
1

DyC: An Expressive Annotation-Directed Dynamic Compiler for C

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington

Technical Report UW-CSE-97-03-03
Last Update: May 12, 1999

http://www.cs.washington.edu/research/dyncomp/

{grant,mock,matthai,chambers,eggers}@cs.washington.edu

Abstract

We present the design of DyC, a dynamic-compilation system for C
based on run-time specialization. Directed by a few declarative user
annotations that specify the variables and code on which dynamic
compilation should take place, a binding-time analysis computes
the set of run-time constants at each program point in the annotated
procedure’s control-flow graph; the analysis supports program-
point-specific polyvariant division and specialization. The results of
the analysis guide the construction of a run-time specializer for
each dynamically compiled region; the specializer supports various
caching strategies for managing dynamically generated code and
mixes of speculative and demand-driven specialization of dynamic
branch successors. Most of the key cost/benefit trade-offs in the
binding-time analysis and the run-time specializer are open to user
control through declarative policy annotations.

DyC has been implemented in the context of an optimizing
compiler, and initial results have been promising. The speedups we
have obtained are good, and the dynamic-compilation overhead is
among the lowest of any dynamic-compilation system, typically
20-200 cycles per instruction generated on a Digital Alpha 21164.
The majority of DyC’s functionality has been used to dynamically
compile an instruction-set simulator. Only three annotations were
required, but a few other changes to the program had to be made due
to DyC’s lack of support for static global variables. This deficiency
and DyC’s rudimentary support for partially static data structures
are the primary obstacles to making DyC easy to use.

Keywords

Dynamic compilation, specialization, partial evaluation, constant
folding, run-time code generation, program optimization, dataflow
analysis, C language.

1 Introduction
Dynamic compilation offers the potential for increased program
performance by delaying some parts of program compilation until
run time, and then exploiting run-time state to generate code that is
specialized to actual run-time behavior. The principal challenge in
dynamic compilation is achieving high-quality dynamically
generated code at low run-time cost, since the time to perform run-
time compilation and optimization must be recovered before any
benefit from dynamic compilation can be obtained. Consequently,
a key design issue in developing an effective dynamic compilation
system is the method for determining where, when, and on what
run-time state to apply dynamic compilation. Ideally, the compiler
would make these decisions automatically, as in other compiler
optimizations; however, this ideal is beyond the current state-of-
the-art for general-purpose programs.

Instead, current dynamic compilation systems rely on some form of
programmer direction to indicate where dynamic compilation

should be applied. `C [Engler et al. 96, Poletto et al. 97] and its
predecessordcg [Engler & Proebsting 94] take a procedural
approach to user direction, requiring the user to write programs that
explicitly manipulate, compose, and compile program fragments at
run time. These systems offer great flexibility and control to the
programmer, but at the cost of significant programmer effort and
debugging difficulty.

Alternatively, Fabius [Leone & Lee 96], Tempo [Consel & Noël
96], and our previous system [Auslander et al. 96] take a declarative
approach, employing user annotations to guide dynamic
compilation. Fabius uses function currying, in a purely functional
subset of ML; Tempo uses function-level annotations, annotations
on global variables and structure types, and alias analysis on
programs written in C; and our previous system uses
intraprocedural annotations, also in C. Each of these declarative
approaches adapts ideas from partial evaluation, expressing
dynamic compilation as run-time offline specialization (i.e.,
compile-time binding-time analysis and run-time specialization),
where static values correspond to run-time state for which programs
are specialized. Declarative approaches offer the advantages of an
easier interface to dynamic compilation for the programmer (since
dynamic optimizations are derived from the annotations
automatically, rather than being programmed by hand) and easier
program understanding and debugging (since declarative
annotations can be designed to avoid affecting the meaning of the
underlying programs). However, declarative systems usually offer
less expressiveness and control over the dynamic compilation
process than imperative systems.

We have developed a new declarative annotation language and
underlying run-time specialization primitives that are more
expressive, flexible, and controllable than previous annotation-
based systems, but are still easy to use. Our system, calledDyC,
supports the following features:

• support for both polyvariant specialization and polyvariant
division*, with the degree of specialization for different
variables under programmer control,

• intra- (program-point-specific) and interprocedural (function-
level) specialization, with the caller and callee separately
compilable,

• arbitrarily nested and overlapping regions of dynamically
generated code,

• automatic caching, reuse, and reclamation of dynamically
generated code, with cache policies under programmer control,

* Polyvariant division allows the same program point to be analyzed for
different combinations of variables being treated as static, and polyvariant
specialization allows multiple compiled versions of a division to be
produced, each specialized for different values of the static variables.

2

• automatic interleaving of specialization and dynamic execution
to avoid unbounded static specialization for terminating
programs, with the exact trade-off between speculative
specialization and demand-driven specialization under
programmer control,

• automatic interleaving of specialization and dynamic execution
to delay specialization of some code until the appropriate run-
time values have been computed, and

• run-time optimizations, including constant propagation and
folding, conditional-branch folding and dead-code elimination,
merge splitting, complete loop unrolling, procedure-call
specialization, and strength reduction.

The next section illustrates many of these capabilities using an
annotated bytecode interpreter as an example. Section 3 provides an
overview of the design of the DyC dynamic-compilation system,
which is then detailed in sections 4 through 7. Section 5 presents
DyC’s annotation language. Section 8 describes our experiences
with the system, and section 9 compares DyC to related work. We
conclude with our plans for future work.

2 Example
Figure 1 presents a simple interpreter like those for the Smalltalk
and Java virtual machines [Goldberg & Robson 83, Lindholm &
Yellin 97] or the mipsi simulator [Sirer 93]. We will use this
example to explain DyC’s capabilities, to illustrate the conciseness
of the annotations, and to demonstrate the steps in DyC’s dynamic-
compilation process. In boldface are the annotations we added to
turn the interpreter into a run-time compiler, i.e. a program that
produces at run time an interpreter that is specialized for the
particular array of bytecodes.

Note that while the interpreter appears simple, its successful
dynamic compilation requires most of DyC’s features, many of
which are unique to DyC. The example is representative of the
structure of a large class of interpreters and simulators that loop
over run-time-constant arrays of operations, dispatching on the type
of operation.

2.1 Basic Functionality

The main control annotation ismake_static , whose argument
list of variables the system treats asrun-time constantswhen run-
time execution reaches that point. By default, DyC will apply
interprocedural polyvariant division and specialization as needed
on all control-flow paths downstream of themake_static
annotation, until the variables go out of scope*, in order to preserve
the run-time constant bindings of each annotated variable. For
example, the variablepc is annotated as static. DyC specializes
code so that, at each program point in the specialized code,pc will
have a known run-time constant value. The increments ofpc in the
switch body do not cause problems, since the value of a run-time
constant after an increment is also a run-time constant. The loop
head at the top of thefor loop requires additional work: DyC will
automatically produce a separate specialized version of the loop
body for each distinct value ofpc at the loop head, in effect,
unrolling the loop completely. (In Figure 1, we have written all run-
time constant operations in italics.)

The@symbol annotates the contents of thebytecodes array as
static, implying that the contents of a referenced, run-time-constant
memory location is a run-time-constant.† This enables DyC to

* DyC currently does not continue specialization upwards past return
statements, so specialization stops at the end of each function.

† DyC currently does no automatic alias or side-effect analysis, unlike some
other systems, so these annotations are necessary to achieve the desired
effect.

void interp_program(int bytecodes[], int arg) {
printf(“%d\n”, interp_fn(bytecodes, 0, arg));

}

int interp_fn(int bytecodes[], int pc, int arg) {
unsigned int inst, rs, rt, rd, offset, reg[32];
make_static(bytecodes,pc:

p_cache_one_unchecked,eager);
// bytecodes,pc promoted

reg[1] = arg;
for (;;){ // specializable loop-head merge

inst = bytecodes @[pc++];
rs = R1(inst); rt = R2(inst); rd = R3(inst);
offset = IMMEDIATE(inst);
switch(OPCODE(inst)) {

case LI: // load immediate value
reg[rt] = offset; continue;

case MUL:
reg[rd] = (int) reg[rs] * (int) reg[rt];
continue;

case SUBI:
reg[rt] = (int) reg[rs] - offset ;
continue;

case IF_GOTO:
if (reg[rs] == reg[rt])

pc += offset;
continue; // specializable merge

case GOTO:
pc = offset; continue;

case COMPUTED_GOTO:
pc = reg[rs]; continue; // pc promoted

case RET:
return reg[31];

}
}

}

Figure 1: Simple Bytecode Interpreter

int count[N];
#define threshold ...
specialize interp_fn(bytecodes, pc, arg)

on (bytecodes, pc);
int interp_fn(int bytecodes[], int pc, int arg) {

unsigned int inst, rs, rt,rd,offset,reg[32],callee;
if (++count[pc] >= threshold) {

make_static(bytecodes, pc);
} else {

make_dynamic(bytecodes, pc);
}
reg[1] = arg;
for (;;){ // specializable loop-head merge

... //same as above
switch (OPCODE(inst)) {
... //same as above
case GOSUB:

callee = offset + pc++;
reg[rd] =

interp_fn(bytecodes , callee , reg[rs]);
break;

}
}

}

Figure 2: Interprocedural and Conditional Specialization

LI r31, #1 # r1 = 1
LI r2, #0 # r2 = 0

L0: IF_GOTO r1,r2, L1 # if r1 == r2 goto L1
MUL r31, r1, r31 # r31 = r31 * r1
SUBI r1,r1,#1 # r1 = r1 - 1
GOTO L0 # goto L0

L1: RET # return result in r31

Figure 3: Factorial Interpreter Program

3

constant-fold theswitch branch within each iteration (since
bytecodes , pc and the loaded bytecode are all run-time
constants), selecting just onecase arm and eliminating the others
as dead code. The code that manipulatesbytecodes andpc is
also eliminated as dead, once the variables’ interpretation overhead
is constant-folded away.

The IF_GOTO bytecode conditionally rebinds the value ofpc ,
based on the run-time variable outcome of a previous test. At the
merge after theif , pc may hold one of two possible run-time
constant values, depending on whichif arm was selected. We call
merges such as this one, which have (potentially) different
incoming values of run-time constantsspecializable merge points.
By default, becausepc is annotated bymake_static , DyC will
apply polyvariant specialization to the merge and all downstream
code, potentially making two copies of the merge and its
successors, one for each run-time constant value ofpc . The loop
head is another such specializable merge point, which enables the
loop to be unrolled as described above. Thus, for an input program
that contains a tree ofIF_GOTObytecodes, this specialization will
produce a tree of unrolled interpreter loop iterations, reflecting the
expected structure of a compiled version of the input program. We
call the ability to perform more than simple linear unrollings of
loops multi-way loop unrolling. DyC allows the programmer to
specify less aggressive specialization policies for static variables, to
provide finer control over the trade-offs between cost and benefit of
run-time specialization.

At each of these specializable merge points, by default DyC
maintains a cache of all previously specialized versions, indexed by
the values of the static variables at the merge point. When a
specializable merge point is encountered during run-time
specialization, DyC examines the cache to see whether a version of
the code has already been produced, and, if so, reuses it. In the
interpreter example, the cache checks at the loop head merge have
the effect of connecting backward-branching bytecodes directly to
previously generated iterations, forming loops in the specialized
code. Similarly, the cache checks allow iterations to be shared, if the
input interpreted program contains other control-flow merge points.
DyC allows the programmer to specify alternative caching policies
or even that no caching be used, to provide finer control to the
programmer over this potentially expensive primitive.

The COMPUTED_GOTObytecode, which represents a computed
jump, assigns a dynamic expression topc . By default, DyC
suspends program specialization when the bytecode is encountered,
and then resumes specialization when execution of the specialized
code reaches this point and assignspc its actual value. As with
specializable merge points, each suchdynamic-to-static promotion
point has an associated cache of specialized versions, indexed by
the values of the promoted variables. The specializer consults this
cache to see whether a previous version can be reused or a new
version must be produced.* Again, programmer-supplied policies
support finer control over the aggressiveness of dynamic-to-static
promotion and the caching scheme to be used at promotion points.

Because DyC performs specialization at run time rather than at
compile time, we have the option of choosing when to specialize
control-flow paths ahead of actually reaching them during normal
program execution. Aggressivespeculativespecialization has the
lowest cost, assuming that all specialized paths will eventually be
taken at run time. However, it incurs the cost of specializing any
path not executed, and can lead to non-termination in the presence
of loops or recursion. Alternatively,demand-drivenspecialization
only specializes code that definitely will be executed at run time.

This is typically done by suspending specialization at each
successor of a dynamic (non-run-time-constant) branch in the
program being specialized, and resuming only when that successor
is actually taken. This strategy avoids non-termination problems
and unneeded specialization, but incurs the cost of suspension and
resumption of specialization. DyC allows the programmer to
specify policies to control speculative specialization; the (safe)
default introduces suspension points at each specializable loop
head.

2.2 Interprocedural and Conditional Specialization

Figure 2 extends the simple single-procedure interpreter to support
interpreting programs made up of multiple procedures. It also
illustrates several other DyC capabilities, in particular, how it
exploits polyvariant division to support conditional specialization,
and annotations that support interprocedural specialization.

