Poking Holes in the Black Box:
An Investigation of Run-Time Kernel Performance Improvements

William C. Benton
Brian L. Bowers
Keith D. Noto
{willb,blbowers,noto}@cs.wisc.edu

May 2, 2002

Abstract

General-purpose operating systems expose an interface to hardware resources such as mem-
ory, disk, and network devices, and mediate access to the CPU. Well-designed general-purpose
operating systems export resources as instances of a fundamental abstractions with a set of
associated operations and well-defined semantics, such as the “everything is a file” concept
in UNIX. Operating system abstractions make life easier for application developers and allow
transparent access to a variety of resources, but can be inefficient and limiting. We examine a
variety of techniques which break the fundamental abstraction of an operating system to allow
adapability, extensibility, and high-performance, and evaluate the performance improvements

that they afford in several application domains.

1 Introduction

Since many applications are built upon a palimpsest of libraries, system services, and cooperating
processes, it is often difficult for users to see where their performance problems are coming from. The
performance of the most efficiently written user-level program can be adversely affected by poorly-
written or poorly-specialized libraries, software components, or system services. This problem of
layered inefficiencies is exacerbated by the fact that good software engineering practice encourages
developers to regard the implementation of an interface as a black box.

There are many ways that libraries and kernels can make well-meaning software inefficient,

including

e system calls that compute dead or redundant values or that are redundant in their effects

system calls that make unnecessary or unintended semantic guarantees
e unnecessary copying between user space and kernel space

e cxcessive context switch time

hiding any of the above beneath several layers of innocent-seeming interface

In this work, we aim to explore and expose the sources of some of these insidious software inef-
ficiencies, to explore the sorts of performance improvements that are possible if one is willing to

break interface boundaries, and to suggest a method for enabling these improvements dynamically.

2 Contributions of this research

We present an overview of foundational and current research into extensible, adaptive, and evolving
operating systems in section 3. This presents the reader with the state of the art in the field and
provides background for the problems we faced and the solutions we chose.

In section 4, we investigate the performance of representative applications from several domains:
e web proxy applications

e database servers

e graphical end-user productivity applications

Specifically, we examine the performance of the squid web proxy [?], the PostgreSQL database
server [?], the xpdf document viewer [?], and the popular Mozilla web browser [?]. We then discuss
our evaluation of high-performance audio applications under Linux, which are not as amenable to
our performance improvements as the other applications we examined.

We then, in section 5, evaluate the benefits of various improvement techniques which cross the

application /kernel boundary; these include:
e “macro-system calls”, or pushing application logic into the kernel
e specialized versions of system calls

e “semantics-driven cooperation” between application and kernel, or replacing one sequence of

calls with an equivalent, less expensive one

We base our evaluation on performance increases gained by applying these techniques statically to
representatives several application

Note that we deliberately do not develop a full-blown extension system for the kernel; we agree
with Peter Druschel [DPZ97] that, while extensible operating systems introduce many interesting
problems to solve, that time spent solving those problems does not solve the problems of operating
systems that seem to necessitate extensible systems in the first place.

We discuss our plans for future work in section 6 and conclude in section 7.

3 Related work

Systems and language researchers have, in the last few years, developed a number of orthogonal
approaches to building adaptive, extensible, and high-performance operating systems, as well as
a number of orthogonal approaches to solving some of the problems presented by modifying an
operating system’s behavior at run time. In this section, we present a taxonomy of the approaches
developed by various researchers, the constituent problems entailed by each approach, and the
solutions that various groups developed to solve those problems.

We examine adaptive, extensible, and high-performance systems together because we see them
as partners in a symbiotic relationship: an extensible system can be used to prototype or simulate
an adaptive system; a well-designed adaptive system in turn obviates some (but not all) of the neces-
sity of an extensible system. High-performance systems are relevant to our discussion because most
performance improvements! make nontrivial assumptions about application behavior — improve-
ments which benefit applications from one application domain might hinder those from another.
Furthermore, adding extra complexity to a kernel for a special case will likely hurt performance
in the general case, and vice versa. As a result, it seems beneficial to enable application-driven

performance improvements.

