
A Software Instruction Counter

J. M. Mellor-Crummey and T. J. LeBlanc

Computer Science Department
University of Rochester

Rochester, NY 14627

Abstract

Although several recent papers have proposed archi-
tectural support for program debugging and profil-
ing, most processors do not yet provide even basic
facilities, such as an instruction counter. As a result,
system developers have been forced to invent soft-
ware solutions. This paper describes our implemen-
tation of a software instruction counter for program
debugging. We show that an instruction counter can
be reasonably implemented in software, often with
less than 10% execution overhead. Our experience
suggests that a hardware instruction counter is not
necessary for a practical implementation of watch-
points and reverse execution, however it will make
program instrumentation much easier for the system
developer.

1 Introduction

Several papers in previous proceedings have called
for architectural support for program debugging and
profiling [l, 8, lo]. Th is support typically includes
a hardware instruction counter. Since most proces-
sors do not yet provide even this basic facility, system
developers have been forced to invent software solu-
tions.

A hardware instruction counter can be used for
both profiling and debugging. It is particularly useful

This research was supported by NSF Research Grant No.
CCR-8704492 and an ONR Young Investigator award, Con-
tract No. N00014-87-K-0548.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee and/
or specific permission.

0 1989 ACM O-8979 1-300-O/89/0004/0078 $1.50

for tracing individual instructions, either to count the
number of instructions executed between two given
instructions or to implement reverse execution. How-
ever, most profiling and debugging functions do not
actually require an instruction counter. When profil-
ing, we usually wish to know the percentage of execu-
tion time spent in a particular loop or routine. The
Unix utilities prof and gprof [6] provide reasonable re-
sults without the use of an instruction counter; they
use periodic sampling to estimate the amount of time
spent in a routine. When debugging, we are usually
interested in the states of the computation, rather
than individual instructions. Traditional cyclic de-
bugging is based on repeated visits to the same set
of states, gathering additional information about the
states on each visit. An instruction counter is helpful
because a state is uniquely determined by the number
of instructions executed before the state is reached.
However, other representations of state are also pos-
sible. This paper describes one such representation,
called a software inslruction counter (SIC).

There are several approaches that could be used to
implement an SIC. The most obvious approach is to
simulate a hardware instruction counter. That is, we
could preface each instruction in a program with an
instruction that increments a count in memory. This
count will differ at most by one from the number of
program instructions executed. Although an obvi-
ous implementation, it has an equally obvious draw-
back: both the code size and execution time would in-
crease by a factor of two. A practical implementation
must minimize both the number of instructions and
memory references used to implement the instruction
counter.

An alternative implementation might count only
basic blocks. A software counter could be incre-
mented upon entry to each basic block; the program
counter would identify the precise location within a
basic block. By augmenting a compiler to incorpo-
rate such an SIC in programs during compilation, we

78

could (a) take advantage of the knowledge of basic
blocks already present in the compiler, (b) allocate a
register to hold the software counter, and (c) localize
the required instrumentation within the compiler.

The cost of a software instruction counter can be
further reduced. Basic blocks are a static represen-
tation of the computation. A basic block represents
a set of consecutive instructions that must be exe-
cuted in sequence, however consecutive basic blocks
may or may not be executed in sequence. We do not
need to increment the instruction counter if a basic
block falls through to the next basic block; we need
only count branches to the start of a block. In fact,
only backward branches and subroutine calls need be
counted, since we cannot reuse a particular program
counter value without branching backwards. Thus,
a combination of the program counter and a count
of the number of backward branches taken during an
execution are sufficient to uniquely identify any state
in the computation.

In the next section we describe the implementation
of a software instruction counter based on this idea.

2 SIC Implementation

An instruction counter must be able to measure the
progress of a program and interrupt the program af-
ter a certain amount of progress has been made [l].
To incorporate a software instruction counter within
a program, we must modify the program, and any li-
brary routines it calls, to update a counter on each
backward branch or subroutine call, and to test (per-
haps implicitly) the value of the counter each time it
changes value. When the counter reaches some prede-
termined value, a transfer of control to an appropriate
handler must be arranged.