* Eachmake_static annotation is also a dynamic-to-static promotion
point, with an associated cache of versions specialized for different run-
time values of the newly static variables.

ldq r24 , 440(sp) # reg[1] = arg
ldl r18 , 416(sp)
stl r18, 4(r24)
fnop

ldq r24 , 440(sp) # LI r31, 1
lda r27 , 124(zero)
lda r25 , 1(zero)
addq r24, r27, r27
stl r25, 0(r27)

lda r27 , 8(zero) # LI r2, 0
lda r25 , 0(zero)
addq r24, r27, r27
stl r25, 0(r27)

L0: ldl r27 , 8(r24) # IF_GOTO r1, r2, L1
ldl r25 , 4(r24)
cmpeq r27, r25, r25
bne r25, L1

ldl r27 , 4(r24) # MUL r31, r1, r31
ldl r25 , 124(r24)
mull r27, r25, r25
stl r25, 124(r24)

ldl r27 , 4(r24) # SUBI r1, r1, 1
lda r27 , -1(r27)
stl r27, 4(r24)

br L0 # GOTO L0

L1: ldl r0 , 124(r24) # RET
ldq ra , 128(sp)
fnop
lda sp , 544(sp)
ret zero, (ra), 1

Figure 4: Dynamically Generated Code for Factorial

ldl r1 , 416(sp) # reg[1] = arg
lda r2 , 1(zero) # LI r31, 1
lda r3 , 0(zero) # LI r2, 0

L0: cmpeq r1, r3, r25 # IF_GOTO r1, r2, L1
bne r25, L1
mull r1, r2, r2 # MUL r31, r1, r31
lda r1 , -1(r1) # SUBI r1, r1, 1
br L0 # GOTO L0

L1: or r2, zero, r0 # RET
ldq ra , 128(sp)
fnop
lda sp , 544(sp)
ret zero, (ra), 1

Figure 5: Generated Code After Register Actions

4

In the modifiedinterp_fn routine, acount array associates
with eachpc that corresponds to a function entry point the number
of times that function has been invoked. In order to apply dynamic
compilation only to heavily used functions, the programmer has
made the originalmake_static annotation from Figure 1
conditional− specialization occurs only when the invocation count
of some interpreted procedure reaches a threshold. At the merge
after theif , bytecodes andpc are static along one predecessor,
but dynamic along the other. By default, DyC applies polyvariant
division to produce two separate versions of the remainder of the
body of interp_fn . In one, the two variables are static and lead
to run-time specialization, as in Figure 1. In the other, they are
dynamic, and no run-time specialization takes place; the input is
interpreted normally, at no extra run-time cost.

The specialize annotation directs the compiler to produce an
alternate entry point to theinterp_fn procedure that is used
when its first two parameters are run-time constants. At
interp_fn call sites, where the corresponding actual arguments
are static, a specialized version ofinterp_fn is produced (and
cached for later reuse) for the run-time constant values of the actual
arguments. The body of the specializedinterp_fn is compiled
as if its formal parameters were annotated asmake_static at
entry. (The callee procedure and each of its call sites can be
compiled separately, given aspecialize annotation in the
shared header file.) This specialization has the effect of
streamlining the calling sequence for specializedGOSUBbytecodes
to specialized callees: neitherbytecodes nor callee will be
passed in the specialized call, and the specialized interpreter for the
target function (i.e., the compiled code for the target function) will
be invoked directly. If the callee function is not yet heavily
executed, then after entry themake_dynamic annotation will
turn off specialization for that input procedure; all bodies of
infrequently executed procedures will branch to the same
precompiled (and unspecialized) version of the interpreter.

2.3 A Compiling Interpreter

Figure 3 presents a program input for the bytecode interpreter. The
program computes the factorial of its input, which is assumed to be
in registerr1 . Figure 4 illustrates the code produced when the
dynamically compiling interpreter executes the factorial bytecode
program on a Digital Alpha 21164. Although the actual code
produced at run time is executable machine code, we have
presented it in assembly language for readability.*

The structure of the run-time-generated code reflects the structure
of the bytecode program used as input to the interpreter. The code
contains a conditional branch as a result of multi-way unrolling the
interpreter loop beyond theIF_GOTO bytecode. Following the
specialization of theGOTObytecode, a backward branch is
generated to the cached specialized loop iteration corresponding to
the labelL0 , creating a loop in the run-time-generated code.

Since Figure 4 is obtained by straightforward specialization of the
interpreter, each reference to a virtual register in the interpreter
results in a load to or a store from the array that implements the
registers. Better code could be generated by addingregister actions
to DyC [Auslander et al. 96]. Register actions permit memory
locations to be assigned registers through pre-planned local
transformations. In this case, elements of the register array,reg ,
can be allocated to registers, because all offsets into the array are
run-time-constant, and all loads and stores can be rewritten as direct
references to the corresponding registers. Figure 5 shows the result
of applying register actions to the dynamically compiled factorial
program.

3 System Overview
DyC expresses dynamic compilation as run-time specialization.
Directed by a few declarative user annotations that specify the
variables for which portions of a program should be specialized,
DyC’s static compiler produces an executable that includes both
statically compiled code and a run-time specializer for code that is
to be dynamically compiled. Section 4 describes our run-time
specializer and its capabilities.

To achieve the fastest possible dynamic compilation, DyC does
much of the analysis and planning for run-time specialization
during static compile time. An offline binding-time analysis (BTA)
determines which operations can be performed at dynamic compile
time, and the run-time specializer is implemented by constructing
generating extensions (GEs), that is, custom specializers, one for
each piece of code to be dynamically compiled. These GEs perform

the dynamic compilation when provided the values of the annotated
variables. To enable arbitrary interleaving of execution and
specialization and arbitrarily overlapping regions of dynamically
compiled code (dynamic code), DyC is capable of invoking GEs
from dynamic code as well as from statically compiled code (static
code). Figure 6 illustrates the interactions among DyC’s compile-
time and run-time components.

Figure 7 depicts DyC’s organization. We have implemented the
binding-time analysis (BTA) and most of the generating-extension
construction in the optimizing Multiflow compiler [Lowney et al.
93]. We did so to enable static global optimization of dynamic code
with a minimum of restrictions. We believe that performing regular
compiler optimizations over both statically compiled and
dynamically compiled code is crucial for generating high-quality
code.

Our analyses and transformations follow traditional dataflow
optimizations, such as common-subexpression elimination, and
loop unrolling, because our transformations would otherwise
interfere with these optimizations. Unfortunately, these
optimizations also interfere with our analyses, mainly by obscuring
the intended meaning of the annotations, so some modifications to
them were required to preserve information. This issue is discussed
further in section 8.1.

Following DyC’s core analyses and transformations, Multiflow’s
combined register allocator and instruction scheduler optimizes the
ordinary static code, the static code to be executed by the run-time
specializer, and the dynamic code. Modifications to this phase were
required to handle run-time constants in the dynamic code, to
introduce certain scheduling constraints, and to propagate
information to the assembly-code output.Integrate, a post-pass
that follows assembly-code generation, integrates the dynamic code

* Result operands are shown in boldface.ld [l /q] = load 32/64 bits.st * =
store.mul * = multiply. lda = add with 16-bit signed immediate.

Static Compile Time

Annotated DynamicExecutable

Programsource

Static

Compiler

Run Time

Figure 6: DyC’s Static and Dynamic Components

Code

Static
Code

GEs

Output Input Execute

5

into the static specializer code so that the dynamic code is emitted
at run time when the corresponding static code is executed by a
generating extension. Finally, the resulting code is assembled and
linked with DyC’s run-time library. The resulting stand-alone

executable contains both ordinary, static code and the generating
extensions.

The following sections describe DyC in more detail. We discuss the
run-time specializer first, in section 4, in order to specify the
functionality of the generating extensions produced by DyC’s
compile-time phases. Section 5 then presents the annotation
language in more detail than in the motivating example in section 2,
section 6 describes our BTA, and section 7 details our approach to
producing generating extensions from the information the BTA
derives, including descriptions of the subphases shown forGEgen.
Section 7 also includes a discussion ofIntegrate.

4 Run-Time Specializer

Our run-time specializer (Figures 8, 9, and 10) is an adaptation of
the strategy for polyvariant program-point specialization of a flow
chart language described by Jones, Gomard, and Sestoft [Jones et
al. 93]. The main process produces specialized code for aunit (a
generalization of a basic block that has a single entry but possibly
multiple exits), given itscontext(the run-time values of the static
variables on entry to the unit). The static compiler is responsible for
breaking up dynamically compiled regions of the input program
into units of specialization, producing the static data structures and
code that describe units and their connectivity, and generating the

Figure 7: DyC’s Compile-Time Phases

Annotated C Program

Multiflow Compiler

Front end

Dataflow & loop
optimizations

DyC’s Core

Binding-time analysis

GEgen

Split divisions

Identify lazy edges

Identify units

Separate static &
dynamic subgraphs

Insert explicators

Insert DC operations

Back end

Integrate

Assemble

Link with DyC’s run-time library

Executable Program

Static code GEs

Specialize(unit:Unit,
context:Context,
backpatch_addr:Addr):Addr {

/* see if we’ve already specialized this unit for
this particular context */

(found:bool, start_addr:Addr) :=
CacheLookup(unit, context);

if not found then
/* need to produce & cache the specialization */
(start_addr,

edge_contexts:List<Context>,
edge_addrs:List<Addr>) :=

unit.ReduceAndResidualize(context);
CacheStore(unit, context, start_addr);
/* see how to handle each successor of the

specialized unit */
foreach edge:UnitEdge,

edge_context:Context,
edge_addr:Addr

in unit.edges, edge_contexts, edge_addrs do
if edge.eager_specialize then

/* eagerly specialize the successor now */
Specialize(edge.target_unit,

edge_context,
edge_addr);

else
/* lazily specialize the successor by

emitting code to compute the values of
promoted variables and then call the
specializer with the revised context */

addr:Addr :=
edge.ResolvePromotions(edge_context);

Backpatch(edge_addr, addr);
patch_addr:Addr :=

if edge.one_time_lazy
then edge_addr else NULL;

Emit(“pc := Specialize(`edge.target_unit`,
promoted_context,
`patch_addr`)”);

Emit(“jump pc”);
endif

endfor
endif
/* make the predecessor unit branch to this code */
Backpatch(backpatch_addr, start_addr);
return start_addr;

}

Figure 8: Run-Time Specializer, Part I

6

initial calls to the Specialize function at the entries to
dynamically compiled code.

TheSpecialize function first consults a cache to see if code for
the unit and entry context has already been produced (using the
unit’s caching policy to customize the cache lookup process), and,
if so, reuses the existing specialization. If not, the unit’s
ReduceAndResidualize function is invoked to produce code
for the unit that is specialized to the input context. The updated
values of the contexts at program points that correspond to unit exits
are returned. The specialized code is added to the cache (again
customized by the unit’s caching policy).

Finally, the specializer determines how to process each of the exits
of a specialized unit. Each exit edge can either beeager, in which
case the successor unit is specialized right away, orlazy, indicating
that specialization should be suspended until run-time execution
reaches that edge; lazy edges are implemented by generating stub
code that will call back into the specializer when the edge is
executed. Points of dynamic-to-static promotion always correspond

to lazy edges between units; here code is generated that will inject
the promoted run-time values into the context before invoking the
specializer.

To implement demand-driven specialization, DyC makes lazy the
branch successor edges that determine execution of the code that is
to be specialized on demand (identification of these edges is
described in section 7.1). DyC dynamically overwrites calls to the
Specialize function placed on these edges with direct jumps to
the dynamically generated code for the target units, which achieves
a one-time suspension and resumption of specialization at each
such point.*

The caching structure for units is one of the chief points of
flexibility in DyC. Each of the variables in the context has an
associated policy (CacheAllUnchecked , CacheAll ,
CacheOne, and CacheOneUnchecked , listed in decreasing
order of specialization aggressiveness), that is derived from user
annotations and static analysis.CacheAllUnchecked variables
are considered to be rapidly changing and their values unlikely to
recur, so that there is no benefit in checking and maintaining a cache
of specializations to enable code sharing or reuse; each time the unit
is specialized, a new version of code is produced, used, and either
connected directly to the preceding code or, in the case of dynamic-
to-static promotions, thrown away. ForCacheAll variables, the
system caches one version for each combination of their values for
potential future reuse, assuming that previous combinations are
likely to recur. ForCacheOne variables, only one specialized
version is maintained, for the current values of those variables. If
the values of any of the variables change, the previously specialized
code is dropped from the cache, assuming that that combination of
values is not likely to recur. The values ofCacheOneUnchecked

CacheLookup(unit:Unit, context:Context)
:(found:bool, start_addr:Addr) {

if CacheAllUnchecked ∈ unit.cache_policies then
/* always produce a new specialization */
return (false, NULL);

else
/* first index on CacheAll values */
let cache_alls :=

elements of context with CacheAll policy;
(found, sub_cache) :=

cache.lookup(unit.id, cache_alls);
if not found then return (false, NULL);
/* then index on CacheOne values

in nested cache */
let cache_ones :=

elements of context with CacheOne policy;
(found, start_addr) :=

sub_cache.lookup(cache_ones);
/* no need to index on CacheOneUnchecked */
return (found, start_addr);

endif
}
CacheStore(unit:Unit, context:Context,

start_addr:Addr):void {
if CacheAllUnchecked ∈ unit.cache_policies then

/* don’t store it, since we won’t reuse it */
else

/* first index on CacheAll values */
let cache_alls :=

elements of context with CacheAll policy;
(found, sub_cache) :=

cache.lookup(unit.id, cache_alls);
if not found then

sub_cache := new SubCache;
cache.add(unit.id, cache_alls, sub_cache);

endif
/* then index on CacheOne values

in nested cache */
let cache_ones :=

elements of context with CacheOne policy;
/* store the new specialization in the cache,

replacing any there previously */
sub_cache.replace(cache_ones, start_addr);

endif
}
Backpatch(source:Addr, target:Addr):void {

/* if source != NULL, then backpatch the branch
instruction at source to jump to target */

}
Emit(instruction:Code) {

/* append a single instruction to the current
code-generation point */

}

Figure 9: Run-Time Specializer, Part II:
Helper Functions

* This requires the edge bear no change in cache context and no dynamic-
to-static promotions.

type Context = Tuple<Value>;
class Unit {

id:int,
cache_policies:Tuple<CachePolicy>;
edges:List<UnitEdge>;
ReduceAndResidualize(context:Context)

:(start_addr:Addr,
out_contexts:List<Context>,
edge_addrs:List<Addr>);

/* Take the the values of the static vars and
produce specialized code for the unit.
Return the address of the start of the unit’s
specialized code and, for each successor unit,
the new values of the static variables at that
edge and the address of the exit point in the
specialized code for the unit */

}
class UnitEdge {

target_unit:Unit;
eager_specialize:bool;
one_time_lazy:bool;
ResolvePromotions(context:Context):Addr;

/* Generate code to extract the current run-time
values of any static variables being promoted
at this edge, updating the input
context and leaving the result in the
“promoted_context” run-time variable.
Return the address of the start of the
generated code. */

}
enum CachePolicy {

CacheAll, CacheAllUnchecked,
CacheOne, CacheOneUnchecked

}

Figure 10: Run-Time Specializer, Part III:
Data Structures

7

variables are invariants or are pure functions of other non-
CacheOneUnchecked variables, so the redundant cache checks
for those variables are suppressed.

