnfo(i)(v)) =
CacheOneUnchecked) O
Promotions(i)C)]dom(d) O
DiscordantVars(i)JPolySpecializationVars(d)
LegalDivisions(ds:Pow(Division)) =
0d,,d,0ds. dy=d, O SeparateDivisions(dy,d,)
SeparateDivisions(d:Division, d,:Division) =
PolyDivisionVars(d4)#PolyDivisionVars(d,) O
CvOPolyDivisionVars(dy). dq(v)Zds(v)
PolyDivisionVars(d:Division) =
{ vOdom(d) | DivisionPolicy(d(v)) = PolyDivision }
PolySpecializationVars(d:Division) =
{ vOldom(d) | SpecializationPolicy(d(v)) = PolySpecialization }
StaticVars(i:DivisionInfo) = dom(StaticVarlnfo(i))
SourceRoots(v:Var, i:DivisionInfo) =
if vOStaticVars(i) then SourceRoots(StaticVarlnfo(i)(v)) else O

Figure 11: Domains

10

variables computed (directly or indirectly) from them. The
computed set of static variables will be used to determine which
computations and operands are static, versus which are
dynamic. In addition, it is used to index into the run-time
specializer's caches; consequently, the analysis also computes
the appropriate caching policy for each static variable. For
internal purposes, the analysis tracks the set of annotated run-
time constants from which each static variable was computed,
directly or indirectly, as described in subsection 6.3.6.

The analysis computes those points that require dynamic-to-
static promotions of variables. Non-empty promotion sets
correspond to promotion points for the listed variables.
Promotions get inserted afterake_static ~ annotations for
non-constant variables and after (potential) assignments of
dynamic values to variables that are annotated with the auto-
promotion policy.

The analysis computes those points that requirelémeotiorof
variables. The set of demoted variables indicates which
previously static variables have become dynamic and need to be
initialized with their last static value by residual assignments
(calledexplicators[Meyer 91]).

The analysis identifies which merge points require polyvariant
specialization, calledpecializable merges pointbecause at
least one variable that is annotated with the polyvariant
specialization policy has potentially different definitions on
different merge predecessors. The set of sudi$cordant
variablesis computed at these merge points, and is empty at all
other points.

In the remainder of this section we describe the procedure
representation we assume and the set of dataflow analyses used to
construct this output.

6.1 Procedure Representation

We assume that the procedures being analyzed are represented in a
standard control-flow graph, where nodes in the graph can be of one
of the following forms:

* an operator node such as a move, add, or call, with one
predecessor and successor,

a merge node with multiple predecessors and one successor,

a conditional branch node with one predecessor and multiple
successors, with a single operand that selects the appropriate
successor edge,

an entry node with no predecessors and a single successor,
which acts to bind the procedure’s formals upon entry, or

a return node with one predecessor and no successors, with a
single operand that is the procedure’s result.

To enable our analyses to detect when potentially different
definitions of a variable merge, we assume that merge nodes are
annotated with a list of variables that have different reaching
definitions along different predecessors, yielding one variable in the
list for each@-function that would be inserted if we converted the
progedure to static single assignment (SSA) form [Cytron et al.
89].

* make_static annotations must conservatively be treated as definitions
of the variables they annotate.

Flow graph nodes are generated from the following grammatr:

Node ::= OpNode | MergeNode | BranchNode |
EntryNode | ReturnNode
OpNode ::= MakeStaticNode | MakeDynamicNode |
ConstNode | MoveNode | UnaryNode | BinaryNode |
LoadNode | StaticLoadNode | StoreNode | CallNode
MakeStaticNode ::= make_static(Var: Policies)
MakeDynamicNode ::= make_dynamic(Var)
ConstNode = Var = Const
MoveNode :=Var := Var
UnaryNode :=Var := UnaryOp Var
BinaryNode :=Var := Var BinaryOp Var
LoadNode w=Var:=* Var
StaticLoadNode = Var = @* Var
StoreNode =* Var:= Var
CallNode ::=Var := Proc(Var, ..., Var)
MergeNode = merge(Var, ..., Var)
BranchNode i=test Var
EntryNode :=enter Proc
ReturnNode =return Var

whereVar, Const, UnaryOp, BinaryOp, andProc are terminals
andPolicies is as defined in Figure 11.

6.2 Prepasses

Our analyses will need to identify those program points where a
variable may be assigned. Direct assignments as part of an
OpNode are clear, but assignments through pointers and as side-
effects of calls are more difficult to track. We abstract this may-side-
effect analysis problem into a prepass whose output is
MayDefVars. MayDefVars is a set of variables at each program
point that may be modified during execution of the previous node
(other than the left-hand-side variable of the node).

Our analyses will work better if they can identify when annotated

BTAppNode: OpNode - LiveVars - UsedVars —» MayDefVars
- Specializations - BTA - BTA
BTAppNode [Make_static(x:p) T Ivs uvs mds sp bta =
Merge(lvs, { (doutsiou) |
(d,ijy Obta O
dgyt = ForgetDeadVars(uvs, d - { (x',p)0d | X' = x } O {(x,p)},
StaticVarinfo(i)) O
let i’ = MakeStatic(x,dy.i[DiscordantVars - 00]) in
iout = ComputeDemoted(lvs,dqy i, i)})
BTAopNode [Make_dynamic(x)] Ivs uvs mds sp bta =
Merge(lvs, { (doutsiou) |
(d,ijy Obta O
dgyt = ForgetDeadVars(uvs, d - { (x',p)0d | X' = x },
StaticVarinfo(i)) O
let i’ = i[DiscordantVars - (0] in
iout = ComputeDemoted(lvs, dg, i, I')})
BTAopNode [X =k] Ivs uvs mds sp bta =
Merge(lvs, { (doutsiou) |
(d,ijy Obta O
(doutiout) = ProcessAssignment(lvs, x, true, O, uvs,
mds, d, i)})
BTAopnode [X =y T Ivs uvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,ij)Obta O
(dout-lout) = ProcessAssignment(lvs,
X, yOStaticVars(i), SourceRoots(y,i), uvs, mds, d, i)})
BTAopNode [X :=0py] Ivs uvs mds sp bta =
Merge(lvs, { (doutriout) |
(d,ijyObta O
(doutsiout) = ProcessAssignment(lvs,
X, yOStaticVars(i) O Pure(op), SourceRoots(y,i),
uvs, mds, d, i)})

BTAopNode [X =y 0p z I lvs uvs mds sp bta =

and derived run-time constant variables are dead. We abstract the Merge(lvs, { (doyt.iout) |

result of a live variables analysis into a prepass that computes
LiveVars, the set of live variables at each program point. We also
compute and abstract a similar analyklsedVars, which is the set

of variables at each program point that have an earlier definition and
a later use (but may temporarily be dead at this polnteVars is

used to determine when variables can be removed from
StaticVarinfo. Becauséivision contains the policies attributed to
annotated variables, a variable cannot be removed fPdrision
when it simply goes dead: when the variable is used again
downstream, its policy information will be needed. Hence,
UsedVars is used to determine when an annotated variable can be
removed fronDivision.

Finally, we process the interprocedural specialization directives and
record them in th&pecializations domain.Specializations maps
each annotated procedure to a set of divisions given in the
specialize annotation and indicates whether the procedure was
annotated asconstant . This information is assumed to be
replicated at all program points, for convenience in writing the
analysis functions.