3.1 What kind of system?

The strongest distinction that we can initially draw is between projects that aim to improve a
commodity kernel and those that aim to improve a research kernel. This also introduces a key

conflict in operating systems research — the problem of POSIX/UNIX compatibility — which we

!Throughout this work, we use the expression “performance improvements” instead of the more common “opti-
mizations” because we are unwilling to imply that the result of several performance improvements is a system with
optimal performance.

‘ Based on commodity systems ‘ Based on research systems

1O-Lite Exokernel
Kernlnst SPIN
Synthetix

VINO

Figure 1: Some extensible and high-performance operating systems research projects, categorized
by whether they modify a commodity system or not.

will discuss shortly. Projects which operate on commodity systems have the benefit of running
“real applications” such as gcc, emacs, and the Apache web server; on the other hand, projects
which develop their own kernels are free from the shackles imposed by compatibility with an
existing system and its constituent problems: preéxisting, inflexible, general-purpose and inefficient
mechanisms and unnecessary interfaces. Figure 1 presents a classification of some existing systems
into these two categories.

We now examine the approaches of these systems briefly, beginning with those which modified

commodity systems:

e [O-Lite [PDZ00] was developed by Vivek Pai, Peter Druschel, and Willy Zwanenpoel at Rice
University. I0-Lite is a high-performance extension to BSD to allow zero-copying I/O with
immutable I/O buffers. Since much of the time spent servicing I/O requests in a traditional
UNIX system involves copying data from user space to kernel space and vice versa, 10-Lite
presented impressive performance gains. IO-Lite exposes zero-copying I/O to application
developers via special, nonstandard system calls. 10-Lite effectively offers users an end-run

around the semantics of I/O buffers provided by standard UNIX systems.

o Kernlnst [TM99a], developed by Ari Tamches and Bart Miller at Wisconsin, extends the
technique of dynamic program instrumentation [HMC94] to the Solaris kernel, allowing the
insertion of runtime-generated code at arbitrary points in the kernel. Tamches uses dynamic
instrumentation to tune applications which make incorrect assumptions about the perfor-
mance characteristics of Solaris [TM99b] and to improve the instruction-cache behavior of

hot routines in the Solaris kernel [Tam01].

o Synthetiz [PAB195], developed by a team lead by Calton Pu, integrates a partial evalua-
tor into the HP-UX kernel, to improve system performance by producing specialized ver-

sions of system calls. Partial evaluation has seen great effect in improving the performance

of ray-tracing systems [And96] and in effectively building specialized software components
[Vel99, CDPR98]. Those problem domains share a common concern with operating system
kernels: taking a general case (a ray-tracing function or a template for a routine) and reduc-
ing it to a special case (a function which traces a particular scene or a specialized routine)
while improving performance. Operating system kernels provide a general interface which
is unnecessarily complicated for most user-space applications; as a result, a wide range of
applications are possible, but every application pays a performance penalty for every special

case in every operating system service that it uses.

e VINO [SS94], developed by Christopher Small and Margo Seltzer at Harvard, presents an
extensible, preemptible UNIX-like kernel with fine-grained locking. VINO is based to some
degree on NetBSD, in that most of its device drivers and user-level tools are derived from
NetBSD code, and it is mostly UNIX-compatible. However, the core of VINO supports
uploading sandboxed extensions into the kernel, and VINO is also capable of self-modifying

and self-adapting to different workload types.

The projects that improve commodity systems demonstrate major improvements for real-world
applications. However, a committment to UNIX is, in many ways, an unnecessary set of shackles
for OS research. Several researchers, including Rob Pike [Pik00], have railed against the fact
that UNIX-centric projects still dominate the OS research field while arguably better ideas like
microkernels and capability-based systems have fallen into disuse. While this is true for OS research
in general, adaptive and extensible systems researchers have developed many non-UNIX-based
projects, since the unique requirements of dynamic extensibility and improvement are often in
conflict with the large monolithic designs of most UNIX systems. We now examine the projects

based on research OS designs.

