
E�cient Algorithms for Bidirectional Debugging

Bob Boothe

Computer Science Dept.

University of Southern Maine

Portland, ME 04104-9300

boothe@cs.usm.maine.edu

Abstract

This paper discusses our research into algorithms for cre-
ating an e�cient bidirectional debugger in which all tradi-
tional forward movement commands can be performed with
equal ease in the reverse direction. We expect that adding
these backwards movement capabilities to a debugger will
greatly increase its e�cacy as a programming tool.

The e�ciency of our methods arises from our use of
event counters that are embedded into the program being
debugged. These counters are used to precisely identify the
desired target event on the y as the target program exe-
cutes. This is in contrast to traditional debuggers that may
trap back to the debugger many times for some movements.
For reverse movements we re-execute the program (possibly
using two passes) to identify and stop at the desired ear-
lier point. Our counter based techniques are essential for
these reverse movements because they allow us to e�ciently
execute through the millions of events encountered during
re-execution.

Two other important components of this debugger are
its I/O logging and checkpointing. We log and later re-
play the results of system calls to ensure deterministic re-
execution, and we use checkpointing to bound the amount of
re-execution used for reverse movements. Short movements
generally appear instantaneous, and the time for longer
movements is usually bounded within a small constant fac-
tor of the temporal distance moved back.

1 Introduction

The purpose of a program debugger is to assist the user in
locating programming errors. Standard capabilities allow
stopping a program in mid-execution, deliberately and pre-
cisely moving along its execution path, and examining the
state of the program, such as its variables and stack. A tra-
ditional forward debugger, such as dbx or gdb can move only
in the direction of forward execution. The user speci�es an
amount to move forward, usually to the next statement or
to the next breakpoint, and the debugger executes forward
until it reaches that point. Forward movement is natural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006… $5.00.

and well understood, however it is often exactly the oppo-
site of what would be most convenient for a user trying to
track down the cause of an error.

In this paper we discuss our research into algorithms
for creating an e�cient bidirectional debugger in which all
traditional forward movement commands can be performed
with equal ease in the reverse direction. We have named our
prototype bidirectional debugger bdb.

Adding these backwards movement capabilities to a de-
bugger will greatly increase its e�cacy as a programming
tool. Bugs become evident to the user when erroneous out-
put is produced or when an error detection routine notices
something wrong. Rather than start at the beginning of
the program's execution, far removed from the location of
the bug, the programmer can now start at the point where
the bug manifests itself. From this point they can directly
chase down in reverse how the program got there and where
incorrect values originated.

In contrast, current debugging practice often involves a
frustrating process of trying to \sneak up on a bug". In
a forward debugger, if we wish to arrive at a point just
prior to where our bug occurs, we have no choice but to
start at the beginning of the program. In stepping through
the program, we often must guess if a certain function is
worth examining or if we should step over it. If we set
a breakpoint we often must guess how many breakpoints
to continue past until we will arrive at the one of interest.
If we ever make a single misjudgment and step past the
bug, we must start over at the beginning of the program
and try again. For bugs that occur deep into the program,
we must step boldly forward or risk spending an eternity
inching our way through the program. However the more
boldly we step forward, the more we risk overstepping the
bug. With a bidirectional debugger it will become trivial
to undo a \stepped past the bug" mistake. Moreover, with
an e�cient bidirectional debugger it will be far easier and
faster to simply start at the manifestation of the bug and
work one's way backwards.

Bdb works with the C and C++ languages running on
Digital/Compaq Alpha based UNIX workstations, but the
techniques developed in this research are widely applicable.

1.1 Brief Background & Overview

There have been two general approaches for building bidirec-
tional debuggers: \history logging" and \re-execution". The
history logging approach creates a log of the values taken
on by every variable as the program executes. Its problems
are: (1) the rapid growth of the history log and (2) the

299

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00.

overhead of collecting and saving so much information. The
re-execution approach instead transparently re-executes the
program to the desired earlier point. Its di�culties are: (1)
locating the desired earlier point while re-executing forward,
(2) the overhead involved in re-executing, and (3) ensuring
deterministic re-execution. We will discuss the related re-
search in more detail at the end of this paper after we have
explained our own work.

In our research we have used the re-execution approach.
We address issue 1 (locating earlier points) by embedding
counters into the program being debugged, and stopping
only when the desired counts are reached. We address is-
sue 2 (overhead of re-execution) by using true re-execution
rather than emulation. We address it by the low overhead of
our embedded counters, and we address it by using periodic
checkpoints to limit the extent of re-execution to a limited
portion of the total execution. We address issues 3 (deter-
ministic re-execution) by capturing and logging the original
return values of system calls and then later replaying those
values during re-execution.

1.2 E�ciency

The movement algorithms that we describe in this paper
may not at �rst glance appear to be particularly e�cient;
we insert voluminous calls to counter routines, we re-execute
the program even to move short distances backwards, and
in some cases we will even perform multiple re-execution
passes. However, the counter calls are simple and have only
moderate overhead, and we use checkpointing to limit the
amount of re-execution performed. In the �nal analysis of
the whole system, all short forward or reverse movements
will appear instantaneous to a human operator, and longer
movements going far into the future or far back into the past
will complete within small constant factors of the temporal
distance moved. While the computer is doing a lot of work
on the user's behalf, on the human time scale this debugger
appears to works naturally and quite e�ciently.

1.3 Shortcomings of Trap Based Debugging

A traditional debugger, such as gdb, dynamically inserts
trap instructions at anticipated stopping points. For exam-
ple, for a \next" command it inserts a trap at the start of
the next statement. For a \breakpoint" it inserts a trap at
the target statement, and for a \�nish" command it inserts a
trap at the return address of the current function call. The
debugger then executes the program until it hits the trap
statement.

This generally works well but can su�er serious perfor-
mance degradation in cases where the debugger performs a
large number of trap/resume cycles before it arrives at the
desired point. An obvious example occurs when the user
issues a counted command such as \continue 10000". This
might be used, for example, to get to the last iteration of
a loop. In this case the debugger will go through 10000
trap/resume cycles. Gdb incurs an overhead of approxi-
mately one million processor cycles for each trap/resume
cycle due to the cost of context switching and the system
calls used to evaluate the state of the program after each
trap.

A less obvious situation occurs when the user tries to
\next" over a recursive call. The statement that the trap
is placed at may be encountered thousands or even millions
of times before the recursive call is completed, and each of
these incurs a trap/resume cycle. A similar situation occurs
when trying to �nish out of a non top-level recursive call.

step_cntr()
{
step_cnt++;
if (step_cnt == sc_stop_val)

Trap to the debugger;
}

func_entry()
{
call_depth++;

}

func_exit()
{
call_depth--;

}

Figure 1: The basic step counter, function entry, and func-
tion exit routines.