6.3 The Main Analysis

Figures 12, 13, 14, and 15 define the annotation analysisBThe
family of dataflow equations defines the information on the
program point(s) after a node in terms of the information computed
for the point(s) before the nodét@), the helper information
described in subsection 6.2 for the program point(s) after the node
(lvs, uvs, and mds), and the ever-present specialized function
information 6p). A solution to the (recursive) dataflow equations is
the greatest fixed-point of the set of equations for each node in the
procedure, which we solve by simple iterative dataflow analysis;
the top element of the lattice, used to initialize back-edges during

11

(d,ij)Obta O
(dout-lout) = ProcessAssignment(lvs,
X, {y,z}0StaticVars(i) O Pure(op),
SourceRoots(y,i) O SourceRoots(z,i), uvs, mds, d, i)})
BTAopNode [X :=*p] lvs uvs mds sp bta =
Merge(lvs, { (doytiout) |
(d,ijy Obta O
(doutiout) = ProcessAssignment(lvs, x, false, O, uvs,
mds, d, i)})
BTAopNode [X = @* p] Ivs uvs mds sp bta =
Merge(lvs, { (doytiout) |
(d,ijy Obta O
(doutriout) = ProcessAssignment(lvs,
x, pOStaticVars(i), SourceRoots(p,i), uvs, mds, d, i)})
BTAopNode [*P =y T Ivs uvs mds sp bta =
Merge(lvs, { (doytriout) |
(d,ij)Obta O
(dout-lout) = ProcessStmt(lvs, O, uvs, mds, d, i)}
BTAopNode [X =f(y 1.y n)] lvs uvs mds sp bta =
Merge(lvs, { (doytriout) |
(d,ij)Obta O
(doutsiout) = ProcessAssignment(lvs, x ,
{y1,....yn}0OStaticVars(i) O
f Odom(sp) O IsConstant(sp(f)) = Constant,
Oyi 0 y1,....yny SourceRoots(y;,i), uvs, mds, d, i)})

Figure 12: Flow Functions, Part |

BTAgntry: EntryNode - LiveVars - UsedVars - Specializations - BTA Merge(lvs:LiveVars, bta:BTA):BTA =

BTAgnyy [enter P]l lvs uvs sp = MergePartitions(lvs, Partition(bta))
let ds = (if POdom(sp) then Divisions(sp(P)) else 0) O {0} in Partition(bta:BTA):Pow(BTA) =
Merge(lvs, { (d, (s, O, O, O)) | {{ (d,i)Ubta | DivisionSelector(d) = ds } |
d'Ods O ds ODivisionSelectors(bta) }
d = ForgetDeadVars(uvs, d’, 1J) O DivisionSelectors(bta:BTA):Divisions =
s = { InitialBinding(v, d) | vOldom(d) } }) { DivisionSelector(d) | (d,))Obta }
DivisionSelector(d:Division):Division =
BTAganch: BranchNode - LiveVarsxLiveVars - UsedVarsxUsedVars { (v,p)d | vOPolyDivisionVars(d) }
- MayDefVarsxMayDefVars Specializations » BTA -~ BTAXBTA MergePartitions(lvs:LiveVars, btas:Pow(BTA)):BTA =
BTAgranch [test x T (lvsy,lvs,) (uvsy,uvs,) (mdsy,mds,) sp bta = {(d,i) | bta O btas O
(Merge(lvsy, { (doytiout) | d = N pjyision dom(bta) O
(d,i) Obta O (doytriour) = ProcessStmt(lvsy, O, uvsy, mdsq, d, i)}), i = FilterStaticVars(lvs, d, N pivisioninfo fange(bta)) }
Merge(lvsy, { (doytiout) | FilterStaticVars(lvs:LiveVars, d:Division, i:Divisioninfo
(d,i) Obta O (dgypiouy) = ProcessStmt(lvs,, O, uvs,, mds,, d, i)}))):DivisionInfo =
if dom(d) = O then i[StaticVarinfo - O]
BTAverge: MergeNode - LiveVars - UsedVars — MayDefVars else letsi={(v, (prvs))UStaticvarinfo() |
_ Specializations - Pow(BTA) - BTA vOlvs ODerived(v,StaticVarinfo(i)} in

i[StaticVarlnfo —
KillDanglingDerivedVars(d,si,{ r | (v, (p, rvs)) O si O
rOrvs—dom(d) })]

BTAvierge [merge(x 1,...x)] lvs uvs mds sp btas =
let bta = O btas in

Merge(lvs, { (doytiou) |

(d,j) Obta O Derived(v: Var, si: StaticVarlnfo):Pow(Var) =
pvs = {X1,....Xxp} N PolySpecializationVars(d) n lvs O v [(v, (p', rvs?)) Osi Ov Orvs'Dv £ V' }
smvs = {x | XO{Xy,....xn}0J merge for x is static in division d}O] ComputeDemoted(lvs:LiveVars, d: Division, i, i":DivisionInfo
mvs = ({Xq,....Xp} = pvs —smvs) n lvs O): DivisionInfo =
doyt = ForgetDeadVars(uvs, d - { (x,p)Cd | xOmvs }, let svf = StaticVars(FilterStaticVars(lvs, d, i)
StaticVarlnfo(i)) O svi = StaticVars(i), svo = StaticVars(i’) in
si = KillDanglingDerivedVars(d,StaticVarinfo(i),mvs) — i'[DemotedVars - (svi — svo) O (svo — svf)]
{ (v, vp) O StaticVarinfo(i) | vBmvs } O InitialBinding(v:Var, d:Division
si'=si—{ (v, vp) Usi|vOpvs } O):Var x (CachingPolicy x SourceRoots) =
{ (v, (mp, {v})) | (v.p)Udoyt OvOpvs O (v, (PromotionCachingPolicy(d(v)), {v}))

mp = MergeCachingPolicy(p) } 0

) o MakeStatic(v:Var, d:Division, i:DivisionInfo):Divisioninfo =
iout = ComputeDemoted(lvs,dqy, i,(si’, O, pvs, 0)) })

if vOStaticVars(i) then i

else (StaticVarlnfo(i) O {InitialBinding(v, d)}, {v}, O, O)
Pure(op:Op):bool =

returns true iffop is idempotent and cannot raise an exception or fault;
the initial iteration of analysis of loops, is the empty set (N0 most operators are puraliv andmalloc are canonical impure operators
divisions).

Figure 13: Flow Functions, Part II

Figure 14: Helper Functions, Part |
In general, each flow function computes a new, updated set of

divisions from the inflowing set(s) of divisions. We remove any

permanently dead variables (those no longer inthedVars set) 6.3.1 Entry Nodes

from the set of annotated variable3jvision, and any, at least _ o
temporarily, dead variables (those no longer in theeVars sety ~ The analysis of the procedure entry node creates the initial
from the set of run-time constantStaticVarinfo, to avoid division(s), including at least the empty unspecialized division with

no run-time constants. For a specialized procedure, each of the
divisions listed in thespecialize annotation introduces an
additional specialized division in the analysis. For each division, the

unnecessary polyvariant division or specialization. Once a new set
of divisions and associated information is computed, divisions that

no longer differ in the policies of any variables annotated as leading set of run-time constants is initialized to the set of annotated

to polyvariant division are merged together into a single division. \ariapies, with each variable’s initial caching policy taken from its
Thus the degree of polyvariant division can vary from program gpecifiedPromotionCachingPolicy.

point to program point.

6.3.2 make_static and make_dynamic Nodes
* We follow the conventions of dataflow analysis in solving fpeatest
fixpoints and initializing information along edges to ttop of the lattice. The analysis of anake_static pseudo-instruction adds a new
In :jhis patperwe ?0 not bother to hmore formally deﬁ”f,’ t’??l Iattifce Otr.de”fng static variable to each of the existing divisions, and replaces the
and meet operations, since we have given an explicit flow function for I . . - 2 .
merge nodes and defined the top lattice element, and simple iterative orp.C)l.lc.Ies aSSOC'atPTd with the variable if it is alrgady present In some
worklist-based analyses need nothing more. A soundness proof for our division. If the variable was not already a run-time constantin some
analysis would of course require a more formal treatment. Since the division, then the make_static instruction introduces a
domain of analysis is finite and each analysis function is monotonic, dynamic-to-static promotion. Thenake_dynamic instruction
termination of analysis is assured. simply removes the annotated variable from each of the inflowing
T We do not remove permanently dead variables fRinision if any static divisions; as described above, this may cause divisions to merge

variables derived from them are still live, because doing so would require and run-time static variables derived from the newly dynamic
us to kill those derived static variables, as described in subsection 6.3.6. yariable to be dropped.