This program modification can best be performed
by a compiler, since the information available dur-
ing compilation is precisely what is necessary to add
the appropriate code. However, considerable effort is
required to augment a production compiler to instru-
ment programs during compilation. Instead of mod-
ifying a compiler, we direct the compiler to generate
assembly code, and use a separate program to instru-
ment the assembly code before passing the code to the
assembler. Despite the decoupling of program instru-
mentation from compilation, this approach achieves
results nearly as good as those we would expect from
a compiler-based instrumentation system, without re-
quiring significant compiler modifications.

We use the GNU optimizing C compiler (gee ver-
sion 1.31) in our instrumentation system. One fac-
tor that influenced this choice is that gee supports

a command-line option that can direct the compiler
to leave any of the machine registers unused by the
code it produces. This option enables us to reserve a
general-purpose register for counting branches. With-
out this capability, our SIC implementation would
have to maintain a branch count in memory, at a
considerable cost in performance. A second factor
motivating the use of gee is that it has a high qual-
ity optimizer. Optimization is important for accu-
rately measuring the overhead of a software instruc-
tion counter; without optimization, overhead due to
the SIC could be dominated by overhead due to poor
code.

The second component of our instrumentation sys-
tem is the assembly code instrumentation program
(ACIP), which scans assembly code and instruments
it to count backward jumps and subroutine calls.
Since ACIP deals with assembly code, it is necessar-
ily a machine-dependent part of our instrumentation
system.

To simplify both ACIP and the code it produces,
we take advantage of a simple observation: main-
taining an exact count of the number of backward
branches and subroutine calls is not necessary to
make the SIC scheme work. During execution, it
is permissible for the SIC to count both conditional
branches that are not taken and forward branches. As
long as the SIC increases monotonically and is con-
sistently incremented at least once at each backward
branch and subroutine call that occurs during pro-
gram execution, a value of the PC will not be reused
without the value of the SIC changing. With this con-
dition satisfied, each (PC,SIC) pair uniquely identifies
a particular instruction in the execution history of a
program.

ACIP uses two passes over its assembly code input.
In the first pass, ACIP identifies labels in the code
and inserts each label along with its statement num-
ber into a symbol table. The symbol table handles
global, local, and numeric labels, making it possible
to use ACIP to instrument hand-generated assembly
code as well as compiler-generated code. In the sec-
ond pass, ACIP examines each statement to deter-
mine if it is a branch or a subroutine entry p0int.l
All statements that do not fall into these two cate-
gories are echoed to the output unchanged. If the
statement is a subroutine entry point (gee sets up
a frame pointer for each subroutine making entry
points easy to recognize), code to count the subrou-
tine call is added. If the statement is a branch, ACIP

‘Changes in flow of control due to subroutine invocation
can be counted at the point of call or inside the subroutine
body. We chose to instrument each subroutine body since this
strategy causes the least growth in code size.

79

makes a simplifying assumption: unless the target
location of a branch is specified using a simple alpha-
numeric label (not a PC-relative target, indirection
through a register, or a target expression involving
label arithmetic), the branch operation is assumed to
be backward and is instrumented accordingly. This
assumption may cause unnecessary instrumentation
of some branches in the target program; however,
without modifying the compiler to perform the in-
strumentation task or requiring ACIP to assemble its
assembly code input and understand the semantics of
jump tables, this assumption is unavoidable. For each
branch whose target is a simple alpha-numeric label,
the symbol table is queried about the location of the
target. Forward branches are not instrumented, but
backward branches and branches to locations defined
externally are.

In the following sections, we assume that a register
can be dedicated to support a software instruction
counter.

2.1 SIC on a CISC

Implementing an SIC requires maintaining a counter
value and transferring control to a handler when that
count reaches a predetermined value. CISC proces-
sors, such as the VAX [2] and the Motorola 68020
[ll], generally supply loop control primitives (e.g.
decrement and branch) that can be used to efficiently
implement an SIC. Sample code sequences to count
backward branches and subroutine calls using these
loop control instructions are shown for the 68020
and VAX in table 1. In each case, when the SIC
register reaches -1, control transfers to the routine
SICreg UjIw, which handles underflow of the SIC reg-
ister. Unconditional backward branches and branches
to unknown target locations are instrumented simi-
larly.