e Exokernel [EKO95], developed by Dawson Engler and others from Frans Kaashoek’s PDOS
lab at MIT, takes the end-to-end approach [SRC84] to kernel design. The fundamental
assumption of Exokernel is that operating system abstractions of resources are irrelevant,
inflexible and wasteful; instead, the operating system should simply provide a way to allow
applications to concurrently access hardware safely. In this respect, the assumptions of the
Exokernel system are similar in spirit to the assumptions of the Synthetix system — that
operating systems attempt to provide general coarse functionality and application-specific

guarantees, instead of providing the building blocks for applications to make their own system

‘ Trusts extensions ‘ Does not trust extensions ‘ Does not have to trust extensions ‘

Linux Kernlnst VINO
SPIN PCC Exokernel

Figure 2: Some operating systems, categorized by their trust model for extension code.

functionality with application-specific semantics and guarantees. Of course, the approaches
each takes are quite different: Synthetix produces system calls with specialized semantics
and performance characteristics for different applications, while Exokernel provides a RISC-
like substrate for building meaningful coarse-grained system services at user level. Exokernel
actually has a functional UNIX compatibility layer at user level, which exists as a shared

library and can coexist with other higher-level OS functionality layers.

e SPIN [BCE'94], developed at the University of Washington, is a research system written in
Modula-3, a typesafe, high-performance language. Since a program developed in Modula-3
will have certain “good-behavior” properties — for example, it will have no buffer overflows,
misaligned reads, or pointer arithmetic — SPIN allows arbitrary users to upload arbitrary
extensions, written in Modula-3, to the kernel. SPIN applications, then, can run entirely in
user-space, entirely in kernel-space, or in some combination of both. SPIN also features a

Digital UNIX compatibility layer in user-space.

3.2 What kind of safety?

The major issue we examine is that of code safety. Systems that allow applications to dictate
or modify kernel policy or semantics must provide some means for guaranteeing that the changes
are safe, since a rogue extension which crashes a kernel will result in a crashed system. Various
systems take radically different approaches to this problem, which we categorize by what we see
as three different fundamental assumptions: “I trust extensions”, “I don’t trust extensions”, and
“I don’t have to trust extensions”. We summarize our categorization of these systems in Figure 2,

and examine each trust category in turn.

3.2.1 “I trust extensions”

Linux, like many modern UNIX systems, supports adding behavior to the kernel at runtime via
loading modules which can define additional functions in kernel space, define callbacks from kernel

events, and modify exported kernel symbols. This is the standard mechanism for adding device

drivers to a running system, but has also been used to modify kernel policy [BDO01, pp99] at run-
time. Because Linux modules are unsigned, unsafe assembly code (typically generated from a C
compiler), run in the kernel’s address space, and can modify kernel data, a faulty module can crash
the whole system. In this way, Linux is an example of why blindly trusting extensions is a recipe
for disaster.

SPIN, on the other hand, uses the safety guarantees provided by the Modula-3 language to
ensure that uploaded code cannot crash the kernel. In this way, it is analogous to the protection
model provided by the Pilot operating system [RDH'79], in which memory protection was obviated
by the fact that all user processes were implemented in the safe Mesa language. Obviously, a
mechanism which relies on language-level protections can be subverted simply by subverting the
language, but if a system administrator trusts the users of her system, language-based security is

adequate to ensure that well-meaning but faulty extensions cannot crash the system.

3.2.2 “I don’t trust extensions”

Kernlnst inserts machine code snippets into a running kernel. Since these snippets are generated by
the programmer (and since developing machine code is error-prone), they are by default untrusted.
Since these snippets are often quite small, their safety properties are statically analyzed before
insertion, using a method developed by Zhichen Xu [XMRO0O]. Static analyses of machine code are
quite expensive, so they are not suitable for whole-programs, but they are well-suited to snippets
that collect profile data or replace small functions.