12

6.3.3 Assignment and Store Nodes ProcessAssignment(lvs:LiveVars, v:Var,
rhs_is_static:bool, rvs:SourceRoots,

The various forms of assignment nodes all have similar analyses, uvs:UsedVars, mds:MayDefVars,
dependent only on whether the right-hand-side expression is a run- d:Division, i:DivisionInfo
time constant expression. Compile-time constants are trivially run-):Division x Divisioninfo =

time constants. A unary or binary expression yields a run-time if rhs_is_static

constant, if its operands are run-time constants and if the operator then ProcessStmt({(lvs, v,(CacheOneUnchecked,rvs))}, mds,
is a pure function (e.g., it cannot trap and always returns the same uvs, d, i)

result given the same arguments). A load instruction yields a run- else ProcessStmt(lvs, O, mds O {v}, uvs, d, i)

time constant iff its address operand is a run-time constant (which processStmit(lvs:LiveVars, static_assigns:StaticVarlnfo,

includes fixed values, such as the address of a global or local uvs:UsedVars, dyn_assigns:Pow(Var),
variable) and it is annotated wit® by the programmer. A call to a d:Division, i:DivisionInfo

procedure annotated by the programmercasstant yields a):Division x Divisionlnfo =

run-time constant if all its arguments are run-time constants. Since (d, iy, where

a call annotated witl@is identical, we have omitted that case. A ps = MayPromotedVars(d, dyn_assigns)

store instruction has no definitely assigned result variable, only d’ = ForgetDynVars(dyn_assigns - ps, d)
potential side-effects, as described byNayDefVars set. si = StaticVarinfo(i)

si' = si = { (v,vi)Usi | vildom(static_assigns) } [static_assigns
The effect of these nodes is summarized into two sets. The firstis a Sigut = ProcessDynAssigns(
(singleton or empty) set of variables definitely assigned run-time si’, dom(static_assigns), dyn_assigns, d’)
constant values; the other is a set of variables possibly assigned doyt = ForgetDeadVars(uvs, d’, Sigy)
dynamic expressions (comprised of the assigned variable if the PSout = PS N dom(dgyy)
right-hand-side expression is dynamic, as well as any variables in iout = ComputeDemoted(lvs, doyt, i, (Siguts PSour 0,)
the MayDefVars set). The definitely static variables are added to ;. promotedvars(d:Division, vs:Pow(Var)):Promotions =
the set of run-time constant variables. The possibly dynamic {vOvs | vOdom(d) O Prom’otionPolicy(d(V))= AutoPromote }
variables are divided into those annotated with the auto-promote KillDandlinaDerivedVars(d: Division si-Staticvarinf
policy (which instructs DyC to insert a dynamic-to-static promotion <I'DanglingDerivedvars(d: '\.’"Ds'on‘\f"St‘,"‘S“C _a{/n CI” oz
automatically if they ever get assigned a dynamic value), and those (W, (prvs)si | (rvs rm/\g‘_DO\;V(D an):Staticvarinfo =
that aren't auto-promoted (which DyC drops from the set of ’ p,’ 4 n 0 .'D +0 OvOdom(d) O
annotated variables and the set of run-time constants, if present in {v, (s (v, (E’rvs)) si 0 (vsnmvs) vHdom(d)
either). As with the analysis of any node, dropping variables from rVs'=(rvs-mvs)o{v} O

the set of annotated variables can cause divisions to merge. P=P N cachingPolicy . o
(N cachingPolicy v O rvsnmvs CachingPolicy(si(v))) }

ProcessDynAssigns(si:StaticVarinfo, svs:Pow(Var), dvs:Pow(Var),
d:Division):StaticVarlnfo =
KillDanglingDerivedVars(d,si,(svsddvs)) — { (v, vp)Usi | vOdvs }
O { InitialBinding(v, d) | vildom(d) O vOdvs }
ForgetDeadVars(uvs:UsedVars, d:Division,si:StaticVarinfo
):Division =
{(v,p)0d | vOuvs OvOOy 0 dom(siy SourceRoots(si(v'))}

6.3.4 Merge Nodes

The analysis of a merge node must deal wdtbcordant variables

that have potentially different definitions along different
predecessors (these variables were identified by a prepass anc
stored with the merge node, as described in section 6.2). For those
discordant variables that the programmer annotated as run-time (s1) ° o
constants with a polyvariant specialization policy, the analysis will ForgetbynVars(vs:Pow(Var), d:Division):Division =

mark this merge as discordant in those variables, triggering {(v,p)0d|vDvs}

specialization of the merge and downstream code. Any other . . .

discordant variables are dropped from the set of annotated variables Figure 15: Helper Functions, Part I

and run-time constants, if present. (Again, this dropping of

variables from the annotated set may cause divisions to merge.)

Derived run-time constants are implicity monovariantly 6.3.5 Branch and Return Nodes

specialized, since they were not explicitly annotated as)]) o)
polyvariantly specialized by the programmer. The caching policy The analysis of a branch node simply replicates its incoming
for all discordant variables at the merge is set to those variables’ information along both successors (as always, after filtering the set

merge caching policy. of variables to exclude those that are no longer live along that
successor). Return nodes need no analysis function, since there are
This analysis can be improved for the case stfidic mergeA static no program points after return nodes, and we do not currently do

merge is a merge where at most one of the merge’s predecessors caifiterprocedural flow analysis of annotations.

be followed at specialization time, because the predecessors are

reached only on mutually exclusive static conditions. Since only 6.3.6 Caching Policies and Derivations of

one predecessor will be specialized, the merge node won't actually Static Variables

merge any branches in the specialized code and only one definition

of each static variable will reach the merge when the residual code At each program point, the analysis computes a caching policy for
is executed. In fact, all that is required is to ensure that only one each variable. This policy is used to control indexing into the run-
definition of a static variable can reach the merge at execution time, time specializer's caches of previously specialized code. Annotated
either because there is only one reaching definition, or potentially variables at promotion points (and at the start of analysis of a
different definitions are only along predecessors with mutually division of a specialized function) are given the user-specified
exclusive static reachability conditions. Such variables are not PromotionCachingPolicy value. At specializable merge points, a
included in the set of discordant variables. Subsection 6.4 describesdiscordant variable is changed to use the variable's
the reachability analysis used to identify static merges. MergeCachingPolicy value.

13

Derived run-time constants are given tBacheOneUnchecked

policy. This ensures that unannotated run-time constants are never si; nguricvarinfo Siz =

used in cache lookups and consequently do not lead to additional

specialization beyond that explicitly requested by the user. This

unchecked caching policy is safe, as long as each derived run-time

constant is a pure function of some set of annotated variables. An

annotated variable can be assigned a static expression, in which

case it is treated (more efficiently) as a derived run-time constant
with a CacheOneUnchecked policy, instead of its annotated
caching policy.

Assignments to root annotated variables violate the assumption that

a derived run-time expression is a function of a set of root annotated

let Sinew =
{ (v, (p,rvs)) | vBdom(si;)ndom(si,) O

P = P1 NcachingPolicy P2 U
rvs = rvs, O rvs,

where p, = CachingPolicy(si,(v))
p; = CachingPolicy(siy(v))
rvs,; = SourceRoots(siy(v))
rvs, = SourceRoots(si>(V))}

VS1 Npromotions VS2 = VS10vs;ndom(siney)
VS1 Npiscordantvars YS2 = VS10VS;ndom(Siney,)
VS1 Npemotions VS2 = VS10VSy

variables. In this case, the derived run-time constants need to be

dropped from the set of static variables, and annotated derived run-

time constants need to be assigned new cache policies; currently6.4 Reachability Analysis

we meet the cache policies of their prior root variables. The analysis
tracks the set of root annotated variab®surceRoots, on which

We identify static merges by computing static reachability
condition at each program point for each division. A static

a derived run-time constant depends; whenever a root variable isreachability condition is a boolean expression (in conjunctive

(possibly) assigned to or is removed from the division, all

normal form) over the static branch outcomes that are required in

dependent run-time constants are dropped (or restored to theirorder to reach that program point. A static branch is a branch whose

regular caching policy, if roots themselves). This distinction
between root and derived variables is a significant source of
complexity in the analysis.

6.3.7 Computation of Demotions

test variable is identified as a run-time constant byBfAanalysis.

A static merge is one whose predecessors have mutually exclusive
static reachability conditions. A merge is static for a particular
variablex with respect to a given division iff at most one possible
definition reaches the merge, or different incoming potential
definitions are along mutually exclusive predecessors. Reachability
conditions are computed at the same time aBthainformation,

At each program point the analysis computes the set of demotedsjnce they depend on tfBTAs division and static variable analysis

variables. A variable can be demoted in two ways: (1) if it was static
before the point but is dynamic after the poisvi(— svo in the
equations), or (2) if it becomes static at the node but is dropped from
the set of static variables right after the node because of filtering of
live variables ¢vo — svf in the equations).

6.3.8 Additional Lattice Meet Operations

The Merge helper function uses the lattice meet operators for the
Division and DivisionIinfo domains. The lattice meet operator
Npivision Over elements oDivision indicates how to combine
different annotations for a set of variables in the same division, and
is defined as follows:

d1 N pivision 92 =
{ (v,p) | v@idom(ds)ndom(dy) O p = d;(V) Npgjicies d2(V) }

Elements ofPolicies are met point-wise. Elements of individual
policy domains are totally ordered, with elements listed earlier in
the set of alternatives for a domain in Figure 11 ordered less than
elements listed later; for example:

AutoPromote <pomationPolicy ManualPromote

Thus, the lattice meet operator for a particular policy domain
returns its smallest argument, for example:

AutoPromote N premationpolicy ManualPromote = AutoPromote

This rule has the effect of picking the strongest policy of any of the
merging divisions.

