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1.  Introduction 

The difference between the greatly increasing rate of microprocessor performance and 

the relative minute increasing rate of memory system performance is allowing the processor-

memory performance gap to rapidly grow.  Therefore the memory performance bottleneck is 

increasing in magnitude. Prefetching could help relieve bottleneck pressure to memory system by 

overlapping long latency access operations with processor computation.  Rather than waiting for a 

miss to occur which may stall the processor, prefetching predicts those misses and issues fetches 

to memory in advance.  Therefore the prefetch can proceed in parallel with processor execution. 

Successful prefetching depends on two factors, accurate predicting the data objects to be 

referenced in near future and issuing prefetch operations in a timely fashion, sufficiently ahead of 

the demand for the data, so that the latency of the memory operation can be overlapped with 

useful computation. 

Automatic prefetching techniques have been developed for scientific codes that access 

dense arrays in tightly nested loops.  Static compiler analysis is employed to predict the program's 

data reference stream and insert prefetch instructions at appropriate points within program. 

However, the reference pattern of general purpose programs, which use dynamic, pointer-based 

data structures, is much more complex than scientific codes. Particularly the linked data structure 



(LDS), or called recursive data structure (RDS) such as linked lists, trees, and hashtables expose 

the pointer-chasing problem.  The pointer-chasing problem is only after an object is fetched from 

memory can the addresses of those objects pointed by it be computed. Therefore many times the 

prefetches for these objects cannot be computed in a timely manner.  Generally speaking static 

compiler analysis technique itself cannot solve the prefetch problem of a general-purpose 

program. The augment of runtime profiling information could help predict access patterns of 

general-purpose program and perform prefetch according to predicted access pattern. Current 

profiling-aided prefetching approach[15] focus on C/C++ language. Similar ideas could be 

applied to object-oriented Java language. 

Most Java programs invoke memory operations by referencing Java objects, while the 

granularity of memory accesses in hardware is at the word or cache-line level. Each object 

reference operation in Java actually involves a couple of memory fetch operations in low level, 

which could be treated as one prefetch unit. Therefore, prefetching at the Java object level can 

minimize the information needed to process, shrink the additional space overhead for prefetch, 

and improve runtime performance. 

This paper describes a dynamic framework for adaptively profiling of Java object 

reference stream, online detection and prediction of repetitive reference sequence. The rest of the 

paper is laid out as follows.  Section 2 describes other previous hardware and software 

prefetching schemes and how they relate to our prefetching approach.  Section 3 details the 4 

phases of our approach and discusses some of the issues of our approach.  Section 4 provides a 

brief overview of our methodology.  Section5 shows the results of our approach.  Finally section 

6 concludes the paper. 

 

2.  Related work 

Prefetching is a well-know technique to hide latency that causes from poor memory 

access performance. Software prefetching is where a programmer or automatic compiler tool 



instruments non-blocking load instructions into program, while hardware prefetching performs 

prefetching operations by extending hardware architecture and issuing load instructions in 

advance. 

Early prefetching techniques mainly focused on improving the performance of scientific 

codes with nested loops which access dense arrays.  For such regular codes, both software and 

hardware techniques exist[1].  Software techniques could use static compiler analysis to 

determine the data reference in future loop iterations and employ program transformation 

optimization such as loop unrolling or software pipelining.  Hardware approaches eliminate 

instruction overhead and compiler analysis by supporting the prefetch capability in hardware.  

Generally these techniques are limited to regular code and access patterns in programs. 