On the 68020, we use the decrement-and-
conditional-branch (&cc) instruction to maintain a
branch count in a register. The dbcc instruction takes
three parameters: a condition code, a data register
Dn, and a branch displacement. The semantics of
the 68020 dbcc instruction are given in figure 1. The

if not cc then
Dn c Dn - 1;
ifDn#-1 thenPC+PC+dispfi

fi

Figure 1: Semantics of the 68020 dbcc Instruction

68020 dbcc instruction does not alter the condition
codes.

On the VAX, we use the subtract-one-and-branch
instruction (sobgeq) to maintain a branch count in a
register. The sobgeq instruction takes two arguments:
an index operand, and a displacement. The seman-
tics of sobgeq are shown in figure 2. The VAX sobgeq

index t index - 1;
if index 1 0 then PC c PC + disp fi

Figure 2: Semantics of the VAX sobgeq Instruction

instruction alters condition codes as part of its oper-
ation.

Although the loop control primitives on the 68020
and the VAX are similar, the 68020 dbcc is better
suited to maintaining an SIC. As shown in table 1, the
dbcc instruction folds the decrement of the SIC regis-
ter in with the conditional branch. On the 68020, the
dbcc costs the same number of cycles as a simple con-
ditional branch, so SIC instrumentation introduces
no overhead in the likely case where the branch is
taken.2 Since the VAX sobgeq instruction does not
take a condition code as an argument, it cannot be
used to directly replace a conditional branch. There-
fore, the overhead of maintaining an SIC for a pro-
gram on a VAX will be higher than on a 68020. Also,
since the sobgeq instruction affects condition codes,
use of it to maintain an SIC must either precede the
computation of the condition codes for the branch, or
be added at the branch target.

Without using these special loop control primitives
on the VAX and 68020, the overhead of maintaining
an SIC would increase. In both cases, it would be
necessary to use the following instruction sequence to
count a backward branch or subroutine call:

dec register
bgeq I$
j sr SICregUflu

1$:

In the average case, when the register doesn’t un-
derflow, this instruction sequence adds an overhead
of two instructions to count a backward branch or
a subroutine call. However, with the loop control
instructions, the average case requires at most one
instruction to update the SIC register.

In our implementation for the 68020, ACIP re-
places conditional branches with a dbcc. Since condi-
tional branches may use a 32-bit displacement on the
68020, replacing them with a dbcc may introduce an
assembler error since dbcc only allows a 16-bit dis-
placement. C programs typically consist of many

‘Backward conditional branches are assumed to be taken
more often than not, since most loops have more than one
iteration.

80

--
Cond Branch

Subroutine Entry

Ll: * Ll: Ll:

< compute cc >
beq Ll

EntryPoint:

I Sequence
Type I

Original Sequence With SIC Instrumentation
Code Sequence 68020 I VAX

< compute cc >
dbne Ll,d7
bne l$
jsr SICregUflw

1%
EntryPoint: dbra l$,d7

jsr SICregUflw
l$:

sdbgeq r7,1$
jsr SICregUflw

l$: < compute cc >
beq Ll

EntryPoint: sobgeq r7,1$
jsr SICregUflw

l$:

Table 1: Sample Instruction Sequences for Implementing an SIC on a CISC processor

short, functions, so it is unlikely that this assumption
wiI1 cause problems. In practice, we have not en-
countered a program for which this assumption was
violated.

2.2 SIC on a RISC

RISC processors support only simple instructions
with the goal of having each instruction execute in
a single cycle. Without complex primitives, such as
the 68020’s decrement-and-branch instruction (which
enables SIC instrumentation of conditional branches
with no overhead in the average case), counting each
backward branch and subroutine call will cost at least
one cycle to update the SIC register.

