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Abstract

Compiler Directed Resizing is a method for resizing configurable structures in proces-
sors with the help of compiler. Program behavior profiles are collected at the function
call level and are then used to determine the correct size of the structure. A hardware
structure to detect the hot functions collects the pertinent information about them. The
runtime sys tem and the compiler use this information to insert the resizing instructions at
appropriate locations. With this scheme we are able to save 9% of the activity in the in-

struction fetch part of the processor.

1 Introduction
Energy (or power) efficiency is becoming an increasingly important asped of high performance

processor design. Tedhniques can be gplied at the device, circuit, logic design, microarchitec-
ture, and compiler levels. Eventualy, innovations in all these aeas will be required. There ae
propacsals for dynamicdly resizing the procesor structures mainly [7,8,5, through hardware or
through a small layer of software. But the proposed technique ae “trail and error” based. That
is, they do nd look at the program behavior before resize the structures. Our primary interest
here is to demonstrate that compil er-direded resizing is feasible and shoud be explored further.
Our approad is; profil e the program whil e it is running and | ater, feal it bad to the runtime sys-
tem and the dynamic compil er to recompil e the program to include resource resizing instructions.

We mnsider resizing the structures at the functioncdl level. First “hot” functions are lo-

caed with afunction behavior buffer (seesedion) Instructions to resize the structures, we on-
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Figure 1: Pipeline control logic to dynamically limit the number of instructionsin the processor.

sider, are added to the ISA. These instructions are inserted in the prolog and epil og of the func-
tions. Sincein the prolog and epil og of every function there ae spill s and fill s, we hope that by
inserting the resizing instructions here, their overheal is not very pronourced. We introduce spe-
cia instructions to resize the structure(s). At the compiler level, it is unlikely that there will be a
single technique for reducing energy consumption; rather there will li kely be awide variety of
methods, some of which are dosely couded with the underlying microarchitedure -- as has been
the cae with performance-enhancing feaures.

Our primary interest here isto reduce power in theinstruction celivery portion o
the processor. In order to turn-off parts of units (such as the Issue Window slots) for along time
— on orders of 1 milli on committed instructions — a method to predict when to turn it off is
nealed. Furthermore, to prevent performancelossit is necessary to predict acarately their turn-
on times. Severa reseach papers have proposed the implementations of multi-configuration
units [Alper’s circuit design of the isaue window, JIT] to dynamicdly turn-off the unrecessary
portions of thase units based onthe gopli cation requirements.

The rest of the paper is organized as foll ows. Sedion 2 explores the achitedural

mechanisms that enable our reseach; Sedion 3 has the compil er suppat for our reseach;




Sedion 4 detail s our experimental environment and the results; and Sedion 5 summarizes

our work.

2 Architecture Support

2.1 Thereconfigurable processor

2.2  Profiler Design

Figure 2 is the design of the hat function detedor/profiler. The purpose of the hot function de-
tector isfirst to deted a hot function and secondto profil e the behavior of the hot function. The
profiler consists of two main comporents:. the function behavior buffer (FBB) and the function 1D

stack (FIS). The function behavior buffer consists of several info blocks. Every info block has

the following fields:

e Tag: the tag part of the function identifier.
e Cycles: a oount of the number of cycles gent in the function.
 Correct Branches: a oount of the number of corred predicted branches in the function.

» Mispredicted Branches: a munt of the number of mispredicted branchesin the function.
» Data Cache Misses: number of data cadie misses while in this function.

* Data Cache Hits: number of data cade hits while in this function.

¢ Instruction Cache Misses: number of instruction cace misses while in this function.

* Instruction Cache Hits:  number of instruction cade hits whil e in this function.

* NumCalls: number of cdls made to this function.

The runtime system and the dynamic compil er use the informationin the info block to detemine
the value of MAXcourt. At every functioncdl, the current function ID is pushed onthe function
ID stack. Next, the PC of the next dynamic instruction— the first instruction d the function -- is
assgned to current function ID. Every cycle the cyclesisincremented in the info block pointed to

by the current function ID. When, a branch is committed and the predictionis corred the correct
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Figure 2: Hot Function Detector

branch counter is incremented. If that branch was mispredicted the mispredicted branches
counter is incremented. Hence with these two counters the misprediction rate can be derived.
Similarly, the Instruction/Data Cache HitgMisses are incremented when there are Instruc-
tion/Data Cache hits/misses. Also there is a refresh timer, which is decremented every cycle.
When the timer reaches its max the entries in the FBB are cleared. A hot function is detected
when the ratio of the cyclesfield of afunction to the max value of the refresh timer is greater than
the hot candidate ratio. Thisis done in the hardware by monitoring the proper bit of the cycles

field counter.

2.3 New Instructions

We add an instruction to change the value of MAXcount. To add the instruction, a nhew instruc-
tion was created in the PISA ISA [4]. The processor decoder was then modified to detect when
this instruction enters the pipeline. Furthermore, the Strata compiler was modified to insert this
instruction based on the profiler data. Where to insert this instruction in the function is explained

in section 3.2.

3 Compiler Support
Here we detail the compiler support for our research. First the compiler determines the

value of MAXcount (section 3.1), then it inserts the resizing instructions (section 3.2).



3.1 Determining the size of the resource (i.e MAXcount)

To find ou the optimal value of the number of instructions in the processor for a function, the
instruction cade, data cade missrates and, the branch misprediction rate ae examined. Thisis
afairly simple scheme, hence the overheal for doing this analysis in the compiler islow. The

missrates and misprediction rate ae cdculated from the information contained in the FBB.

3.2 Inserting the maxcnt instruction

Recdl, the maxcnt instruction must be inserted to incur as low overheal as possble.
When afunctionis deted as “hat”, it can fall into two categories, as discussed before. If
it falls in caegory 1 — where the program spends lot of time in the hat function just after
itsfirst cdl — the instruction is inserted in the prologue and epil ogue of the cdlee If the
hat function acaimulates the time in it over many cdls the runtime system traverses
through the cdling history and inserts the instruction in the cdler. We do this becaise
we do nd want the overhead of the maxcnt instruction to show up everytime the hot

functionis cdled.

4 Experimental Evaluation

4.1 Methodology

The Strata compil er and the underlying architedure were enhanced to suppat a model of

the propaosed architedure. The SFEC JVM 98 benchmarks were used.

4.2 Results and Analysis

Figure 3 has the Normalized Activity averaged over al benchmarks for the instruction
cade access. The compiler direded scheme does worse anong al the scheme, bu it is

not extremely poar; with alittl e bit of tuning it can be improved.
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Figure 3: Normalized Activity for 1 Cache Accesses

5 Summary

Although we have nat shown the compil er direded resizing as a dea winner. Its energy
savings are very close to those of the other schemes. Furthermore, it does nat have the
complexities like AlQ. AIQ puts its fingers in the issue queue, this can slow down the
procesor and degrade the overal performance Our scheme is a norrintrusive way of

reducing the energy.
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