Our run-time caching system supports mixes of these cache
policies. If any variable in the context isCacheAllUnchecked ,
the system skips cache lookups and stores. Otherwise, it performs a
lookup in an unbounded-sized cache based on theCacheAll
variables (if any); if this is successful, it is followed by a lookup in
the returned single-entry cache based on theCacheOne variables,
which, if successful, returns the address for the appropriate
specialized code.CacheOneUnchecked variables are ignored
during cache lookup. If all variables have the
CacheOneUnchecked policy, then a single version of the code
is cached with no cache key.

Since invoking the specializer is a source of overhead for run-time
specialization, DyC performs a number of optimizations of this
general structure, principally by producing a generating extension,
which is essentially a specialized version of theSpecialize
function, for each unit. Section 7 describes these optimizations in
more detail.

5 Annotations

Given the target run-time specializer described in the previous
section, we now present the programmer-visible annotation
language (in this section) and then the analyses to construct the run-
time specializer based on the annotations (in sections 6 and 7).
Appendix A specifies the syntax of our annotations, expressed as
extensions to the standard C grammar rules [Kernighan & Ritchie
88].

5.1 make_static and make_dynamic

The basic annotations that drive run-time specialization are
make_static and make_dynamic . make_static takes a
list of variables, each of which is treated as a run-time constant at
all subsequent program points until DyC reaches either a
make_dynamic annotation that lists the variable or the end of the
variable’s scope (which acts as an implicitmake_dynamic). We
call the region of code between amake_static for a variable and
the corresponding (explicit or implicit)make_dynamic a
dynamic specialization region, or dynamic region for short.
Because the placement ofmake_static andmake_dynamic
annotations is arbitrary, the dynamic region for a variable can have
multiple entry points (if separatemake_static annotations for a
variable merge downstream) and multiple exit points. A dynamic
region can be nested inside or overlap with dynamic regions for
other variables, as in the following graph fragment (static variables
shown in boldface):

This flexibility for dynamic regions is one major difference
between DyC and other dynamic-compilation systems.

A convenient syntactic sugar for a nested dynamic region is
make_static followed by a compound statement enclosed in
braces, for instance

make_static(x, y) {
...

}

This shorthand placesmake_dynamic annotations for the listed
variables at each of the exits of the compound statement.

5.2 Policies

Each variable listed in amake_static annotation can have an
associated list of policies. These policies control the aggressiveness
of specialization, division, and dynamic-to-static promotion, the
caching policies, and the laziness policies. The semantics of these
policies is described in Table 1, with the default policy in each

make_static(x);
... x ,y...

make_static(x);
... x ,y...

make_dynamic(x);
...x, y ...
make_dynamic(y);
...x,y...

make_dynamic(y);
... x ,y...
make_dynamic(x);
...x,y...

make_static(y);
... x , y ...

Policy Description

poly_divide perform polyvariant division

mono_divide perform monovariant division

poly_specialize perform polyvariant specialization at merges
within dynamic regions (specialization is always
polyvariant at promotion points)

mono_specialize perform monovariant specialization at merges

auto_promote automatically insert a dynamic-to-static promo-
tion when the annotated static variable is possi-
bly assigned a dynamic value

manual_promote introduce promotions only at explicit
make_static annotations

lazy suspend specialization at all dynamic branches,
avoiding all speculative code generation

specialize_lazy suspend specialization at all dynamic branch
successors dominating specializable merge
points and specializable call sites, avoiding spec-
ulative specialization of multiple versions of
code after merges

loop_specialize
_lazy

suspend specialization at all dynamic branch
successors dominating specializable loop-head
merge points and specializable call sites, allow-
ing speculative specialization except where it
might be unbounded

eager eagerly specialize successors of branches,
assuming that no unbounded specialization will
result, allowing full speculative specialization

m_cache_all
_unchecked

specialize at merges, assuming that the context is
different than any previous or subsequent spe-
cialization

m_cache_all cache each specialized version at merges

m_cache_one cache only the latest version at merges, throwing
away the previous version if context changes

m_cache_one
_unchecked

cache one version, and assume the context is the
same for all future executions of this merge

p_cache_none
_unchecked

specialize at promotion points, assuming that the
promoted value is different than any previous or
subsequent specialization

p_cache_all cache all specialized versions at promotion
points

p_cache_one cache only the latest version at promotion points

p_cache_one
_unchecked

cache one version, and assume the promoted
value is the same for all future executions of this
promotion

Table 1: Policies

8

category in bold. Annotations in italics are unsafe; their use can
lead to changes in observable program behavior or non-termination
of specialization, if their stated assumptions about program
behavior are violated. All of our default policies are safe, so the
novice programmer need not worry about simple uses of run-time
specialization. Unsafe policies are included for sophisticated users
who wish to have finer control over dynamic compilation for better
performance.

The polyvariant vs. monovariant division policy controls whether
merge points should be specialized for a variable that may not be
static along all merge predecessors. Similarly, the polyvariant vs.
monovariant specialization policy controls whether merge points
should be specialized for different values of a variable that flow in
along different merge predecessors. Promotion points, such as
make_static , always perform polyvariant specialization of the
promoted value, beginning at the promotion point.

The eagerness vs. laziness policies indicate which code should be
specialized speculatively or on demand. DyC uses these policies to
determine which branch successor edges to make lazy, as described
in section 7.1. DyC’s default policy is to unroll loops on demand but
to specialize other code speculatively, which minimizes the cost
incurred by suspension and resumption of specialization, while
avoiding unbounded specialization.

The cache policies specified by the annotations determine the cache
policies, described in section 4, that govern how the run-time
specializer caches and re-uses dynamically generated code. Each
policy controls how many specialized versions of code are cached
(One vs.All), and whether the values of the static variables are used
to determine which cached version to use (checked vs.
Unchecked). Our policies currently support either caches of size
one or caches of unbounded size. It is reasonable to wish for
caching policies that take an argument that indicates the desired
cache size. However, bounded multiple-entry caches necessitate a
non-trivial cache replacement policy, over which we would want to
offer programmer control. More generally, we might wish to
provide programmers with direct access to the various caches that
the run-time specializer maintains. We leave the design of such
interfaces to future work.

The annotations support two sets of cache policies because we
frequently desired different policies to be used at the two kinds of
program points where new specialized versions were spawned,
dynamic-to-static promotion points and specializable merge points.
For example, theCacheOneUnchecked policy is useful at
dynamic-to-static promotion points when the promoted variable is
invariant, but is seldom useful at specializable merge points.
Conversely, theCacheAllUnchecked policy is of use primarily at
specializable merge points.* Those policies prefixed bym_apply at
specializable merge points, and those prefixed byp_ apply at
dynamic-to-static promotion points. Section 6.3.6 explains how
caching policies are derived at other program points.

5.3 Partially Static Data Structures

Frequently, the result of a memory reference operation (reading a
variable, dereferencing a pointer, or indexing an array) is intended
to be a run-time constant. This occurs, for example, when
manipulating a (perhaps partially) static data structure. By default,
the result of a load operation is not a run-time constant, even if its
address is a run-time constant. To inform our system that the loaded

result should be treated as a run-time constant, the following code
can be written:

make_static(t);
t = *p;
... /* later uses of t are specialized for t ’s value */ ...

This will introduce an automatic promotion and associated cache
check at each execution of the load. If the programmer knows that
the result of the dereference will always be the same for a particular
run-time constant address, the programmer can use the
p_cache_one_unchecked annotation:

make_static(t:p_cache_one_unchecked);
t = *p;
... /* later uses of t are specialized for t ’s first value */ ...

However, the semantics of this annotation still delays specialization
until program execution reaches the dereference point the first time.
To avoid any run-time overhead in the specialized code for this
dereference, the programmer must state that the load instruction
itself is a static computation, returning a run-time constant result if
its argument address is a run-time constant. In our annotation
language, a memory-reference operation can be prefixed with the@
symbol, indicating that the associated memory load should be done
at specialization time, assuming the pointer or array is static at that
point. The programmer can use a static dereference in this example,
as follows:

make_static(p);
...
t = @* p;
... /* later uses of t are specialized for t ’s value

at specialization time */ ...

The @ prefix is a potentially unsafe programmer assertion.
Alternatively, we could attempt to perform alias and side-effect
analysis to determine automatically which parts of data structures
are run-time constants. Unfortunately, it is extremely challenging to
produce a safe yet effective alias and side-effect analysis for this
task, because the analysis would have to reason about aliasing
relationships over the whole program (not just within dynamic
regions) and also about the temporal order of execution of different
parts of the program (e.g., side-effects that occur when constructing
the run-time data structures before the dynamic region is first
entered should be ignored). Sound, effective interprocedural alias
analysis for lower-level languages like C is an open problem and the
subject of ongoing research [Wilson & Lam 95, Steensgaard 96],
and so we do not attempt to solve the full problem as part of our
dynamic compilation system; our current system includes only
simple, local information, such as that local variables that have not
had their addresses taken are not aliases of any other expression.
When effective alias analyses are developed, we can include them
as a component of our system; even so, there may still be a need for
explicit programmer annotations to provide information that the
automatic analysis is unable to deduce. Other dynamic compilation
systems either include an analysis that operates only within a
module and rely on programmer annotations to describe the effects
of rest of the program (Tempo), disallow side-effects entirely
(Fabius), or rely on the programmer to perform only legal
optimizations (`C).

Instead of, or in addition to, providing annotations at individual
dereference operations, we could provide higher-level annotations
of static vs. dynamic components along with variable or type
declarations. For example, the variablep could be declared with a
type such asconstant* rather than* , to indicate that all
dereferences would result in run-time constant values; the
bytecodes array in the initial example in Figure 1 could be
declared asconstant int bytecodes[] to indicate that its
contents were run-time constants, thereby eliminating the need for
the@prefix annotation on thebytecodes array index expression.
Tempo follows this sort of approach, at least for fields ofstruct
types. This syntactic sugar may be a worthwhile addition to DyC.

* The p_cache_none_unchecked annotation policy maps to
CacheAllUnchecked at promotion points, and implies the dynamically
compiled code should be produced, used once, and thrown away.

9

Currently, the@annotation does not enable stores at specialization
time, and significant extensions to DyC would be required to do so.
Some of these extensions are sketched in section 8.3.

5.4 Interprocedural Annotations

Run-time specialization normally applies within the body of a
single procedure: calls to a procedureP from within a dynamic
region or specialized function all branch to the same unspecialized
version ofP. P itself may have another specialized region in its
body, but this break in the specialization will cause all the different
specialized calls ofP to merge together at the entry toP, only to be
split back apart again by the cache checks at themake_static
annotation inP’s body. To avoid this overhead, calls can themselves
be specialized, branching to correspondingly specialized versions
of the callee procedure, thereby extending dynamic regions across
procedure boundaries.

The specialize annotation names a procedure with a given
number of arguments and provides a list of divisions for the
procedure. Each division lists a non-empty subset of the formal
parameters of the procedure that will be treated as run-time
constants; a division can specify the same policies for listed
variables as amake_static annotation. As described in section
7, for each division, DyC’s static compiler produces a code-
generation procedure (i.e., a generating extension) for that division
that takes the static formals as arguments and, when invoked on
their run-time values, produces a specialized residual procedure
that takes the remaining arguments of the original procedure (if
any), in classical partial-evaluation style.

At each call site in a specialized region to a procedureP with an
associatedspecialize annotation, DyC will search for the
division specified forP that most closely matches* the division of
actual arguments at the call site (favoring divisions listed earlier in
P’s specialize annotation in case of ties). If one is found, the
static compiler produces code that, when specializing the call site at
run time, (1) invokes the generating extension for the selected
division of P, passing the necessary run-time constant arguments,
and (2) generates code that will invoke the resulting specialized
version forP, passing any remaining arguments. Thus, when the
specialized call is eventually executed, the call will branch directly
to the specialized callee and pass only the run-time variable
arguments. If no division specified forP matches the call, then the
general unspecialized version ofP is called. Calls toP outside any
dynamic region continue to invoke the unspecialized version ofP.

The callee procedure and any call sites can be compiled separately.
All that they need to agree on is thespecialize annotation,
which typically is put next to the procedure’sextern declaration
in a header file. Since call boundaries across which specialization
should take place are explicitly identified by the programmer, we
avoid the interprocedural analysis that would be required to identify
(and propagate run-time-constants through) specializable callees.

The constant prefix to the specialize annotation is an
(unsafe) assertion by the programmer that the annotated procedure
acts like a pure function; in other words, it returns the same result
given the same arguments without looping forever, making
externally observable side-effects, or generating any exceptions or
faults. DyC exploits this information by calling a constant function
from call sites whose arguments are static at specialization time and
treating its result as a run-time constant, i.e., reducing the call rather
than specializing or residualizing the call. This behavior is different
than simply providing a division where all formals are static, since

that would leave a zero-argument call whose result was a dynamic
value in the specialized code.

We also allow the programmer to prefix individual function calls
with the @annotation to specify that the result of a function call
should be treated as a run-time constant if its arguments are run-
time constants. For instance, to indicate that a call to the cosine
function is a pure function, a programmer could write:

 make_static(x);
 y = cos@(x);

 ... /* later uses of y are specialized for y’s value
at specialization time */ ...

This is a per-call-site version of theconstant annotation. We
included this annotation because the programmer may know, for
example, that particular uses of a function will not generate side
effects, although the function may produce side effects in general.

5.5 Global Variables

DyC is not currently capable of specializing for the values of global
variables. Extensions to the function-annotation syntax to support
specialization for global variables would be relatively minor
(simply specifying globals in addition to parameters). However, the
necessary changes to the rest of the system would be comparable to
the support (described in section 8.3) required for permitting static
writes to memory.

6 Analysis of the Annotations
Given the programmer annotations described in the previous
section, DyC performs dataflow analysis akin to binding-time
analysis over each procedure’s control-flow graph representation to
compute where and how run-time specialization should be
performed. The output of this analysis is information associated
with each program point (formally, each edge between instructions
in the control-flow graph); the domain of the information,BTA,
along with some constraints on its form, is specified in Figure 11.†

This output is used to produce the generating extension which
invokes the run-time specializer, as described in section 7.