The lattice meet operatornpyisioninfo OvVer elements of
Divisioninfo is defined as the pointwise meet over its component
domains, which are defined as follows:

14

and influence thBTAanalysis’s treatment of merge nodes. Further
details on reachability analysis can be found in an earlier paper
[Auslander et al. 96]

7 Creating the Generating Extensions

Given the output of th8TAanalysis, DyC statically constructs the
code and static data structures that, when executed at run time, will
call the run-time specializer with the appropriate run-time-constant
arguments to produce and cache the run-time specialized code, i.e.,
the generating extensions. The following steps, shown in Figure 7,
are performed:

« Split divisions: The compiler statically replicates control-flow
paths, so that each division receives its own code. After
replication, each program point corresponds to a single
division. Replication starts at entries to specialized functions
(producing several distinct functions), and at merge points
where different divisions combine. Replicated paths remerge at
points where divisions cease to differ and are joined by the
Merge function.

Identify lazy edges: The compiler identifies which branch
successor edges should be lazy specialization edges.
Subsection 7.1 discusses this in more detail. Lazy points due to
dynamic-to-static promotions are trivially identified.

* |dentify units: The compiler identifies the boundaries of the
units manipulated by the run-time specializer (described in
section 4). Unit boundaries primarily correspond to dynamic-
to-static promotion pointsvictionpoints (where variables are
evicted from the set of annotated variables), specializable
merge points, and lazy branch successor edges. The first three
cases are cache lookup points, and the last case avoids

* Our earlier paper presents the reachability analysis for a monovariant
binding-time analysis; the analysis also uses a slightly more conservative
rule for determining static merges than the one described here.

speculative specialization. This process is described in more program point

will eventually be executed. Once the

detail in subsection 7.2, below. A clustering algorithm then (post)dominator information relating program points is computed,
attempts to merge boundaries together to minimize their cost, a linear scan over the dynamic branches, specializable merge

as described in subsection 7.3. Thait and UnitEdge

points, and specialized calls serves to compute the lazy edge

specializer data structures are generated at the end of thisinformation.

process.
Separate static & dynamic subgraphs: The compiler

separates the static operatiot@p(Nodes whose right-hand-
side expressions were computed to be static by BA&

7.2 Unit Identification

Each interaction with the run-time specializer, including cache
lookup points and demand-driven specialization points, introduces

analysis) and the dynamic operations into two separate, parallela unit boundary. To identify the boundaries based on cache lookup
control-flow subgraphs; in earlier work we called these points, we first compute theache contexat each program point
subgraphs “set-up code” and “template code,” respectively from the set of static variables at that point, as follows:

[Auslander et al. 96]. Subsection 7.4 discusses some aspects of
this separation in more detail. Our method of determining the
control flow of the static subgraph, after all dynamic branches
have been removed from it, is described in subsection 7.5.

Insert explicators: The compiler inserts explicators in the
dynamic subgraph for all variables in tli@emotions set at

each program point. F@emotions sets at merge nodes, each
assignment must be inserted on each predecessor edge to the
merge where the now-dynamic variable was previously static.

o If any static variable is annotated with the
CacheAllUnchecked policy, then the cache context is the
special markereplicate.

» Otherwise, the cache context is the pair of the set of variables
annotated with the&CacheAll policy and the set of variables
annotated with theCacheOne policy. (The set of variables
annotated wittCacheOneUnchecked do not contribute to the
cache context.)

Insert DC operations: The operations needed to complete the Given the cache context and the other program-point-specific

implementation ofSpecialize , such as cache lookups,
memory allocation, and branch patching, are inserted into the
static and dynamic subgraphs before they are passed through
the backend of the compiler. Some optimizations of the calls to

information, unit boundaries are identified as follows:

« Any point where the cache context differs from the cache
context at a predecessor point is a unit boundary, since different
degrees of polyvariant specialization or of cache retention can

the run-time specializer are discussed in subsection 7.7.

Integrate : Finally, each unit'sReduceAndResidualize
function is completed. The control-flow and the reduce
operations of theReduceAndResidualize function are
derived from the static control-flow subgraph. The residualize
operations are introduced by translating the operations and .
dynamic branches of the dynamic subgraph into code to emit
the dynamic instructions (perhaps with run-time-constant
operands) in the static subgraph; this process is described in
more detail in subsection 7.6 below. The resulting subgraph
forms theReduceAndResidualize function for the unit,

and the dynamic subgraph is thrown away.

occur. In practice, this rule can be relaxed since, except at
promotion points, these boundaries are not required for

correctness. Unit-boundary clustering (see the next subsection)
also helps to mitigate the impact of the many boundaries this

rule can insert.

A non-emptyPromotions set at a program point corresponds
to a dynamic-to-static promotion point, and introduces a unit
boundary.

* A non-emptyDiscordantVars list corresponds to a special-
izable merge point, and introduces a unit boundary

« Each edge labelled as a lazy edge introduces a unit boundary.

In addition, units are constrained to be single-entry regions. To
ensure this, additional unit boundaries are inserted at control-flow
Laziness policies on variables indicate the extent of speculative merges of paths (including loop back edges) from different units.
specialization that should be performed after dynamic branches.These unit boundaries can be omitted, however, if all paths from
Based on these policies, successors of some dynamic branches argifferent units have mutually exclusive static reachability

determined to be lazy edges, each of which corresponds to a oneconditions (the same way it is determined that multiple static
time suspension and resumption of specialization at run time. definitions are not truly discordant; see section 6.4). This eliminates

A branch successor edge is lazy iff its test variable is dynamic and the overhead associated with crossing the omitted unit boundaries
at least one of the following conditions holds: (discussed in the next subsection), and permits program points to be

« Atleast one of the run-time constants at the branch is annotatedSh?red. among multiple units, at the cost of larger generating
with theLazy policy, extensions.

The branch successor eddetermines executiofas defined ~ The UnitEdge data structure records whether each unit edge
below) of a predecessor edge of a later specializable mergeshould be specialized eagerly or lazily. A unit boundary is eager,

node, where at least one of the discordant variables is annotatecdinless it is a promotion point (which must be suspended until the
with the SpecializeLazy policy, computed run-time value is available) or a lazy edge.

e The branch successor edge determines execution of aFigure 16 illustrates the units (shown in gray) that are identified for
predecessor edge of a later specializable loop-head merge nodethe interpreter example in Figure 2. The two entry points
where at least one of the discordant variables is annotated with correspond to the specialized and unspecialized divisions of the
the LoopSpecializeLazy policy, or interp_fn function. The unspecialized entry point and the false
The branch successor edge determines execution of a later calPranches of both the specialized and unspecialized versions of the
to a specialized division of a procedure, and some run-time conditional-specialization tests lead to unspecialized, statically
constant live at the call is not annotated with Eeger policy. compiled code. Demotions (indicated By of bytecodes ~and

. . c are required on the edge from the specialized test as they are
We say that a branch successor edge determines execution of %victed from the set of annotated variables
program point iff the edge is postdominated by the program point, '

but the branch node itself is not, i.e., the branch successor is (one; -)
of) the earliest point(s) where it is determined that the downstream Note that a program point can be a boundary in more than one way.

7.1 Computing Lazy Branch Successors

15

« First, for each boundary, we construct the range over the

entry 1: interp_fn_bytecodes_pe(..) entry Z‘mterp_fn(--») procedure where that boundary can be legally moved.
(— im'mslyrs__') —— Specializable merge points and lazy-edge boundaries cannot be
if (++countfpc]... if (++countfpc]... moved, so their range is a single program p@lﬁromotlon and
unit T eviction boundaries can move to any control-equivalent
P: bytecodespc ~ D:bytecodes,pc [Ferrante et al. 87] program point that are bounded by earlier
T) ;5?5.1.]) A and Iatfer uses of any promoted or evicteq variap[e; however,
| inst = bytecodes... promotion points cannot move above earlier definitibivge
unics Switch(OPCODE(nS) ¢ delay inserting the single-_entry-producing unit boundaries until
specializable merge: e cosun after é.1|| the pther boundanes havg been clustered, so they do not
e } participate in the clustering algorithm.
- ! » Second, we sort the boundary ranges in increasing order of their

T Dy iBeies G P T) ends, and then make a linear scan through this sorted list. We
Swh(OPCODE(nS) unit 3 remove the range that ends first in the list (call thiseanel
— 000 range, remove all other ranges that overlap with the first range
case LI: case COMPUTED_GOTO] [case IF_GOTO: (call the union of these ranges euste), and find the

real] = offset pe = realrsl fltels == realth intersection of these ranges. This resulting intersection is the

! program region where all of these boundaries can be placed. We
P:pe lazy lazy prefer earliest possible points for evictions and later points for
_'" _ promotions, as these will reduce the amount of specialized

) code. We choose either the start or end of the intersection range,
unit 4 based on the relative mix of promotions and evictions, and

insert a single boundary for all the merged ranges at that
point. Then we continue processing the sorted list of

Figure 16: Specialization Units for Figure 2 boundary ranges, until the list is exhausted.