Surprisingly, examination of the instruction sets for
three RISC processors reveals that the overhead for
maintaining an SIC is not uniform across RISC pro-
cessors. The HP Precision RISC processor [7] pro-
vides an add-to-immediate-and-trap-on-condition in-
struction (ADDIT,cc). We could use this instruction
to add -1 to a register dedicated to the SIC and trap
to the SICreg Ujlw routine on underflow of the SIC
register. Executing this instruction in the branch de-
lay slot, following each backward branch and at the en-
try point of each subroutine would properly maintain
the SIC register. 3 On the other hand, processors such
as SPARC [5, 131 and the MIPS R2000 [12] require a
two instruction sequence to achieve the same effect.
On the SPARC, we need an add instruction to up-
date the count in the SIC register, followed by a con-
ditional trap that transfers control to the SICreg Uflw
routine. Similarly, on the R2000, we need an instruc-

3 Since branch delay slots for backward branches can be Wed
about 99% of the time [16], only about 1% of these updates to
the SIC register add no cycles to the program execution.

tion to update the SIC register, followed by a condi-
tional subroutine call to SICreg Ufiw.

2.3 Cost Experiments

In this section, we describe a series of measurements
and predictions of the execution overhead that SIC
instrumentation would add to each of a set of sample
programs for both RISC and CISC processors. First,
we describe measurements of SIC overhead for a set
of programs executing on the CISC 68020 processor.
Then, using our measurements of overhead on the
68020, we derive some predictions of the overhead of
adding an SIC to programs executing on the SPARC
and MIPS R2000 processors.

In measuring the overhead of an SIC, two types of
overhead are important:

1. direct, overhead that results from executing ad-
ditional instructions to maintain the SIC, and

2. indirect overhead that results from making a reg-
ister unavailable for program use by dedicating
it to an SIC.

To measure both the direct and indirect overhead, we
compiled each test program three different ways using
gee with optimization enabled. For the baseline ver-
sion of the program, the compiler was permitted to
allocate all of the machine registers to the program.
For the register version, the compiler was directed to
reserve one of the general-purpose machine registers,
making it unavailable for use by the program. In the
count version, ACIP instruments the register version
of the program to use the reserved register to main-
tain an SIC.

By comparing the execution times of the baseline
and the register versions of the program, we can mea-

81

sure the indirect cost of taking a register away from
each program for use by the SIC. By comparing the
baseline and the count versions of the program, we can
measure the total overhead for the SIC. The difference
between the register and count versions measures the
direct overhead. Table 2 shows the measurements of
the overhead for several sample programs executing
on a 68020.

The impact of instrumentation overhead on the
cost of subroutine calls is illustrated by measurement
of the Fibonacci program shown in figure 3. Table 2

main()(fib(34);)
fib(i)
int i;
<

if (i <= I) return I;
return fib(i - 1) + fib(i - 2);

Figure 3: The Fibonacci Test Program

shows that the instrumentation overhead for the Fi-
bonacci program is 3.7%. The overhead due to main-
taining an SIC is dwarfed by subroutine linkage, eval-
uation of the test, and computation of arguments for
the recursive calls. We expect that typical subrou-
tines have larger bodies than Fibonacci and therefore
will likely incur less than 3.7% overhead for counting
subroutine calls.

Execution timings for the compress program, a
data compression utility, showed only a 0.2% over-
head for maintaining an SIC. In comparing the count
and register versions of this program, the count ver-
sion, which maintains an SIC in a register, ran
faster than the register version, which simply leaves
a register unallocated. Possible explanations for this
anomaly are that the addition of the SIC instrumen-
tation to the compress code changed the page bound-
aries in the text segment resulting in a smaller work-
ing set, or that the new alignment of the instructions
caused fewer collisions in the instruction cache.