The analysis essentially reasons only about scalar local variables
and compiler temporaries, and annotated data structures are treated
as static pointers. The binding times of memory locations are not
computed.

The analysis computes a set of divisions for each program point.
Each division maps variables annotated as static by
make_static or specialize to their associated policies at
that program point. Two divisions are distinct iff there is some
variable in one division that is annotated with the polyvariant
division policy and is either not found (i.e., it is dynamic) or
annotated differently in the other division; divisions that do not
differ in the policies of any variables annotated with the polyvariant
division policy will be merged together by the analysis.

For each division the analysis computes the following pieces of
information:

• The analysis computes the set of static variables (run-time
constants) at that program point, including both user-annotated
static variables (calledroot variables) and any derived static

* The most closely matching division is the one with the greatest number of
formal parameters annotated as static that correspond to static actual
arguments and no static formals that correspond to dynamic actuals.

† In our notation,→ constructs the domain of partial finite maps (sets of
ordered pairs) from one domain to another,dom and range project the
first and second elements, respectively, of the ordered pairs in the map,
and applying a mapf to an element indom(f) returns the corresponding
range element. We use× to construct cross-product domains. We write
D(p) to project from the productp the element that corresponds to
component domainD, and we writep[D→v] to compute a new productp’
that is likep but whoseD element has valuev. Pow denotes the powerset
domain constructor. Note thatA→B ⊆ Pow(A×B).

10

variables computed (directly or indirectly) from them. The
computed set of static variables will be used to determine which
computations and operands are static, versus which are
dynamic. In addition, it is used to index into the run-time
specializer’s caches; consequently, the analysis also computes
the appropriate caching policy for each static variable. For
internal purposes, the analysis tracks the set of annotated run-
time constants from which each static variable was computed,
directly or indirectly, as described in subsection 6.3.6.

• The analysis computes those points that require dynamic-to-
static promotions of variables. Non-empty promotion sets
correspond to promotion points for the listed variables.
Promotions get inserted aftermake_static annotations for
non-constant variables and after (potential) assignments of
dynamic values to variables that are annotated with the auto-
promotion policy.

• The analysis computes those points that require thedemotionof
variables. The set of demoted variables indicates which
previously static variables have become dynamic and need to be
initialized with their last static value by residual assignments
(calledexplicators [Meyer 91]).

• The analysis identifies which merge points require polyvariant
specialization, calledspecializable merges points, because at
least one variable that is annotated with the polyvariant
specialization policy has potentially different definitions on
different merge predecessors. The set of suchdiscordant
variablesis computed at these merge points, and is empty at all
other points.

In the remainder of this section we describe the procedure
representation we assume and the set of dataflow analyses used to
construct this output.

6.1 Procedure Representation

We assume that the procedures being analyzed are represented in a
standard control-flow graph, where nodes in the graph can be of one
of the following forms:

• an operator node such as a move, add, or call, with one
predecessor and successor,

• a merge node with multiple predecessors and one successor,

• a conditional branch node with one predecessor and multiple
successors, with a single operand that selects the appropriate
successor edge,

• an entry node with no predecessors and a single successor,
which acts to bind the procedure’s formals upon entry, or

• a return node with one predecessor and no successors, with a
single operand that is the procedure’s result.

To enable our analyses to detect when potentially different
definitions of a variable merge, we assume that merge nodes are
annotated with a list of variables that have different reaching
definitions along different predecessors, yielding one variable in the
list for eachφ-function that would be inserted if we converted the
procedure to static single assignment (SSA) form [Cytron et al.
89].*

Domains:
BTA ≡ Division → DivisionInfo

DivisionInfo ≡ StaticVarInfo × Promotions × DiscordantVars ×
Demotions

Division ≡ Var → Policies

Var ≡ finite set of all variables in scope of procedure being compiled

Policies ≡ DivisionPolicy × SpecializationPolicy ×
PromotionPolicy ×
MergeCachingPolicy × PromotionCachingPolicy ×
LazinessPolicy

DivisionPolicy ≡ {PolyDivision, MonoDivision}

SpecializtionPolicy ≡ {PolySpecialization, MonoSpecialization}

PromotionPolicy ≡ {AutoPromote, ManualPromote}

MergeCachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

PromotionCachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

LazinessPolicy ≡
{Lazy, SpecializeLazy, LoopSpecializeLazy, Eager}

StaticVarInfo ≡ Var → CachingPolicy × SourceRoots

CachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

SourceRoots ≡ Pow(Var)

Promotions ≡ Pow(Var)

Demotions ≡ Pow(Var)

DiscordantVars ≡ Pow(Var)

LiveVars ≡ Pow(Var)

UsedVars ≡ Pow(Var)

MayDefVars ≡ Pow(Var)

Specializations ≡ Proc → SpecializationInfo

Proc ≡ finite set of all procedures in scope of function being compiled

SpecializationInfo ≡ IsConstant × Divisions

IsConstant ≡ {Constant, NotConstant}

Divisions ≡ Pow(Division)

Constraints:
BTALegal(bta:BTA) ≡

LegalDivisions(dom(bta)) ∧
∀(d,i)∈bta.

StaticVars(i)⊇dom(d) ∧
∀v∈StaticVars(i).

(SourceRoots(v, i)⊆dom(d) ∧
v∉dom(d) ⇒

CachingPolicy(StaticVarInfo(i)(v)) =
CacheOneUnchecked) ∧

Promotions(i)⊆dom(d) ∧
DiscordantVars(i)⊆PolySpecializationVars(d)

LegalDivisions(ds:Pow(Division)) ≡
∀d1,d2∈ds. d1=d2 ∨ SeparateDivisions(d1,d2)

SeparateDivisions(d1:Division, d2:Division) ≡
PolyDivisionVars(d1)≠PolyDivisionVars(d2) ∨
∃v∈PolyDivisionVars(d1). d1(v)≠d2(v)

PolyDivisionVars(d:Division) ≡
{ v∈dom(d) | DivisionPolicy(d(v)) = PolyDivision }

PolySpecializationVars(d:Division) ≡
{ v∈dom(d) | SpecializationPolicy(d(v)) = PolySpecialization }

StaticVars(i:DivisionInfo) ≡ dom(StaticVarInfo(i))
SourceRoots(v:Var, i:DivisionInfo) ≡

if v∈StaticVars(i) then SourceRoots(StaticVarInfo(i)(v)) else ∅

Figure 11: Domains
* make_static annotations must conservatively be treated as definitions

of the variables they annotate.

11

Flow graph nodes are generated from the following grammar:
Node ::= OpNode | MergeNode | BranchNode |

EntryNode | ReturnNode

OpNode ::= MakeStaticNode | MakeDynamicNode |
ConstNode | MoveNode | UnaryNode | BinaryNode |
LoadNode | StaticLoadNode | StoreNode | CallNode

MakeStaticNode ::= make_static(Var: Policies)
MakeDynamicNode ::= make_dynamic(Var)

ConstNode ::= Var := Const
MoveNode ::= Var := Var
UnaryNode ::= Var := UnaryOp Var
BinaryNode ::= Var := Var BinaryOp Var
LoadNode ::= Var := * Var
StaticLoadNode ::= Var := @* Var
StoreNode ::= * Var := Var
CallNode ::= Var := Proc(Var, ..., Var)

MergeNode ::= merge(Var, ..., Var)

BranchNode ::= test Var

EntryNode ::= enter Proc

ReturnNode ::= return Var

whereVar, Const, UnaryOp, BinaryOp, andProc are terminals
andPolicies is as defined in Figure 11.

6.2 Prepasses

Our analyses will need to identify those program points where a
variable may be assigned. Direct assignments as part of an
OpNode are clear, but assignments through pointers and as side-
effects of calls are more difficult to track. We abstract this may-side-
effect analysis problem into a prepass whose output is
MayDefVars. MayDefVars is a set of variables at each program
point that may be modified during execution of the previous node
(other than the left-hand-side variable of the node).

Our analyses will work better if they can identify when annotated
and derived run-time constant variables are dead. We abstract the
result of a live variables analysis into a prepass that computes
LiveVars, the set of live variables at each program point. We also
compute and abstract a similar analysis,UsedVars, which is the set
of variables at each program point that have an earlier definition and
a later use (but may temporarily be dead at this point).LiveVars is
used to determine when variables can be removed from
StaticVarInfo. BecauseDivision contains the policies attributed to
annotated variables, a variable cannot be removed fromDivision
when it simply goes dead: when the variable is used again
downstream, its policy information will be needed. Hence,
UsedVars is used to determine when an annotated variable can be
removed fromDivision.

Finally, we process the interprocedural specialization directives and
record them in theSpecializations domain.Specializations maps
each annotated procedure to a set of divisions given in the
specialize annotation and indicates whether the procedure was
annotated asconstant . This information is assumed to be
replicated at all program points, for convenience in writing the
analysis functions.

6.3 The Main Analysis

Figures 12, 13, 14, and 15 define the annotation analysis. TheBTA
family of dataflow equations defines the information on the
program point(s) after a node in terms of the information computed
for the point(s) before the node (bta), the helper information
described in subsection 6.2 for the program point(s) after the node
(lvs, uvs, and mds), and the ever-present specialized function
information (sp). A solution to the (recursive) dataflow equations is
the greatest fixed-point of the set of equations for each node in the
procedure, which we solve by simple iterative dataflow analysis;
the top element of the lattice, used to initialize back-edges during

BTAOpNode: OpNode→LiveVars→UsedVars→MayDefVars
→Specializations→BTA→BTA

BTAOpNode [[make_static(x:p)]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
dout = ForgetDeadVars(uvs, d − { (x’,p’)∈d | x’ = x } ∪ {(x ,p)},

StaticVarInfo(i)) ∧
let i’ = MakeStatic(x ,dout,i[DiscordantVars→∅]) in

iout = ComputeDemoted(lvs,dout, i, i’)})

BTAOpNode [[make_dynamic(x)]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
dout = ForgetDeadVars(uvs, d − { (x’,p’)∈d | x’ = x },

StaticVarInfo(i)) ∧
let i’ = i[DiscordantVars→∅] in

iout = ComputeDemoted(lvs, dout, i, i’)})

BTAOpNode [[x := k]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs, x , true, ∅, uvs,

mds, d, i)})

BTAOpNode [[x := y]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs,

x , y∈StaticVars(i), SourceRoots(y ,i), uvs, mds, d, i)})

BTAOpNode [[x := op y]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs,

x , y∈StaticVars(i) ∧ Pure(op), SourceRoots(y ,i),
uvs, mds, d, i)})

BTAOpNode [[x := y op z]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs,

x , {y ,z}⊆StaticVars(i) ∧ Pure(op),
SourceRoots(y ,i) ∪ SourceRoots(z ,i), uvs, mds, d, i)})

BTAOpNode [[x := *p]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs, x , false, ∅, uvs,

mds, d, i)})

BTAOpNode [[x := @* p]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs,

x , p∈StaticVars(i), SourceRoots(p,i), uvs, mds, d, i)})
BTAOpNode [[*p := y]] lvs uvs mds sp bta ≡

Merge(lvs, { (dout,iout) |
(d,i) ∈ bta ∧
(dout,iout) = ProcessStmt(lvs, ∅, uvs, mds, d, i))}

BTAOpNode [[x := f(y 1,...,y n)]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(lvs, x ,

{y1,...,yn}⊆StaticVars(i) ∧
f ∈dom(sp) ∧ IsConstant(sp(f)) = Constant,

∪yi ∈ {y1,...,yn} SourceRoots(y i,i), uvs, mds, d, i)})

Figure 12: Flow Functions, Part I

12

the initial iteration of analysis of loops, is the empty set (no
divisions).*

In general, each flow function computes a new, updated set of
divisions from the inflowing set(s) of divisions. We remove any
permanently dead variables (those no longer in theUsedVars set)†

from the set of annotated variables,Division, and any, at least
temporarily, dead variables (those no longer in theLiveVars set)
from the set of run-time constants,StaticVarInfo, to avoid
unnecessary polyvariant division or specialization. Once a new set
of divisions and associated information is computed, divisions that
no longer differ in the policies of any variables annotated as leading
to polyvariant division are merged together into a single division.
Thus the degree of polyvariant division can vary from program
point to program point.

6.3.1 Entry Nodes

The analysis of the procedure entry node creates the initial
division(s), including at least the empty unspecialized division with
no run-time constants. For a specialized procedure, each of the
divisions listed in thespecialize annotation introduces an
additional specialized division in the analysis. For each division, the
set of run-time constants is initialized to the set of annotated
variables, with each variable’s initial caching policy taken from its
specifiedPromotionCachingPolicy.

6.3.2 make_static and make_dynamic Nodes

The analysis of amake_static pseudo-instruction adds a new
static variable to each of the existing divisions, and replaces the
policies associated with the variable if it is already present in some
division. If the variable was not already a run-time constant in some
division, then the make_static instruction introduces a
dynamic-to-static promotion. Themake_dynamic instruction
simply removes the annotated variable from each of the inflowing
divisions; as described above, this may cause divisions to merge
and run-time static variables derived from the newly dynamic
variable to be dropped.

* We follow the conventions of dataflow analysis in solving forgreatest
fixpoints and initializing information along edges to thetopof the lattice.
In this paper we do not bother to more formally define the lattice ordering
and meet operations, since we have given an explicit flow function for
merge nodes and defined the top lattice element, and simple iterative or
worklist-based analyses need nothing more. A soundness proof for our
analysis would of course require a more formal treatment. Since the
domain of analysis is finite and each analysis function is monotonic,
termination of analysis is assured.

† We do not remove permanently dead variables fromDivision if any static
variables derived from them are still live, because doing so would require
us to kill those derived static variables, as described in subsection 6.3.6.