This algorithm for coalescing boundary ranges produces the
The specialized entry point begins unit 1. The true branches of the Minimum number of unit boundaries possible, given the restricted
tests merge at the code to be specialized, forming unit 2, which is kinds of ranges produced in the first step (the restriction to control-
created by the dynamic-to-static promotion (indicated Ryyof equivalent program points is key). To prove this, note that we
bytecodes andpc on the edge from the unspecialized test. Unit Produce a cluster iff we detect a kernel range, so that the number of
3, which contains the loop body to be specialized, is created clusters is equal t.O the number of kernels. Since ke_rnels never
becausgc, which has definitions both inside and outside the loop, ©verlap, no clustering scheme could place two kernels in the same
is discordant at its head. A promotionpuf is required on the back ~ cluster. The number of kernels is therefore also the minimum
edge from theCOMPUTED_GOT€se aftepc is assigned an number of clusters required, implying that our algorithm produces
address location. The successors of the dynamic branch in theno more clusters and, therefore, no more boundaries than necessary.

IF_GOTO case are maddazy as required by the (default) Because unit boundaries are also caching points, moving them can
LoopSpecializeLazy policy, because the branch determines the jncrease or decrease the amount of code reuse. Thus, clustering
eXeCUtion Of different pathS to the Specializable |00p head. The falsesometimes trades_off reuse for fewer boundary Crossings_ It may be
branch extends to the loop head, so no new unit is required, but thegesijrable to limit the length of the ranges so that boundaries
true branch creates the fourth unit. sufficiently far away from each other are not coalesced, or
otherwise to prevent different types of boundaries that are relatively
distant from each other from being clustered together. For example,
it may not be beneficial to combine distant boundaries due to
evictions and promotions, since eviction boundaries must occur
earlier and promotion boundaries later, in order to maximize reuse.

The specializable loop head will include a specialization-time

cache lookup, the edges carrying promotions will correspond to
run-time cache lookups, and the lazy edges will become one-time
call-backs to the specializer.

7.3 Clustering Unit Boundaries More elaborate versions of the clustering algorithm could permit
coalescing of unit boundaries beyond control-equivalent regions,
A unit boundary introduces run-time specialization overhead but this would require more than a straightforward extension to the

package up the run-time-constant context from the exiting unit's algorithm presented above. The ranges would no longer be strictly
ReduceAndResidualize function, to execute the run-time linear. Moving boundaries below branches or above control-flow

specializer and any cache lookups, and to invoke the target unit'smerges would create identical boundaries on all paths from the
ReduceAndResidualize function (unpacking the target'srun- branches or to the merges. Moving boundaries in the opposite
time context). In some circumstances, series of unit boundaries candirection could only be permitted if identical boundaries existed on

be created with little if any work in between, for instance when a all the paths.

series of annotated static variables become dead, leading to a serie
of eviction points and corresponding unit boundaries. T Except at loop heads, cache lookups due to specializable merge points

T id . ith dari bi ltiol could be permitted to be moved down by the clustering algorithm. This
0 avoid excessive unit boundaries, we attempt to combine multiple ;5,4 decrease the number of boundaries, but would also decrease the

boundaries whenever possiblaVe have developed a boundary amount of code reuse.
clustering algorithm that works as follows:

* Definitions and uses are mobile as well, so a fair range of motion should
be possible while still respecting data and control dependences.

An obvious alternative to clustering is simply to introduce fewer “One need not place the boundaries only at the end points of the
boundaries when possible, such as at eviction points. It would be intersection ranges. One could choose the final position for a boundary by
interesting to compare the impact of these two techniques in real selecting an offset within its intersection range that is scaled by the ratio
applications. of the numbers of evictions and promotions.

*

16

7.4 Separating Static and Dynamic Operations

For most straight-line operations, it is clear whether the operation is
static or dynamic. However, call instructions are trickier.

« A call to a regular unspecialized function (or to the
unspecialized version of a specialized function) is treated as a
dynamic operation and appears only in the dynamic subgraph.

A call to aconstant function (or one annotated wit®) with
static arguments is treated as a regular static computation,
appearing only in the static subgraph.

A call to a particular specialized division of a function has both
static and dynamic components. To implement this, the call
operation is split into two separate calls, one static and one Figure 17: Linearization

dynamic. The static version of the call invokes the statically

compiled generating extension for the selected division of the static branches on any static control path within a single unit, which
callee, taking as arguments the division’s static arguments, andwe expect to be a small number in practice.

returning a static procedure address. This is followed by a | inearization causes what were originally alternative code

dynamichcall that invokes the static paocedurg address arlld segments to be executed sequentially. We must ensure that the
passes the remaining arguments to produce a dynamic result. gegments executed earlier do not alter the initial static state

The static call will be moved to the static subgraph, and the gypected by subsequent alternative segments. This could be
dynamic call will appear in the dynamic subgraph. achieved by saving the static state at each dynamic branch and

Control-flow nodes, including branches and merges, initially are restoring it before executing each branch successor. This is the
replicated in both the static and the dynamic subgraphs. Later approach we have taken in order to propagate the static context

transformations can optimize them. between units. However, within a single unit, a more efficient
o) solution is possible by converting static variables to static-single-
7.5 Determining Control Flow of the Static Subgraph assignment (SSA) form [Cytron et al. 89]. SSA form ensures that

nly one assignment is made to each variable, which implies that
tate changes made by segments that occur earlier in the linearized
o - . S . unit are made to variables not read by alternative segments. In this
unit's ReduceAndResidualize function is computed. Static aqe ‘the SSA form is easy to comput{:, because issges arising from
and dynamic branches in the unit receive different treatment. A ,,hq and aliasing can be safely ignored due to DyC's restrictions
static branph is taken at speC|a]|zat|on time, and dpes not appear Ny, the form of units (i.e., units cannot contain static loops) and its
the dynamically generated (residual) code; accordingly, only one of .o hinition of static stores. If these restrictions were eased,
its successors produces dynamically generated code. Consequentl owever, an alternate solution may have to be found
a static branch appears as a regular branch in the final ' '
ReduceAndResidualize function, selecting some single 7.6 |ntegrating Dynamic Code into Static Code
successor to pursue and residualize. A dynamic branch, on the other
hand, is emitted as a regular branch into the dynamically generatedTo produce the final code for a unifeduceAndResidualize
code, and both its successors must be residualized. Consequentlfunction, we take the linearized static control-flow graph which

Once each unit has been identified and split into separate static an
dynamic control-flow subgraphs, the control-flow structure of the

no branch appears in tlikeduceAndResidualize function at computes all the static expressions, and blend in code to generate
a dynamic branch, and the successors of the dynamic branch aréhe dynamic calculations with the appropriate run-time constants
linearized instead. embedded in them. To accomplish this, our system maintains a

mapping from each basic block in the dynamic subgraph to a set of
corresponding basic blocks in the static subgraph. When splitting
tclpart static and dynamic operations, the mapping is created, with
each dynamic block mapping to its static counterpaﬁ(Ehe
mapping is updated, as the static subgraph is linearized and some
In the presence of arbitrary, unstructured control flow with mixed blocks are replicated, and as the subgraphs are optimized through
static and dynamic branches, this linearization process may requireinstruction scheduling. The two subgraphs are integrated, one
some code duplication to avoid maintaining specialization-time dynamic block at a time. First, the static code computes any run-
data structures and overhead. Our algorithm first splits all static time constants used in the block’s dynamic instructions. Then, code
control path§ within the unit, linearizing dynamic branches by to emit the dynamic block is appended to its corresponding static
topologically sorting their successors, then re-merges the commonblock.

tails of the static paths bottom-up. The time required by the o (oqe to emit a dynamic instruction embeds the values of any

algorithm can be exponential in the maximum number of sequential go a1 ryun-time constant operands into the immediate field of the

emitted instruction. If the run-time constant is too large to fit in the

" Tempo performs interprocedural binding-time analysis and so can deduceimmediate field, code is emitted to load it from a global table into a
that the result of a specialized function is static. If we were to extend DyC gscratch register. The emitted instruction then reads the scratch
to support interprocedural analysis of annotations, then the_ static half of register to access the run-time constant. The emitting code also
the call would return both a procedure address and the static result Vé.llue'performs any peephole optimizations that are based on the run-time
and the dynamic half would return no result and be invoked only for its constant value, such as replacing multiplications by constants with

side-effects. sequences of shifts and adds
T A static control path includes all dynamically reachable basic blocks, q ’

given particular decisions for all static conditional branches. Each static
branch can appear on a static control path at most once, because units Unit linearization may create multiple instances of a basic block in the
cannot contain static loops. static subgraph, as mentioned in section 7.5.