The SIC overhead of 12% for the string-matching
program grep when presented with the regular expres-
sion ‘[a-z]+Z’ is the highest measured overhead for a
real program and thus requires some explanation. Ad-
vance, a short procedure, is the heart of the match-
ing algorithm for grep. For this test case, advance
is called once for each of the 4 x lo6 characters in
the test data set. Advance consists of a switch state-
ment in which the cases encountered for this partic-
ular regular expression consist of only a few instruc-
tions. Since gee produces code that uses indirection

through a jump table to dispatch the switch state-
ment, ACIP treats the branch to an indirect target as
potentially backward and adds SIC instrumentation.
Compiler-based instrumentation of this code would
recognize that indirection through this jump table is
used exclusively for forward branches and omit the
SIC instrumentation. To measure the overhead con-
tributed by the unnecessary instrumentation of the
switch statement, the switch statement instrumenta-
tion was removed manually; a subsequent test with
the same regular expression took only 97.7 seconds on
average to execute. Without the unnecessary instru-
mentation of the switch statement, the SIC overhead
is only 5.9%, which is comparable to the instrumenta-
tion overhead measured for the calls to short subrou-
tines in the Fibonacci test. In both cases, the instru-
mentation overhead is magnified because the num-
ber of instructions in the subroutine call is not large
enough to dominate the cost of counting the subrou-
tine call. The second test for the grep program uses
a pattern which does not require invocation of the
advance procedure. The absolute time of this test is
much shorter, even though both tests use the same
test data set. Note that for this case, the SIC over-
head is only 1%.

Most of the 4.1% run-time overhead for the ditroff
test is likely due to the cost of counting subroutine
calls. An execution profile of the ditroff program
(generated using gprof [S]) shows the execution time
apportioned among a large number of calls to very
short procedures. Also, in the ditroff test and the
second grep test, the execution time of the program
decreased when the compiler was given one less reg-
ister to allocate to the program. Presumably, the
compiler made a bad decision to keep an infrequently
used value in a register, where the overhead of sav-
ing and restoring the register across subroutine calls
outweighed the benefit of faster access to the value.

The final program tested was the Dhrystone 2.1
benchmark [17], which measures the integer perfor-
mance of a compiler and machine pair. The execu-
tion overhead of adding an SIC to the Dhrystone was
higher than all of the other programs measured. Most
of this overhead is due to the very short procedures
in the Dhrystone. We expect lower overhead for real
programs since most programmers would use in-line
procedures or macros for functions as short as those
in the Dhrystone. Nonetheless, the results for the
Dhrystone benchmark are useful because Dhrystone
results are available for a wide range of machines. By
determining the number of branches and subroutine
calls counted in a single iteration through the Dhry-
stone, we can predict SIC overhead on a RISC using
the Dhrystone figures reported for RISC processors.

I time in seconds
test program instance baseline” 1 registerb countC overhead

a All registers available (compiled with ‘gee -0’).
bRegister d7 unavailable (compiled with ‘gee -0 -fixed-d7’).
“SIC enabled (compiled with ‘gee -0 -fixed-d7’).
dExecution time for 500,000 Dhrystones.

Table 2: Measurement of Direct and Indirect Costs of SIC

For all sample programs, the indirect costs asso-
ciated with sacrificing a register for branch counting
were insignificant. Unless a compiler uses interproce-
dural register allocation, it typically will not utilize all
of the registers inside procedure bodies; therefore, we
expect that the indirect overhead for dedicating a reg-
ister to an SIC will be small for most compilers. One
shortcoming of the measurements that we performed
was that we did not measure any programs using sim-
ulated floating point operations which typically are
written in assembly code using all of the registers. In
this case, the impact of allocating a register for the
SIC would be greater. Even so, we found that in the
Unix math subroutine library, only infrequently were
all registers in use. This leads us to believe that the
routines could be rewritten efficiently using one less
register, even on a machine such as the 68020 which
has only 8 general-purpose registers available.