BTAEntry: EntryNode→LiveVars→UsedVars→Specializations→BTA

BTAEntry [[enter P]] lvs uvs sp ≡
let ds = (if P∈dom(sp) then Divisions(sp(P)) else ∅) ∪ {∅} in

Merge(lvs, { (d, (s, ∅, ∅, ∅)) |
d’∈ds ∧
d = ForgetDeadVars(uvs, d’, ∅) ∧
s = { InitialBinding(v, d) | v∈dom(d) } })

BTABranch: BranchNode→LiveVars×LiveVars→UsedVars×UsedVars
→MayDefVars×MayDefVars→Specializations→BTA→BTA×BTA

BTABranch [[test x]] (lvs1,lvs2) (uvs1,uvs2) (mds1,mds2) sp bta ≡
(Merge(lvs1, { (dout,iout) |

(d,i) ∈ bta ∧ (dout,iout) = ProcessStmt(lvs1, ∅, uvs1, mds1, d, i)}),
 Merge(lvs2, { (dout,iout) |

(d,i) ∈ bta ∧ (dout,iout) = ProcessStmt(lvs2, ∅, uvs2, mds2, d, i)}))

BTAMerge: MergeNode→LiveVars→UsedVars→MayDefVars
→Specializations→Pow(BTA)→BTA

BTAMerge [[merge(x 1,...,x n)]] lvs uvs mds sp btas ≡
let bta = ∪ btas in

 Merge(lvs, { (dout,iout) |
(d,i) ∈ bta ∧
pvs = {x1,...,xn} ∩ PolySpecializationVars(d) ∩ lvs ∧
smvs = {x | x∈{x1,...,xn}∧ merge for x is static in division d}∧
mvs = ({x1,...,xn} − pvs − smvs) ∩ lvs ∧
dout = ForgetDeadVars(uvs, d − { (x,p)∈d | x∈mvs },

 StaticVarInfo(i)) ∧
si = KillDanglingDerivedVars(d,StaticVarInfo(i),mvs) −

{ (v, vp) ∈ StaticVarInfo(i) | v∈mvs } ∧
si’ = si − { (v, vp) ∈ si | v∈pvs } ∪

 { (v, (mp, {v})) | (v,p)∈dout ∧ v∈pvs ∧
 mp = MergeCachingPolicy(p) } ∧

iout = ComputeDemoted(lvs,dout, i,(si’, ∅, pvs, ∅)) })

Figure 13: Flow Functions, Part II

Merge(lvs:LiveVars, bta:BTA):BTA ≡
MergePartitions(lvs, Partition(bta))

Partition(bta:BTA):Pow(BTA) ≡
{ { (d,i)∈bta | DivisionSelector(d) = ds } |

ds ∈DivisionSelectors(bta) }

DivisionSelectors(bta:BTA):Divisions ≡
{ DivisionSelector(d) | (d,i)∈bta }

DivisionSelector(d:Division):Division ≡
{ (v,p)∈d | v∈PolyDivisionVars(d) }

MergePartitions(lvs:LiveVars, btas:Pow(BTA)):BTA ≡
{ (d,i) | bta ∈ btas ∧

d = ∩Division dom(bta) ∧
i = FilterStaticVars(lvs, d, ∩DivisionInfo range(bta)) }

FilterStaticVars(lvs:LiveVars, d:Division, i:DivisionInfo
):DivisionInfo ≡

if dom(d) = ∅ then i[StaticVarInfo→∅]
else let si = { (v, (p,rvs))∈StaticVarInfo(i) |

v∈lvs ∪Derived(v,StaticVarinfo(i)} in
i[StaticVarInfo→

KillDanglingDerivedVars(d,si,{ r | (v, (p, rvs)) ∈ si ∧
 r∈rvs−dom(d) })]

Derived(v: Var, si: StaticVarInfo):Pow(Var) ≡
{v’ | (v’, (p’, rvs’)) ∈si ∧ v ∈rvs’∧ v ≠ v’ }

ComputeDemoted(lvs:LiveVars, d: Division, i, i’:DivisionInfo
): DivisionInfo ≡

let svf = StaticVars(FilterStaticVars(lvs, d, i’))
svi = StaticVars(i), svo = StaticVars(i’) in

i’[DemotedVars→(svi − svo) ∪ (svo − svf)]

InitialBinding(v:Var, d:Division
):Var × (CachingPolicy × SourceRoots) ≡

(v, (PromotionCachingPolicy(d(v)), {v}))

MakeStatic(v:Var, d:Division, i:DivisionInfo):DivisionInfo ≡
if v∈StaticVars(i) then i
else (StaticVarInfo(i) ∪ {InitialBinding(v, d)}, {v}, ∅, ∅)

Pure(op:Op):bool ≡
returns true iffop is idempotent and cannot raise an exception or fault;
most operators are pure;div andmalloc are canonical impure operators

Figure 14: Helper Functions, Part I

13

6.3.3 Assignment and Store Nodes

The various forms of assignment nodes all have similar analyses,
dependent only on whether the right-hand-side expression is a run-
time constant expression. Compile-time constants are trivially run-
time constants. A unary or binary expression yields a run-time
constant, if its operands are run-time constants and if the operator
is a pure function (e.g., it cannot trap and always returns the same
result given the same arguments). A load instruction yields a run-
time constant iff its address operand is a run-time constant (which
includes fixed values, such as the address of a global or local
variable) and it is annotated with@ by the programmer. A call to a
procedure annotated by the programmer asconstant yields a
run-time constant if all its arguments are run-time constants. Since
a call annotated with@is identical, we have omitted that case. A
store instruction has no definitely assigned result variable, only
potential side-effects, as described by theMayDefVars set.

The effect of these nodes is summarized into two sets. The first is a
(singleton or empty) set of variables definitely assigned run-time
constant values; the other is a set of variables possibly assigned
dynamic expressions (comprised of the assigned variable if the
right-hand-side expression is dynamic, as well as any variables in
the MayDefVars set). The definitely static variables are added to
the set of run-time constant variables. The possibly dynamic
variables are divided into those annotated with the auto-promote
policy (which instructs DyC to insert a dynamic-to-static promotion
automatically if they ever get assigned a dynamic value), and those
that aren’t auto-promoted (which DyC drops from the set of
annotated variables and the set of run-time constants, if present in
either). As with the analysis of any node, dropping variables from
the set of annotated variables can cause divisions to merge.

6.3.4 Merge Nodes

The analysis of a merge node must deal withdiscordant variables
that have potentially different definitions along different
predecessors (these variables were identified by a prepass and
stored with the merge node, as described in section 6.2). For those
discordant variables that the programmer annotated as run-time
constants with a polyvariant specialization policy, the analysis will
mark this merge as discordant in those variables, triggering
specialization of the merge and downstream code. Any other
discordant variables are dropped from the set of annotated variables
and run-time constants, if present. (Again, this dropping of
variables from the annotated set may cause divisions to merge.)
Derived run-time constants are implicitly monovariantly
specialized, since they were not explicitly annotated as
polyvariantly specialized by the programmer. The caching policy
for all discordant variables at the merge is set to those variables’
merge caching policy.

This analysis can be improved for the case of astatic merge.A static
merge is a merge where at most one of the merge’s predecessors can
be followed at specialization time, because the predecessors are
reached only on mutually exclusive static conditions. Since only
one predecessor will be specialized, the merge node won’t actually
merge any branches in the specialized code and only one definition
of each static variable will reach the merge when the residual code
is executed. In fact, all that is required is to ensure that only one
definition of a static variable can reach the merge at execution time,
either because there is only one reaching definition, or potentially
different definitions are only along predecessors with mutually
exclusive static reachability conditions. Such variables are not
included in the set of discordant variables. Subsection 6.4 describes
the reachability analysis used to identify static merges.

6.3.5 Branch and Return Nodes

The analysis of a branch node simply replicates its incoming
information along both successors (as always, after filtering the set
of variables to exclude those that are no longer live along that
successor). Return nodes need no analysis function, since there are
no program points after return nodes, and we do not currently do
interprocedural flow analysis of annotations.

6.3.6 Caching Policies and Derivations of
Static Variables

At each program point, the analysis computes a caching policy for
each variable. This policy is used to control indexing into the run-
time specializer’s caches of previously specialized code. Annotated
variables at promotion points (and at the start of analysis of a
division of a specialized function) are given the user-specified
PromotionCachingPolicy value. At specializable merge points, a
discordant variable is changed to use the variable’s
MergeCachingPolicy value.

ProcessAssignment(lvs:LiveVars, v:Var,
rhs_is_static:bool, rvs:SourceRoots,
uvs:UsedVars, mds:MayDefVars,
d:Division, i:DivisionInfo
):Division × DivisionInfo ≡

if rhs_is_static
then ProcessStmt({(lvs, v,(CacheOneUnchecked,rvs))}, mds,

uvs, d, i)
else ProcessStmt(lvs, ∅, mds ∪ {v}, uvs, d, i)

ProcessStmt(lvs:LiveVars, static_assigns:StaticVarInfo,
uvs:UsedVars, dyn_assigns:Pow(Var),
d:Division, i:DivisionInfo
):Division × DivisionInfo ≡

(dout,iout) where
ps = MayPromotedVars(d, dyn_assigns)
d’ = ForgetDynVars(dyn_assigns − ps, d)
si = StaticVarInfo(i)
si’ = si − { (v,vi)∈si | v∈dom(static_assigns) } ∪ static_assigns
siout = ProcessDynAssigns(

si’, dom(static_assigns), dyn_assigns, d’)
dout = ForgetDeadVars(uvs, d’, siout)
psout = ps ∩ dom(dout)
iout = ComputeDemoted(lvs, dout, i, (siout, psout, ∅, ∅))

MayPromotedVars(d:Division, vs:Pow(Var)):Promotions ≡
{ v∈vs | v∈dom(d) ∧ PromotionPolicy(d(v)) = AutoPromote }

KillDanglingDerivedVars(d:Division,si:StaticVarInfo,
 mvs:Pow(Var)):StaticVarInfo ≡

{ (v, (p,rvs))∈si | (rvs∩mvs)=∅ } ∪
{(v, (p’,rvs’)) | (v, (p,rvs))∈si ∧ (rvs∩mvs)≠∅ ∧ v∈dom(d) ∧

rvs’=(rvs-mvs)∪{v} ∧
 p’=p ∩CachingPolicy

 (∩CachingPolicy v’ ∈ rvs∩mvs CachingPolicy(si(v’))) }
ProcessDynAssigns(si:StaticVarInfo, svs:Pow(Var), dvs:Pow(Var),

d:Division):StaticVarInfo ≡
KillDanglingDerivedVars(d,si,(svs∪dvs)) − { (v, vp)∈si | v∈dvs }

∪ { InitialBinding(v, d) | v∈dom(d) ∧ v∈dvs }

ForgetDeadVars(uvs:UsedVars, d:Division,si:StaticVarInfo
):Division ≡

{ (v,p)∈d | v∈uvs ∨ v∈∪v’ ∈ dom(si) SourceRoots(si(v’))}

ForgetDynVars(vs:Pow(Var), d:Division):Division ≡
{ (v,p)∈d | v∉vs }

Figure 15: Helper Functions, Part II

14

Derived run-time constants are given theCacheOneUnchecked
policy. This ensures that unannotated run-time constants are never
used in cache lookups and consequently do not lead to additional
specialization beyond that explicitly requested by the user. This
unchecked caching policy is safe, as long as each derived run-time
constant is a pure function of some set of annotated variables. An
annotated variable can be assigned a static expression, in which
case it is treated (more efficiently) as a derived run-time constant
with a CacheOneUnchecked policy, instead of its annotated
caching policy.

Assignments to root annotated variables violate the assumption that
a derived run-time expression is a function of a set of root annotated
variables. In this case, the derived run-time constants need to be
dropped from the set of static variables, and annotated derived run-
time constants need to be assigned new cache policies; currently,
we meet the cache policies of their prior root variables. The analysis
tracks the set of root annotated variables,SourceRoots, on which
a derived run-time constant depends; whenever a root variable is
(possibly) assigned to or is removed from the division, all
dependent run-time constants are dropped (or restored to their
regular caching policy, if roots themselves). This distinction
between root and derived variables is a significant source of
complexity in the analysis.

6.3.7 Computation of Demotions

At each program point the analysis computes the set of demoted
variables. A variable can be demoted in two ways: (1) if it was static
before the point but is dynamic after the point (svi − svo in the
equations), or (2) if it becomes static at the node but is dropped from
the set of static variables right after the node because of filtering of
live variables (svo − svf in the equations).

6.3.8 Additional Lattice Meet Operations

TheMerge helper function uses the lattice meet operators for the
Division and DivisionInfo domains. The lattice meet operator
∩Division over elements ofDivision indicates how to combine
different annotations for a set of variables in the same division, and
is defined as follows:

d1 ∩Division d2 ≡
{ (v,p) | v∈dom(d1)∩dom(d2) ∧ p = d1(v) ∩Policies d2(v) }

Elements ofPolicies are met point-wise. Elements of individual
policy domains are totally ordered, with elements listed earlier in
the set of alternatives for a domain in Figure 11 ordered less than
elements listed later; for example:

AutoPromote ≤PromotionPolicy ManualPromote

Thus, the lattice meet operator for a particular policy domain
returns its smallest argument, for example:

AutoPromote ∩PromotionPolicy ManualPromote = AutoPromote

This rule has the effect of picking the strongest policy of any of the
merging divisions.

The lattice meet operator∩DivisionInfo over elements of
DivisionInfo is defined as the pointwise meet over its component
domains, which are defined as follows:

si1 ∩StaticVarInfo si2 ≡
let sinew =
{ (v, (p,rvs)) | v∈dom(si1)∩dom(si2) ∧

p = p1 ∩CachingPolicy p2 ∧
rvs = rvs1 ∪ rvs2

where p2 = CachingPolicy(si2(v))
p1 = CachingPolicy(si1(v))
rvs1 = SourceRoots(si1(v))
rvs2 = SourceRoots(si2(v))}

vs1 ∩Promotions vs2 ≡ vs1∪vs2∩dom(sinew)

vs1 ∩DiscordantVars vs2 ≡ vs1∪vs2∩dom(sinew)

vs1 ∩Demotions vs2 ≡ vs1∪vs2

6.4 Reachability Analysis

We identify static merges by computing astatic reachability
condition at each program point for each division. A static
reachability condition is a boolean expression (in conjunctive
normal form) over the static branch outcomes that are required in
order to reach that program point. A static branch is a branch whose
test variable is identified as a run-time constant by theBTAanalysis.
A static merge is one whose predecessors have mutually exclusive
static reachability conditions. A merge is static for a particular
variablex with respect to a given division iff at most one possible
definition reaches the merge, or different incoming potential
definitions are along mutually exclusive predecessors. Reachability
conditions are computed at the same time as theBTA information,
since they depend on theBTA’s division and static variable analysis
and influence theBTAanalysis’s treatment of merge nodes. Further
details on reachability analysis can be found in an earlier paper
[Auslander et al. 96]*.

