
Optimal Tracing and Incremental Reexecution for Debugging Long-Running Programs

Robert H. B. Netzer Mark H. Weaver

r n@cs.brown.edu hk_Weaver@brown.edu

Dept. of Computer Science

Brown University

Box 1910

Providence, RI 02912

1. Introduction

Debugging requires execution replay. Locations of

bugs are rarely known in advance, so an execution must be

repeated over and over to track down bugs. A problem

arises with repeated reexecution for long-running programs

and programs that have complex interactions with their

environment. Replaying long-running programs from the

start incurs too much delay. Replaying programs that inter-

act with their environment requires the difticult (and some-

times impossible) task of exactly reproducing this environ-

ment (such as the connections over a one-day period to an

X server), These problems can be solved by periodically

checkpointing the execution’s state so it can be incremen-

tally replayed or restarted from intermediate points.

Restarting from checkpoints bounds the delay to replay any

part of the execution if checkpoints were taken often

enough, and allows pals of the execution having interac-

tions with the environment difficult to reproduce to be

skipped. However, the time and space costs of such check-

pointing can be prohibitive. To reduce this cost, we present

adaptive tracing strategies that provide bounded-time incre-

mental replay and that are nearly optimal. Our implemen-

tation on a Spare 10 traces less than 15 kilobytes/see for

CPU-intensive programs and for interactive programs the

slowdown is low enough that tracing can be left on all the

time.

Our first result is a tracing strategy that adaptively

decides when and what to trace to provide bounded-time

incremental replay. To decide when to trace, we divide the

execution into windows, which are regions of the execution

we can individually replay. To decide what to trace, we

observe that a window’s correct reexecution requires each

of its reads to return the same value during replay as during

the original execution. Each such value need not be traced

if the read is preceded in the same window by a write to the

same location (the write will restore during replay the origi-

nal value) or if the value was aheady traced. To bound the

This research was partly supported by ONR Contract
NOO014-91-J-4052 (ARPA Order 8225) and NSF grant CCR-93093 11.

Permission to co y without fee all or part of this material is
Jgranted provid that the copies are not made or distributed for

direct mmmercial advanta~e, the ACM copyri@t notice and the
title of the publication and W date appear, and notice is given
that eopyfng is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
anctlor spa”fic permission.

SIGPLAN 94-6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -662-x19410006..$3.5O

replay time, we trace reads often enough so their values are

never very far back in the trace, allowing the state required

for the replay to be quickly restored. We also place a maxi-

mum length on the windows. The optimal tracing problem

is to adaptively decide where to start windows, and what

memory references in each to trace, to minimize the num-

ber of references traced. We show that the problem can be

reduced to computing the shortest path through a directed

graph, solvable in O(nT) time (where n is the number of

member references made during execution, and T is the

maximum number of references allowed in a window).

Although the optimal problem is solvable, it is proba-

bly impractical as it seems to require more than constant

work at each memory reference. For efficient tracing, we

present approximations that employ jixed-size windows.

These approximations are simple and efficient. They per-

form simple bitvector lookups at each read and write using

space-efficient two-level bitvectors. Experiments show

they usually trace at most twice more than optimal. Our

implementation on a Spare 10 incurs a factor of 1.75 – 7

slowdown and generates less than 15 kilobytes/see of trace

on CPU-intensive programs. In addition, we instrument

system calls to automatically trace only those interactions a

program has with its environment that affect its outcome.

This feature addresses one of the difficult aspects of replay,

allowing us to trace and replay interactive systems.

Our work is novel in that our tracing algorithms

adapt to the particulm execution being debugged. A diffi-

cult paxt of supporting incremental replay is bounding the

replay time while tracing only what is necessary. We

achieve both of these objectives. Previous systems that

provide incremental replay can trace more than necessary

and can incur large delays during replay [5, 10, 4, 3]. We

guarantee a user-specified bound on the time of any replay

by fixing the size of windows and by tracing often enough.

Adaptive tracing is becoming not only practical but

necessary. In the past, the cost of disk 1/0 was insignificant

compared to even a small amount of computation (such as

the bitvector manipulation our algorithms perform). Now,

processors are so fast that a significant work can be per-

formed in the time it takes to write only a single trace
record. Since this trend is continuing, in the future it witt

be cheaper to use adaptive strategies that do on-line analy-

sis to minimize tracing than to trace more than necessary.

313

2. Related Work

An execution must be traced to provide incremental

replay. Enough must be recorded so that during replay suf-

ficient state can be restored for each read from memory to

obtain the same value as during the original execution.

Below we describe past approaches to this problem[5, 10,

4,3, 1]. These approaches either trace orders of magnitude

more than necessay (as shown later), or do not bound the

time required to replay up to an arbit.my point of the exe-

cution.

The IGOR system uses the virtual memory system to

periodically trace, at fixed time intervals, those pages modi-

fied since the last checkpoint[5]. To restart the execution

from an intermediate point requires scanning the trace to

find the most recent checkpoint of each page. Because

checkpoints are taken at fixed time intervals, IGOR bounds

the amount time required to replay any part of the execu-

tion once replay begins. However, setting up the state for

replay requires potentially scanning through the entire trace

tile, which can take time proportional to the length of the

execution. Although this approach is adaptive in the sense

that it traces only pages that have been recently written, our

experiments show that a page granularity of tracing is too

large to be practical; orders of magnitude more data than

necessary is traced.

The PPD system uses compile-time analysis to

decide what and when to trace[lO, 4, 3]. PPD writes a

prelog on the entry of each procedure, containing the vari-

ables the procedure might possibly read before defining.

The prelog allows a procedure to be re-executed in isola-

tion since it contains all variables the procedure might read.

A postlog is written on procedure exit, containing the vari-

ables the procedure might have modified. The postlog

allows the execution of a procedure to be skipped during

replay since it contains the changes the procedure might

make to the state. PPD has the drawback of statically com-

puting what variables are traced and when they are traced.