Although we do not have direct measurements of
the performance overhead of an SIC on a RISC,
we can use published Dhrystone performance mea-
surements of several RISC processors, coupled with
our SIC measurements on a CISC, to develop per-
formance projections for RISC architectures. Our
method for predicting SIC overhead on a RISC is as
follows:

1. We ran a Dhrystone benchmark on our 68020-
based workstation for several different iteration
counts. By noting the number of branches and
subroutine calls counted for each test run of the
benchmark program, the number of branches due
to miscellaneous work other than the body of the
benchmark was factored out and the number of
branches for each execution of the Dhrystone was
determined. We discovered that each Dhrystone

executes 72 backward branches and subroutine
calls that require update of the SIC.

For R2000 and SPARC processors, backward
branches and subroutine calls can be counted
using a two instruction sequence. This instruc-
tion sequence would need to be executed for each
branch in a Dhrystone. Since each of the instruc-
tions in the sequence takes one cycle, the the
total time spent on counting branches for each
Dhrystone would cost 144 cycles.

Using the Dhrystone results and the cycle times
listed for the R2000 and SPARC processors in
the December 1988 Usenet distribution [15], the
fractional overhead for SIC instrumentation of
the Dhrystone on these architectures was esti-
mated by comparing the execution time of 144
RISC instruction cycles for SIC instrumentation
to the total cost of executing a single Dhrystone
(which is computable from the Dhrystone bench-
marks).

The derivation of our equation for the expected over-
head of maintaining an SIC on a RISC processor is
shown below.

overhead (%) =

overhead (%) =

time spent maintaining SIC

single Dhrystone execution time

UPdd?S
Dhrystone

x instr. x eyeles x 2
update instr. CYCl.2

Dhrystone&xr second

Replacing nyr$fyne by 72 (measured value), $&

by 2, and w by 1, and simplifying we get:

overhead (%) =
144 x Dhrystones per second

clockrate (Hz)

83

Using this equation, we computed overhead predic-
tions for maintaining an SIC on three RISC comput-
ers for which Dhrystone information was available;
table 3 summarizes these results. All of the Dhry-
stone numbers shown in table 3 reflect compilation
with the -03 optimization flag for each compiler. It is
expected that these estimates of SIC overhead for the
Dhrystone benchmark will be higher than the over-
head encountered for real programs since the proce-
dures in the Dhrystone benchmark are so small.

3 Debugging Using the SIC

We developed the software instruction counter to
help us debug parallel programs using our debugging
toolkit [4]. Our debugging methodology is based on
cyclic debugging, in which the program is repeatedly
executed, with each successive execution providing
more detailed data about the execution path. Cyclic
debugging is the most common technique used to de-
bug sequential programs, however it does not always
work for parallel programs. Successive runs of the
same parallel program may take different execution
paths, depending on the resolution of race conditions
existing among processes. Thus, an execution of a
parallel program is characterized not only by the pro-
gram source code and input, but also by the relative
order of interprocess events that occur during the ex-
ecution.

In our approach to parallel program debugging, all
interactions between processes are modeled as opera-
tions on shared objects [9]. During program execution
each process records a history of its accesses to shared
objects. Each time an object is read by a process, the
object’s version number is recorded in the process’s
execution history. When an object is modified, it gen-
erates a new version number, which is also recorded
in the process’s execution history. The union of the
individual process histories specifies a partial order
of accesses to each shared object. This partial or-
der, together with the source code and input, char-
acterizes an execution of the parallel program and is
referred to as an execution history. We can replay
an execution during the debugging cycle by using the
execution history to enforce the same relative order
on events, thereby providing repeatable execution of
parallel programs.

Implicit in our approach is the assumption that a
sequential process will always follow the same execu-
tion path when given the same input. This assump-
tion is not true in the presence of an asynchronous
transfer of control. Interrupts may occur at any time,
causing a transfer of control to a completely different

context. Asynchronous exceptions due to hardware
failures and out-of-band messages have the same ef-
fect. In both cases, the state of shared variables and
global resources may be affected by the exact state in
which an interrupt or exception handler is invoked.
An inability to reproduce the asynchronous transfer
of control at precisely the correct moment makes it
nearly impossible to debug these types of programs
using traditional cyclic debugging techniques. At a
recent workshop on parallel and distributed debug-
ging, this problem was noted by the developers of
other debugging systems [3, 141, none of whom had
solved it.

