
 1

Energy Reduction through Compiler Directed Resizing
of Configurable Structures

Tejas Karkhanis

Abstract

Compiler Directed Resizing is a method for resizing configurable structures in proces-

sors with the help of compiler. Program behavior profiles are collected at the function

call level and are then used to determine the correct size of the structure. A hardware

structure to detect the hot functions collects the pertinent information about them. The

runtime sys tem and the compiler use this information to insert the resizing instructions at

appropriate locations. With this scheme we are able to save 9% of the activity in the in-

struction fetch part of the processor.

1 Introduction
Energy (or power) eff iciency is becoming an increasingly important aspect of high performance

processor design. Techniques can be applied at the device, circuit, logic design, microarchitec-

ture, and compiler levels. Eventually, innovations in all these areas will be required. There are

proposals for dynamically resizing the processor structures mainly [7,8,5,6] through hardware or

through a small l ayer of software. But the proposed technique are “trail and error” based. That

is, they do not look at the program behavior before resize the structures. Our primary interest

here is to demonstrate that compiler-directed resizing is feasible and should be explored further.

Our approach is: profile the program while it is running and later, feed it back to the runtime sys-

tem and the dynamic compiler to recompile the program to include resource resizing instructions.

We consider resizing the structures at the function call l evel. First “hot” functions are lo-

cated with a function behavior buffer (see section) Instructions to resize the structures, we con-

 2

sider, are added to the ISA. These instructions are inserted in the prolog and epilog of the func-

tions. Since in the prolog and epilog of every function there are spill s and fill s, we hope that by

inserting the resizing instructions here, their overhead is not very pronounced. We introduce spe-

cial instructions to resize the structure(s). At the compiler level, it is unlikely that there will be a

single technique for reducing energy consumption; rather there will li kely be a wide variety of

methods, some of which are closely coupled with the underlying microarchitecture -- as has been

the case with performance-enhancing features.

 Our primary interest here is to reduce power in the instruction delivery portion of

the processor. In order to turn-off parts of units (such as the Issue Window slots) for a long time

– on orders of 1 milli on committed instructions – a method to predict when to turn it off is

needed. Furthermore, to prevent performance loss it is necessary to predict accurately their turn-

on times. Several research papers have proposed the implementations of multi -configuration

units [Alper’s circuit design of the issue window, JIT] to dynamically turn-off the unnecessary

portions of those units based on the application requirements.

 The rest of the paper is organized as follows: Section 2 explores the architectural

mechanisms that enable our research; Section 3 has the compiler support for our research;

Figure 1: Pipeline control logic to dynamically limit the number of instructions in the processor.

Stop fetch if
instruction count >= MAXCOUNT

Decode
Pipeline

Instruc
tion

Cache

Issue
Windo

w

Re-order Buffer

INSTRUCTION
COUNT

MAXCOUNT

compare

Execution
Units

Instruction
fetch

gating

decrement on
commitIncrement on fetch

Commit

 3

Section 4 details our experimental environment and the results; and Section 5 summarizes

our work.

2 Architecture Support

2.1 The reconfigurable processor

2.2 Profiler Design

Figure 2 is the design of the hot function detector/profiler. The purpose of the hot function de-

tector is first to detect a hot function and second to profile the behavior of the hot function. The

profiler consists of two main components: the function behavior buffer (FBB) and the function ID

stack (FIS). The function behavior buffer consists of several info blocks. Every info block has

the following fields:

• Tag: the tag part of the function identifier.

• Cycles: a count of the number of cycles spent in the function.

• Correct Branches: a count of the number of correct predicted branches in the function.

• Mispredicted Branches: a count of the number of mispredicted branches in the function.

• Data Cache Misses: number of data cache misses while in this function.

• Data Cache Hits: number of data cache hits while in this function.

• Instruction Cache Misses: number of instruction cache misses while in this function.

• Instruction Cache Hits: number of instruction cache hits while in this function.

• Num Calls: number of calls made to this function.

The runtime system and the dynamic compiler use the information in the info block to detemine

the value of MAXcount. At every function call , the current function ID is pushed on the function

ID stack. Next, the PC of the next dynamic instruction – the first instruction of the function -- is

assigned to current function ID. Every cycle the cycles is incremented in the info block pointed to

by the current function ID. When, a branch is committed and the prediction is correct the correct

 4

branch counter is incremented. If that branch was mispredicted the mispredicted branches

counter is incremented. Hence with these two counters the misprediction rate can be derived.

Similarly, the Instruction/Data Cache Hits/Misses are incremented when there are Instruc-

tion/Data Cache hits/misses. Also there is a refresh timer, which is decremented every cycle.

When the timer reaches its max the entries in the FBB are cleared. A hot function is detected

when the ratio of the cycles field of a function to the max value of the refresh timer is greater than

the hot candidate ratio. This is done in the hardware by monitoring the proper bit of the cycles

field counter.

2.3 New Instructions

We add an instruction to change the value of MAXcount. To add the instruction, a new instruc-

tion was created in the PISA ISA [4]. The processor decoder was then modified to detect when

this instruction enters the pipeline. Furthermore, the Strata compiler was modified to insert this

instruction based on the profiler data. Where to insert this instruction in the function is explained

in section 3.2.