Since compile-time analyses must be conservative, more

variables can be placed in the logs than necessary. In addi-

tion, tracing only at procedure entry and exit can sometimes

incur high overhead and provide no guarantees on replay

time. For example, a 1000-iteration loop that contains a

procedure call incurs many needless traces[4], and a very

long-running procedure may not be traced often enough to

replay any part of it in a reasonable time. As an attempt to

alleviate these problems, prelogs and postlogs can option-

ally be generated for loops, and not generated for some pro-

cedures[4], but the basic idea is limited by its static nature.

The Spyder system traces, before each statement (or

group of statements), its change set, the values of the vari-

ables the statement might modify[l]. A debugger can
baclcup execution over a statement by restoring the state

from its change set. As an optimization to bound the trace

size, only the most recent change set from each statement

can be kept. Spyder statically computes the change sets,

and for programs that use pointers and arrays, it must trace

each such access. Spyder’s main disadvantage is that it

does not bound the time required to perform a replay, since

we must tist back up to before the desired interval and then

reexecute forward. Although Spyder provides a valuable

backup tool, like PPD it is limited by its static nature (and

must trace every array or pointer reference), and it was not

designed to provide a general replay facility that can

quickly reexecute any requested part of the execution.

Wtlson proposes an idea called Demonic Memory as

a way to recreate any past state of a process[14]. By main-

taining a hierarchy of checkpoints, each taken at succes-

sively larger time granularities, recent states can be repro-

duced quickly while older states incur more delay. He pro-

poses virtual snapshots as a way to checkpoint, where only

the parts of a checkpoint that differ from the previous one

are saved. Our techniques are complementary to Demonic

Memory as they provide another way to take the check-

points, and a hierarchy of different window sizes can be

used to compact our trace on-the-fly.

CheckPointing and tracing strategies have been pro-

posed for problems such as fault tolerance, profiling, and

others[8, 11, 2, 7, 6]. The incremental replay problem is

more difficult than these problems since user replay

requests occur often (unlike faults, for example) and they

must complete quickly. In addition, unlike performance

measurement, the tracing requirements are substantial,

since enough state must be recorded to make the replay

identical to the traced execution. Tracing strategies for

these other problems therefore do not solve the incremental

replay problem.

3. Adaptive Tracing for Bounded-Time Replay

Past techniques are limited by their static nature,

deciding at compile-time what or when to trace (or both).

As a result, they trace more than absolutely necessary and

may incur lengthy delays in replaying up to a rquested part

of the execution. We overcome these problems by aa’ap-

tively deciding what and when to trace, To decide when to

trace, we divide the execution into windows — contiguous

intervals of the execution that can be individually replayed

— and produce a set of traces for each window. To decide

what to trace, we perform on-line analysis at each memory

~ference to dynamically determine which to record.

Below we outline our adaptive approach. We show that

optimally deciding what and when to trace has polynomial

time complexity, but is too expensive to be practical. In the

next section we present nearly optimal approximations that

are efficient.

Providing bounded-time replay involves two consid-
erations. First, the time it takes to setup the state (from the

trace) for any xeplay must be bounded. We bound this time

by tracing often enough so that restoring the state any

314

window will need requires reading at most M previous

trace ~cords. Second, the time it takes to replay up to any

part of the execution, once replay begins, must be bounded.

We bound this time by placing a limit of T memory refer-

ences on the length of any window. There is a tradeoff

between fast replay and small traces; targer vatues of T and

M result in smaller traces but longer replay times. In prac-

tice we expect the user to provide T and M to tune this run-

time vs replay-time overhead tradeoff.

3.1. What to Trace

To support the replay of some portion of the execu-

tion (a window), we wish to trace just enough to ensure that

a reexecution from the window’s start correctly reproduces

the original. We consider a replay correct iff each read

from memory receives the same value as during the origi-

nat execution. We atso wish to trace often enough so the

state necessary for the replay can be restored from the trace

in bounded time. We consider a window’s replay to be M-

bozfnded iff we need to scan at most the M previous trace

records before the window’s trace to restore its state. The

following proposition shows what must be traced.

Proposition 1

In general, enough trace data exists to provide an

M-bounded replay of a window iff for every read in

the window, either

(1) the value read is saved in one of the M trace

records preceding the start of the window’s trace, or

(2) a write to the same memory location is previ-

ously made within the same window.

If a memory location being read was already written

in the same window, there is no need to save its valuw dur-

ing replay the preceding write will restore the original

value. If a location is read in a window but its value was

recently traced (within the current window or last M mace

records before the window), it need not be traced again; to

replay, the wdue can be retrieved without scanning too far

back in the trace file. For M-bounded replay, we only need

to trace reads that would violate the above two conditions if

not traced. We call such reads unique-spanning~ reads. A

unique-spanning~ read is the first read from an address A

in a window where A was written in an earlier window but

its vatue not traced in the M trace records recorded before

the window.

Without knowing the semantics of a window’s com-

putation, tracing unique-spanning~ reads is both necessary

and sufficient for supporting M-bounded incremental

replay. If we do not trace the value of a unique-spanning~

read, then there would exist a window which, when reexe-

cuted in isolation, would contain some read not preceded

by a write to the same address, nor saved in last M trace

records. We would be unable to start this window’s reptay

by reading at most M trace records.

An alternative for supporting incremental replay is to

instead trace the writes to memory. There are tradeoffs

between tracing reads and writes, which we discuss later. If

we define a unique write as the last write to each location in

a window, then tracing the unique writes in each window

provides sufficient information for oo-bounded replay (i.e.,

no bound can be guaranteed). No bound can be guaranteed

because if we trace only the writes, we do not know what

addresses a window’s replay will read, so we have to

restore the state from the traces of all preceding windows.

As discussed in Section 2, this potentially requires scanning

through the entire trace. We explore this alternative

because (as we show later) less run-time overhead is

incurred in locating unique writes than unique-spanning

reads, so they provide an alternative when run-time over-

head must be minimized. Figure 1 shows examples of

unique-spanning reads and unique writes.