To reproduce the effect of an asynchronous trans-
fer of control, it is necessary to reproduce the transfer
at precisely the same state in the computation. The
program counter is not a sufficient indication of the
state of a computation, since it describes a static lo-
cation in the code segment, not a dynamic location in
the execution path. The real-time clock is also insuf-
ficient, since it usually lacks the necessary resolution.
A hardware instruction counter would be sufficient,
but is not strictly necessary. Instead, a combination
of program counter and software instruction counter
can be used to describe exactly the state of a compu-
tation when an asynchronous transfer takes place.

To replay such programs, our replay mechanism
must cause the transfer of control to occur in the
state in successive executions. We can use the SIC
to represent the state in which the transfer occurred.
To record an asynchronous transfer of control in an
execution history, we instrument all interrupt and ex-
ception handlers in the program so that they record
the value of the program counter and the SIC at the
time of the transfer, as well as an indication of the
type of trap or interrupt. (Since we are dealing with
shared memory programs, our monitoring is intrusive
in that the programmer must insert the appropriate
code in the program.) The additional overhead is ap-
proximately eight instructions per handler.

During program replay, the execution history is
used to guide execution. If replay is enabled, the
record of the next asynchronous transfer is read from
the execution history, which contains the value of the
SIC at the time of the original transfer. The SIC reg-
ister is initialized to this value, causing SIGreg Uflw
to be invoked when the correct number of backward
branches has occurred. At that time, a breakpoint is
set at the location specified by the program counter
value in the execution history record for the asyn-
chronous transfer. Note that we do not require re-
peated executions of the breakpoint; we set the break-
point only after we are certain that the next execution
of the instruction of interest is the point of the trans-

84

System Processor Dhrystones 1 Clockrate Predicted Overhead
Sun 41260 SPARC 18048 1 16.67 MHz 15.6%
MIPS M/500 R2000 12806 1 8.00 MHz 23.1%
MIPS M/1000 R2000 22590 1 16.00 MHz 20.3%

Table 3: Overhead Predictions for Branch Counting on a RISC

fer. When the breakpoint occurs, we synthesize the
trap or interrupt using the information stored in the
history. Once a transfer has been synthesized, we re-
set the value in the SIC register to the time of the
next asynchronous transfer and repeat the process.

The SIC can also be used to implement valuable
debugging functions for a single process. In partic-
ular, the SIC can be used to implement watchpoints
and reverse execution, without the hardware support
previously thought to be required [l]. We can imple-
ment watchpoints by having the SIC serve the same
function as the hardware instruction counter in [l].
The program execution is divided into intervals based
on the value of the SIC. At the start of each inter-
val the condition associated with the watchpoint is
evaluated. Whenever the condition is met, the con-
dition is known to occur during the previous inter-
val. By dividing that interval into sub-intervals and
restarting the process (possibly using checkpoints to
avoid reexecuting the whole program), the SIC could
be used to isolate the basic block where the condi-
tion is first satisfied. Single-stepping through this
interval would provide the exact instruction respon-
sible for the condition. A similar approach, based on
reexecuting previous intervals, could be used to im-
plement reverse execution. In both cases, the only
advantage attained by hardware support is that the
cost of maintaining the SIC (shown to be, on average,
less than 10% of the total execution time) does not
have to be paid.

4 Conclusions

Despite the lack of special hardware support, the soft-
ware community has managed to provide low-cost
tools for profiling and debugging. One problem that
has eluded solution is the ability to recognize the ex-
act state of a computation when a particular condi-
tion occurs, such as an asynchronous transfer of con-
trol or a watchpoint. We have described a reasonable-
cost solution, based on a software instruction counter,
that can be used to debug programs that allow asyn-
chronous exceptions, and to provide watchpoints and
reverse execution.