Figure 17 illustrates how the dynamic branches are linearized.
Numbered boxes represent basic blocks and circles represen
branches. The circle enclosing anmepresents a static branch and
the one containing d represents a dynamic branch.

17

7.7 Optimizing Specializer Interactions relation is used to apply thBTA rules to those temporaries that
I correspond to annotated source variables and any temporaries
Each initial promotion point at the entrance to a dynamic region is

h . . . - derived from them.

implemented by generating a static call to the run-time specializer, . L L)
passing the run-time values of the cache context at that programSeveral standard compiler optimizations make maintaining this
point. Section 4 described the run-time specializer as if a single correspondence difficult. For example, copy propagation can result
general-purpose specializer took control at this and all other unit in the annotated variable (i.e., its corresponding temporary) being

boundaries. Our system optimizes this pedagogical model as'eplaced by another non-annotated temporary, typically resulting in
follows: less specialization than desired by the programmer. In the following
source code:

e The Specialize function is specialized for eaclbnit i
make_static(x);

argument. All the run-time manipulations of thénit and

UnitEdge data structures are eliminated, the unit's X=y. o
ReduceAndResidualize function is inlined, and the i@ X=x+ Lelsex=x+2; .
processing of outgoing lazy unit edges is inlined. If the cache M: - X ./ no further uses of y */

policy for any of the wunit's context variables is variablesx andy are represented by temporaries andty ,
CacheAllUnchecked, then the cache lookup and store calls respectively:

are omitted. make_static(tx);

Rather than recursively calbpecialize , a pending- X = ty;

list is used to keep track of unprocessed (eager) unit edges., () X=tx+ 1 elsetx=1tx+2;

Furthermore, the overhead of pushing and popping the static M. tx - . .
Multiflow’s copy propagation and temporary renaming phase

context on and off of theending-list can be avoided for ¢ his into-
one successor of each unit, which eliminates more than half of transform this into:
this overhead in dynamic regions without dynarsigitch make_static(tx);
statements. if(tfd)ty=ty +1;elsety =ty + 2;

M: ..ty ..

Since the source variable corresponding to tempotgaryis not
annotated, thenake_static annotation orx is effectively lost,

. . leading to less specialization in the program than expected by the
8 EXpe”ence with DyC programmer. We combat this problem by attempting to maintain the

We have implemented the core functionality of the system in the source-va}rlgble_-to-temporary_correspondence through Multiflow’s
context of the Multiflow compiler [Lowney et al. 93]. Only the ~Many optimization phases, with varying degrees of success.
function annotations, theCacheOne policy, unit-boundary Induction-variable simplification can similarly cause loop-
clustering, and unit linearization have not yet been fully induction variables to be replaced with temporaries that do not
implemented. We have encountered a number of practical obviously correspond to annotated (or any) source variables.
difficulties in the implementation, particularly in the Because the specialization annotation on the individual variable has
implementation of the annotations. Most of these problems related been lost, the loop may not be unrolled as desired. To avoid this
to naming, i.e., establishing a correspondence between the variablegroblem, we currently disable this optimization at some cost in code
that the programmer sees in the source code and their internalquality.

representation in the compiler; this issue is discussed in subsection s igple expansion, which is performed by the Multiflow compiler

8.1 during loop unrolling, exacerbates the problem of lost annotations.
Despite the challenges, we achieved good results with a largerSince several temporaries are created and are modified
application than previously had been dynamically compiled by independently in the loop body, the source-variable-to-temporary
other general-purpose dynamic-compilation systems. Subsectioncorrespondence cannot be easily established. To get around this
8.2 describes our positive experiences with this and other problem, we currently disable (compile-time) loop unrolling in
applications. On the other hand, as we applied DyC to various some cases as well.

programs, we encountered several weaknesses in our curren
design, and these are discussed in subsection 8.3.

Ends of dynamic regions are compiled into direct jumps to
statically compiled code.

%.2 Preliminary Experiences with Applications

. . . We have applied DyC to a few kernels previously used as
8.1 Challenges in Implementing the Annotations benchmarksp?or othe% dynamic compilationpsystems),/ and have
In the Multiflow compiler, all computations are represented as obtained speedups and overhead comparable to these systems. The
operations whose operands are virtual registers ctdiegoraries kernels are typically 100-200 lines of C code with dynamic regions
Temporaries are created on demand by the compiler and theirof size 10-25 lines. Our dynamic-compilation overhead ranged
names bear no correspondence to source-level variable names. Abetween about 20 and 200 cycles per instruction generated, on the
different program points, a source variable may correspond to Digital Alpha 21164.
different temporaries, and optimizations such as induction-variable The automation provided by our system also allowed us to
simplification or variable expansiormay even create multiple experiment with dynamically compiling a larger program, the
simultaneously live temporaries corresponding to a single variable. mipsi architectural simulator for the MIPS R3000 architecture.
Since the programmer annotates source variables, ourThe simulator consisted of approximately 9100 lines of C with a
implementation computes a source-variable-to-temporary dynamic region roughly 400 lines long. We were able to
correspondence at each program point. This correspondencejynamically compile the simulator by converting a few global
variables to local variables, and then adding just three lines of
" Variable expansion creataopies of a variable in the body of aloop that ~ annotations, very similar to those in Figure 1. Nearly all of DyC’s
is unrolled by a factor ofn, one for each unrolled body, and combines the functionality was exercised, including polyvariant specialization,
values at the loop exits to produce the value that the original variable automatic dynamic-to-static promotion, and automatic caching.
would have had. Creating copies reduces the dependences in the loop This resulted in constant folding, constant branch removal, load
body, thereby enabling potentially better instruction schedules. elimination, call elimination, and multi-way complete loop

18

unrolling. The reachability analysis also proved useful in several < DyC allows dynamic-to-static promotions to occur anywhere
instances by preventing derived static variables defined under static ~ within dynamically compiled code. Tempo requires such
control from being dropped from the set of run-time constants at promotions to occur only at the entry point.

static merges. (Tempo was recently used to dynamically specialize
an interpreter comparable in sizeipsi [Thibault et al. 98].) All

of these optimizations yielded a speedup ranging from 2 to 5,
depending on the input program, at an overhead of approximately
200 cycles per instruction generated.

» DyC allows the programmer to specify policies to control
division, specialization, caching, and speculative
specialization. Tempo does not provide user controls; the client
program must perform its own caching of specialized code if
desired. A Java front-end to Tempo has been designed,

8.3 Areas Requiring Improvement however, that provides automatic caching and policies to
] o govern replacement in the cache; users may also implement
As we applied DyC tamipsi and to the small benchmarks, we their own policies [Volanschi et al. 97].

encountered a number of weaknesses of our current design. These
weaknesses did not reduce specialization opportunities, but made
the system less automatic than we had hoped. Inadequate support
for global variables and partially static data structures may be
DyC’s most serious shortcoming. Most programs we wish to
dynamically compile require specialization for static or partially
static data structures, andpsi used global variables as well. The
@annotation allows DyC to perform dereferences at specialization
time. If the annotated data structures are actually invariant, then this
approach works fine; otherwise, it is insufficient. For example, in . ; . ° :
mipsi we had to manually copy global variables to annotated local ~ Penefit of Tempo’s approach is that static writes to memory are
variables whenever their values may have changed. Unfortunately, ~ POSSible.

extending DyC to be capable of performing static stores would « DyC supports separate compilation while still being able to
require significant changes to our context-management strategy, specialize call sites and callee functions for the values of their

« DyC relies on the programmer to annotate memory references
as static. Tempo performs an automatic alias and side-effect
analysis to identify (partially) static data structures. Tempo’s
approach is more convenient for programmers and less error-
prone, but it still is not completely safe, relies on the
programmer to correctly describe aliasing relationships and
side-effects of parts of the program outside of the module being
specialized, and may benefit from explicit user annotations
wherever the analysis is overly conservative. However, a strong

caching mechanism, and unit-linearization scheme. Also, static arguments, but performs no interprocedural analysis.
additional annotations (or interprocedural analysis) would be Tempo performs interprocedural side-effect and binding-time
required to position explicators for statically written memory analyses, can also specialize functions for the values of static
locations. global variables, and can identify static return results of residual

Additional analyses, for example, to automatically determine when ~ functions. However, it requires the whole module being
cache lookups and lazy branches could be safely eliminated, would ~ SPecialized to be analyzed and compiled as a unit.

be u;eful. Such _analyses_vx_/ould re_duce the need to use the_ unsafe « Tempo also supports compile-time specialization.

caching and laziness policies, which we used extensively in the

small benchmarks to achieve the greatest possible performancd? Our view, DyC's focus on intraprocedural specialization,
with the least overhead. At the other end of the ease-of-use @utomatic cachingand dispatching, control over specialization, and

spectrum, an invalidation-based caching and dispatching I0W run-time overhead s fairly complementary to Tempo's focus on
mechanism could also reduce the cost of safety. For dynamiclnterprocedural specialization, support for partially static data

regions or specialized functions using an invalidation-based cacheStructures, and uniform support for compile-time and run-time
policy (hypothetically, InstallOne, InstallAll, or specialization.