We are also aware of other performance anomalies and
bugs in trapped based debuggers, but these do not appear
to be as universal as the aforementioned problems. All of
these problems have been eliminated by the new techniques
used in bdb.

2 Counter Based Movements

We have abandoned the traditional debugger implementa-
tion technique of inserting trap instructions at potential
stopping points in the program being debugged. In its place
we have developed techniques which use a collection of em-
bedded counter routines to track the progress of the program
and stop it precisely at the �nal target location. While these
embedded counters add some overhead, they allow us to ef-
�ciently and precisely move backwards to earlier points in
the execution by re-executing the program and stopping at
earlier counter values.

We have implemented the forward movements: \step",
\continue", \next", and \�nish", and the analogous back-
wards movements which we have named: \bstep", \bcon-
tinue", \previous", and \before". All of these commands
can be given a count argument to go to the nth occurrence.
We have also implemented \until" and \buntil" movements
to �nd where variables change, and we provide a general
undo movement.

Our basic counters are a \step counter" and a \call depth
counter". When the program is compiled for debugging, we
insert calls to the step counter at the traditional debugger
stepping points (each line starting a new statement). We
also insert at each function entry and exit point a call to
increment or decrement the call depth counter. Pseudo code
for these counters is shown in Figure 1. (The actual code is
the same except that the function names are pre�xed with
\bdb " to reduce the possibility of name conicts, and the
variables are actually members of a global structure.)

The step counter provides an underlying time line for
measuring the execution of the program being debugged. It
is used by all of the movement commands. The call depth
counter is used by the more complex movements such as �n-
ishing the current function invocation. Inserting these calls
at compile time establishes call sites for calls to the counter
routines. For many of the movements we use specialized
counter routines. These specialized counters are inserted dy-

300

namically either by replacing the call at an individual call
site or by changing an indirect jump to redirect an entire
class of counter calls.

2.1 Step & Bstep

The step movement is the simplest debugger movement. It
steps to the next source level statement in the program,
stepping into function calls. Likewise bstep steps to the
preceding statement, possibly stepping back into a preceding
function call.

These movements are implemented simply and e�ciently
using the step counter. This counter increments a global
step count and compares it to a stopping value. When the
stopping value is reached the counter routine executes a trap
which transfers control back to the debugger. This is e�-
cient even for huge values of n because the user program
only traps back to the debugger once. For typical user pro-
grams running on a 600 MHz processor, we see about 20
million steps per second, with an overhead of less than a
factor 2. (We will provide more comprehensive performance
measurements in Section 4.) In contrast, a traditional de-
bugger bogs down unbearably for large counts because it
traps at each step as described in Section 1.2.

We use 64-bit counters, which are vastly more than ad-
equate for any conceivable program execution today. How-
ever if computer performance continues to improve at its
current exponential rate, in 30 years we will need to con-
sider the possibility of counters rolling over or consider using
larger counters.

The real bene�t of the step counter, however, is for step-
ping backwards. Suppose the user has run their program for
1 second and stopped where the step count is 20 million, to
bstep one step we set the stop value to 1 less than the cur-
rent count and re-execute the program from the beginning.
With an e�cient step counter this takes only 1 second since
it only traps to the debugger when it is done. (In Section 5
we will discuss our use of checkpointing to bound the extent
of re-execution proportional to the distance moved back.)

The points at which user issued movement commands
will stop when using bdb are the set of step points in the
program. This has a side bene�t of providing a simple mech-
anism for controlling what body of code is of interest to the
user. Most traditional debuggers have the often undesirable
behavior of stepping into library routines. In most cases, es-
pecially for students, this is annoying and frustrating. This
doesn't happen for bdb because the library functions were
not compiled for debugging and thus do not contain any calls
to bdb counter routines. Library routines are thus stepped
over as if they were basic atomic operations. A sophisticated
user, working on a large software project, might not want
the debugger to step into certain trusted software modules
(such as the constructor calls and other member functions
of a class). They can achieve this by simply not compiling
those �les for debugging.

2.2 Continue & Bcontinue

\Continue n" means run forward until we reach the n
th

statement with a breakpoint. Analogously \bcontinue n"
to the user means run backwards until we reach the n

th

previous statement with a breakpoint. Of course we can't
really run backwards, but instead we locate the desired point
while re-executing forward.

Figure 2 shows a simple diagram that we will use to help
in explaining many of our movement algorithms. The �g-
ure shows an execution time line moving from left to right.

contbcont

Figure 2: Execution time line showing \continuing" either
forward or backward to the closest breakpoint.

brkpt_cntr()
{
step_cnt++;
brkpt_cnt++;
if (brkpt_cnt == bc_stop_val

|| step_cnt == sc_stop_val)
Trap to the debugger;

}

Figure 3: The breakpoint counter function.

The tick marks represent the basic step points. The circle
represents the current position of the debugger along the
execution path, and the X's represent steps points at which
breakpoints occur. Figure 2 thus shows what will happen if
the user issues either a continue or bcontinue command: the
debugger will either move forward or backward to the next
breakpoint. This is an abstract view of program execution
that simply focuses on the execution time line. Language
constructs such as loops would just appear as long sequence
of step points. The multiple breakpoints shown on this di-
agram might in fact represent a single breakpoint placed in
the program that is encountered repeatedly for each itera-
tion of a loop.

The set of step point locations in a program occur at
�xed locations determined at compile time, but breakpoints
are inserted and removed at run time. Where a traditional
debugger inserts a trap instruction, we insert a call to the
breakpoint counter instead. This call replaces the normal
call to the step counter, and thus the breakpoint counter
replicates the work of the displaced software counter call
as well as incrementing and testing the breakpoint count.
This counter routine is shown in Figure 3. The performance
advantage of using counter routines over the traditional trap
instructions is crucial during re-execution when we may have
to proceed past thousands of breakpoint occurrences before
we arrive at the one of interest to the user.

Since breakpoints are inserted and deleted throughout
a debugging session, we don't have a single reliable time
line like we do with the step counter. Any change to the
set of breakpoints invalidates our accumulated breakpoint
counts. This doesn't impact our ability to perform forward
movements because we just care about the relative change in
the breakpoint count when executing forward. However for
backwards movements, when the set of breakpoints changes,
our task becomes harder. Our implementation uses two re-
execution passes. The �rst pass establishes a valid break-
point count up to the current position. The second pass then
executes to the appropriate breakpoint count for the desired
number of breakpoints moved back. Once breakpoint counts
have been re-established in this fashion, future bcontinue's
require just one pass.