3 Compiler Support

Here we detail the compiler support for our research. First the compiler determines the

value of MAXcount (section 3.1), then it inserts the resizing instructions (section 3.2).

Figure 2: Hot Function Detector

push pop

Function
ID Stack

Func ID
Info BlockCurrent

Function ID

Function
Info Buffer

 5

3.1 Determining the size of the resource (i.e MAXcount)

To find out the optimal value of the number of instructions in the processor for a function, the

instruction cache, data cache miss rates and, the branch misprediction rate are examined. This is

a fairly simple scheme, hence the overhead for doing this analysis in the compiler is low. The

miss rates and misprediction rate are calculated from the information contained in the FBB.

3.2 Inserting the maxcnt instruction

Recall , the maxcnt instruction must be inserted to incur as low overhead as possible.

When a function is detect as “hot” , it can fall i nto two categories, as discussed before. If

it falls in category 1 – where the program spends lot of time in the hot function just after

its first call – the instruction is inserted in the prologue and epilogue of the callee. If the

hot function accumulates the time in it over many calls the runtime system traverses

through the calli ng history and inserts the instruction in the caller. We do this because

we do not want the overhead of the maxcnt instruction to show up everytime the hot

function is called.

4 Experimental Evaluation

4.1 Methodology

The Strata compiler and the underlying architecture were enhanced to support a model of

the proposed architecture. The SPEC JVM 98 benchmarks were used.

4.2 Results and Analysis

Figure 3 has the Normalized Activity averaged over all benchmarks for the instruction

cache accesses. The compiler directed scheme does worse among all the scheme, but it is

not extremely poor; with a littl e bit of tuning it can be improved.

 6

5 Summary

Although we have not shown the compiler directed resizing as a clear winner. Its energy

savings are very close to those of the other schemes. Furthermore, it does not have the

complexities like AIQ. AIQ puts its fingers in the issue queue, this can slow down the

processor and degrade the overall performance. Our scheme is a non-intrusive way of

reducing the energy.

6 Acknowledgement

The author would li ke to thank Timothy Heil and Subbu Sastry for the many enlightening discus-

sions and their help with the Strata infrastructure.

7 Reference:

[1] Daniele Folegnani and Antonio González, “Reducing Power Consumption of the Issue Logic,” Proc. of

the Workshop on Complexity-Effective Design held in conjunction with ISCA 2000, June 10, 2000.

[2] Alper Buyuktosunoglu, et. al, “A Circuit Level Implementation of an Adaptive Issue Queue for Power-

Aware Microprocessors,” Proc. of the on Great lakes Sym. on VLSI, pp. 73-78, 2001.

Figure 3: Normalized Activity for ICache Accesses

ICache Accesses

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Base Oracle AIQ PG Compiler JIT

N
o

rm
al

iz
ed

 A
ct

iv
it

y

Idle

Stalled Flushed

Active Flushed

Stalled Used

Active Used

 7

[3] A. Klaiber, “The Technology Behind Crusoe Processors,” Transmeta Technical Brief,

http://www.transmeta.com/dev, Jan. 2000.

[4] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” University of Wisconsin-

Madison Computer Sciences Department Technical Report #1342, June 1997.

[5] A. Baniasadi, and A. Moshovos, “ Instruction flow-based front end throttling for Power-Aware High-

Performance Processors,” Proc. of International Symposium on Low Power Electronic Devices, Aug.

2001.

[6] Personal Communication with Alper Buyuktosunoglu, Nov. 2001.

[7] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating: Speculation Control for Energy Reduction,”

International Symposium on Computer Architecture, Barcelona, Spain, June 1998.

[8] R. Balasubramonian, et. al, “Memory Hierarchy Reconfiguration for Energy and Performance in Gen-

eral-Purpose Processor Architectures,” 33rd International Symposium on Microarchitecture, pp. 245-

257, December 2000.

[9] M. Gowan, L. Biro, and D. Jackson, “Power Considerations in the Design of the ALPHA 21264 Micro-

processor,” Design Automation Conference, pp. 726-731, 1998.

[10] E. Jacobsen, et. al, “Assigning Confidence to Conditional Branch Prediction,” International Sympo-

sium on Microarchitecture, pp. 142-152, Dec. 1996

[11] Anderson et al., “Physical design of a fourth-generation POWER GHz microprocessor,” ISSCC 2001

Digest of Tech. Papers, Feb. 2001, p. 232.

[12] M. Merten, et. al., “ ”

[13] E. Rohou, et. al, “Dynamically Managing Processor Temperature and Power” ,

[14] S. Savari,et. al, “Comparing and Combining Profiles” ,

[15] R.Barnes, et. al, “Feedback Directed Data Cache Optimizations for the X86” ,

[16] A. Sodani, et. al, “An Empirical Analysis of Instruction Repetition” ,

[17] M. Merten, et. al, “A Hardware-Driven Profili ng Scheme for Identifying Program Hot Spots to Sup-

port Runtime Optimization” , International Symposium on Computer Architecture, May 1999.

[18] Personal Communication with Timothy Heil , April 2002.

[19] Personal Communication with Subbu Sastry, April 2002.