The cost metric for debuggers is typically assumed
to be the effect on execution time. Our experience
shows that by modifying compilers, assemblers, and
system routines, we can implement the required func-
tionality without an unreasonable impact on program
performance. A hardware instruction counter could
provide the same functionality without the need to
modify system software, however. Unlike other pro-
posed hardware features, such as the ability to trap
on access or update of a specific data location [8],
the tradeoff is not one of hardware cost versus func-
tion, but one of hardware cost versus software effort.
For the case of the hardware instruction counter, this
tradeoff should be taken into consideration by both
hardware designers and software developers.

5 Acknowledgments

The authors would like to thank Steve Colwell, who
performed some early experiments on branch count-
ing and helped implement a preiiminary version of
the assembly code instrumentation program.

References

PI

PI

[31

PI

T. Cargill and B. Locanthi. Cheap hardware
support for software debugging and profiling. In
Proc. of the 2nd International Conference on Ar-

chitectural Support for Programming Languages
and Operating Systems, pages 82-83, Palo Alto,
CA, Oct. 1987.

Digital Equipment Corporation. VAX Architec-
ture Handbook. Digital Equipment Corporation,
Maynard, MA, 1981.

I. J. P. Elshoff. A distributed debugger for
Amoeba. In Proc. of the SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debug-
ging, pages l-10, Madison, WI, May 1988.

R. Fowler, T. LeBlanc, and J. Mellor-Crummey.
An integrated approach to parallel program

85

debugging and performance analysis on large-
scale multiprocessors. In Proc. of the SIG-
PLAN/SIGOPS Workshop on Parallel and Dis-
tributed Debugging, pages 163-173, Madison,
WI, May 1988.

[5] R. B. Gardner. SPARC scalable processor archi-
tecture. SunTechnology, 1(3):42-55, 1988.

[6] S. Graham, P. Kessler, and M. McKusick. gprof:
A call graph execution profiler. In Proc. of
the SIGPLAN ‘82 Symposium on Compiler Con-
struction, pages 120-126. SIGPLAN notices, Vol
17, No. 6, June 1982.

[7] Hewlett-Packard. Precision architecture and In-
struction Reference Manual. Hewlett-Packard
Company, Rockville, MD, 1987.

[8] M. Johnson. Some requirements for architec-
tural support of software debugging. In Proc.
of the Symposium on Architectural Support for
Programming Languages and Operating Systems,
pages 140-148, Palo Alto, CA, Mar. 1982.

[9] T. J. LeBlanc and J. M. Mellor-Crummey. De-
bugging parallel programs with Instant Replay.
IEEE Transactions on Computers, C-36(4):471-
482, Apr. 1987.

[lo] R. McLear, D. Scheibelhut, and E. Tammaru.
Guidelines for creating a debuggable processor.
In Proc. of the Symposium on Architectural Sup-
port for Programming Languages and Operating
Systems, pages 100-106, Palo Alto, CA, Mar.
1982.

[ll] Motorola. 68020 B-bit Microprocessor User’s
Manual, Second Edition. Prentice Hall, Engle-
wood Cliffs, NJ, 1985.

[12] J. Moussouris, L. Crudele, D. Freitas, C. Hansen,
E. Hudson, R. March, S. Prxybylski, T. Riordan,
C. Rowen, and D. Van% Hof. A CMOS RISC
processor with integrated system functions. In
Proc. of the 1986 COMPCON. IEEE, Mar. 1986.

[13] S. S. Muchnick. Optimizing compilers for
SPARC. SunTechnology, 1(3):64-77, 1988.

[14] D. Z. Pan and M. A. Linton. Supporting reverse
execution of parallel programs. In Proc. of the
SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, pages 124-129, Madison,
WI, May 1988.

[15] R. Richardson. Dhrystone 2.1 benchmark.
Usenet Distribution, Dec. 1988.

[16] D. W. Wall and M. L. Powell. The Mahler ex-
perience: Using an intermediate language as the
machine description. In Proc. of the 2nd Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems,
pages 100-104, Palo Alto, CA, Oct. 1987.

[17] R. P. Weicker. Dhrystone benchmark: Rationale
for version 2 and measurement rules. SIGPLAN
Notices, pages 49-62, Aug. 1988.

86