7 Creating the Generating Extensions
Given the output of theBTAanalysis, DyC statically constructs the
code and static data structures that, when executed at run time, will
call the run-time specializer with the appropriate run-time-constant
arguments to produce and cache the run-time specialized code, i.e.,
the generating extensions. The following steps, shown in Figure 7,
are performed:

• Split divisions: The compiler statically replicates control-flow
paths, so that each division receives its own code. After
replication, each program point corresponds to a single
division. Replication starts at entries to specialized functions
(producing several distinct functions), and at merge points
where different divisions combine. Replicated paths remerge at
points where divisions cease to differ and are joined by the
Merge function.

• Identify lazy edges: The compiler identifies which branch
successor edges should be lazy specialization edges.
Subsection 7.1 discusses this in more detail. Lazy points due to
dynamic-to-static promotions are trivially identified.

• Identify units: The compiler identifies the boundaries of the
units manipulated by the run-time specializer (described in
section 4). Unit boundaries primarily correspond to dynamic-
to-static promotion points,evictionpoints (where variables are
evicted from the set of annotated variables), specializable
merge points, and lazy branch successor edges. The first three
cases are cache lookup points, and the last case avoids

* Our earlier paper presents the reachability analysis for a monovariant
binding-time analysis; the analysis also uses a slightly more conservative
rule for determining static merges than the one described here.

15

speculative specialization. This process is described in more
detail in subsection 7.2, below. A clustering algorithm then
attempts to merge boundaries together to minimize their cost,
as described in subsection 7.3. TheUnit and UnitEdge
specializer data structures are generated at the end of this
process.

• Separate static & dynamic subgraphs: The compiler
separates the static operations (OpNodes whose right-hand-
side expressions were computed to be static by theBTA
analysis) and the dynamic operations into two separate, parallel
control-flow subgraphs; in earlier work we called these
subgraphs “set-up code” and “template code,” respectively
[Auslander et al. 96]. Subsection 7.4 discusses some aspects of
this separation in more detail. Our method of determining the
control flow of the static subgraph, after all dynamic branches
have been removed from it, is described in subsection 7.5.

• Insert explicators: The compiler inserts explicators in the
dynamic subgraph for all variables in theDemotions set at
each program point. ForDemotions sets at merge nodes, each
assignment must be inserted on each predecessor edge to the
merge where the now-dynamic variable was previously static.

• Insert DC operations: The operations needed to complete the
implementation ofSpecialize , such as cache lookups,
memory allocation, and branch patching, are inserted into the
static and dynamic subgraphs before they are passed through
the backend of the compiler. Some optimizations of the calls to
the run-time specializer are discussed in subsection 7.7.

• Integrate : Finally, each unit’sReduceAndResidualize
function is completed. The control-flow and the reduce
operations of theReduceAndResidualize function are
derived from the static control-flow subgraph. The residualize
operations are introduced by translating the operations and
dynamic branches of the dynamic subgraph into code to emit
the dynamic instructions (perhaps with run-time-constant
operands) in the static subgraph; this process is described in
more detail in subsection 7.6 below. The resulting subgraph
forms theReduceAndResidualize function for the unit,
and the dynamic subgraph is thrown away.

7.1 Computing Lazy Branch Successors

Laziness policies on variables indicate the extent of speculative
specialization that should be performed after dynamic branches.
Based on these policies, successors of some dynamic branches are
determined to be lazy edges, each of which corresponds to a one-
time suspension and resumption of specialization at run time.

A branch successor edge is lazy iff its test variable is dynamic and
at least one of the following conditions holds:

• At least one of the run-time constants at the branch is annotated
with theLazy policy,

• The branch successor edgedetermines execution(as defined
below) of a predecessor edge of a later specializable merge
node, where at least one of the discordant variables is annotated
with theSpecializeLazy policy,

• The branch successor edge determines execution of a
predecessor edge of a later specializable loop-head merge node,
where at least one of the discordant variables is annotated with
theLoopSpecializeLazy policy, or

• The branch successor edge determines execution of a later call
to a specialized division of a procedure, and some run-time
constant live at the call is not annotated with theEager policy.

We say that a branch successor edge determines execution of a
program point iff the edge is postdominated by the program point,
but the branch node itself is not, i.e., the branch successor is (one
of) the earliest point(s) where it is determined that the downstream

program point will eventually be executed. Once the
(post)dominator information relating program points is computed,
a linear scan over the dynamic branches, specializable merge
points, and specialized calls serves to compute the lazy edge
information.

7.2 Unit Identification

Each interaction with the run-time specializer, including cache
lookup points and demand-driven specialization points, introduces
a unit boundary. To identify the boundaries based on cache lookup
points, we first compute thecache contextat each program point
from the set of static variables at that point, as follows:

• If any static variable is annotated with the
CacheAllUnchecked policy, then the cache context is the
special markerreplicate.

• Otherwise, the cache context is the pair of the set of variables
annotated with theCacheAll policy and the set of variables
annotated with theCacheOne policy. (The set of variables
annotated withCacheOneUnchecked do not contribute to the
cache context.)

Given the cache context and the other program-point-specific
information, unit boundaries are identified as follows:*

• Any point where the cache context differs from the cache
context at a predecessor point is a unit boundary, since different
degrees of polyvariant specialization or of cache retention can
occur. In practice, this rule can be relaxed since, except at
promotion points, these boundaries are not required for
correctness. Unit-boundary clustering (see the next subsection)
also helps to mitigate the impact of the many boundaries this
rule can insert.

• A non-emptyPromotions set at a program point corresponds
to a dynamic-to-static promotion point, and introduces a unit
boundary.

• A non-emptyDiscordantVars list corresponds to a special-
izable merge point, and introduces a unit boundary.

• Each edge labelled as a lazy edge introduces a unit boundary.

In addition, units are constrained to be single-entry regions. To
ensure this, additional unit boundaries are inserted at control-flow
merges of paths (including loop back edges) from different units.
These unit boundaries can be omitted, however, if all paths from
different units have mutually exclusive static reachability
conditions (the same way it is determined that multiple static
definitions are not truly discordant; see section 6.4). This eliminates
the overhead associated with crossing the omitted unit boundaries
(discussed in the next subsection), and permits program points to be
shared among multiple units, at the cost of larger generating
extensions.

The UnitEdge data structure records whether each unit edge
should be specialized eagerly or lazily. A unit boundary is eager,
unless it is a promotion point (which must be suspended until the
computed run-time value is available) or a lazy edge.

Figure 16 illustrates the units (shown in gray) that are identified for
the interpreter example in Figure 2. The two entry points
correspond to the specialized and unspecialized divisions of the
interp_fn function. The unspecialized entry point and the false
branches of both the specialized and unspecialized versions of the
conditional-specialization tests lead to unspecialized, statically
compiled code. Demotions (indicated byD) of bytecodes and
pc are required on the edge from the specialized test as they are
evicted from the set of annotated variables.

* Note that a program point can be a boundary in more than one way.

16

The specialized entry point begins unit 1. The true branches of the
tests merge at the code to be specialized, forming unit 2, which is
created by the dynamic-to-static promotion (indicated byP) of
bytecodes andpc on the edge from the unspecialized test. Unit
3, which contains the loop body to be specialized, is created
becausepc , which has definitions both inside and outside the loop,
is discordant at its head. A promotion ofpc is required on the back
edge from theCOMPUTED_GOTOcase afterpc is assigned an
address location. The successors of the dynamic branch in the
IF_GOTO case are madelazy as required by the (default)
LoopSpecializeLazy policy, because the branch determines the
execution of different paths to the specializable loop head. The false
branch extends to the loop head, so no new unit is required, but the
true branch creates the fourth unit.

The specializable loop head will include a specialization-time
cache lookup, the edges carrying promotions will correspond to
run-time cache lookups, and the lazy edges will become one-time
call-backs to the specializer.

7.3 Clustering Unit Boundaries

A unit boundary introduces run-time specialization overhead− to
package up the run-time-constant context from the exiting unit’s
ReduceAndResidualize function, to execute the run-time
specializer and any cache lookups, and to invoke the target unit’s
ReduceAndResidualize function (unpacking the target’s run-
time context). In some circumstances, series of unit boundaries can
be created with little if any work in between, for instance when a
series of annotated static variables become dead, leading to a series
of eviction points and corresponding unit boundaries.

To avoid excessive unit boundaries, we attempt to combine multiple
boundaries whenever possible.* We have developed a boundary
clustering algorithm that works as follows:

• First, for each boundary, we construct the range over the
procedure where that boundary can be legally moved.
Specializable merge points and lazy-edge boundaries cannot be
moved, so their range is a single program point.† Promotion and
eviction boundaries can move to any control-equivalent
[Ferrante et al. 87] program point that are bounded by earlier
and later uses of any promoted or evicted variable; however,
promotion points cannot move above earlier definitions.‡ We
delay inserting the single-entry-producing unit boundaries until
after all the other boundaries have been clustered, so they do not
participate in the clustering algorithm.

• Second, we sort the boundary ranges in increasing order of their
ends, and then make a linear scan through this sorted list. We
remove the range that ends first in the list (call this akernel
range), remove all other ranges that overlap with the first range
(call the union of these ranges acluster), and find the
intersection of these ranges. This resulting intersection is the
program region where all of these boundaries can be placed. We
prefer earliest possible points for evictions and later points for
promotions, as these will reduce the amount of specialized
code. We choose either the start or end of the intersection range,
based on the relative mix of promotions and evictions, and
insert a single boundary for all the merged ranges at that
point.** Then we continue processing the sorted list of
boundary ranges, until the list is exhausted.

This algorithm for coalescing boundary ranges produces the
minimum number of unit boundaries possible, given the restricted
kinds of ranges produced in the first step (the restriction to control-
equivalent program points is key). To prove this, note that we
produce a cluster iff we detect a kernel range, so that the number of
clusters is equal to the number of kernels. Since kernels never
overlap, no clustering scheme could place two kernels in the same
cluster. The number of kernels is therefore also the minimum
number of clusters required, implying that our algorithm produces
no more clusters and, therefore, no more boundaries than necessary.

Because unit boundaries are also caching points, moving them can
increase or decrease the amount of code reuse. Thus, clustering
sometimes trades-off reuse for fewer boundary crossings. It may be
desirable to limit the length of the ranges so that boundaries
sufficiently far away from each other are not coalesced, or
otherwise to prevent different types of boundaries that are relatively
distant from each other from being clustered together. For example,
it may not be beneficial to combine distant boundaries due to
evictions and promotions, since eviction boundaries must occur
earlier and promotion boundaries later, in order to maximize reuse.

More elaborate versions of the clustering algorithm could permit
coalescing of unit boundaries beyond control-equivalent regions,
but this would require more than a straightforward extension to the
algorithm presented above. The ranges would no longer be strictly
linear. Moving boundaries below branches or above control-flow
merges would create identical boundaries on all paths from the
branches or to the merges. Moving boundaries in the opposite
direction could only be permitted if identical boundaries existed on
all the paths.

* An obvious alternative to clustering is simply to introduce fewer
boundaries when possible, such as at eviction points. It would be
interesting to compare the impact of these two techniques in real
applications.

entry 1: interp_fn_bytecodes_pc(...) entry 2: interp_fn(...)

if (++count[pc]...
unsigned int inst,rs...; unsigned int inst,rs...;

if (++count[pc]...

reg[1] = arg;

switch(OPCODE(inst))

case LI: case IF_GOTO:case COMPUTED_GOTO:
if(reg[rs] == reg[rt])

pc += offset;

unit 1

unit 2

unit 3

unit 4

reg[rt] = offset;

...

pc = reg[rs];

P: pc

P: bytecodes,pc D:bytecodes,pc

lazy lazy

specializable merge:
pc

Figure 16: Specialization Units for Figure 2

inst = bytecodes@[pc++];
...

reg[1] = arg;
for (;;) {

 inst = bytecodes...
 switch(OPCODE(inst)) {

case LI: ...
...

case GOSUB: ...
}

}

† Except at loop heads, cache lookups due to specializable merge points
could be permitted to be moved down by the clustering algorithm. This
would decrease the number of boundaries, but would also decrease the
amount of code reuse.

‡ Definitions and uses are mobile as well, so a fair range of motion should
be possible while still respecting data and control dependences.

** One need not place the boundaries only at the end points of the
intersection ranges. One could choose the final position for a boundary by
selecting an offset within its intersection range that is scaled by the ratio
of the numbers of evictions and promotions.

17

7.4 Separating Static and Dynamic Operations

For most straight-line operations, it is clear whether the operation is
static or dynamic. However, call instructions are trickier.

• A call to a regular unspecialized function (or to the
unspecialized version of a specialized function) is treated as a
dynamic operation and appears only in the dynamic subgraph.

• A call to aconstant function (or one annotated with@) with
static arguments is treated as a regular static computation,
appearing only in the static subgraph.

• A call to a particular specialized division of a function has both
static and dynamic components. To implement this, the call
operation is split into two separate calls, one static and one
dynamic. The static version of the call invokes the statically
compiled generating extension for the selected division of the
callee, taking as arguments the division’s static arguments, and
returning a static procedure address. This is followed by a
dynamic call that invokes the static procedure address and
passes the remaining arguments to produce a dynamic result.*

The static call will be moved to the static subgraph, and the
dynamic call will appear in the dynamic subgraph.

Control-flow nodes, including branches and merges, initially are
replicated in both the static and the dynamic subgraphs. Later
transformations can optimize them.

7.5 Determining Control Flow of the Static Subgraph

Once each unit has been identified and split into separate static and
dynamic control-flow subgraphs, the control-flow structure of the
unit’s ReduceAndResidualize function is computed. Static
and dynamic branches in the unit receive different treatment. A
static branch is taken at specialization time, and does not appear in
the dynamically generated (residual) code; accordingly, only one of
its successors produces dynamically generated code. Consequently
a static branch appears as a regular branch in the final
ReduceAndResidualize function, selecting some single
successor to pursue and residualize. A dynamic branch, on the other
hand, is emitted as a regular branch into the dynamically generated
code, and both its successors must be residualized. Consequently,
no branch appears in theReduceAndResidualize function at
a dynamic branch, and the successors of the dynamic branch are
linearized instead.