3.2. When to Trace

Deciding the second part of adaptive tracing, when to

trace, involves determining when to start a new window.

We wish to adaptively start a new window subject to two

constraints: (1) the number of references traced is mini-

mized, and (2) no window is longer than T references, the

user-specified bound on the maximum allowable replay

time. We can minimize the number of references traced by

placing windows carefutly, for example to group together

as many references to the same address as possible. By

keeping windows no longer than T references, the time to

actually reexecute up to any part of any window remains

bounded.

A surprising result is that computing where to start

new windows to minimize the number of unique-

spanning~ reads traced is not NP-complete for M = O or

M = CO. Determining optimally where to start each win-

dow can be performed in O(nT) time, where n is the num-

ber of memory references. Although we omit the proof

details for brevity, the basic idea is that determining when

rWRITE A

Window 1

L

READ A

WRITE A ~

[

READ A ~
Window 2

READ A

Window 3 [READ A ~

unique wrile

unique- spanningoread

unique–spanningl read

iff A not traced in Window 2

Figure 1. Example execution broken into windows.

315

to start new windows can be reduced to computing the

least-cost path through a directed graph. Each memory ref-

erence is a node in the graph. Each node has edges to

nodes representing each of the subsequent T references,

with each edge labeled with the cost of tracing (the number

of unique-spanning~ reads) if the two connected nodes

were to delimit a window. A least-cost path is found in

time O(nT) because each of the n nodes has degree T (the

head of each edge in this path shows where each window

should be started). We are unsure of the complexity for

other values of M and leave an investigation to future

work. However, because the cases M = O and M = IX per-

form well (discussed later), it is unclear whether other val-

ues of M are of practical interest.

4. Fixed-Window Tracing Algorithms

Even though optimally deciding when to start a new

window has polynomial time complexity, it seems to

require more than constant work at each memory reference,

which is too inefficient to run on-line. We overcome this

problem with an approximation by simply fixing each win-

dow size at T. The problem then reduces to adaptively

deciding which references to trace in each window. Below

we conceptually outline tracing algorithms for providing

M-bounded replay for any M, and for the special cases of

M = O and M =00 which have simple algorithms. We also

present details of an implementation for the Spare.

When M = O we trace enough so that a window can

be replayed by simply restoring the state from its own

trace. Other parts of the trace need not be scanned, provid-

ing the lowest replay setup time. When M = co we do not

worry about how far back in the trace we must scan. This

allows fewer reads to ke traced at the expense of longer

replay time, as there are no more unique-spanning- reads

than unique-spanning~ reads for any M. We present these

two special cases since they have simple implementations

and are probably of the most practicat interest.

4.1. Conceptual Algorithms

Figure 2 shows our algorithms. An action is per-

formed when a window boundary is reached (the win-

dow_bounda~_hook function) and after each read or write

to memory (read_hook and write_hook, where the parame-

ter a is the address being accessed). The special case of

tracing unique-spanning- reads works as follows. Traced

is a bitvector that indicates which addresses have been

traced since last written, and the NeedToTrace bitvector

marks which addresses have not been written in the current

window or traced since last written. When a write occurs

to address a, we reset the a* bit in NeedToTrace (indicating

that a has been written in the current window so a subse-
quent read in the same window need not be traced) and in

Traced (indicating that a new value has been written into a

which has not yet been traced). When a read from a

occurs, we check to see if it is unique-spanning-: if the

value in address a has not been traced since last written or

written yet in the window, NeedToTrace[a] will be 1 and

the read’s address and value are traced. Otherwise, the read

is not unique-spanning- and can be ignored. At the start of

each window we set the NeedToTrace bitvector as the

complement of Traced since any addresses traced since last

written need not be traced again.

We generalize this algorithm to detect unique-

spanning~ reads as follows. By changing Traced into a

counter, we track how many windows elapse before a traced

value “expires” in the sense that it must be traced again if

read. Traced only need be large enough to store values

between O and an expiration count, C, and only the number

of windows since a value is traced need be counted. In the

implementation we could count the actual number of trace

records (e.g., by counting the number of times a trace

buffer is flushed to disk), but for simplicity we count win-

dows. Any read not previously written in the same window

is traced if its value was not traced within the last C win-

dows. At each window boundary we decrement the Traced

counter associated with each address and set the NeedTo-

Trace bit when the count reaches O.

The algorithms to trace unique writes and unique-

spanningO reads are similax To detect unique-spanning.

reads we simply trace the first read to an address in a win-

dow if it was not previously written in that window, so a

counter is unnecessary.

Since most memory references are four-byte

accesses, as a bitvector optimization we need not assign

one bit per address but only one bit per word. Sub-word

references are handled as shown in Figure 3. If we are trac-

ing unique writes, a sub-word write is treated as a write to

the entire word. If we are tracing unique-spanning reads,

we must handle sub-word writes by resetting Traced to O,

ensuring that subsequent reads to any part of the word will

be traced if not already written in the window. When trac-

ing unique-spanning. reads, the Traced counter is not used,

so the sub-word hook becomes empty.

An advantage of tracking reads and writes on-line is

that the values a window’s replay will need (and that will

not be recomputed during replay) are automatically traced.

We can extend this feature of the algorithm to handle one of

the challenging aspects of replay: programs that have inter-

actions with their environment. If we specially treat system

calls, we need not reexecute them during replay, and any

interactions a program has with its external environment

through these calls can automatically be reproduced.

We instrument each system call to perform several
actions (sys_call_hook in Figure 3), although we need not

track each read and write it makes. First, we estimate

which addresses might possibly be written during the call.