For most of our backwards movements there will be sit-
uations in which two passes are required. Although we have
also investigated possible one pass algorithms for most of
these movements, when the overall performance is consid-

301

Figure 4: Sequence of points visited by next. Shading rep-
resents the base depth level below which stepping points
would not be stopped at by next.

ered in Section 4 we will conclude that the two pass al-
gorithms are preferable. Furthermore, when checkpoint is
added in Section 5, the time spent on the second passes will
be mostly eliminated anyways.

2.3 Next

Next and previous are the most challenging and interest-
ing of the movements to implement. They have their own
specialized counter routines for counting occurrences of the
desired event. The next counter, for example, counts the
points that would be stopped at by a series of next com-
mands. These specialized counters replace the standard step
counter. Since the calls to the step counters throughout the
program are in fact indirect calls, we can e�ciently change
an entire class of counter calls by modifying just a single
jump instruction.

Next moves to the next source line; it skips over function
calls, and it steps out of functions when they return. To
implement this we need a method to know when we step
into and return from calls so that we can suspend counting
of next points appropriately. The call depth counters on
function entry and exit introduced at the start of Section 2
were invented for this purpose. The call depth is tracked
for all movement commands so that we will have its correct
value when it is needed for commands such as next.

The algorithm used for counting next points will be ex-
plained with the aid of Figure 4. In this �gure, a change
in level down represents a call to a function and thus an
increase in call depth, and a change in level up represents a
function return and a decrease in call depth. Figure 4 thus
shows what will happen as the user issues a series of next
commands or a counted next command.

To perform a next operation, the debugger starts by
setting a variable named \base depth" to the current call
depth. The base depth is represented by shading in the
�gure. Step points occuring below the base depth are not
counted as next points, and thus next will correctly skip over
function calls. When a next operation returns up from the
base depth, as shown in the diagram by the 5th arrow, the
base depth is raised so that future counting will reect the
new base depth of further next operations.

The pseudocode for the counter routines used by next are
shown in Figure 5. As described so far, the testing of the step
counter doesn't make sense because we are looking for next
points rather than step points. However with checkpointing
(described in Section 5) the step counter will be used by the
debugger to regain control at checkpoint boundaries. There
is also a second version of the next counter routine (not
shown) that increments and tests the breakpoint counter
in addition to what is shown here. This second version is
called from locations containing breakpoints, and it allows
stopping a next movement prematurely when it encounters

next_cntr()
{
step_cnt++;
if (call_depth == base_depth)
next_cnt++

if (next_cnt == nc_stop_val
|| step_cnt == sc_stop_val)

Trap to the debugger;
}

next_func_exit()
{
call_depth--;
if (call_depth < base_depth)

base_depth--;
}

Figure 5: Specialized versions of counter routines for next.

1 2 3

4 5 6

8 9 1312

1110

15 16

18

17

19

20

147

step cnt:

Figure 6: Sequence of points visited by previous.

a breakpoint before reaching its target destination.

2.4 Previous

Previous is our backwards analogue of next. It moves to
the previous line; it steps over function calls and back up
and out of a function entry. This is illustrated in Figure 6.
Next and previous are not actually inverses. For example
in Figure 6, a next from the current point would advance
to step 20, but a previous from step 20 would skip over the
preceding function call all the way back to step 11.

Although previous is conceptually similar to next in that
it doesn't step below the base depth and it steps up out of
functions (just in reverse), it is more di�cult to implement
because we can't really execute in reverse, but instead we
must �gure out the correct stopping point while re-executing
forward! In designing this algorithm, we considered several
di�erent approaches. We present here the algorithm that
was chosen as the best compromise based on speed, space,
and the expected common cases for usage.

We use a two pass algorithm which we explain using Fig-
ure 7. The �rst pass gathers information. It starts by count-
ing every step point as a potential previous point. When it
steps into a function call (while moving forward), it contin-
ues counting previous points since the function just stepped
into might turnout to be a function that would be stepped
out of in reverse by previous. When we return from a func-
tion call (while moving forward), we learn that the function
just counted would thus not have been visited by a previ-
ous command since previous would never step down into
a function in reverse. This situation is shown in Figure 7:
(while moving forward) the program steps into a function
when going from step 6 to step 7, and it subsequently steps

302

top1 2 3

4 5 6

8 9 43

21

6 757

prev cnt:

1 2 3

4 5 6

8 9 1312

1110

15 16

18

17

19

20

147

step cnt:

step cnt = 10
call depth = 2

Figure 7: Previous counts calculated on �rst pass.

prev_cntr()
{
step_cnt++;
if (call_depth <= base_depth)
prev_cnt++

if (prev_cnt == pc_stop_val
|| step_cnt == sc_stop_val)

Trap to the debugger;
}

prev_func_exit()
{
call_depth--;
if (call_depth < base_depth)
{
prev_top_sc = step_cnt + 1;
prev_top_depth = call_depth;
prev_cnt = 0;

}
}

Figure 8: Specialized counter routines for previous.

out of that function when going from step 9 to step 10. At
this point, any previous points that were counted in that
function are invalid (those at step points 7, 8, and 9 in the
example). In our chosen algorithm we simply abandon the
current count and start afresh.

We have labeled the new starting point as \top". This
will be the top of the upcoming counted sequence of de-
scending steps. Our counter routines save away the values
of the step count and the call depth at this point. These will
be used in the second pass to help navigate to the desired
stopping point.

As we continue counting, if we step into functions below
the base depth of the starting position of this command (as
shown by shading in Figure 7), we stop counting previous
points until we return up to the base depth. We do not have
to reset \top" in this case since we have not miscounted any
previous points.

After the �rst pass the debugger considers the gathered
information. In the example, we are at the 7th previous

point subsequent to \top". If the user had asked to previous
from 1 to 6 previous points, we proceed to the second pass
and re-execute to that point. In the unlikely event that
the user asked to previous further back than the top point,
the debugger performs additional \�rst" passes gathering
previous information prior to the top point.

The counter routines for the �rst pass are shown in Fig-
ure 8. The second pass uses the normal step counter to reach
the top point, and from there it uses the previous counter

call depth
1

2

3

4

finish

finish 2

finish 3

Figure 9: Destinations of �nish commands.

to reach the desired previous point.
We chose this algorithm because it works well for the ex-

pected common case usage of previous. A typical user will ei-
ther move to the previous statement, or possibly use a small
count value to move to somewhere that they could predict
the destination. This would likely be inside the same func-
tion invocation or just backing out of it. Since in two passes
we can reach any previous point within the same function
invocation or arbitrarily far back along a descending chain
of calls, we handle the common cases in two passes. (There
is one subtle situation discussed in Section 3 that takes 3
passes to reach the calling function.)