An alternative solution to untrusted extensions is presented by George Necula and Peter Lee
in their implementation of proof-carrying code for kernel extensions [NL96]. Proof-carrying code
combines a program with an automatically-generated proof of its safety, and shares a major ad-
vantage with static analysis — because programs are verified before they are loaded, they have no
opportunity to put the system in an inconsistent state via a software fault. Furthermore, verifying
a proof is nontrivial, but is generally less expensive than proving properties about an unknown
binary. However, the major disadvantage of proof-carrying code is that it moves the boundary of
trust from the program which does the verification (the kernel) to the program which produces the
code (the compiler). Since there is no way to verify that a proof corresponds to a program without
doing an expensive (and possibly intractable) analysis of the program itself, to trust a program

based on its proof is also to trust the compiler that produces the code and proof — in this sense,

proof-carrying code is similar to language-based protection mechanisms.

3.2.3 “I don’t have to trust extensions”

We now examine two approaches which bypass the issue of whether or not to trust code; both
accomplish their aims by isolating the fault domain of the extension code. In this way, these
approaches are analogous to memory protection in modern operating systems: a rogue process
cannot crash another process. Likewise, isolation techniques aim to prevent an operating system
extension from damaging the rest of the system if it crashes. Just as an operating system makes
no attempt to verify safety properties of a program before running it, fault-isolated systems have
no need to verify extensions before loading them.

The VINO system loads “grafts”, or C++ extensions, into its address space at run-time. How-
ever, it sandboxes the code into its own isolated fault domain, so that it cannot alter other kernel
code. This approach allows untrusted code to run safely in the same address space as trusted code,
but at the cost of a performance penalty for loads and stores, to ensure that untrusted code does
not modify code or data in a different fault domain.

Exokernel, on the other hand, provides only the most basic hardware access as operating system
primitives; therefore, most of the services that are traditionally considered operating system services
run in user space as “library operating systems”, so they are as isolated as seperate user processes
in a traditional operating system. In fact, if a process installs its own library operating system on

top of the low-level Exokernel substrate, no other software failures will affect it.

4 Performance studies

In this section, we briefly introduce the applications we are benchmarking, discuss the performance
characteristics we observed in these applications and begin to discuss the approaches we take to

improve their performance.

4.1 The PostgreSQL database

PostgreSQL is an advanced object-relational database management system that has as its origins the

Ingres, Postgres and Postgres95 projects at Berkeley. PostgreSQL is the most advanced database

that is distributed as Free? software (under the BSD license), and is widely deployed in real-world
scenarios. Therefore, it is an ideal candidate for our tests.

Initial traces indicate that PostgreSQL spends a great deal of time on disk activity, network
activity over UNIX and TCP/IP domain sockets, and shared memory access.

Note to reviewers: Until recently (May 1), we were unable to collect profiling data
for multiprocess applications. We have since discovered an adequate multiprocess
profiler, vprof. Expect performance analyses at least as detailed as the squid analysis

in the final paper.

4.2 The squid proxy

Squid is a web proxy. As part of its operation, Squid must receive and cache numerous web pages,
saving them to disk for later reuse. The nature of a proxy application means that the files are all
transient, are accessed frequently, and are overwritten when evicted from the cache. Using strace
on Squid, we saw many occurrences of open-write-close system calls, providing evidence for this
intuition.

Our efforts to determine the amount of time spent using open-write-close were blocked by the
lack of a good multi-process profiler. Squid starts a main process then spawns a child process to
handle much of the real work.

We proceeded by generating synthetic benchmarks that use the same sequence of calls. Our
baseline code was take verbatim from Squid. With this baseline code, we generated some initial
costs of using open-write-close, an alternative open-mmap-memcpy-munmap-ftruncate-close, and
finally a smarter variation on open-write-close.