Estimating these addresses is usually straightforward since

316

window.boundary.hook {

trace addresses & values of

locations in Written;

Written bit-vector = O’s;

)

window_boundary_hook {

foreach a

if (Traced[a] >0)

NeedT’Zhzce[a]=O;

Traced[a]-–;

else

iVeedT’Trace[a]=l;

)

window.boundary.hook {

NeedToTrace bit-vector= 1‘s;

}

window.boundary.hook {

NeedToTrace bit-vector=

NOT (Traced bit-vector);

)

(no read hook required) write_hook(a) {

Written[a]=l;

}

(a): unique writes

read_hook(a) {

if (NeedToTrace[a])

trace address & value;

NeedToTrace[a]=O;

Traced[a]=C;

)

(b): unique-spanningM reads

rmd_hook(a) {

if (NeedToTrace[a])

trace address & value;

NeedToTrace[a]=O;

)
(c): unique-spanningO reads

read_hook(a) {

if (NeedToTrace[a])

trace address & valuty

NeedToTrace[a]=O;

write_hook(a) {

NeedToTrace[a]=O;

Traced[a]=O;

)

write_hook(a) {

NeedToTrace[a]=O;

)

write_hook(a) {

NeedToTrace[a]=O;

Traced[a]=O;

}
Traced[a]=l;

}
(d): unique-spanning- reads

Figure 2. Fixed-window-size tracing algorithms, performed at each window boundary (window_boundary_hook),

each read (read_hook) and each write (write_hook).

most system calls access contiguous regions of memory

(such as reading from disk into a buffer).

Second, after the system call we must either specially

update the bltvectors or emit a trace, depending on the type

of tracing being done. If we are tmcing unique writes, we

must immediately trace the values of the locations possibly

modified. We cannot wait until the window’s end since the

values might be read or written any time after the call. We

must also zero the associated bits in Written so the locations

will not be re-traced at the window’s end unless they are

subsequently written. However, if we are tracing unique-
spanning reads, we can fool the atgorithm into automati-

cally tracing these values at the point where they are subse-

quently read. By resetting bitvector entries corresponding

to the modified locations, any subsequent reads of these

locations will be detected as unique-spanning and traced as

usual. We could immediately trace the values as done

when tracing unique writes, but resetting the bits has the

advantage that values not subsequently used will not be

traced.

Fina31y, we always emit a trace record (not shown in

Figure 3) indicating that a system call was made, but need

not record which one since exactly the same call will be

issued during replay. As an optimization, if we know that

reexecuting a particular system call will exactly reproduce

its original execution (e.g., a read from a read-only file), we
can treat it as any other sequence of reads and writes.

This scheme fails for interactions with the environ-

ment where state is maintained outside of the user’s process

317

(such as on a bit-mapped display). When state changes to

an external device must be reproduced, the device’s state

must also be traced during execution and restored during

replay when the system call is reached. Instrumentation

must be added to the system call to handle the details of

how the device’s state is accessed.

We can also integrate into our scheme an approach

for tracing when interrupts occur and producing them dur-

ing replay[9]. By instrumenting the program to maintain a

software instruction counter, interrupt handlers can trace

the value of the counter and the PC when an interrupt

(no sub-word read hook required)

subword_read_hook(a) {

w = addr of word containing &
call regular read_hook(w);

}

subword_read_hook(a) {

w = addr of word containing %

call regular read_hook(w);

}

subword_read_hook(a) {

w = addr of word containing T

call regular read_hook(w);

)

occurs. During replay a watchpoint can be set for the loca-

tion at which the interrupt initially cecurred to check the

instruction counter against the traced value. When the

counter reaches the traced value, a jump can be made to the

interrupt handler.

We finally mention an attractive property of the algo-

rithm: it can gracefully degrade in the presence of limited

disk space for traces. If trace space is limited, the trace (or

parts of it) can be compacted on-the-flyby suspending exe-

cution and compressing the trace file genemted so far. By

re-running the tracing algorithm from the trace, and

subword_write_hook(a) {

w = addr of word containing x

Written[w]= 1;

}

(a): unique writes

subword_write_hook(a) {

w = addr of word containing w
Traced[w] = O;

}

(b): unique-spanningM reads

(no sub-word write hook required)

(c): unique-spanuin~ reads

subword_write_hook(a) {

w = addr of word containing z

Traced[w] = O;

}

(d): unique-spannti~ reads

sys_call_hooko {

make the system call;

estimate addresses written;

for all written locations, a

trace a & value at w

Written[a] = O

}

sys_call_hook {

make the system cal~

estimate addresses written;

for all written locations, a

Traced[a] = O;

NeedToTrace[a] = 1;

}

sys_call_hooko {

make the system cal~

estimate addresses written;

for all written locations, a

NeedToTrace[a] = 1;

}

sys_call_hooko {

make the system cal~

estimate addresses written;

for all written locations, a

Traced[a] = O;

NeedToTrace[a] = 1;

)

Figure 3. Hooks for tracing partial-word reads and writes, and system calls.

318

increasing T or M, a new trace file is produced smaller than

the original For example, doubling T will double the

replay bound but reduce the trace size. This doubling can

be performed indefinitely and will in the limit will reduce

the trace to only the reads of uninitialized variables and the

values traced tlom system calls (with T at its maximum,

only these reads are unique-spanning). Thus, executions of

great length can probably be traced, with T or M doubling

automatically as needed.

4.2. Implementation on the Spare

The tracing algorithms me conceptually simple but

because they perform on-line analysis at each read and

write operation they require careful implementation. We

have developed several strategies to instrument programs at

the assembly level to keep the run-time overhead accept-

able. We focus on the Spare, but the general ideas are

applicable to any RISC processor. Although the instrumen-

tation could also be added by a compiler, by editing the

executable to jump to an appropriate hook after every

memory reference[12, 7], or by hardware support, our

implementation is tuned for our particular application.

To make the bitvector operations efficient, we

employ two-level bitvectors and maintain one bit per four-

byte word as discussed above. Since we do not know in

advance which addresses the program may reference, a flat

bitvector for a 32-bit address space would occupy 128

megabytes of storage. A two-level bitvector is a table of

pointers to bitvector fragments, with each fragment being

allocated only when a reference is made to the memory

region it represents. Accessing them is still quick, requir-

ing only two memory references, and we show in Section 6

that their space overhead is low. Other work has also

reported good experience with two-level bitvectors[13]. In

addition, assigning only one bit per word leaves the bottom

two bits of each address to be used as tags to encode the

trace record type (to indicate a value, system call, signal, or

end-of-window marker).