Jump pointers [5][8][9][14] are a software approach for prefetching linked data structures 

that overcomes the regular program limitation of stride prefetching.  Jump pointers can be 

classified as greedy based prefetching or history based prefetching. Basic greedy prefetching tries 

to overlap the latency of the prefetch for the next node in LDS, with all the work between two 

consecutive LDS access.  Derivative chain prefetching, a more advanced type of greedy 

prefetching, add pointers between non-successive nodes to launch prefetches.  Both ideas are 

based on assumption that once an object is accessed, the objects pointed by that object will be 

accessed in near future.  A limitation of these techniques is that their static analysis is restricted to 

regular linked data structures accessed by local regular control structures.  For example, the 

prefetching linearizion idea [4] cannot prefetch trees with a high branching factor.  Software data 

flow analysis [8][9] could help discover objects to prefetch, but that depends on regular control 

structures.  In contrast, our approach is not based on those assumptions and therefore has no such 

limitation. 

 

History pointer prefetching stores artificial jump-pointers in each object.  These jump pointers 

point to objects believed to be needed in the future based on the order of past traversals. Similar 



to our approach, they also depend on object reference information provided by previous 

execution. However, our approach only prefetches objects when a sequence of previous observed 

object reference occurs and not after a single object access.  

The data-linearizion prefetching [4] maps heap-allocated objects that are likely to be 

accessed close together in time into contiguous memory locations. However, because dynamic 

remapping can incur high runtime overheads and may violate program semantics, this scheme 

obviously works best if the structure of LDS changes very slowly. Cache conscious data 

placement [6] and memory layout reorganization optimization[7] also share the same weakness. 

In contrast, our algorithm works in an adaptive way, performs profiling work when misprediction 

rate is high, and perform actual prefetch operations only when misprediction rate is low and 

stable, therefore our approach can adapt to faster updates to the LDS. 

Various hardware techniques, related to greedy prefetching, have been proposed for 

prefetching linked data structures. In dependence-based prefetching[2], producer-consumer pairs 

of load instructions are identified and a prefetch engine speculatively traverses and prefetches 

them. The dependence idea is similar to our approach since both consider the correlations of 

neighboring load operations. However, it uses data dependence between instructions as 

information primitive while our approach treats the whole Java object as a prefetch unit, which 

will save the space of representation. Also our approach is software-only and doesn’ t need special 

hardware support.  

In dependence-graph precomputation[3], a backward slice of instructions in the 

instructions fetch window is used to choose a few instructions to execute speculatively to 

compute a prefetch address. It aims to compute out the prefetch address in advance. However, 

some prefetch address can be value-predicted without computation. Luk present a similar idea 

while he try to use software to control pre-execution. It needs hardware support such as 

simultaneous multithreading processors to generate its dependence graph dynamically. While our 

idea is software only. 



The hardware technique that best corresponds to history-pointers is correlation-based 

prefetching[10][11]. As originally proposed, it learns a diagram of a key and prefetch addresses: 

when the key is observed, the prefetch is issued. Joesph and Grunwald generalized this idea by 

using Markov predictor. Nodes in the Markov model are addresses, and the transition 

probabilities are derived from observed diagram frequencies. Upon a data cache miss to an 

address that has a node in the Markov model, prefetches for a fixed number of transitions from 

that address are issued. 

Chilimbi[15] provide a solution to software prefetching for general-purpose program. It 

works in three phases. First, profiling instructions are instrumented during runtime to collect data 

reference profile. Then a state machine is invoked to extract hot data streams, and system 

dynamically instrument code at appropriate points to detect those hot data streams and perform 

prefetch. After that, system enter the hibernation phase where no profiling or analysis is invoked 

and program continue to execute with added prefetch code. Their approach are thoroughly tuned 

to guarantee that profiling, analysis and profiling overhead can be offset by prefetching benefit. 

Both their approach and our approach choose runtime profiling to collect reference stream and 

use some algorithm to extract hot stream from profile data. They aims at C/C++ language while 

our approach work for Java language, and we choose Java object as a prefetch unit. 

 

3.  Our Approach 

Again, our approach is a purely software implementation focused on prefetching Java 

objects before they’ re needed.  Our algorithm can be split into four distinct phases of operation.  