The current method for Squid uses the code below:

fd = open(name, O_TRUNC|O_WRONLY | 0_NONBLOCK) ;
write(fd, buffer, size);
close(fd);

We tested the Squid code against an mmap version, shown below:

fd = open(name, O_RDWR|O_NONBLOCK, 0644);
memPtr = mmap(O,
size,
PROT_READ | PROT_WRITE,

2We capitalize “free” to indicate that we refer to freedom, not monetary cost — for our purposes, the freedoms to
examine and modify the source code and to publish benchmarks are particularly significant.

inclusive | exclusive inclusive exclusive | function
% time | seconds | seconds | calls | seconds/call | seconds/call | name
74.42 | 542.86 542.86 1 542856.00 542856.00 | openWriteCloseTest
25.58 | 729.46 186.60 1 186604.00 186604.00 | mmapTest
0.00 | 729.47 0.01 1 12.00 729472.00 | main

Table 1: The first comparison of open-write-close and mmap

MAP_PRIVATE,

fd,
0);

memcpy (memPtr, buff, size);
munmap (memPtr, size);
close(fd);

Our testbed program contained two methods, one using the open-write-close sequence and one
using the open-mmap-memcpy-munmap-close sequence. The methods actually performed 10000

iterations of the sequences to get an aggregate time. The results, as drawn from hrprof, are shown

in table 1.

Saving % of the time for these sequences of calls seems promising. Unfortunately, a problem
arises when the amount of data to be written is larger than the current file size. Linux does not

let you mmap () more space than is available in the file; writing past the end of the file results in a

segmentation fault. We had to find a better way to get the job done.

We looked at three possible cases: the existing file is at least as large as the data to be written
(our method above works); the existing file is smaller than the data to be written; the file has no

space (a new file). We came up with a simple set of tests that would work correctly, as shown

below:

fd

open(name, O_CREAT|O_NONBLOCK|O_RDWR, 0644);

fstat(fd, &buf); /* buf is a struct stat object */
if (buf.st_size >= size) {
memPtr = mmap(O,

memcpy (memPtr, buffer, size);

size,

PROT_READ | PROT_WRITE,

MAP_PRIVATE,
fd,
0);

munmap (memPtr, size);
ftruncate(fd, size);
} else if (buf.st_size > 0) {
memPtr = mmap(O,

buf.st_size,

10

inclusive | exclusive inclusive exclusive function
% time | seconds | seconds | calls | seconds/call | seconds/call | name
70.04 | 802.44 802.44 1 802.44 802.44 writeTest
29.95 | 1145.59 343.15 1 343.15 343.15 mmapTest
0.00 | 1145.61 0.02 1 0.02 1145.61 main

Table 2: Wall times for the modified testbed

PROT_READ | PROT_WRITE,
MAP_PRIVATE,
fd,
0);
memcpy (memPtr, buffer, buf.st_size);
munmap (memPtr, buf.st_size);
lseek(fd, 0, SEEK_END);
write(fd, buffer + buf.st_size, size - buf.st_size);
} else {
write(fd, buffer, size);

}

Our modified testbed provided the run times shown in table 2,
which represent a significant time savings. But if mmapTest was using write() in some parts

of the execution, why didn’t it suffer as badly as writeTest? We decided that there must be a
hidden cost.

Using 0_TRUNC during open() forced the system to release any backing store that might have
been allocated for the file. When trying to write, even a small amount of data, more backing store
was allocated. Getting backing store would almost certainly be a disk operation, with the inherent
costs. Our test was comparing different costs - perhaps write() was the culprit, but we couldn’t
be sure.

We changed our setup to allow the normal write to use existing backing store when possible.
We removed the 0_TRUNC flag from the call to open() and added an ftruncate() when necessary

at the end of the original write, giving the code below:

fd = open(name, O_NONBLOCK|O_WRONLY, 0644);
write(fd, buffer, size);

ftruncate(fd, size);

close(fd);

Our results here, shown in table 3 were comparable to using mmap(), although mmap() still
required 8% to 10% less time than write(). The call to open(), thus, was the cause of the
observed inefficiency. This is consistent with the results observed by Tamches [TM99b] in his study

of squid.

11

inclusive | exclusive inclusive exclusive | function
% time | seconds | seconds | calls | seconds/call | seconds/call | name
52.12 | 396.32 396.32 1 396325.00 396325.00 | writeTest
47.88 | 760.39 364.06 1 364063.00 364063.00 | mmapTest
0.00 | 760.40 0.02 1 17.00 760405.00 | main

Table 3:

open

Results demonstrating the similar performance of write and mmap for a non-truncating

4.3 The Mozilla web browser

The results of our investigation into the Mozilla web browser (version 0.9.23) have been inconclusive.
We have examined a number of statistics from this program, including output from strace, gprof,
and hrprof (high-resolution profiling), but we have not yet identified any parts of the program
made inefficient through the use of system calls. It remains to be seen whether or not any of our
techniques will be applicable to this program as we continue our experiments.