Since the bitvector operations must be performed at

each read or write, we optimize them for the common case.

The common case is a read that is not unique-spanning and

thus not traced (Section 6 shows that only a small percent-

age of reads require tracing). Since writes occur less fre-

quently than reads, the performance of the write hook is

less critical (except when tracing unique writes, which

requires no read hook). A crucial part of the instrumenta-

tion is that condition codes must not be a.lte~d since instru-

mentation can be inserted anywhere a load or store occurs.

However, there is no user-level instruction on the Spare to

save condition codes, although an (expensive) operating

system trap exists to save them. We overcome this problem

by coding the instrumentation so it does not atter the condi-

tion codes in the common case. Even though the instru-

mentation must do several checks, such as determining

whether a bitvector segment is currently altocated or

whether the bit itself is zero, we can perform these checks

without altering the condition codes. The idea is to do an

indirecl jump to an address computed from the value of the

bit being tested, thereby avoiding a traditional conditional

jump (which would require altering the condition codes).

The jump either returns from the instrumentation or calls

another routine to perform additional work (if a bitvector

segment must be allocated or if a read requires tracing).

Another important trick we employ is to implement a

software instruction counter (SIC) to provide the ability to

replay interrupts and avoid doing end-of-window checks at

each load and store instruction. We adapt an idea proposed

by Mellor-Cmmmey[9] of incrementing a counter at each

backward branch and procedure call. The value of this

counter together with the PC uniquely identifies each

instruction instance. We could use such a counter to deter-

mine when a window boundary is reached, but if such a

check were done before each backward branch, the condi-

tion codes would have to be saved. To avoid this overhead,

we instead increment and test the counter before each

instruction that alters the condition codes so they need not

be saved. Since there is probably one such instruction for

each conditional branch, such a check still locates window

boundaries with reasonable accuracy. Another way to

determine when a window boundary is reached is to

employ an interval timer that causes a signal handler to be

called periodically (with the period specitied by the user).

The handler patches one word in the common part of the

instrumentation code (which every read or write hook calls)

so that on the next memory reference the window boundary

processing is performed (window_boundary hook in Figure

2) and the code is patched back to its origfird state. This

scheme avoids doing a test each time the SIC is incre-

mented, but requires that an interval timer be available.

Since we expand each assembly instruction that ref-

erences memory into a sequence of instructions, we must

also carefully handle instruction delay slots (such as those

for branches). We move the instrumented instruction out of

the delay slot to before the branch, or move one copy to

each target of the branch. Correctly handling delay slots in

all cases is actually more complex, but we omit the details

here.

5. Replaying from the Trace

We now discuss how to replay any of the execution’s

windows. There are two parts to replay: restoring the ini-

tial state of the window’s memory from the trace, and per-

forming the replay itself. An important point is that the

same instrumented code must be used during reexecution as

during the original execution. Otherwise, if a different

(uninstrumented) version of the program were reexecuted,
any function pointers restored from the trace might not

have the proper value, although the hooks can be changed

to perform replay-specific tasks as long as their size

remains unchanged.

319

5.1. Restoring the State

To replay a given window, we must restore some of

the memory’s state (and all the registers) before reexecu-

tion. This state is restored differently depending on what

type of tracing was performed. When unique-spanning~

read tracing was done, the values that the window will need

(and that will not be recomputed during replay) are guaran-

teed to be in the window’s traces or the tmces of the previ-

ous M/T windows. We simply restore the state by scan-

ning the previous M/T windows’ traces, and the current

window’s trace but only up to the tmce of the first system

call. Traces made after a system call must not be restored

until after the call is skipped during replay (we address this

issue below). Restoring this state is straightforward: we

make a linear pass through the trace and place into memory

the value in each trace record.

Restoring the state when unique write tracing was

done is more complex. For unique writes, we do not know

which memory locations will be read by the window’s

replay (this information was not initially traced). We must

therefore restore tie entire state of memory which appears

in the trace before the window’s traces. System calls are

handled as above. With the exception of handling system

calls, this scheme is identical to how the IGOR system (dis-

cussed in Section 2) restores its state, and might be made

easier by perhaps constructing indexes to identify the most

recent trace of each address. An alternative is to trace the

addresses that each window actually reads and restore only

these locations, but such an approach would incur more

run-time overhead and still require scanning the trace to

find the necessary trace records.

5.2. Handling the Replay

Once the state is restored, the reexecution begins by

jumping to the appropriate location in the program (we

assume the program counter was traced at each window

boundary). Once reexecution begins, we must also spe-

cially handle system calls.

We instrument system calls so they know that a

replay is in progress and the call into the system is not

made. Instead, additional state is restored before returning

to reproduce the side-effects of the call. We read and

restore values from the trace file from the point last read up

to the trace record for the next system call (or to the win-
dow’s end, whichever occurs tlrst). This restores sufficient

state to replay up to the next system call, since during exe-

cution any values possibly modified by the call were either

traced when the call returned or traced when eventually

read. Once these values are restored, the program can con-

tinue reexecuting.

6. Experimental Measurements

We performed four experiments to assess our ideas.

First, we compared the tracing of unique writes, unique-

spanning. reads, and unique-spanningm reads. Second, we

compared trace sizes produced by our fixed-window size

algorithms to the optimal algorithms. The fixed-window

algorithms are effective, producing traces less than 50%

larger than optimal. Third, we compared our approaches to

the IGOR[5] and PPD[4, 10] systems. We trace 1-2

orders of magnitude less than IGOR, and usually 4 – 50

times less than PPD when PPD provides quick replay. In

some cases the PPD traces are small but they cannot pro-

vide quick replay, and in these cases we provide quick

replay with a trace of less than twice as large. Finally, we

measured the run-time overhead of an implementation of

our algorithms on a Spare 10. Our algorithms incur slow-

downs of about a factor of 1.75 – 7 (depending on which

type of tracing is done) and generate about 15 kilobytes of

trace per second. We conclude that our scheme simultane-

ously bounds the replay time while keeping mace genera-

tion low, and is probably faster than writing large traces to

relatively slow disks.