Figure 17 illustrates how the dynamic branches are linearized.
Numbered boxes represent basic blocks and circles represent
branches. The circle enclosing ans represents a static branch and
the one containing ad represents a dynamic branch.

In the presence of arbitrary, unstructured control flow with mixed
static and dynamic branches, this linearization process may require
some code duplication to avoid maintaining specialization-time
data structures and overhead. Our algorithm first splits all static
control paths† within the unit, linearizing dynamic branches by
topologically sorting their successors, then re-merges the common
tails of the static paths bottom-up. The time required by the
algorithm can be exponential in the maximum number of sequential

static branches on any static control path within a single unit, which
we expect to be a small number in practice.

Linearization causes what were originally alternative code
segments to be executed sequentially. We must ensure that the
segments executed earlier do not alter the initial static state
expected by subsequent alternative segments. This could be
achieved by saving the static state at each dynamic branch and
restoring it before executing each branch successor. This is the
approach we have taken in order to propagate the static context
between units. However, within a single unit, a more efficient
solution is possible by converting static variables to static-single-
assignment (SSA) form [Cytron et al. 89]. SSA form ensures that
only one assignment is made to each variable, which implies that
state changes made by segments that occur earlier in the linearized
unit are made to variables not read by alternative segments. In this
case, the SSA form is easy to compute, because issues arising from
loops and aliasing can be safely ignored due to DyC’s restrictions
on the form of units (i.e., units cannot contain static loops) and its
prohibition of static stores. If these restrictions were eased,
however, an alternate solution may have to be found.

7.6 Integrating Dynamic Code into Static Code

To produce the final code for a unit’sReduceAndResidualize
function, we take the linearized static control-flow graph which
computes all the static expressions, and blend in code to generate
the dynamic calculations with the appropriate run-time constants
embedded in them. To accomplish this, our system maintains a
mapping from each basic block in the dynamic subgraph to a set of
corresponding basic blocks in the static subgraph. When splitting
apart static and dynamic operations, the mapping is created, with
each dynamic block mapping to its static counterpart(s).‡ The
mapping is updated, as the static subgraph is linearized and some
blocks are replicated, and as the subgraphs are optimized through
instruction scheduling. The two subgraphs are integrated, one
dynamic block at a time. First, the static code computes any run-
time constants used in the block’s dynamic instructions. Then, code
to emit the dynamic block is appended to its corresponding static
block.

The code to emit a dynamic instruction embeds the values of any
small run-time constant operands into the immediate field of the
emitted instruction. If the run-time constant is too large to fit in the
immediate field, code is emitted to load it from a global table into a
scratch register. The emitted instruction then reads the scratch
register to access the run-time constant. The emitting code also
performs any peephole optimizations that are based on the run-time
constant value, such as replacing multiplications by constants with
sequences of shifts and adds.

* Tempo performs interprocedural binding-time analysis and so can deduce
that the result of a specialized function is static. If we were to extend DyC
to support interprocedural analysis of annotations, then the static half of
the call would return both a procedure address and the static result value,
and the dynamic half would return no result and be invoked only for its
side-effects.

† A static control path includes all dynamically reachable basic blocks,
given particular decisions for all static conditional branches. Each static
branch can appear on a static control path at most once, because units
cannot contain static loops.

‡ Unit linearization may create multiple instances of a basic block in the
static subgraph, as mentioned in section 7.5.

1

2 3

4

6

5

1

32

4

5

6

s s

d

Figure 17: Linearization

1

32

4

5

6

s

Split Merge

6

18

7.7 Optimizing Specializer Interactions

Each initial promotion point at the entrance to a dynamic region is
implemented by generating a static call to the run-time specializer,
passing the run-time values of the cache context at that program
point. Section 4 described the run-time specializer as if a single
general-purpose specializer took control at this and all other unit
boundaries. Our system optimizes this pedagogical model as
follows:

• The Specialize function is specialized for eachUnit
argument. All the run-time manipulations of theUnit and
UnitEdge data structures are eliminated, the unit’s
ReduceAndResidualize function is inlined, and the
processing of outgoing lazy unit edges is inlined. If the cache
policy for any of the unit’s context variables is
CacheAllUnchecked, then the cache lookup and store calls
are omitted.

• Rather than recursively callSpecialize , a pending-
list is used to keep track of unprocessed (eager) unit edges.
Furthermore, the overhead of pushing and popping the static
context on and off of thepending-list can be avoided for
one successor of each unit, which eliminates more than half of
this overhead in dynamic regions without dynamicswitch
statements.

• Ends of dynamic regions are compiled into direct jumps to
statically compiled code.

8 Experience with DyC
We have implemented the core functionality of the system in the
context of the Multiflow compiler [Lowney et al. 93]. Only the
function annotations, theCacheOne policy, unit-boundary
clustering, and unit linearization have not yet been fully
implemented. We have encountered a number of practical
difficulties in the implementation, particularly in the
implementation of the annotations. Most of these problems related
to naming, i.e., establishing a correspondence between the variables
that the programmer sees in the source code and their internal
representation in the compiler; this issue is discussed in subsection
8.1.

Despite the challenges, we achieved good results with a larger
application than previously had been dynamically compiled by
other general-purpose dynamic-compilation systems. Subsection
8.2 describes our positive experiences with this and other
applications. On the other hand, as we applied DyC to various
programs, we encountered several weaknesses in our current
design, and these are discussed in subsection 8.3.

8.1 Challenges in Implementing the Annotations

In the Multiflow compiler, all computations are represented as
operations whose operands are virtual registers calledtemporaries.
Temporaries are created on demand by the compiler and their
names bear no correspondence to source-level variable names. At
different program points, a source variable may correspond to
different temporaries, and optimizations such as induction-variable
simplification or variable expansion* may even create multiple
simultaneously live temporaries corresponding to a single variable.
Since the programmer annotates source variables, our
implementation computes a source-variable-to-temporary
correspondence at each program point. This correspondence

relation is used to apply theBTA rules to those temporaries that
correspond to annotated source variables and any temporaries
derived from them.

Several standard compiler optimizations make maintaining this
correspondence difficult. For example, copy propagation can result
in the annotated variable (i.e., its corresponding temporary) being
replaced by another non-annotated temporary, typically resulting in
less specialization than desired by the programmer. In the following
source code:

make_static(x);
x = y;
if (d) x = x + 1; else x = x + 2;

M: .. x ../* no further uses of y */

variablesx and y are represented by temporariestx and ty ,
respectively:

make_static(tx);
tx = ty;
if (td) tx = tx + 1; else tx = tx + 2;

M: .. tx ..

Multiflow’s copy propagation and temporary renaming phase
transform this into:

make_static(tx);
if (td) ty = ty + 1; else ty = ty + 2;

M: .. ty ..

Since the source variable corresponding to temporaryty is not
annotated, themake_static annotation onx is effectively lost,
leading to less specialization in the program than expected by the
programmer. We combat this problem by attempting to maintain the
source-variable-to-temporary correspondence through Multiflow’s
many optimization phases, with varying degrees of success.

Induction-variable simplification can similarly cause loop-
induction variables to be replaced with temporaries that do not
obviously correspond to annotated (or any) source variables.
Because the specialization annotation on the individual variable has
been lost, the loop may not be unrolled as desired. To avoid this
problem, we currently disable this optimization at some cost in code
quality.

Variable expansion, which is performed by the Multiflow compiler
during loop unrolling, exacerbates the problem of lost annotations.
Since several temporaries are created and are modified
independently in the loop body, the source-variable-to-temporary
correspondence cannot be easily established. To get around this
problem, we currently disable (compile-time) loop unrolling in
some cases as well.

8.2 Preliminary Experiences with Applications
We have applied DyC to a few kernels previously used as
benchmarks for other dynamic compilation systems, and have
obtained speedups and overhead comparable to these systems. The
kernels are typically 100-200 lines of C code with dynamic regions
of size 10-25 lines. Our dynamic-compilation overhead ranged
between about 20 and 200 cycles per instruction generated, on the
Digital Alpha 21164.

The automation provided by our system also allowed us to
experiment with dynamically compiling a larger program, the
mipsi architectural simulator for the MIPS R3000 architecture.
The simulator consisted of approximately 9100 lines of C with a
dynamic region roughly 400 lines long. We were able to
dynamically compile the simulator by converting a few global
variables to local variables, and then adding just three lines of
annotations, very similar to those in Figure 1. Nearly all of DyC’s
functionality was exercised, including polyvariant specialization,
automatic dynamic-to-static promotion, and automatic caching.
This resulted in constant folding, constant branch removal, load
elimination, call elimination, and multi-way complete loop

* Variable expansion createsn copies of a variable in the body of a loop that
is unrolled by a factor ofn, one for each unrolled body, and combines the
values at the loop exits to produce the value that the original variable
would have had. Creatingn copies reduces the dependences in the loop
body, thereby enabling potentially better instruction schedules.

19

unrolling. The reachability analysis also proved useful in several
instances by preventing derived static variables defined under static
control from being dropped from the set of run-time constants at
static merges. (Tempo was recently used to dynamically specialize
an interpreter comparable in size tomipsi [Thibault et al. 98].) All
of these optimizations yielded a speedup ranging from 2 to 5,
depending on the input program, at an overhead of approximately
200 cycles per instruction generated.

8.3 Areas Requiring Improvement

As we applied DyC tomipsi and to the small benchmarks, we
encountered a number of weaknesses of our current design. These
weaknesses did not reduce specialization opportunities, but made
the system less automatic than we had hoped. Inadequate support
for global variables and partially static data structures may be
DyC’s most serious shortcoming. Most programs we wish to
dynamically compile require specialization for static or partially
static data structures, andmipsi used global variables as well. The
@annotation allows DyC to perform dereferences at specialization
time. If the annotated data structures are actually invariant, then this
approach works fine; otherwise, it is insufficient. For example, in
mipsi we had to manually copy global variables to annotated local
variables whenever their values may have changed. Unfortunately,
extending DyC to be capable of performing static stores would
require significant changes to our context-management strategy,
caching mechanism, and unit-linearization scheme. Also,
additional annotations (or interprocedural analysis) would be
required to position explicators for statically written memory
locations.

Additional analyses, for example, to automatically determine when
cache lookups and lazy branches could be safely eliminated, would
be useful. Such analyses would reduce the need to use the unsafe
caching and laziness policies, which we used extensively in the
small benchmarks to achieve the greatest possible performance
with the least overhead. At the other end of the ease-of-use
spectrum, an invalidation-based caching and dispatching
mechanism could also reduce the cost of safety. For dynamic
regions or specialized functions using an invalidation-based cache
policy (hypothetically, InstallOne, InstallAll, or
InstallAllUnchecked), one specialization would be installed as the
currently valid version and it would be invoked with direct jumps or
calls until invalidated. Following invalidation, the next execution of
the region or function would fall back on DyC’s existing caching
schemes (CacheOne, CacheAll, or CacheAllUnchecked,
respectively), and the version retrieved from the cache (or the newly
specialized version) would be installed as the current one. Such a
scheme could improve performance for applications in which it
could be easily determined when to invalidate the current
specialized version of each dynamic region.

9 Comparison To Related Work
Tempo [Consel & Noël 96], a compile-time and run-time
specialization system for C, is most similar to DyC. The two
systems differ chiefly in the following ways:

• DyC may produce multiple divisions and specializations of
program points, with the degree of division and specialization
varying from point to point. Tempo supports only function-
level polyvariant division and specialization, with no additional
division or specialization possible within the function, except
for some limited support for complete loop unrolling.

• DyC performs analysis over arbitrary, potentially unstructured
control-flow graphs. Tempo converts all instances of
unstructured code to structured form [Erosa & Hendren 94,
Consel et al. 96], which introduces a number of additional tests
and may also introduce loops.

• DyC allows dynamic-to-static promotions to occur anywhere
within dynamically compiled code. Tempo requires such
promotions to occur only at the entry point.

• DyC allows the programmer to specify policies to control
division, specialization, caching, and speculative
specialization. Tempo does not provide user controls; the client
program must perform its own caching of specialized code if
desired. A Java front-end to Tempo has been designed,
however, that provides automatic caching and policies to
govern replacement in the cache; users may also implement
their own policies [Volanschi et al. 97].

• DyC relies on the programmer to annotate memory references
as static. Tempo performs an automatic alias and side-effect
analysis to identify (partially) static data structures. Tempo’s
approach is more convenient for programmers and less error-
prone, but it still is not completely safe, relies on the
programmer to correctly describe aliasing relationships and
side-effects of parts of the program outside of the module being
specialized, and may benefit from explicit user annotations
wherever the analysis is overly conservative. However, a strong
benefit of Tempo’s approach is that static writes to memory are
possible.

• DyC supports separate compilation while still being able to
specialize call sites and callee functions for the values of their
static arguments, but performs no interprocedural analysis.
Tempo performs interprocedural side-effect and binding-time
analyses, can also specialize functions for the values of static
global variables, and can identify static return results of residual
functions. However, it requires the whole module being
specialized to be analyzed and compiled as a unit.

• Tempo also supports compile-time specialization.

In our view, DyC’s focus on intraprocedural specialization,
automatic caching and dispatching, control over specialization, and
low run-time overhead is fairly complementary to Tempo’s focus on
interprocedural specialization, support for partially static data
structures, and uniform support for compile-time and run-time
specialization.

Fabius [Leone & Lee 95, Leone & Lee 96] is another dynamic
compilation system based on partial evaluation. Fabius is more
limited than DyC or Tempo, working in the context of a first-order,
purely functional subset of ML and exploiting a syntactic form of
currying to drive dynamic compilation. Only polyvariant
specialization at the granularity of functions is supported. Given the
hints of curried function invocation, Fabius performs all dynamic
compilation optimizations automatically with no additional
annotations; by the same token, the trade-offs involved in the
dynamic compilation process are not user-controllable. Fabius does
little cross-dynamic-statement optimization other than register
allocation, since, unlike DyC, it does not explicitly construct an
explicit dynamic subgraph that can then be optimized.