These four phases are:  the Profile Application Phase (PA), the Prefetch Table Creation Phase 

(PTC), the Prefetch Object Phase (PO), and the Sleep Phase (ZZZ).   The first three phases are 

very similar to the three phases used in [15], while the sleep phase is an additional phase added to 

our approach.  The phase transition diagram is shown in figure 1.     



 

Figure 1:  Phase Transition Diagram of the Prefetch Module 

 

Prefetching prediction is enabled by on-line collecting and analyzing profiling data. A 

Prefetch Module is responsible to maintain all profiling and prefetching states. It will detect phase 

switch during program execution and make corresponding action by travelling in Phase 

Transition Diagram. 

The subsections 3.1-3.4 describe each phase in detail, while subsection 3.5 addresses some of the 

garbage collector issues with our approach. 

3.1  PA phase 

The profiling information collected during the PA phase is represented in a graph data 

structure.  In this graph each unique local object instance is represented by a separate node and 

each uni-directional edge connecting two nodes in the graph has a unique counter associated with 

it.  Every time a local object instance is referenced, the edge counter between the node 
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representing it and the node representing the previously referenced object is incremented.  Figure 

2b shows the graphical representation of the example object reference steam given by figure 2a.  

  

 

Figure 2:  Prefetch Table Creation 

3.2  PTC phase 

During the PTC phase, the information in the Profile Graph is analyzed and hot reference 

sequence is extracted to create the Prefetch Table.  The Prefetch Table is actually just a stripped 

down Hashtable where the keys are a sequence of one ore more object identifiers and the data 

returned is a set of pointers to the objects that should be prefetched.  The creation of the Prefetch 

Table is broken down to the following 3 steps: 

1. Remove all the edges in the Profile Graph that are below a certain threshold.  The 

threshold is carefully chosen so that all infrequent sequences of nodes don’ t expand the 



Prefetch Table with useless information while still guarantee that it won’ t lose any hot 

reference sequence.  For example figure 2c shows that all edges below the threshold of 2 

are removed from the graph in figure 2b. 

2. Search through the graph for the set (S) of all sequences with length X.  

X = k (key size) + d (prefetch distance) + p (prefetch group dimension) 

Therefore a sequence of length X encapsulates a long enough object reference stream so 

that when a sequence of k objects is observed matching the first k references of a stream 

from S, successful prefetches can be issued for the last p references of the stream.  The 

actual success rate of the prefetch is dependent on the temporal locality of the 

application’s object reference stream. The execution time of work preformed on the d 

intermediate nodes is equal to the system’s memory latency. 

3. Create a Prefetch Table entry for each sequence in the set S with the same first k object 

references.  The unique identifiers of the first k objects in the sequence are used as the 

key and pointers to the last p objects in the sequence indicate the objects to be prefetched.  

Note that multiple sequences can map to the same Prefetch Table entry.  Figure 2d shows 

an example where even if p = 1, there could be multiple objects prefetched by a single 

Prefetch Table access. 

3.3  PO Phase 

The actual prefetching of Java objects is performed in the PO phase.  The unique 

identifiers of the recent k objects are used as key to lookup into the Prefetch Table and retrieve 

the pointers to the objects to be prefetched.  Once the set of pointers has been retrieved from the 

Prefetch Table, the actual prefetch is performed by simply calling a basic touch() function for 

each object.  In addition to issuing prefetches, the Prefetch Module also compares the predicted 

object sequence to the actual referenced object sequence to determine the recent prediction 

accuracy.  This feedback mechanism allows the Prefetch Module to detect when the prefetch 

accuracy falls below a certain threshold (say 80% by default).  When the threshold is met, the 



Prefetch Module leaves the PO phase and reenters the PA phase as shown in figure 1.  However if 

the Prefetch Module does not have any success after repeated visits to the PO phase, the Prefetch 

Module enters the fourth phase of operation, the ZZZ phase. 