We exploit the fact that a typical user will issue a series of
previous commands. Repeated commands take only 1 pass
because the relevant counters have already been gathered
and saved for future use. Even in the case where we previous
back to the top point, a subsequent previous will still take
only 1 pass because for that case we gather new previous
counts during re-execution to the top point in preparation
for the possible repeated command.

Just as a next movement will be interrupted by the �rst
intervening breakpoint, so should a previous movement. We
wish to preserve the user's illusion that the debugger is exe-
cuting backwards, so this breakpoint would in fact occur
chronologically after we reach the desired previous point
while re-executing forward. Bdb handles this situation by
noting beforehand how many preceding breakpoints are ex-
pected, and if they have not all been passed by the time we
reach the target point, bdb advances the program forward
until it hits the last of these breakpoints. Just as for next,
there are specialized versions of the previous counters that
are used at breakpoint locations.

2.5 Finish & Before

The �nish command continues until it �nishes execution of
the current function. A �nish n command �nishes n levels
of nested calls. This is shown in Figure 9.

Finish can be implemented straightforwardly by testing
the call depth. The debugger installs the �nish counter rou-
tine in place of the step counter in the child, sets the stop-
ping point to the desired call depth, and resumes the child.
At each step point the �nish counter checks to see if the call
depth has reached the desired depth and traps back to the
debugger when it is reached.

Before is once again similar, but more di�cult than its
analogous forward movement because we must identify the
correct stopping point while executing forward. Figure 10
shows the destinations of example before commands.

In our chosen implementation we again use a two pass
algorithm. The �rst pass determines the step count cor-
responding to the desired before point. During the �rst re-
execution pass the before counter saves the step count when-

303

call depth
1

2

3

4

before

before 2

before 3

Figure 10: Destinations of before commands.

ever the current call depth is equal to the desired depth of
the before command. The last such value saved corresponds
to the desired destination. The second pass now simply re-
executes to the step count determined by the �rst pass.

This algorithm is capable of moving an arbitrary num-
ber of levels back up the call stack using only two passes.
In practice we expect a user will often incrementally before

back one level at a time, and we optimize for this case by
identifying the subsequent before point during the second
pass. This then eliminates the need of the �rst pass for each
repeated before command.

2.6 Until & Buntil

A valuable feature of a debugger is the ability to run until
a speci�ed variable reaches a desired value. Unfortunately
this has been unbearably slow in traditional debuggers (a
slowdown factor of 85,000 has been reported for dbx[13]).
Wahbe, Lucco, and Graham[13] demonstrated an e�cient
technique for implementing \data breakpoints" using code
augmentation to monitor memory updates. They inserted
code at all memory write instructions to check accessed ad-
dresses against a two-level segmented bitmap representing
the collection of monitored addresses.

We have developed a simpler, although not as general
implementation, by replacing our step counters with a test
to monitor the value at a single memory location. We thus
only test for changes in a data value at our stepping points.
This is adequate for �nding the exact statement at which a
data value is changed, but it doen't identify the assembly
language instruction.

We provide movement commands of the form \until
x==10" to continue until a speci�ed variable reaches a spec-
i�ed value, and commands of the form \until x" to continue
until a speci�ed variable changes.

Buntil is our analogous backwards movement. This may
be the most valuable movement of this debugger. With a
single command the user can �nd where a variable took on
an observed erroneous value. Such errors can otherwise be
extremely di�cult to �nd if they result from an apparently
unrelated operation such as a pointer problem or overrun-
ning an array's bounds.

At every step point our counter routines monitor the
value at the address of the speci�ed variable and test to see
if it matches the desired condition. To perform a forward
until we stop at the �rst match. To perform a buntil we
use the �rst pass to record the last step point at which the
condition was satis�ed (as we re-execute forward), and then
a second pass to re-execute to that point.

Our implementation does have one important advantage
over that ofWahbe, Lucco, and Graham's in that ours is able

call depth

1

2

1 2 3

4 5 6 9

10 11

87

step cnt:

x = func1() + func2();

func1() func2()

Figure 11: Subtlety when climbing out of a function.

to stop at a speci�ed value for a variable, whereas theirs is
only able to detect the modi�cation of a variable.

2.7 Undo

Undoing movements in bdb is easy using the underlying time
line provided by the step counter. On the undo stack we save
the initial step count before performing each movement com-
mand. To undo a movement, we simply retrieve the original
step count from the undo stack and than either execute for-
ward to that point, or re-execute to get back to it.

3 Implementation Subtleties

There are a number of subtleties in getting the movements
precisely correct. Figure 11 shows one example. The state-
ment \x = func1()+func2();" occurs at step 3 in the dia-
gram. The execution of this statement is spread out over
the region between step 3 and step 10: the �rst call occurs
at step 3, the saving of its return value and the call to func2
occurs at the spike between the steps 6 and 7, and the �-
nal sum and assignment to x occurs just prior to step 10.
The spike is drawn to indicate a possible phantom stopping
point.

The question arises should a forward movement leaving
func1 (or a backwards movement leaving func2) stop at
the spike? For instance, should a step from point 6 stop at
the spike, or stop at point 7? We decided to stop only at
our counted stopping points between statements. For us, a
step from 6 stops at 7, and a next or �nish from 6 returns
to the calling function and stops at 10.

To uphold this rule, our implementation of previous re-
quires 3 re-execution passes for the special case of moving
back past a spike, such as from point 7 to its destination at
point 3. In the example, when our �rst re-execution pass
hits the function exit following 6, it resets the \top" point
to 7. Then when bdb notices that the \top" point is at the
current position, it knows that a spike occurred. It then
raises the base depth and re-executes another \�rst" pass,
which properly identi�es the desired destination at point 3.

Traditional debuggers di�er on the matter of stopping at
the spike. Gdb stops at the spike only for �nish, whereas
Microsoft Visual Studio always stops at the spike.

We feel that it is actually preferable for �nish and before
to stop at the spike because it makes it easier to get into
the second function: one could step into the �rst function,
�nish that function, and then step into the second function.
We have designed but not yet implemented counter routines
to accomplish this.

The key idea is to have the function exit counter test
for the stopping condition and trap back to bdb. We would
then use the traditional debugger technique of inserting a

304

Forward Movements Backward Movements
1st use slowdown repeated use

command slowdown command 1st pass + 2nd pass slowdown
step 1.95 bstep 1.95 1.95
continue 1.95 bcontinue 1.95 + 1.95 1.95
next 2.48 previous 2.49 + 1.95 1.95
�nish 2.33 before 2.20 + 2.20 2.20
until 2.34 buntil == 2.71 + 1.95 (always 2 passes)

buntil != 3.15 + 1.95 (always 2 passes)

Table 1: Worst cases of measured execution slowdown factors for each movement.

temporary trap instructions at the return address and then
continuing forward to that trap. This would not su�er from
the performance problems encountered by traditional de-
buggers when �nishing a recursive call because our counter
is able to advance past all of the premature function returns.