InstallAllUnchecked), one specialization would be installed as the Fabius [Leone & Lee 95, Leone & Lee 96] is another dynamic
currently valid version and it would be invoked with direct jumps or compilation system based on partial evaluation. Fabius is more
calls until invalidated. Following invalidation, the next execution of |imited than DyC or Tempo, working in the context of a first-order,
the region or function would fall back on DyC's existing caching purely functional subset of ML and exploiting a syntactic form of
schemes GacheOne, CacheAll, or CacheAllUnchecked, currying to drive dynamic compilation. Only polyvariant
respectively), and the version retrieved from the cache (or the newly specialization at the granularity of functions is supported. Given the
specialized version) would be installed as the current one. Such ahints of curried function invocation, Fabius performs all dynamic
scheme could improve performance for applications in which it compilation optimizations automatically with no additional
could be easily determined when to invalidate the current annotations; by the same token, the trade-offs involved in the

specialized version of each dynamic region. dynamic compilation process are not user-controllable. Fabius does
. little cross-dynamic-statement optimization other than register
9 Comparison To Related Work allocation, since, unlike DyC, it does not explicitly construct an

Tempo [Consel & Noé&l 96], a compile-time and run-time explicit dynamic subgraph that can then be optimized.

specialization system for C, is most similar to DyC. The two Compared to our previous system [Auslander et al. 96], DyC has a
systems differ chiefly in the following ways: more flexible and expressive annotation language, support for
« DyC may produce multiple divisions and specializations of Polyvariant division and better support for polyvariant
program points, with the degree of division and specialization specialization, support fo.r nested and overlgpplng dynamic regions,
varying from point to point. Tempo supports only function- Support for demand-driven (lazy) specialization, support for
level polyvariant division and specialization, with no additional interprocedural specialization, a much more efficient strategy for
division or specialization possible within the function, except @nd optimizations of run-time specialization, and a more well-

for some limited support for complete loop unrolling. developed approach to caching of specialized code.

DyC performs analysis over arbitrary, potentially unstructured Outside the realm of dynamic compilation, other partial evaluation
control-flow graphs. Tempo converts all instances of systems share characteristics with DyC. In particular, C-mix
unstructured code to structured form [Erosa & Hendren 94, [Andersen 92b, Andersen 94] is a (compile-time) offline partial-
Consel et al. 96], which introduces a number of additional tests evaluation system for C. Its analyses differ from DyC's in the
and may also introduce loops. following ways:

19

« C-mix provides program-point polyvariant specialization, but
only function-level polyvariant division.

While DyC computes point-wise divisions, C-mix’s divisions
are uniform; that is, it assigns only one binding time, static or
dynamic, to each variable and does not permit variables to
change from static to dynamic or vice-versa. However, C-mix’s
analysis runs in near-linear time and is efficient enough to apply
interprocedurally, while DyC’s intraprocedural analysis has
exponential (worst-case) complexity.

C-mix copes directly with unstructured code, but it appears to
lack reachability analysis to identify static merges [Andersen
94].

C-mix handles partially static structures by splitting the

structures into separate variables.

C-mix includes support for automatic interprocedural call
graph, alias, and side-effect analyses.

C-mix also provides annotations for controlling code growth by
limiting specialization with respect to certain variables and for
overcoming the limitations of its conservative analysis;
however, its annotations provide less control than DyC'’s. C-
mix always polyvariantly specializes control-flow merges, and
provides the residual annotation to make a variable
dynamic in order to prevent explosive code growth due to
multi-way loop unrolling. In contrast, DyC provides control
over code growth by permitting variables to be specialized
monovariantly or by specializing lazily on demand. C-mix’s
pure annotation corresponds tonstant , and unfold

fills the role of theinline pragma provided by most modern
optimizing compilers.

Andersen’slynamic basic blockdDBBs) [Andersen 92a] serve the

"C extends the ANSI C language to support dynamic code
generation in an imperative rather than annotation-based style
[Engler et al. 96]. The programmer must specify code to be
generated at run time, substitute run-time values and combine code
fragments (called tick expressions), perform optimizations, invoke
the run-time compiler, manage code reuse and code-space
reclamation, and ensure correctness. In return for this programming
burden, "C would seem to offer greater expressiveness than a
declarative, annotation-based system. However, DyC'’s ability to
perform arbitrary and conditional polyvariant division and
specialization enables it to perform a wide range of optimizations
with very little user intervention, and DyC offers capabilities not
available in “C. For instance, "C cannot (multi-way) unroll loops
with dynamic exit tests, because jumps to labels in other tick
expressions are not permitted. ("C recently added limited support
for automatic single-way complete loop unrolling within a tick
expression [Poletto et al. 97].) Also, tick expressions cannot contain
other tick expressions, so nested and overlapping dynamic regions
cannot be supported. Both of these weaknesses would appear to
prevent “C from handling the simple interpreter example in Figure
1. °C can support run-time compiled functions with a dynamically
determined number of arguments, but it may be feasible to achieve
at least some of this behavior in DyC by specializing a procedure
based on the length and values invegargs pseudo-argument.
One advantage that "C does have is that the programmer can easily
implement a variety of dispatching mechanisms, which may be
important in exploiting certain opportunities for dynamic
compilation, such as data decompression [Keppel 96].

A declarative system such as DyC allows better static optimization
of dynamic code than an imperative system such as "C, because the
control flow within a dynamic region is more easily determined and
conveyed to the rest of the optimizing compiler. Optimization

same purpose as specialization units, to reduce overhead in the,cross tick expressions is as hard as interprocedural optimization
specializer, however, their boundaries are determined entirely 4¢rqss calls through unknown function pointers [Poletto et al’ 97].

differently. DyC's specialization units differ from C-mix’s dynamic
basic blocks in the following ways:

« DBBs are bounded by (and may not contain) dynamic control
flow. On the other hand, DyC’s units are designed to include
dynamic control flow (via linearization).

« C-mix does not automatically insert specialization points (and

Finally, programs written in declarative systems can be easier to
debug: since (most of) the annotations are semantics-preserving,
programs can simply be compiled ignoring them. Debugging the

use of unsafe annotations is still challenging, however.

10 Conclusions

thus begin new DBBs) at specializable merge points in order to \ys have presented the design of DyC, an annotation-based system
enable code sharing. Unit boundaries are required wherever a,, performing dynamic compilation that couples a flexible and

new variant of the code must be begun, at both dynamic-to-

systematic partial-evaluation-based model of program

static promotions and specializable merge points. Unit anstormation with user control of key policy decisions. Our
boundaries are also inserted where cache lookups could enableynnqtations’ design resulted from a search for a small set of flexible

sharing (i.e., at eviction points).

« DBBs may overlap. Units currently cannot overlap, though that
restriction could be relaxed, as described in section 7.2.

Schism’s filters permit choices about whether to unfold or

residualize a function and which arguments to generalize (i.e.,
make dynamic), given binding times for the function’s parameters
[Consel 93]. Because filters are executed by the binding-time
analysis, only binding-time information can be used to make
decisions. DyC's conditional specialization can use the results of
arbitrary static or dynamic expressions to control all aspects of run-
time specialization.

primitive directives to govern dynamic compilation, suitable for use
by both human programmers and tools (such as a semi-automatic
dynamic-compilation front-end). With the exception of support for
static data structures, we believe that ommake_static
annotation provides the flexibility we require in a concise, elegant
manner. By adding policy annotations, users can gain fine control
over the dynamic compilation process when needed. Our support
for arbitrary program-point-specific polyvariant division and
specialization is a key component of DyC’s flexibility, enabling, for
instance, multi-way loop unrolling and conditional specialization,
as illustrated in the interpreter example. We exploit the unusual
capabilities of run-time specialization in the forms of arbitrary

Filters can be used to prevent unbounded unfolding and unboundedjynamic-to-static promotion and demand-driven specialization.

specialization. Both offline partial evaluators, such as Schism, and
online specializers, such as Fuse [Weise et al. 91], look for dynamic

conditionals as a signal that unbounded unfolding or specialization
could occur and specialization should be stopped. Run-time
specializers have an additional option, which is to temporarily
suspend specialization when dynamic conditionals are found in
potential cycles and insert lazy callbacks to the specializer;
currently, only DyC exploits this option.