3.4  ZZZ Phase 

The ZZZ phase or Sleep phase is the phase where the Prefetch Module adds no noticable 

overhead to the application because it performs no prefetching or profiling operations.  Prefetch 

Module is only triggered to enter ZZZ phase when it experiences very low prediction accuracy 

for the last X (say 10 by default) visits, i.e., generating little to zero successfully predicted 

prefetches.  While in the ZZZ phase, the only state stored and maintained by the Prefetch Module 

is a counter of the number of object references.  Once the counter reaches a certain “wakeup”  

value, the Prefetch Module exits the ZZZ phase, resets all state, and enters the PA phase.  The 

“wakeup”  value needs to be sufficiently large enough to skip the possible phase in which the 

application shows no temporal locality in its object reference stream.  However the “wakeup”  

value needs to be sufficiently small enough so that it won’ t lose prefetching opportunity in case 

program execution reaches a different phase.  One can imagine the perfect “wakeup”  value for a 

particular application is nearly impossible to determine.  Currently we rather crudely chose the 

“wakeup”  value to be X object references.  Determining a better “wakeup”  value is a subject of 

future work. 

3.5  Garbage Collector Issues 

Java Virtual Machines, like Jikes, use a garbage collector to free memory after certain 

memory segments can no longer be used by the application.  The garbage collector determines if 

an application can still reach a segment of memory by detecting if the application still has any 

pointers to that particular segment.  Once the garbage collector detects that a memory segment is 

no longer reachable by the application’s pointers, that memory is added to the free stack so that it 

can be used again.  Our prefetching approach complicates this mechanism, because the Profile 

Graph and Prefetch Table save references to actual objects.  Therefore even after certain objects 



become unreachable by the application (i.e. by setting the pointers to those objects to null), some 

objects may still hold memory because the Profile Graph or Prefetch Table still contain pointers 

to those objects.  One may think that this could be a significant problem, but we give the 

following three reasons why it is not. 

1. Because each large Java object has a separate Prefetch Module associated with it, when 

the application resets the value of that java/util object, all the memory associated with 

that previous instantiation of the object including the Prefetch Module will be released to 

the garbage collector. 

2. When the Prefetch Module exits the PA and PO phases, it releases the previous 

instantiations of the Profile Graph and Prefetch Table respectively.  Therefore all the 

object pointers stored by the previous instantiations are removed as well. 

3. Inevitably the Java application using the prefetching java/util objects will have a higher 

memory demand than the Java application running with the naïve java/util objects.  

However the amount of extra memory demanded by our approach is limited by the length 

of the PO phase.  Because the PO phase only runs for a fixed number of cycles, the 

memory demanded by the Profile Graph and Prefetch Table data structures is limited. 

 

4.  Methodology 

We modified the Jikes RVM virtual machine [cite jikes] to implement our prefetching 

approach.  All of the code needed to support the algorithm of our approach is isolated to the 

java/util/ directory of the Jikes Java library.  Most of that code was used to create the additional 

Java objects that profiled the object reference stream.  Only very limited changes actually made to 

pre-existing Java util objects.  Currently we’ve integrated the Prefetch Module with the 

java/util/Hashtable, the java/util/HashMap, and the java/util/HashSet classes.  We believe the 

Prefetch Module could be easily integrated into other java/util/ classes such as the Vector, 

LinkLists, and Tree classes. 



We’ve tested the modified java/util/Hash*  classes with various microbenchmarks.  We plan to 

evaluate the Hash*  classes with those SpecJbb benchmarks that use the classes as well as TPC-W. 

 

5.  Performance Evaluation 

All the code described in this paper has been implemented and verified to work through 

the use of a microbenchmark.  We are currently in the process of collecting data from real 

benchmarks.  We plan to display data of the prediction accuracy, the amount of references spent 

in each phase, and the execution runtimes.  We would like to hear your suggestions of what other 

results we should include. 
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