Compared to our previous system [Auslander et al. 96], DyC has a
more flexible and expressive annotation language, support for
polyvariant division and better support for polyvariant
specialization, support for nested and overlapping dynamic regions,
support for demand-driven (lazy) specialization, support for
interprocedural specialization, a much more efficient strategy for
and optimizations of run-time specialization, and a more well-
developed approach to caching of specialized code.

Outside the realm of dynamic compilation, other partial evaluation
systems share characteristics with DyC. In particular, C-mix
[Andersen 92b, Andersen 94] is a (compile-time) offline partial-
evaluation system for C. Its analyses differ from DyC’s in the
following ways:

20

• C-mix provides program-point polyvariant specialization, but
only function-level polyvariant division.

• While DyC computes point-wise divisions, C-mix’s divisions
are uniform; that is, it assigns only one binding time, static or
dynamic, to each variable and does not permit variables to
change from static to dynamic or vice-versa. However, C-mix’s
analysis runs in near-linear time and is efficient enough to apply
interprocedurally, while DyC’s intraprocedural analysis has
exponential (worst-case) complexity.

• C-mix copes directly with unstructured code, but it appears to
lack reachability analysis to identify static merges [Andersen
94].

• C-mix handles partially static structures by splitting the
structures into separate variables.

• C-mix includes support for automatic interprocedural call
graph, alias, and side-effect analyses.

• C-mix also provides annotations for controlling code growth by
limiting specialization with respect to certain variables and for
overcoming the limitations of its conservative analysis;
however, its annotations provide less control than DyC’s. C-
mix always polyvariantly specializes control-flow merges, and
provides the residual annotation to make a variable
dynamic in order to prevent explosive code growth due to
multi-way loop unrolling. In contrast, DyC provides control
over code growth by permitting variables to be specialized
monovariantly or by specializing lazily on demand. C-mix’s
pure annotation corresponds toconstant , and unfold
fills the role of theinline pragma provided by most modern
optimizing compilers.

Andersen’sdynamic basic blocks(DBBs) [Andersen 92a] serve the
same purpose as specialization units, to reduce overhead in the
specializer; however, their boundaries are determined entirely
differently. DyC’s specialization units differ from C-mix’s dynamic
basic blocks in the following ways:

• DBBs are bounded by (and may not contain) dynamic control
flow. On the other hand, DyC’s units are designed to include
dynamic control flow (via linearization).

• C-mix does not automatically insert specialization points (and
thus begin new DBBs) at specializable merge points in order to
enable code sharing. Unit boundaries are required wherever a
new variant of the code must be begun, at both dynamic-to-
static promotions and specializable merge points. Unit
boundaries are also inserted where cache lookups could enable
sharing (i.e., at eviction points).

• DBBs may overlap. Units currently cannot overlap, though that
restriction could be relaxed, as described in section 7.2.

Schism’s filters permit choices about whether to unfold or
residualize a function and which arguments to generalize (i.e.,
make dynamic), given binding times for the function’s parameters
[Consel 93]. Because filters are executed by the binding-time
analysis, only binding-time information can be used to make
decisions. DyC’s conditional specialization can use the results of
arbitrary static or dynamic expressions to control all aspects of run-
time specialization.

Filters can be used to prevent unbounded unfolding and unbounded
specialization. Both offline partial evaluators, such as Schism, and
online specializers, such as Fuse [Weise et al. 91], look for dynamic
conditionals as a signal that unbounded unfolding or specialization
could occur and specialization should be stopped. Run-time
specializers have an additional option, which is to temporarily
suspend specialization when dynamic conditionals are found in
potential cycles and insert lazy callbacks to the specializer;
currently, only DyC exploits this option.

`C extends the ANSI C language to support dynamic code
generation in an imperative rather than annotation-based style
[Engler et al. 96]. The programmer must specify code to be
generated at run time, substitute run-time values and combine code
fragments (called tick expressions), perform optimizations, invoke
the run-time compiler, manage code reuse and code-space
reclamation, and ensure correctness. In return for this programming
burden, `C would seem to offer greater expressiveness than a
declarative, annotation-based system. However, DyC’s ability to
perform arbitrary and conditional polyvariant division and
specialization enables it to perform a wide range of optimizations
with very little user intervention, and DyC offers capabilities not
available in `C. For instance, `C cannot (multi-way) unroll loops
with dynamic exit tests, because jumps to labels in other tick
expressions are not permitted. (`C recently added limited support
for automatic single-way complete loop unrolling within a tick
expression [Poletto et al. 97].) Also, tick expressions cannot contain
other tick expressions, so nested and overlapping dynamic regions
cannot be supported. Both of these weaknesses would appear to
prevent `C from handling the simple interpreter example in Figure
1. `C can support run-time compiled functions with a dynamically
determined number of arguments, but it may be feasible to achieve
at least some of this behavior in DyC by specializing a procedure
based on the length and values in itsvarargs pseudo-argument.
One advantage that `C does have is that the programmer can easily
implement a variety of dispatching mechanisms, which may be
important in exploiting certain opportunities for dynamic
compilation, such as data decompression [Keppel 96].

A declarative system such as DyC allows better static optimization
of dynamic code than an imperative system such as `C, because the
control flow within a dynamic region is more easily determined and
conveyed to the rest of the optimizing compiler. Optimization
across tick expressions is as hard as interprocedural optimization
across calls through unknown function pointers [Poletto et al. 97].*

Finally, programs written in declarative systems can be easier to
debug: since (most of) the annotations are semantics-preserving,
programs can simply be compiled ignoring them. Debugging the
use of unsafe annotations is still challenging, however.

10 Conclusions
We have presented the design of DyC, an annotation-based system
for performing dynamic compilation that couples a flexible and
systematic partial-evaluation-based model of program
transformation with user control of key policy decisions. Our
annotations’ design resulted from a search for a small set of flexible
primitive directives to govern dynamic compilation, suitable for use
by both human programmers and tools (such as a semi-automatic
dynamic-compilation front-end). With the exception of support for
static data structures, we believe that ourmake_static
annotation provides the flexibility we require in a concise, elegant
manner. By adding policy annotations, users can gain fine control
over the dynamic compilation process when needed. Our support
for arbitrary program-point-specific polyvariant division and
specialization is a key component of DyC’s flexibility, enabling, for
instance, multi-way loop unrolling and conditional specialization,
as illustrated in the interpreter example. We exploit the unusual
capabilities of run-time specialization in the forms of arbitrary
dynamic-to-static promotion and demand-driven specialization.

We have implemented the core functionality of the system in the
context of an optimizing compiler. Our initial experience in using
DyC has been promising− DyC has obtained good speedups (over
statically compiled code) with low run-time overhead, and required

* If run-time inlining through function pointers were available in DyC,
analysis across those calls would be of comparable difficulty.

21

little modification of source programs. The majority of our system’s
functionality has been used in the single large program with which
we have experience. Once the full implementation is complete, we
plan to focus on applying dynamic compilation to other sizeable,
real application programs. We will use these applications to further
evaluate DyC’s design and implementation. We also plan to extend
DyC with additional run-time optimizations, such as run-time
inlining and register allocation (via register actions).

Acknowledgments

We are grateful to Charles Consel for his help in understanding
Tempo and some of the related issues in partial evaluation. We also
thank the anonymous referees for finding several errors and
suggesting other improvements to the paper, David Grove for
feedback on earlier drafts of this paper, Charles Garrett for his
implementation work on our dynamic compiler, John O’Donnell
and Tryggve Fossum for the source for the Alpha AXP version of
the Multiflow compiler, and Ben Cutler, Michael Adler, and Geoff
Lowney for technical advice in altering it. This work is supported
by ONR contract N00014-96-1-0402, ARPA contract N00014-94-
1-1136, NSF Young Investigator Award CCR-9457767, and an NSF
Graduate Research Fellowship.

References
[Andersen 92a] L.O. Andersen. C Program Specialization. Technical Re-

port 92/14, DIKU, University of Copenhagen, Denmark, May 1992.
[Andersen 92b] L.O. Andersen. Self-Applicable C Program Specialization.

In Proceedings of the Workshop on Partial Evaluation and Semantics-
Based Program Manipulation ’92, pages 54–61, June 1992. Published
as Yale University Technical Report YALEU/DCS/RR-909.

[Andersen 94] L.O. Andersen.Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of Copen-
hagen, Denmark, 1994. Published as DIKU Research Report 94/19.

[Auslander et al. 96] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, Effective Dynamic Compilation.SIGPLAN No-
tices, pages 149–159, May 1996. In Proceedings of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and
Implementation.

[Consel & Noël 96] C. Consel and F. Noël. A General Approach for Run-
Time Specialization and its Application to C. InConference Record of
POPL ’96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 145–156, January 1996.

[Consel 93] C. Consel. A Tour of Schism: A Partial Evaluation System for
Higher-Order Applicative Languages. InProceedings of the Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipula-
tion ’93, pages 145–154, 1993.

[Consel et al. 96] C. Consel, L. Hornof, F. Noël, J. Noyé, and N. Volanschi.
A Uniform Approach for Compile-Time and Run-Time Specializa-
tion. In O. Danvy, R. Glück, and P. Thiemann, editors,Partial Evalu-
ation. Dagstuhl Castle, Germany,February 1996, LNCS 1110, pages
54–72. Springer-Verlag, 1996.

[Cytron et al. 89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An Efficient Method of Computing Static Single As-
signment Form. InConference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, pages 25–35,
January 1989.

[Engler & Proebsting 94] D. R. Engler and T. A. Proebsting. DCG: An Ef-
ficient, Retargetable Dynamic Code Generator. InProceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 263–273, Octo-
ber 1994.

[Engler et al. 96] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A
Language for High-Level, Efficient, and Machine-Independent Dy-
namic Code Generation. InConference Record of POPL ’96: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 131–144, January 1996.

[Erosa & Hendren 94] A.M. Erosa and L.J. Hendren. Taming Control Flow:
A Structured Approach to Eliminating goto Statements. InProceed-
ings of 1994 IEEE International Conference on Computer Languages,
pages 229–240, May 1994.

[Ferrante et al. 87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Pro-

gram Dependence Graph and its Use in Optimization.ACM Transac-
tions on Programming Languages and Systems, 9(3):319–349, July
1987.

[Goldberg & Robson 83] A. Goldberg and D. Robson.Smalltalk-80: The
Language and its Implementation. Addision-Wesley, 1983.

[Jones et al. 93] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evalua-
tion and Automatic Program Generation. Prentice Hall, 1993.

[Keppel 96] David Keppel.Runtime Code Generation. PhD thesis, Univer-
sity of Washington, 1996.

[Kernighan & Ritchie 88] B. W. Kernighan and D. M. Ritchie.The C Pro-
gramming Language (second edition). Prentice Hall, 1988.

[Leone & Lee 95] M. Leone and P. Lee. Optimizing ML with Run-Time
Code Generation. Technical report CMU-CS-95-205, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
December 1995.

[Leone & Lee 96] M. Leone and P. Lee. Optimizing ML with Run-Time
Code Generation.SIGPLAN Notices, pages 137–148, May 1996. In
Proceedings of the ACM SIGPLAN ’96 Conference on Programming
Language Design and Implementation.

[Meyer 91] U. Meyer. Techniques for Partial Evaluation of Imperative Lan-
guages. InProceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation ’91, pages 94–105, June
1991. Published as SIGPLAN Notices 26(9).

[Poletto et al. 97] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A Sys-
tem for Fast, Flexible, and High-level Dynamic Code Generation.
SIGPLAN Notices, pages 109–121, June 1997. In Proceedings of the
ACM SIGPLAN ’97 Conference on Programming Language Design
and Implementation.

[Sirer 93] Emin Gun Sirer. Measuring Limits of Fine-Grain Parallelism.
Princeton University Senior Project, June 1993.

[Steensgaard 96] B. Steensgaard. Points-to Analysis in Almost Linear
Time. In Conference Record of POPL ’96: 23rd ACM SIGPLAN-SI-
GACT Symposium on Principles of Programming Languages, pages
32–41, January 1996.

[Thibault et al. 98] Scott Thibault, Charles Consel, and Gilles Muller. Safe
and Efficient Active Network Programming. Technical Report Re-
search Report 1170, IRISA, January 1998.

[Volanschi et al. 97] E. N. Volanschi, C. Consel, G. Muller, and C. Cowan.
Declarative specialization of object-oriented programs.SIGPLAN No-
tices, 32(10):286–300, October 1997.

[Weise et al. 91] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Auto-
matic Online Partial Evaluation. In J. Hughes, editor,Record of the
1991 Conference on Functional Programming Languages and Com-
puter Architecture, LNCS 523, pages 165–191, Cambridge, MA,
1991. Springer-Verlag.

[Wilson & Lam 95] R. P. Wilson and M. S. Lam. Efficient Context-Sensi-
tive Pointer Analysis for C Programs.SIGPLAN Notices, pages 1–12,
June 1995. In Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation.

22

Appendix A Grammar of Annotations
statement:

... /* same as in regular C */
make_static (static-var-list) ;
make_dynamic (var-list) ;
make_static (static-var-list) compound-statement

static-var-list:
static-var
static-var , static-var-list

static-var:
identifier policiesopt

policies:
: policy-list

policy-list:
policy
policy , policy-list

policy:
division-policy
specialization-policy
promotion-policy
merge-caching-policy
promotion-caching-policy
laziness-policy

division-policy:
poly_divide
mono_divide

specialization-policy:
poly_specialize
mono_specialize

promotion-policy:
auto_promote
manual_promote

merge-caching-policy:
m_cache_all_unchecked
m_cache_all
m_cache_one
m_cache_one_unchecked

promotion-caching-policy:
p_cache_none_unchecked
p_cache_all
p_cache_one
p_cache_one_unchecked

laziness-policy:
lazy
specialize_lazy
loop_specialize_lazy
eager

var-list:
identifier
identifier , var-list

external-definition:
... /* same as in regular C */
specialize-definition

specialize-definition:
constant opt specialize identifier (var-list)

on specialize-list ;

specialize-list:
(static-var-list)
(static-var-list) , specialize-list

expression:
... /* same as in regular C */
@ * expression

primary:
... /* same as in regular C */
@ identifier
primary @(expression-listopt)
primary @[expression]
lvalue @. identifier
primary @-> identifier