We divided our experiments into two parts: one to

analyze the trace sizes and another to measure run-time

overhead. To analyze the trace sizes, we ran four programs

using the vmon tool which rewrites executable to obtain

the necessary hooks[12]. This allowed us to call a function

at each memory reference that simulated our tracing algo-

rithm on all possible window sizes simultaneously. We

analyzed the C compiler supplied with SunOS version 4.1.3

(ccom) when compiling an 11,214-line program, the UNIX

compress utility (comprem) when compressing the lex exe-

cutable, a program that randomly generates directed graphs

and runs two scheduling algorithms on the graph to com-

pare their results (event), and a program that computes

finite differences by making one pass over a 2011x 200

mesh (mesh). The ccom, compress, and event programs

~present computations of a symbolic nature; mesh is

numerical. We analyzed other programs as well, but the

trace sizes of these four are representative. The ccom, com-

press, event, and mesh programs performed 15 million,

1.34 million, 122 thousand, and 539 thousand memory ref-

erences, respectively.

To analyze run-time overhead, we wrote an assembly

level instrumentor using the techniques outlined in Section

4 and ran several long-running programs (discussed later).

The curves in this section plot the replay bound (i.e.,
the fixed window size T) vs trace size. Since the programs

had different execution lengths, the replay bound and trace

size are given as a percentage of the total number of mem-

ory references. Due to the large difference between some

of the curves, the plots appear on log-log scales.

6.1. Comparison of the Three Types of Tracing

Figure 4 compmes for each program the trace sizes

of unique writes, unique-spanning. reads, and unique-

320

10

1

01

1

0.01 I A
001 0.1

Replay Bound (OA’of execution ~i%e)
100

(a): ccom

~
u
al

s
10+

g
c
$!2

~
1

A!?
~

E

3 0.1
3
s

001
0,01 0.1

Replay Bound (O/~lof execution ;i%e)
100

(c): event

“++-...+..._+_
*...a.e.=—=..=.e.m- .. . ~..

1

0.1

t

Unique-Spannin (O Reads -+---

‘n!’l ‘rites –Unique-Spanning m Reads --=---- I
--- .

0.01 0.1
Replay Bound (%’of execution ;i~e)

100

(b): compress

10

1

0.1

0.01 I J

0.01 0.1 1 10 100
Replay Bound (% of execution time)

(d): mesh

Figure 4. Comparison of the three styles of adaptive tracing.

spanning- reads. There are 3 – 100 times fewer unique-

spanningm reads than other types of operations, and unique

writes did as well or better than unique-spanning. reads.

Locality of reference means that many reads are often pre-

ceded by writes in the same window and thus are not

unique-spanning (but the writes are still unique writes).

However, in some cases (notably ccom), data that is written

once and read many times (such as the compiler’s symbol

table) causes fewer unique writes to exist than unique-

spanningO reads. We conclude that Unique-spanningm

reads are preferably when trace size must be reduced as

much as possible. Otherwise, the run-time vs replay-time

overhead tradeoff must be considered, unique-spanniingo

reads guarantee bounded replay time, but detecting unique

writes incurs less run-time overhead (discussed later). Note
that the trace sizes often tend to decrease exponentially

with increasing window sizes, suggesting that a window

size as large as tolerable should be used.

6.2. Comparison of Fixed-Window and Optimal

Tracing

Figure 5 compares the trace sizes for the fixed-

window algorithm and the optimal algorithm for uuique-

spauningo and unique-spanning= reads (the fixed-window

algorithm for unique writes is already optimal). By “opti-

mal” we mean that the fewest number of unique-spanning

reads are traced (under the assumptions discussed in Sec-

tion 3). We implemented the optimal algorithm by con-

structing a weighted directed graph on-line and computing

the shortest-path through the gmph. The fixed-window

algorithms genemted traces at most 50% larger than opti-

mal for ccom and event. For compress and mesh, the algo-

rithms were nearly optimal, Because this analysis required
O(nT) time (where n is the number of memory references

and T is the maximum window size) it became expensive

as T grew and for ccom (the longest running program) opti-

mat data points beyond T = O.3’% could not be obtained.

Fixing the window size appears to work well because of

321

locality: for almost any window placement, most reads

inside the window are not unique-spanning. Thus, fixed

windows are nearly as good as carefully placed, optimal

windows.

6.3. Comparison to IGOR and PPD

Figure 6 compares the size of our adaptive traces to

traces generated by the IGOR and PPD systems. IGOR

checkpoints periodically, such as every S seconds (where S

is given by the user), although we checkpointed every T

memory references for this study. Each checkpoint saves to

disk the pages written since the last checkpoint (our page

size was 4k bytes)[5]. However, as discussed in Section 2,

IGOR does not guarantee how Ion!g it can take to restore

the state for a replay since the entire trace file might need to

be read. IGOR wrote huge traces, over two orders of mag-

nitude larger than the unique-spanning read trace. Despite

locality, a page granularity of tracing is too large to keep

the trace size small, especially when T is small (i.e., when

the user needs quick replay). The IGOR curves in Figure 6

go off the top of the scale and are not completely shown.

PPD generates a prelog and postlog for each proce-

dure called. We simulated PPD tracing by computing the

exact logs. A real PPD system uses compile-time analyses

to conservatively determine which variables should be in

the log, and traces every access to variables it is unsure

about (such as references through pointers). Our simula-

tion thus underestimates the PPD trace size. Since check-

points are not written at regular intervals, PPD does not

guarantee how long a replay may take. Note that the PPD

curves are flat in Figure 6 since T is not a pammeter to PPD

(but we still show PPD’s trace size on the figure for com-

ptison).