20

We have implemented the core functionality of the system in the
context of an optimizing compiler. Our initial experience in using
DyC has been promising DyC has obtained good speedups (over
statically compiled code) with low run-time overhead, and required

*If run-time inlining through function pointers were available in DyC,
analysis across those calls would be of comparable difficulty.

little modification of source programs. The majority of our system’s

functionality has been used in the single large program with which
we have experience. Once the full implementation is complete, we

plan to focus on applying dynamic compilation to other sizeable,

gram Dependence Graph and its Use in Optimiza#hd®M Transac-
tions on Programming Languages and Syste@{8):319-349, July
987.

real application programs. We will use these applications to further [Goldberg & Robson 83] A. Goldberg and D. Robs@malltalk-80: The

evaluate DyC's design and implementation. We also plan to extend

DyC with additional run-time optimizations, such as run-time
inlining and register allocation (via register actions).

Acknowledgments

We are grateful to Charles Consel for his help in understanding
Tempo and some of the related issues in partial evaluation. We also
thank the anonymous referees for finding several errors and
suggesting other improvements to the paper, David Grove for
feedback on earlier drafts of this paper, Charles Garrett for his

implementation work on our dynamic compiler, John O’Donnell
and Tryggve Fossum for the source for the Alpha AXP version of
the Multiflow compiler, and Ben Cutler, Michael Adler, and Geoff
Lowney for technical advice in altering it. This work is supported
by ONR contract N0O0014-96-1-0402, ARPA contract NO0014-94-

Language and its Implementatiohddision-Wesley, 1983.

[Jones etal. 93] N. D. Jones, C. K. Gomard, and P. Seftaftial Evalua-
tion and Automatic Program GeneratidArentice Hall, 1993.

[Keppel 96] David KeppelRuntime Code GeneratioRhD thesis, Univer-
sity of Washington, 1996.

[Kernighan & Ritchie 88] B. W. Kernighan and D. M. Ritchi€he C Pro-
gramming Language (second editioRyentice Hall, 1988.

[Leone & Lee 95] M. Leone and P. Lee. Optimizing ML with Run-Time
Code Generation. Technical report CMU-CS-95-205, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
December 1995.

[Leone & Lee 96] M. Leone and P. Lee. Optimizing ML with Run-Time
Code GenerationSIGPLAN Noticespages 137-148, May 1996. In
Proceedings of the ACM SIGPLAN '96 Conference on Programming
Language Design and Implementation.

1-1136, NSF Young Investigator Award CCR-9457767, and an NSF [Meyer 91] U. Meyer. Techniques for Partial Evaluation of Imperative Lan-

Graduate Research Fellowship.

References

[Andersen 92a] L.O. Andersen. C Program Specialization. Technical Re-

port 92/14, DIKU, University of Copenhagen, Denmark, May 1992.
[Andersen 92b] L.O. Andersen. Self-Applicable C Program Specialization.

In Proceedings of the Workshop on Partial Evaluation and Semantics-

Based Program Manipulation '9®ages 54—-61, June 1992. Published

as Yale University Technical Report YALEU/DCS/RR-909.
[Andersen 94] L.O. AnderseRrogram Analysis and Specialization for the

C Programming LanguagéhD thesis, DIKU, University of Copen-

hagen, Denmark, 1994. Published as DIKU Research Report 94/19.

[Auslander et al. 96] J. Auslander, M. Philipose, C. Chambers, S. Eggers,

and B. Bershad. Fast, Effective Dynamic CompilatiSfGPLAN No-
tices pages 149-159, May 1996. In Proceedings of the ACM SIG-
PLAN '96 Conference on Programming Language Design and
Implementation.

[Consel & Noél 96] C. Consel and F. Noél. A General Approach for Run-
Time Specialization and its Application to C.Gonference Record of
POPL '96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 145-156, January 1996.

[Consel 93] C. Consel. A Tour of Schism: A Partial Evaluation System for
Higher-Order Applicative Languages. Rroceedings of the Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipula-
tion '93, pages 145-154, 1993.

[Consel et al. 96] C. Consel, L. Hornof, F. Noél, J. Noyé, and N. Volanschi.
A Uniform Approach for Compile-Time and Run-Time Specializa-
tion. In O. Danvy, R. Gluck, and P. Thiemann, editdtartial Evalu-
ation. Dagstuhl Castle, Germany,February 1986/CS 1110, pages
54-72. Springer-Verlag, 1996.

[Cytron et al. 89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An Efficient Method of Computing Static Single As-
signment Form. IrConference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languagesies 25-35,
January 1989.

[Engler & Proebsting 94] D. R. Engler and T. A. Proebsting. DCG: An Ef-
ficient, Retargetable Dynamic Code GeneratoiRinceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systepages 263-273, Octo-
ber 1994.

[Engler et al. 96] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A
Language for High-Level, Efficient, and Machine-Independent Dy-
namic Code Generation. IBonference Record of POPL '96: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 131-144, January 1996.

[Erosa & Hendren 94] A.M. Erosa and L.J. Hendren. Taming Control Flow:
A Structured Approach to Eliminating goto StatementsPinceed-
ings of 1994 IEEE International Conference on Computer Languages
pages 229-240, May 1994.

[Ferrante et al. 87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Pro-

21

guages. IrProceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation ;93ages 94-105, June
1991. Published as SIGPLAN Notices 26(9).

[Poletto et al. 97] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A Sys-
tem for Fast, Flexible, and High-level Dynamic Code Generation.
SIGPLAN Noticespages 109-121, June 1997. In Proceedings of the
ACM SIGPLAN '97 Conference on Programming Language Design
and Implementation.

[Sirer 93] Emin Gun Sirer. Measuring Limits of Fine-Grain Parallelism.
Princeton University Senior Project, June 1993.

[Steensgaard 96] B. Steensgaard. Points-to Analysis in Almost Linear
Time. In Conference Record of POPL '96: 23rd ACM SIGPLAN-SI-
GACT Symposium on Principles of Programming Languapages
32-41, January 1996.

[Thibault et al. 98] Scott Thibault, Charles Consel, and Gilles Muller. Safe
and Efficient Active Network Programming. Technical Report Re-
search Report 1170, IRISA, January 1998.

[Volanschi et al. 97] E. N. Volanschi, C. Consel, G. Muller, and C. Cowan.
Declarative specialization of object-oriented prograBi&PLAN No-
tices 32(10):286—300, October 1997.

[Weise et al. 91] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Auto-
matic Online Partial Evaluation. In J. Hughes, edifeecord of the
1991 Conference on Functional Programming Languages and Com-
puter Architecture LNCS 523, pages 165-191, Cambridge, MA,
1991. Springer-Verlag.

[Wilson & Lam 95] R. P. Wilson and M. S. Lam. Efficient Context-Sensi-
tive Pointer Analysis for C ProgramSIGPLAN Noticespages 1-12,
June 1995. In Proceedings of the ACM SIGPLAN '95 Conference on
Programming Language Design and Implementation.

Appendix A Grammar of Annotations

statement:
/* same as in regular C */

make_static (static-var-list) ;
make_dynamic (var-list) ;
make_static (static-var-list) compound-statement

static-var-list:
static-var
static-var, static-var-list

static-var:
identifier policieg,

policies:
policy-list

policy-list:
policy
policy, policy-list

policy:
division-policy
specialization-policy
promotion-policy
merge-caching-policy
promotion-caching-policy
laziness-policy

division-policy:
poly_divide
mono_divide

specialization-policy:
poly_specialize
mono_specialize

promotion-policy:
auto_promote
manual_promote

merge-caching-policy:
m_cache_all_unchecked
m_cache_all
m_cache_one
m_cache_one_unchecked

promotion-caching-policy:
p_cache_none_unchecked
p_cache_all
p_cache_one
p_cache_one_unchecked

laziness-policy:
lazy
specialize_lazy
loop_specialize_lazy
eager

var-list:
identifier
identifier, var-list

external-definition:
I* same as in regular C */
specialize-definition

specialize-definition:
constant o specialize identifier (var-list)
on specialize-list

specialize-list:
(static-var-list)
(static-var-list) , specialize-list

expression:)
/* same as in regular C */
@ * expression

primary:
... I*same as in regular C */
@ identifier
primary @ (expression-ligjy;)
primary @[expressior]
lvalue @. identifier
primary @-> identifier