The spike is not at an exact counted step point, and
thus on our undo stack we would need to note the special
circumstance by which we arrived at this point so that a
future undo would return to the spike.

4 Overhead of Counter Routines

The overhead of our counter based movement algorithms
varies based on the complexity of the code statements in
the program being debugged. In particular, heavy use of li-
brary functions lends itself to lower overall overhead because
more work is done between user level stepping points. We
used 5 recent student assignments as test cases. These were:
an anagram �nder, a cryptographic deciphering program, a
dynamic programming algorithm for �nding the edit dis-
tances between proteins, an iterative successive over relax-
ation code, and an X-Windows fern drawing program. The
most important performance measurement is the overhead
of the basic step counter because this is used for normal
forward execution. For the �ve student assignments, this
overhead was 94%, 31%, 95%, 56%, and 0% respectively.
(The overhead was negligible for the fern program because
its execution time is dominated by X-Windows related sys-
tem calls.) For the SPEC CINT95 benchmarks 129.com-
press, 130.li, and 147.vortex we measured overheads of 95%,
124%, and 103% respectively. We calculated these overheads
relative to the performance when compiled for normal de-
bugging. Our system starts with the output of \gcc -g",
and thus our overhead is in addition to the normal debug-
ging performance degradation.

Table 1 shows the execution slowdown factors for all
of bdb's supported movements for the edit distance test
case, which was the one that showed the greatest slowdowns
among our students assignments. In actual use, for any short
movement (which is the majority of movement commands)
bdb responds instantaneously on a human timescale, and
thus for short movements the slowdown factors are unim-
portant. We care about slowdowns only for long running
movements. All of these results were gathered over the en-
tire execution of the test programs. This was done, for ex-
ample, with commands such as \step 1000000000", or by
setting a breakpoint at the end of the program.

For forward movements, the slowdown is incurred over
the distance moved forward. For backwards movements we
have reported the slowdown factors for the �rst and sec-
ond passes separately. These slowdown factors are incurred
over the re-execution interval. For some movements the
slowdown factors of the two passes di�er because di�erent

counter routines are used. For example in the case of pre-
vious, the �rst pass uses the previous counter for the entire
re-execution interval, but the second pass uses the simpler
step counter for the majority of the interval until the last
descending call chain on which it uses the previous counter.

It is di�cult to compare our results to those of related
projects because most of them provided at best only limited
performance measurements, and admittedly most of these
projects were more interested in providing backwards look-
ing functionality than in the performance aspects. We thus
compare ourselves to the most relevant numbers available
to us. Netzer and Weaver[9] built an execution replay de-
bugger for long running programs based on program tracing
with an emphasis on minimizing the size of the trace �le.
They reported slowdown factors ranging from 1.75 to 7.0.
Feldman and Brown[3] built a debugger based upon frequent
(and fast) checkpointing and then program interpretation to
move forward. Their interpreter incurred a slowdown factor
of 140. Our slowdown factors compare favorably to both of
these, which suggests that re-execution is a more e�cient
methodology.

From our experience using bdb, we feel the performance
achieved by our counter based movements is more than ade-
quate. However if one wished to push the performance level
to its limits, a more aggressive implementation could reduce
the overhead substantially. In an experiment we applied the
following optimizations to the basic step counter: removing
the indirection on counter calls (by instead copying the de-
sired counter routine to the �xed call site), using a stream-
lined calling convention, using dedicated registers to hold
counter values (as done by Mellor-Crummey & LeBlanc[7]
and Wahbe, Lucco & Graham[13]), and counting down to
zero (also as in[7]). Together these reduced the overhead by
75%. The overhead of the step counter in the edit distance
application was reduced from 95% to 24%. This compares
to an overhead of 10% for Mellor-Crummey's inline soft-
ware counter and 42% for Wahbe's data breakpoints. We
o�er these numbers not to say that our implementation is
slower or faster than these implementations, since clearly
they are all doing di�erent things, but rather to indicate
what is achievable to a reader who is interested in maxi-
mum performance.

4.1 One Pass Algorithms

Another source of possible performance improvement might
come from using one pass algorithms for some of the back-
wards movements. For instance by maintaining an array of
breakpoints counts, one for each location, we could elimi-
nate the extra pass for bcontinue that is needed after the
user changes the set of breakpoints. By maintaining a stack
of the last points at each call depth, we could eliminate the
extra passes for previous and before.

Figure 13 shows the information needed by a 1 pass pre-

305

retained
checkpoints: CPCPCPCPCP

checkpoint
interval

Figure 12: Checkpoints are thinned to leave an exponentially increasing series of intervals behind the current position.

1 2 3

1 2 3

4 5 6

4 5 6

8 9

9

1312

1110 1110

15 16

14 13127

87step cnt:

prev cnt:
call

depth
step
cnt

prev
cnt

1

2

3

3

11

14

3

8

11

4 16 13

Figure 13: The 1 pass previous algorithm saves the last step

and previous values at each call depth.

vious algorithm. At each call depth it stores the values of
the step and previous counters corresponding to the last
point at that depth. Upon exiting from a function our two
pass algorithm discarded the previous count, recorded the
\top" point, and started counting afresh. Instead the 1 pass
algorithm can simply retrieve and continue counting from
the correct previous count recorded before the intervening
function call.

The drawback of these one pass algorithms, however, is
that all of this additional information would need to be gath-
ered during regular forward execution, just in case it was
needed later. Fast forward execution is more important.

For long running programs, the most important perfor-
mance measurement is the slowdown factor incurred by the
basic step counter when executing forward. For �nding
problems far into a program's execution, a user is likely to
either insert a breakpoint at a rare case or in an error detec-
tion routine, or to let the program run until it encounters
a fault or spurious exit. At this point they would use short
backwards movements to investigate what happened. The
long forward execution just uses the step counter.

This is meant to be a practical debugging technique that
can be used on real programs running for minutes, hours, or
even days (such as a network server). Checkpointing (dis-
cussed next) will allow the user to quickly move back to re-
cent events even after having executed for hours. For events
further in the past, our checkpointing algorithm will provide
response times proportional to the distance moved back.

5 Checkpointing

We expect execution time in a traditional debugger to be
roughly equivalent to the temporal distance moved forward,
and we expect short movements to be performed without
noticeable delay. This is what we consider \e�cient" per-
formance; the only time a movement incurs noticeable delay
is when the stopping point is so much farther along the exe-
cution path that the delay incurred would be expected, and
these delays should be proportional within a small factor to
the distance move forward. Traditional debuggers provide
this most of the time, but fail to provide good performance

for cases that cause them to execute a large number of traps
back to the debugger as discussed in Section 1.2. Bdb's
counter based methods perform all forward movements (in-
cluding those case that are di�cult for a traditional debug-
ger) e�ciently and accurately.