,

10

1

01

n ni----
0.01 10

R~p;ay Bound (%’of execution time)
100

100

10

1

0.1

(a): ccom

*
““--=%......m...

““””’’’”””q

““--m....-a

.E%i%iE%~i~m~\:.1
Upwards-Exposed(In Rds optimal -*-

0.01
0.01 0.1

Replay Bound (%’IDf execution ;i~e)
100

10

1

1
0.1

t

M=:=$=:$l :2 %: =-

) [1 ““--”””

Upwards-Exposed(O Rds optimal
Upwards-Exposed(in Rds optimal -*- I

001 I J

0.01 0.1 10
Replay Bound (%’of execution time)

100

100

10

1

0.1

(b): compress

1

0.01
0.01 0.1

Replay Bound (OA’of execution ;i~e)
100

(c): event (d): mesh

Figure 5. Comparison of fixed-window and optimal tracing.

322

10

1

0.1

-.” ,

0.01 0.1
Replay Bound (%’of execution &e)

100

(a): ccom

10

1

01

t

IGOR +
PPD .-+---

‘ni’ue-span$?i::z ‘:’Unique-Spanning m Reads -A--

0.01 0.1
Replay Bound (%’of execution ~i~e)

100

(c): event

100

10 -m...*a*m-m...m.m.mm-

--------- ..—_-A

1

0.1 IGOR v
P,PD -+---

‘ni’ue-span$?!!g:z ‘1Unique-Spanmng m Reads -A--

0401
0,01 0.1

Replay Bound (%’of execution &e)
100

(b): compress

100 b -m

...-.m..-.G.m@-.=..*.

1

0.1 IGOR +
PPD -+---

‘ni’ue-span$?!r’pz 2:Unique-Spanmng m Reads -+-. ‘1
0.01 L .4

0.01 0.1 10
Replay Bound (%’of execution time)

100

Figure 6. Comparison of trace sizes to other systems.

(d): mesh

To make a fair comparison, we must consider this

issue. For ccom and compress, the PPD traces were suffi-

cient to provide a replay bound of about O. 170 of the execu-

tion (i.e., most procedures lasted about O.1% of the total

execution time). For event the bound was between O. 1 and

17%, and for mesh the bound was 99%. Mesh consists of

one large procedure, and since PPD writes a trace onlly on

procedure entry and exit, it is unable to start the replay

from inside the procedure. Figure 6 shows that when PPD

provides quick replay, we can achieve the same replay

bound with traces 4 – 50 times smaller. For mesh (where

PPD provides slow replay), we can provide quick replay

while tracing only O– 2 times more. These results show

that adaptive tracing with fixed-size windows provides

bounded replay while recording only a few percent of the
memory references.

6.4. Rnn-Time Overhead

Our last experiment addressed our algorithms’ run-

time overheads. We measured the overhead of an imple-

mentation on a Spare 10 running SunOS 4.1.3. This imple-

mentation instruments programs at the assembly level using

the techniques outlined earlier. Our implementation detects

window boundaries by using an interval timer, instruments

all Spare instructions that reference memory, and the pro-

grams we tested were linked with instrumented versions of

libraries and system-call hooks. We analyzed several exe-

cutions that ran long enough to be difficult to debug with-

out a replay tool. We ran longer executions of mesh and

even~ mesh performed 30,000 iterations over the mesh, and

event ran two scheduling algorithms on 30,000 randomly
generated graphs of about 700 nodes each. We ran a l~e

program which computed 8500 generations on a 100x 100

grid. To test interactive programs, we played a 20-minute

game of nethack, and edited this section of the paper with

323

mesh event life nethack vi

Uninstrumented running time (rein) 16.48 40.75 8.25 =20 = 10

Unique writes:

running time (rein) 35.46 75.01 14.53

slowdown 2.15 1.73 1.76

trace size (kbytes) 34,248 44,266 1,760

trace rate (kbytes/see) 16 10 2

bitvector size (bytes) 16,384 16,384 4,096

Unique-spanningO reads:

running time (rein) 112.7 321.01 23.0

slowdown 6.83 7.87 2.78

trace size @bytes) 35,847 43,288 920
trace rate (kbytes/see) 5 2 0.67

bitvector size (bytes) 16,384 16,384 8,192

Unique-spanning- reads:

running time (rein) 113.0 319.13 21.49 =20 = 10

slowdown 6.85 7.83 2.60 not noticeable not noticeable

tmce size (kbytes) 35,848 41,227 880 86 208

trace rate (kbytes/see) 5 2 0.68 0.07 0.367

bitvector size (bytes) 16,384 20,480 8,192 180,224 36,864

Figure 7. Overheads of tracing algorithms.

an instrumented version of the vi editor. These two pro-

grams are very interactive, performing little computation

between keystrokes. We measured each program’s original

execution time, the slowdown incurred by each tracing

algorithm, the trace size and rate of trace generation, and

the total size of all bitvector segments allocated during the

run.

Figure 7 shows the results. The window length was

chosen to be approximately five seconds of uninstrwnented

execution time, Since the slowdowns for each type of trac-

ing are different, we chose a window length of 10 seconds

for unique write tracing (since it runs about twice as slow

as the uninstrumented program), and 30 seconds for

unique--spanning read tracing.

Unique-write tracing incurred the least slowdown,

usually a factor of two, although slowdowns are greater for

programs that write to many distinct locations. Having no

read hook, and having to write out the trace only at a win-
dow’s end, takes less time on a SpCarc10 than writing the

extra trace data that unique writes incur. Even though

unique-spanning read tracing records less, the time taken

by the algorithms’ on-line analyses is currently greater than

the cost savings of reduced disk I/O.