Mozilla does have some curious statistics. Notably, 26.79% percent of time in a sample run was
spent on two calls to nsID: :Equals, the equality operator for a class.

We continue to investigate these results, and anticipate that the discovery of the

advanced profiler vprof will aid us to this end.

4.4 The xpdf document viewer

xpdf is display-bound — over 30 percent of its time is spent communicating with the X server.
We believe that there is room for improvement, as a comparable program, Adobe’s acroread, is
significantly faster.

We will quantify and discuss this further in the final paper.

4.5 Some high-performance audio applications

We investigated the performance of two high-performance digital audio workstation (DAW) appli-
cations: Ardour and ecasound. We had initially intended to also investigate the performance of
several software synthesis applications, but the overwhelming evidence is that those are unsuitable

for our performance improvements for two reasons:

3We deliberately choose a somewhat older version of Mozilla (the current version as of this writing is 1.0) in order
to have a relatively unoptimized application to discover performance enhancement opportunities in.

12

e To the best of our knowledge, all available synthesis applications deal in 16- or 32-bit stereo

samples at a frequency of between 22.05 khz and 96 khz. As a result, none are data-bound.

e Furthermore, because of the intensive computational power required for software synthesis,

software synthesizers are largely CPU-bound.

Unfortunately, the performance characteristics of the audio applications that we examined in-
dicate that they would not benefit from the sorts of improvements that we are investigating. The

main reasons for this are:

e The high-performance Linux sound drivers, available at http://www.alsa-project.org (ALSA
are the only drivers that support professional-grade multichannel audio hardware) enable

zero-copying audio 1/0.

e The popular higher-level Linux audio API (http://jackit.sf.net) is callback-based; as a result,
audio is produced and consumed synchronously. As a result, there are no queueing effects or

buffering issues.

We communicated with Ardour’s author, who claimed that kernel scheduling latency is a serious
issue for Linux audio; we were able to independently verify this assertion. However, implementing
a configurable scheduling policy for Linux is outside of the capabilities of our techniques as well
as outside of the scope of a single-semester project. Furthermore, there is no evidence that the
projects to provide low-latency scheduling and a preemptible kernel (we need citations here),
which improve the performance characteristics of high-performance real-time applications, interfere
with the performance of ordinary workstation computing. We are interested in investigating this
further (at least one of us is quite interested in audio), but do not feel that we can currently

contribute in this area.

5 Performance improvement evaluation

To be completed — we have a library interposer for squid that enables relaxed file
semantics with the current file access interface. We also have concrete solutions for
improving PostgreSQL, xpdf, and Mozilla, and are furiously implementing and mea-

suring them.

13

5.1 Improvements to squid

5.2 Improvements to Mozilla

5.3 Improvements to xpdf

5.4 Improvements to PostgreSQL

6 Future work

To be completed

7 Conclusion

To be completed

References

[AFG*97]

[And96]

[BCE*+94]

[BDO1]

[CDPRYS]

Marc A. Auslander, Hubertus Franke, Benjamin Gamsa, Orran Krieger, and Michael
Stumm. Customization lite. In Workshop on Hot Topics in Operating Systems, pages

43-48, 1997.

Peter Holst Andersen. Partial evaluation applied to ray tracing. In W. Mackens and S.M.
Rump, editors, Software Engineering im Scientific Computing, pages 78-85. Vieweg,
1996.

Brian N. Bershad, Craig Chambers, Susan J. Eggers, Chris Maeda, Dylan McNamee,
Przemyslaw Pardyak, Stefan Savage, and Emin Gun Sirer. SPIN - an extensible micro-
kernel for application-specific operating system services. In ACM SIGOPS European
Workshop, pages 68—71, 1994.