We likewise feel the same performance goal should be
applied to backwards movements. Movements a short dis-
tance back should be performed without noticeable delay,
and longer movements should take time roughly equivalent
to the distance moved back. We have used checkpointing to
address this goal.

We create checkpoints at regular intervals by forking the
process being debugged. By using fork to create checkpoints,
we take advantage of the operating system's e�cient copy
on write policy. For performance measurements we used a
checkpoint interval of 1=10 of a second. In the for worst-
case for the student applications this incurred an additional
performance overhead of 7%, and on average an overhead
of only 3%. For the much larger SPEC applications the
overhead ranged from 9% to 45%. Increasing the checkpoint
interval to 1 second brought the checkpointing overhead for
the SPEC applications down to a range of 1% to 14%

Short backwards movements only need to re-execute in
the last interval, and thus all short movements will �nish
quickly. For example, our slowest movement \buntil !=" on
our worst case application presented in Table 1 has a two
pass algorithm with a total slowdown factor of 5.1. Relative
to its forward execution with a slowdown factor of 1.95, for
a 1=10 of a second checkpoint interval this worst case for a
short movement would require only 0.26 seconds.

5.1 Exponential Checkpoint Thinning

To avoid overwhelming the processor with checkpoints, we
start thinning them out as they become older. Figure 12
shows a neatly thinned set of checkpoints representative of
what our checkpoint thinning algorithm will aspire to. Our
goal is to create a small set of checkpoints from which we
can re-execute to any earlier point in a time proportional to
the distance moved back. In the �gure the checkpoints are
retained at: 1, 2, 4, 8, and 16 intervals back from the cur-
rent position (represented by the black dot). These intervals
would continue to grow exponentially as powers of 2 as they
went further back in time until the beginning of the pro-
gram's execution. Observe that the size of each checkpoint
interval in this example is equal to the distance between the
end of that interval and the current position. Hence any
prior execution point is contained within a checkpoint inter-
val that is no longer than distance between that exectution
point and the the current position.

Our thinning policy, is designed to achieve a set of check-
point intervals that maintains this property that no exe-
cution point ever be in a checkpoint interval whose size is
greater than the distance from the current position back
to that point. These checkpoint intervals are adjusted as

306

1st rexecution pass:

filled in checkpoints:

12345

CPCPCPCPCP

CPCPCP

CP

2nd rexecution pass:

filled in checkpoint:

6

Figure 14: A backwards movement explores the checkpoint intervals in reverse, starting from the current position, until it
locates the closest interval containing the event of interest. For movements requiring two passes, the second pass is only
performed on the interval containing the stopping event.

we dynamically execute forward. Each time we reach the
start of a new checkpoint interval, we scan the current list
of checkpoints and thin out any checkpoint such that the in-
terval between checkpoints would not grow larger than the
distance from the end of the resulting combined interval to
the current execution point. This does indeed create a se-
ries of exponentially larger checkpoint intervals as they get
further back, although since these are created dynamically
on the y as we execute forward, they are rarely as neatly
proportioned at exact powers of 2 as in the example.

5.2 One Pass Movements

Backwards movements explore these checkpoint intervals in
reverse to �nd the closest preceding interval containing the
point of interest. By our interval construction, the inter-
val containing the stopping point cannot be larger than the
distance moved back, and also the sum of the sizes of the
other intervals explored, as we work our way back to the
desired interval, is also less than or equal to the distance
moved back. Together this bounds the sum of the sizes of
the checkpoint intervals explored to be less than a factor of
2 times the temporal distance moved back.

5.3 Two Pass Movements

The preceding argument applies to single pass backwards
movements. For two pass backwards movements we must
consider the cost of the second pass. This will be explained
with the help of Figure 14. This �gure shows the set of
exponentially thinned checkpoint intervals from the previous
�gure along with numbered arrows indicating the order of re-
executions performed when seeking the point marked with
the X. This point could be any point sought by a two pass
movement: a location breakpoint, a previous point, a before
point, or a data value breakpoint. We will refer to it as a
breakpoint in our discussion.

The �rst re-execution pass is seeking to �nd the closest
preceding interval containing the breakpoint. It explores
the checkpoint intervals in reverse order until an interval
containing a breakpoint is found. (If we were looking for
a counted breakpoint, any intervals found containing fewer
than the desired count would simply deduct the number of
breakpoints found in that interval from the desired total.)
Only one breakpoint is shown, but the interval could in fact
contain multiple breakpoint occurrences. If so, we want the
last one (or the desired number back in case of a counted

movement). In any case, since we do not know how many
will occur within the interval, the �rst pass will count the
number of occurrences, and the second pass will execute to
the desired count.

As we re-execute each interval, we �ll in any missing
checkpoints for that interval. When we complete the re-
execution of a large checkpoint interval, we will thus have a
fresh set of checkpoint intervals that obey our property of
none being larger than the distance back from the current
point (which is now at the end of the interval just �lled in).
This is shown in the �gure only for checkpoint interval num-
ber 5. Checkpoints are in fact not needed for later execution
points because any later point can be reached through for-
ward execution in linear time, and thus by the time the
debugger �nishes interval 5, it may have already discarded
any �lled in checkpoints for intervals 1 through 4 as well as
even the checkpoints separating those intervals.

Given this �lling in of checkpoints, for the second pass of
a two pass movement algorithm we only need to re-execute
in the single small checkpoint interval found to contain the
breakpoint. In the example this is interval 6.

In the case shown, the total re-execution is 17.5 intervals,
and the distance moved back is 10.5 intervals, for a net re-
execution factor of 1.7 times the distance moved back. This
still falls within our factor of 2 bound. The only place where
it can exceed this bound is within the last (in the forward
direction) sub-interval of a �lled in interval. For example if
the destination point was just a little bit prior to interval
4, the temporal distance moved back would be 8 + � and
the total needed re-execution would be 17 � �. This leads
to a bound for 2 pass algorithms of a factor two times the
temporal distance moved back plus one minimum checkpoint
interval.

5.4 Faster and Slower Cases

The above discussion is valid for the �rst backwards move-
ment executed. Unfortunately with multiple backwards
movements our system can experience performance anoma-
lies that do not meet our goals. One such case occurs after
the user has stepped back a long distance to a point near
the start of a large checkpoint interval (such as the start
of interval 4). That movement actually performs very well,
requiring re-execution of only 1 times the distance moved
back, rather than the upper bound of 2 times. However a
subsequent short step back into the preceding large check-

307

point interval (interval 5 in this case) requires re-execution
of that entire interval, thus paying the price for our good
luck on the preceding movement. The performance on the
short movement considered by itself does not meet our per-
formance goal.

