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Abstract 

Compiler Directed Resizing is a method for resizing configurable structures in proces-

sors with the help of compiler.  Program behavior profiles are collected at the function 

call level and are then used to determine the correct size of the structure.  A hardware 

structure to detect the hot functions collects the pertinent information about them.  The 

runtime sys tem and the compiler use this information to insert the resizing instructions at 

appropriate locations.  With this scheme we are able to save 9% of the activity in the in-

struction fetch part of the processor. 

1  Introduction 
Energy (or power) eff iciency is becoming an increasingly important aspect of high performance 

processor design.  Techniques can be applied at the device, circuit, logic design, microarchitec-

ture, and compiler levels.  Eventually, innovations in all these areas will be required.  There are 

proposals for dynamically resizing the processor structures mainly [7,8,5,6] through hardware or 

through a small l ayer of software.  But the proposed technique are “trail and error” based.  That 

is, they do not look at the program behavior before resize the structures.  Our primary interest 

here is to demonstrate that compiler-directed resizing is feasible and should be explored further.  

Our approach is: profile the program while it is running and later, feed it back to the runtime sys-

tem and the dynamic compiler to recompile the program to include resource resizing instructions. 

We consider resizing the structures at the function call l evel.  First “hot” functions are lo-

cated with a function behavior buffer (see section )  Instructions to resize the structures, we con-
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sider, are added to the ISA.  These instructions are inserted in the prolog and epilog of the func-

tions.  Since in the prolog and epilog of every function there are spill s and fill s, we hope that by 

inserting the resizing instructions here, their overhead is not very pronounced.  We introduce spe-

cial instructions to resize the structure(s).  At the compiler level, it is unlikely that there will be a 

single technique for reducing energy consumption; rather there will li kely be a wide variety of 

methods, some of which are closely coupled with the underlying microarchitecture -- as has been 

the case with performance-enhancing features. 

 Our primary interest here is to reduce power in the instruction delivery portion of 

the processor.  In order to turn-off parts of units (such as the Issue Window slots) for a long time 

– on orders of 1 milli on committed instructions – a method to predict when to turn it off is 

needed.  Furthermore, to prevent performance loss it is necessary to predict accurately their turn-

on times.  Several research papers have proposed the implementations of multi -configuration 

units [Alper’s circuit design of the issue window, JIT] to dynamically turn-off the unnecessary 

portions of those units based on the application requirements. 

 The rest of the paper is organized as follows: Section 2 explores the architectural 

mechanisms that enable our research; Section 3 has the compiler support for our research; 

Figure 1: Pipeline control logic to dynamically limit the number of instructions in the processor. 
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Section 4 details our experimental environment and the results; and Section 5 summarizes 

our work. 

2 Architecture Support 

2.1 The reconfigurable processor 

2.2 Profiler Design 

Figure 2 is the design of the hot function detector/profiler.  The purpose of the hot function de-

tector is first to detect a hot function and second to profile the behavior of the hot function.  The 

profiler consists of two main components: the function behavior buffer (FBB) and the function ID 

stack (FIS).  The function behavior buffer consists of several info blocks.  Every info block has 

the following fields: 

• Tag:   the tag part of the function identifier. 

• Cycles:   a count of the number of cycles spent in the function. 

• Correct Branches: a count of the number of correct predicted branches in the function. 

• Mispredicted Branches: a count of the number of mispredicted branches in the function. 

• Data Cache Misses: number of data cache misses while in this function. 

• Data Cache Hits:  number of data cache hits while in this function. 

• Instruction Cache Misses: number of instruction cache misses while in this function. 

• Instruction Cache Hits: number of instruction cache hits while in this function. 

• Num Calls:  number of calls made to this function. 

 

The runtime system and the dynamic compiler use the information in the info block to detemine 

the value of MAXcount.  At every function call , the current function ID is pushed on the function 

ID stack.  Next, the PC of the next dynamic instruction – the first instruction of the function -- is 

assigned to current function ID.  Every cycle the cycles is incremented in the info block pointed to 

by the current function ID.  When, a branch is committed and the prediction is correct the correct 
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branch counter is incremented.  If that branch was mispredicted the mispredicted branches 

counter is incremented.  Hence with these two counters the misprediction rate can be derived.  

Similarly, the Instruction/Data Cache Hits/Misses are incremented when there are Instruc-

tion/Data Cache hits/misses.  Also there is a refresh timer, which is decremented every cycle.  

When the timer reaches its max the entries in the FBB are cleared.  A hot function is detected 

when the ratio of the cycles field of a function to the max value of the refresh timer is greater than 

the hot candidate ratio.  This is done in the hardware by monitoring the proper bit of the cycles 

field counter. 

2.3 New Instructions 

We add an instruction to change the value of MAXcount. To add the instruction, a new instruc-

tion was created in the PISA ISA [4].  The processor decoder was then modified to detect when 

this instruction enters the pipeline.  Furthermore, the Strata compiler was modified to insert this 

instruction based on the profiler data. Where to insert this instruction in the function is explained 

in section 3.2. 

3 Compiler Support 

Here we detail the compiler support for our research.  First the compiler determines the 

value of MAXcount (section 3.1), then it inserts the resizing instructions (section 3.2). 

Figure 2: Hot Function Detector 
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3.1 Determining the size of the resource (i.e MAXcount) 

To find out the optimal value of the number of instructions in the processor for a function, the 

instruction cache, data cache miss rates and, the branch misprediction rate are examined.  This is 

a fairly simple scheme, hence the overhead for doing this analysis in the compiler is low.  The 

miss rates and misprediction rate are calculated from the information contained in the FBB. 

3.2 Inserting the maxcnt instruction 

Recall , the maxcnt instruction must be inserted to incur as low overhead as possible.  

When a function is detect as “hot” , it can fall i nto two categories, as discussed before.  If 

it falls in category 1 – where the program spends lot of time in the hot function just after 

its first call – the instruction is inserted in the prologue and epilogue of the callee.  If the 

hot function accumulates the time in it over many calls the runtime system traverses 

through the calli ng history and inserts the instruction in the caller.  We do this because 

we do not want the overhead of the maxcnt instruction to show up everytime the hot 

function is called.  

4 Experimental Evaluation 

4.1 Methodology 

The Strata compiler and the underlying architecture were enhanced to support a model of 

the proposed architecture.  The SPEC JVM 98 benchmarks were used.   

4.2 Results and Analysis 

Figure 3 has the Normalized Activity averaged over all benchmarks for the instruction 

cache accesses.  The compiler directed scheme does worse among all the scheme, but it is 

not extremely poor; with a littl e bit of tuning it can be improved. 
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5 Summary 

Although we have not shown the compiler directed resizing as a clear winner.  Its energy 

savings are very close to those of the other schemes.  Furthermore, it does not have the 

complexities like AIQ.  AIQ puts its fingers in the issue queue, this can slow down the 

processor and degrade the overall performance.  Our scheme is a non-intrusive way of 

reducing the energy. 
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Figure 3: Normalized Activity for ICache Accesses 
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