However, the run-time vs replay-time tradeoff must

also be considered. In cases where the time to setup the

state for a replay must be low, unique-spanningO reads have

the advantage. In cases where the trace size must be mini-

mized, unique-spanning- reads have the edge, although our

data suggests that the trace size of unique-sparmingO reads

is competitive. Thus, we expect that users would currently

choose between unique writes (when overhead must be

minimized) and unique-spanningO reads (when replay setup

time must be minimized). In addition, as machines become

faster and the gap between CPU speed and disk I/O contin-

ues to widen, the slowdown of unique writes should start to

approach that of the others. Eventually the run-time analy-

sis required for detecting unique-spanning reads will be

cheaper than writing the extra trace required by unique

writes.

An important finding is that the rate of trace genera-

tion is acceptable (less than about 15 kilobytes/see) even

though the window length was only 10 – 30 seconds. This

tmce rate suggests that a gigabyte disk will suffice to trace

executions of a day’s length without requiring trace com-

pression (as discussed in Section 4.1). With trace compres-

sion, executions of several day’s length can be accommo-
dated. As suggested by the curves in Figure 4, we also

found that the rate of trace generation depends on the

selected window length with respect to the execution’s

locality of reference. Choosing too small a window length

for executions with large working sets can increase trace

rates dramatically (for a window length of one second,

mesh’s trace rate increases to 143 kilobytes/see for unique

writes and to 32 kilobytes/see for unique-spanning reads).

Experimentation is required to determine values that work

well, although very small window lengths (under five sec-

onds) are often impractical. The window lengths we chose

324

above (about five seconds of uninstrumented running time)

allows any five-second portion of the original executions to

be replayed.

Our tracing algorithms perform particularly well on

interactive programs. The slowdown of the instrumented

versions of nethack and vi was not noticeable. The interac-

tive nature of these programs caused traces to be generated

at a low rate (70 – 367 bytes/see for unique-spanning-

reads). We expect our tracing techniques to have low

enough overhead on interactive programs that they can be

left on during the entire testing and debugging phase.

Figure 7 also shows that the space overhead of the

bitvector segments is low. We used four kilobyte segments,

which required a 128 kilobyte table of segment pointers for

each bitvector (space for this table is not included in the

figure). The pointer table size can be reduced by increasing

the segment size, and we expect that this overhead is not

significant.

7. Conclusions

Our adaptive tracing strategies make possible the

trace-and-replay debugging of long-running programs that

interact with their environment. We can automatically trace

long-running programs with a 1.75 – 7 times slowdown,

generating less than 15 kilobytes/see of trace (and some-

times as little as 2 kilobyteskc). Interactive programs can

be traced with trace generation on the order of 100’s of

bytes/see and no noticeable slowdown. The run-time slow-

downs are probably acceptable given the functionality that

is being provided, especially for interactive programs.

Although our implementation was carefully tuned, we see

more short-term improvements possible, such as optimizing

the read and write hooks more by hand, exploring the use

of dedicated registers (e.g., to store the address of the

bitvector segment pointer table), and the use of additional

processors on a multi-processor workstation. In addition,

we expect that static analysis might be able to provide a

significant reduction in overhead by determining that some

references need not be analyzed at all (because they will

either never be traced or will always be traced). Such

improvements are left to future work.

Acknowledgements

We thank David Vorbnch for discovering that the

optimal tracing problem is not NP-hard and for implement-

ing some of the simulations. Steve Reiss wrote the vmon

tool used to obtain the read/write hooks for some of the

simulations.

References

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene
H. Spafford, “An Execution-Backtracking
Approach to Debugging,” IEEE Sofmare, pp.
21-26 (May 1991).

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

Thomas Ball and James R. Larus, “Optimally Pro-
filing and Tracing Programs,” Symp. on Principles

of Programming Languages, pp. 59-70 (January
1992).

Jong-Deok Choi and Janice M. Stone, “Balancing
Runtime and Replay Costs in a Trace-and-Replay
System,” ACMIONR Workshop on Parallel and
Distributed Debugging, pp. 26-35 Santa Cruz, CA,

(May 1991).

Jong-Deok Choi, Barton P. Miller, and Robert H. B.
Netzer, “Techniques for Debugging Parallel Pro-
grams with Flowback Analysis,” ACM Trans. on
Programming Languages and Systems 13(4) pp.
491-530 (October 1991).

Stuart I. Feldman and Charming B. Brown, “IGOR
A System for Program Debugging via Reversible
Execution,” Proc. of the SIGPLANISIGOPS Work-
shop on Parallel and Distributed Debugging, Madi-
son, WI, (May 1988).

James R. Larus, “Abstract Execution: A Technique
for Efficiently Tracing Programs,” Software —
Practice and Experience 20(12) pp. 1241-1258
(December 1990).

James R. Larus, “Efficient Program Tracing,” IEEE
Computer 26(5) pp. 52-61 (May 1993).

Kai Li and W. K. Fuchs, “Compiler Assisted Static
Checkpoint Insertion,” Proc. of Fault Tolerant
Computing Systems, (1992).

J. M. Mellor-Crummey and T. J. LeBlanc, “A Soft-
ware Instruction Counter,” Proc. of the Third ASP-
LOS, (April, 1989).

Barton P. Miller and Jong-Deok Choi, “A Mecha-
nism for Efficient Debugging of Parallel Pro-
grams,” SIGPLAN Corf on Programming Lan-
guage Design and Implementation, pp. 135-144
Atlanta, GA, (June 1988).

James S. Plank and Kai Li, “Faster CheckPointing
with N+ 1 Parity,” Tech Report CS-93-219, Univ. of
Tennessee, (Dee 1993).

Steven P. Reiss, “Trace-Based Debugging,” AADE-
BUG ’93, Linkoping, Sweden, (May 1993).

Robert Wahbe, Steven Lucco, and Susan L. Gra-
ham, “Practical Data Breakpoints: Design and
Implementation,” SIGPLAN’93 Conference on Pro-
gramming Language Design and Implementation,
pp. 1-12 Albuquerque, NM, (June 1993).

[14] Paul R. Wilson and Thomas G. Moher, “Demonic
Memory for Process Histories,” Proc. of the SIG-
PLAN ’89 PLDI Conf., pp. 330-343 (June 1989).

325