There are also cases where we perform much faster than
expected. The debugger maintains any potentially useful
counter information gathered for each checkpoint interval.
For example, for breakpoints the debugger records the num-
ber of breakpoint visits and a version number representing
the set of breakpoints at the time the counts were gathered.
Using the example from Figure 14, if breakpoint counts had
been gathered during forward execution and we were now
looking for the same set of breakpoints in reverse, the de-
bugger would know that no breakpoints occurred in intervals
1 through 4, and it would also know the number of break-
points occurring in interval 5. It would them only need to
perform the second pass re-execution on interval 5. The
total time for this being about half the temporal distance
moved back.

These saved counts are combined and split as checkpoints
are removed or inserted into checkpoint intervals. They can
also sometimes be used for faster than expected forward
movements, if for example the debugger already knows that
no breakpoints occur in a certain interval.

5.5 Fast Undo

A �nal feature we provide is a fast undo. When starting
a new movement, we always retain the closest checkpoint
preceding the starting point. If asked to undo the movement,
we can then execute to the starting point quickly from the
retained checkpoint. Thus if the user accidentally continues
from some point, seeking some event that does not occur,
when they realize it has taken too long, they can interrupt
the debugger, issue an undo command, and immediately be
back where they were.

5.6 Space Usage

The set of checkpoints grows logarithmically as a function
of the execution time, and the checkpoints (created by fork-
ing a process) are each the size of the process. We expect
in practice that there will be much economy in space usage
gained by an operating system that uses a copy on write
policy, for then the space needs will only involve the page
tables and those pages that have changed between check-
points. We have not evaluated the extent of this bene�t.

There are tradeo�s that could be made to decrease the
number of checkpoints needed. For example we could in-
crease the checkpoint interval to 1 second. This would lead
to a noticeable but tolerable increase in the re-execution
time for short backwards movements (in the range of from
1 to 3 seconds). This would also greatly reduce the check-
point creation overhead. For situations involving trying to
locate sporadic bugs that appear after days of execution,
a checkpoint interval of 1 minute would seem reasonable.
Once the debugger stopped on an error, we could then re-
duce the checkpoint interval and in 1 minutes time �ll in the
checkpoints for the last minute long interval by re-executing
that interval.

We also might set a limit on how far back a user is able to
move, perhaps a few minutes, and then discard any check-
points older than that limit. This would give us a con-
stant bound on the number checkpoints. Alternatively, we
could set a constant bound on the number of checkpoints
and then at points when the need for checkpoints exceeded

the bound, we could relax the factor of 2 on checkpoint thin-
ning. This would gradually increase the factor of 2 bound on
re-execution time relative to the temporal distance moved
back.

There certainly are other reasonable options for man-
aging the set of checkpoints. Tolmach and Appel[12] in a
project with many similarities to our own, chose to man-
age their checkpoints as a cache. This was motivated by
their argument that user activity is likely to be clustered
around certain points along the execution time line, and
that caching would retain those checkpoints that were used.

6 I/O Replay

An important requirement for successful re-execution is that
the program re-execute deterministically. Cases where we
might get nondeterministic behavior include seeding a ran-
dom number generator based upon the time of day, or mod-
ifying a �le so that we read di�erent values from it upon
re-execution.

We provide the ability to capture the return values from
system calls and replay them during re-execution. For ex-
ample, on re-execution of a system call to get the time of
day, we return the time from the original system call, and
thus the program would seed the random number generator
the same. On re-execution of a read, we return the original
data read, even though it may not actually be in the �le
anymore. For a write we actually only need to record and
replay the returned status value.

UNIX provides a mechanism for trapping to the debugger
upon the entry and exit of system calls by the child. Unfor-
tunately this proved inadequate for our purposes and we had
to resort to a more cumbersome method using explicit trap
instructions before and after the system call instruction.

None of our test cases used for performance evaluation
actually behave nondeterministically, and by default I/O
logging is disabled. We report here the performance impact
when I/O logging is enabled.

For the �rst 4 applications, which have varying but not
overwhelming I/O usage, we measured their I/O logging
overheads as 3.5%, 72%, 75%, and 0.1%. However the fern
program, which is completely I/O bound, had an overhead
of 5100%, which translates to a slowdown by a factor of 52.
Replaying from the I/O log incurs roughly half the overhead
incurred when creating it.

There are also situations in which our re-execution per-
formance may actually be much faster then the original pro-
gram's execution time. In a network server application, or
an interactive application, a large fraction of the wall clock
time may be expended waiting for events such as messages
or key clicks. During re-execution we replay the events, but
we don't replay the waiting time. For a simple text editor,
we could probably replay hours of user time in a few minutes
or even seconds.

A large portion of programs written today are interac-
tive graphical applications. These are both nondeterminis-
tic (because they are interactive) and potentially I/O bound
(because of the graphics). Further improvements in our I/O
logging are clearly needed to accommodate these applica-
tions,

Furthermore, our I/O logging and replay occurs at the
process boundary. In an X-Windows application, when we
back up the state of the process, we can see what happened
within the process, what the values of its variables were,
and what X-Windows calls were made. But we don't see
the graphics window redrawn. This is outside the process

308

being debugged, and thus it is only a�ected by the I/O per-
formed by the original process and not by the re-execution
processes. Backing up the graphic state along with the in-
ternal process state would be a valuable addition. This was
nicely done in a reversible LISP debugger by Lieberman and
Fry[6].

6.1 Di�culties

I/O logging is a complex task. There are 262 Unix system
calls. Some are simple such as \getpid", and just have regis-
ter return values. Others such a \read" require the bu�ering
of possibly large inputs. The \readv" system call has even
more complex bu�ering requirements due to its vector of
bu�ers, and other system calls such as \ioctl" have been
used for a myriad of di�erent purposes and are a quagmire
of special cases.

For most system calls we capture their return values
when the original program executes the system call, and
we replay those captured values when re-executing the sys-
tem call. However there are some system calls that actually
need to be re-executed. For example, \obreak" is used to
change the top of the heap when more space is needed for
dynamic memory allocation. We must re-execute it so that
the re-execution process will have its heap extended as well.

Of the 262 system calls, we have implemented (or par-
tially implemented in the case of \ioctl") I/O replay for only
35 of them. These are the ones that we have seen used in
our test programs. Much further work could be done on the
I/O replay aspects of bdb.