William C. Benton and Tao Di. An overview of FIDELIO, the Facility for Indetectable

Dynamic Event Logging and Intrusion Observance. 2001.

Loic Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Generic program-
ming by program composition (position paper). In Workshop on Generic Programming,

Marstrand, Sweden, 1998.

14

[DPZ97]

[EKOY5]

[FP93]

[HMC4]

[NL96]

[PABT95]

[PDZ99]

[PDZ00]

[Pik0O]

[pp99)]

Peter Druschel, Vivek S. Pai, and Willy Zwaenepoel. Extensible systems are leading OS
research astray. In Workshop on Hot Topics in Operating Systems, pages 3842, 1997.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exokernel: An operat-
ing system architecture for application-level resource management. In Symposium on

Operating Systems Principles, pages 251-266, 1995.

Kevin R. Fall and Joseph Pasquale. Exploiting in-kernel data paths to improve i/o
throughput and CPU availability. In USENIX Winter, pages 327-334, 1993.

Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program instru-
mentation for scalable performance tools. Technical Report CS-TR-1994-1207, Univer-
sity of Wisconsin, 1994.

George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In USENIX, editor, 2nd Symposium on Operating Systems Design and Implementation
(OSDI ’96), October 28-31, 1996. Seattle, WA, pages 229-243, Berkeley, CA, USA,
1996. USENIX.

Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye,
Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic incremental special-
ization: Streamlining a commercial operating system. In Proc. 15th ACM Symposium

on Operating Systems Principles, Copper Mountain CO (USA), 1995.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable
web server. In Proceedings of the USENIX 1999 Annual Technical Conference, pages
199-212, 1999.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. 10-Lite: a unified I/O buffering
and caching system. ACM Transactions on Computer Systems, 18(1):37-66, 2000.

Rob Pike. Systems software research is irrelevant. Presentation slides available from

www.cs.bell-labs.com /who/rob/, 2000.

“pragmatic/THC” (pseud.). (Nearly) Complete Linux Loadable Kernel Modules. Web
published at http://packetstorm.securify.com/docs/hack/LKM_HACKING.html, March
1999.

15

[RDH'79] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C.

[SESS96]

[SESS97]

[Sma9s|

[SRC84]

5594

[SS96]

[TamO1]

[TM99a)

[TMO99b)

[Vel99]

Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell. Pilot: An operating
system for a personal computer. In Proceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSP), pages 106-107, 1979.

Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Operating Systems Design and

Implementation, pages 213-227, 1996.

Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. Issues in

extensible operating systems. Technical Report TR-18-97, Harvard University, 1997.

Christopher Small. Building an FExtensible Operating System. PhD thesis, Harvard
University, Cambridge, MA, 1998.

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

Christopher Small and Margo I. Seltzer. VINO: An integrated platform for operat-
ing systems and database research. Technical Report TR-30-94, Harvard University,
Cambridge, MA, 1994.

Christopher Small and Margo 1. Seltzer. A comparison of OS extension technologies.

In USENIX Annual Technical Conference, pages 41-54, 1996.

Ariel Tamches. Fine-Grained Dynamic Instrumentation of Commodity Operating Sys-

tems. PhD thesis, University of Wisconsin, 2001.

Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation of com-
modity operating system kernels. In Operating Systems Design and Implementation,

pages 117-130, 1999.

Ariel Tamches and Barton P. Miller. Using dynamic kernel instrumentation for kernel
and application tuning. The International Journal of High Performance Computing

Applications, 13(3):263-276, Fall 1999.

Todd L. Veldhuizen. C++ templates as partial evaluation. In Partial Fvaluation and

Semantic-Based Program Manipulation, pages 1318, 1999.

16

[WBVE97] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Incorporating memory manage-
ment into user-level network interfaces. Technical Report TR97-1620, Cornell Univer-

sity, 2, 1997.

[XMRO0] Zhichen Xu, Barton P. Miller, and Thomas W. Reps. Safety checking of machine code.
In SIGPLAN Conference on Programming Language Design and Implementation, pages
70-82, 2000.

17