7 Related Research

There is a diverse body of research addressing many of the is-
sues brought together in this project. Mellor-Crummey and
LeBlanc[7] developed a fast software counter for program
replay. Kessler[5] used code augmentation to provide fast
breakpoints for pro�ling. Wahbe, Lucco and Graham[13] in-
vestigated fast data breakpoints during forward execution.
Feldman and Brown[3] based their reversible debugger on
checkpointing. Pan and Linton[10] discussed logging system
calls and replaying them for deterministic re-execution.

The most common approach to producing bidirectional
debuggers has been to create a history log of all changes to
variables[1, 2, 6, 8, 9, 11, 14]. Two of the best such projects
were those by Lieberman and Fry[6] and by Moher[8]. Both
provided a rich set of bidirectional movements, but were lim-
ited to short running programs because of the rapid growth
of the history log. They also were based on interpreters so
they incurred large execution slowdowns. Agrawal[1] and
Netzer[9] both addressed the history log size problem by
condensing the changes to a coarse set of points, but at the
cost of less exibility in backwards movements.

Re-execution has been used primarily for deterministic
forward replay of parallel programs[4, 10]. Feldman and
Brown[3] built a debugger for sequential programs based
upon frequent (and fast) checkpointing, in conjunction with
an interpreter to move forward from checkpoints, but they
were hampered by the slow speed of interpretation. The
most signi�cant use of re-execution to date for bidirectional
debugging was an ML debugger by Tolmach and Appel[12].
They used a step counter to provide step and bstep move-
ments with a reported average slowdown of 2.7. Continue

1, bcontinue 1, and next 1 were provided by using a large
bit vector with one bit for every source location and a pro-
cess of using a logarithmic number of re-execution passes to

binary search over time intervals. This binary search was
performed not only for backward breakpoints, but also for
forward breakpoints! Their bit ag and binary search algo-
rithm also limited them to moving by a single breakpoint at
a time, so e�cient counted breakpoints were not possible un-
der their system. They gave no performance measurements
for these more complex movements.

8 Conclusions

We have developed a combination of techniques and demon-
strated through a working implementation that it is possible
to build a bidirectional program debugger, that is practical,
e�cient, precise, and applicable to a very broad spectrum
of programs.

Central to this accomplishment is our technique of em-
bedding calls to counter routines at stepping points and
at function entry and exit points throughout the pro-
gram being debugged. As the user issues debugging move-
ment commands, we can e�ciently switch the entire set
of calls to a group of customized counters designed to im-
plement the desired movement. We have developed sim-
ple counter routines to provide a complete set of both
forward and backwards movements: step n, continue n,
next n, �nish n, until ==, until !=, bstep n, bcontinue n,
previous n, before n, buntil ==, buntil !=, and a general
undo.

The e�ciency of our debugger arises from our use of
program re-execution to reconstruct earlier program states
along with periodic checkpointing to limit the amount of
re-execution needed. We have developed a method of ex-
ponential checkpoint thinning that allows us to locate and
move back to any nearby points quickly and to reach points
further back within a maximum time bound of roughly twice
the temporal distance moved back. Our exponential thin-
ning of checkpoints limits the number of checkpoints needed
to a logarithmic function of the range of backwards move-
ments.

Finally I/O logging and replay allow us to ensure de-
terministic re-execution for those programs that otherwise
might re-execute in a nondeterministic fashion.

A bidirectional debugger such as bdb can alleviate much
of the tedium in using a traditional debugger by greatly sim-
plifying and expediting the process of tracing the cause of
a bug backwards from the point where it becomes manifest.
Furthermore, the trepidation of stepping past something of
importance, when using a forward only debugger, is less-
ened since undoing incorrect movements is now simple and
immediate. We hope that the success of this project will
spur widespread incorporation of bidirectional capabilities
into commercial debuggers.

9 Acknowledgments

We gratefully acknowledge the hard work of the graduate
students who helped build this project: Robert Zulawnik,
Steve Dorato, Richard Best, and Charles Carr. We appre-
ciate the enthusiasm and encouragement of early viewers of
this research, and we thank NSF for their support through
grant CCR-9619456. Finally, we thank the PLDI reviewers
for their thoughtful comments and suggestions.

309

References

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H.
Spa�ord. An Execution-Bracktracking Approach to De-
bugging. IEEE Software, 8(3):21{26, May 1991.

[2] R. M. Balzer. Exdams: Extensible debugging and mon-
itoring system. In Proc. Spring Joint Computer Conf.,
pages 567{589. AFIPS Press, Reston, VA, 1969.

[3] Stuart I. Feldman and Channing Brown. Igor: a sys-
tem for program debugging via reversible execution. In
Proc. SIGPLAN Workshop on Parallel and Distributed

Debugging, pages 112{123, Jan. 1989.

[4] Robert J. Fowler, Thomas J. LeBlanc, and John M.
Mellor-Crummey. An Integrated Approach to Paral-
lel Program Debugging and Performance Analysis on
Large-Scale Multiprocessors. In Proc. SIGPLANWork-

shop on Parallel and Distributed Debugging, pages 163{
173, Jan. 1989.

[5] Peter B. Kessler. Fast breakpoints: Design and imple-
mentation. In Proc. SIGPLAN'90 PLDI Conf., pages
78{84, June 1990.

[6] Henry Lieberman and Christopher Fry. Software Vi-

sualization, chapter ZStep95: A Reversible, Animated
Source Code Stepper, pages 277{292. MIT Press, 1998.

[7] J. M. Mellor-Crummey and T. J. LeBlanc. A soft-
ware instruction counter. In ASPLOS-III Proceedings,
pages 78{86, April 1989. Appeared as SIGPLAN No-
tices 24(Special Issue).

[8] T. G. Moher. PROVIDE: A Process Visualization and
Debugging Environment. IEEE Transactions on Soft-

ware Engineering, 14(6):849{857, June 1988.

[9] Robert H. B. Netzer and Mark H. Weaver. Optimal
tracing and incremental reexecution for debugging long-
running programs. In Proc. SIGPLAN '94 PLDI Conf.,
pages 313{325, June 1994.

[10] Douglas Z. Pan and Mark A. Linton. Supporting re-
verse execution of parallel programs. In Proc. SIG-
PLAN Workshop on Parallel and Distributed Debug-

ging, pages 124{129, Jan. 1989.

[11] Daniel G. Shapiro. Sni�er: a System that Understands
Bugs. Master's thesis, MIT Dept. of EE&CS, 1981.

[12] Andrew Tolmach and Andrew Appel. A debugger for
standard ML. J. Functional Prog., Jan. 1993.

[13] Robert Wahbe, Steven Lucco, and Susan L. Graham.
Practical data breakpoints: Design and implementa-
tion. In Proc. of the SIGPLAN'93 PLDI Conf., pages
1{12, 1993.

[14] M.V. Zelkowitz. Reversible execution. Communications
of the ACM, 16(9):566, September 1973.

310

