
A Tool to Identify Time-Shifted Regions

Venkatraman Govindaraju

Abstract

Time-shifted modules can improve the performance of the programs significantly [7]. However, manually finding the time-shifted modules in a large program is a tedious process. This paper presents a tool that automates the process of identifying the time-shifted modules from a sequential program. It identifies not only modules that can be time-shifted, but also regions (window) that can be potentially time-shifted.

1. Introduction

The advent of thread level parallelism using chip multi-processing (CMP) and simultaneous multi-threading (SMT) reduces the cost of thread synchronization and communication significantly. But, the development of efficient and correct parallel software to use these threads remains a difficult and error prone task because of the increase in program complexity. Hence, researchers have been exploring these threads to get more parallelism from the sequential programs. The most popular forms of thread level parallelism are module-level and loop-level. But the process of identifying the correct procedure or loop that can be run parallel is a difficult task. To solve the problem, the procedures and loops are extracted from the sequential program and run in a separate thread speculatively. If the thread violates any inherent data dependency of the program, then the recovery mechanism is used to restore the machine state and restarts the thread in a way that it respects the sequential semantics of the program. If these data dependency violations occur frequently, it will decrease the performance of the program drastically.

Alternatively, [7] suggests that there is a fine grain of parallelism exists in large general-purpose programs due to their modular nature. It exploits this parallelism either by deferring some of the computation later (time-shifted later) or executing some of the computation earlier (time-shifted earlier) without violating the semantics of the sequential program. The main drawback of this approach is its applicability. This technique is restricted to only modules that have limited interactions with other modules. Also, the programmer has to understand the entire program before identifying the modules that can be time-shifted. 

This paper presents a tool that automates the process of identifying the modules that can be time-shifted as a result of profile-driven feedback. This tool not only identifies procedures that can be potentially time-shifted but also regions that can be potentially time-shifted.
In the next section, the overview of the tool is described. Section 3 describes the design of the tool in detail. Section 4 describes the implementation of the tool in Jikes. Section 5 describes the experiments to find the effectiveness of the tool. Section 6 discusses the related work and section 7 concludes.

2. Overview of the Tool

This tool uses the profile information of the load and store instructions to identify those regions that can be potentially time shifted. It consists of two modules: instrumentation module and Analysis module. The instrumentation module instruments the load and store instructions in the program and stores the address accessed by those instructions. The Analysis module analysis the profile information and identify the time-shifted regions if they exist in the program. 

The programmer first runs the instrumentation module of the tool on the program to obtain the instrumented program that will generate the load and store instruction information. Then the instrumented program is then executed with some sample input. The analysis module will then analyze the profiled information and identify the regions that can be potentially time-shifted. The information about the time-shifted modules can be used by programmer to identify the time-shifted regions or used to hint the compiler to generate efficient speculative threads.

3. Design of the Tool

Time shifted modules enable concurrency by executing the time-shifted region code with the main thread. In order to preserve the correct semantics of the sequential program, the side effects of the time-shifted region should not affect the region of code that run in parallel with the time-shifted region. Also, the latency to execute the time-shifted code should be comparable with the overhead of thread creation and synchronization.

3.1. Conditions for Time-shifted Regions

Assume the codes in region A and the codes in region B are executed in sequential order in the original program. In order to time-shift the region B earlier, they should satisfy the following conditions: 

1. There is no data dependence between the code in region A and code in region B.

2. The latency of region A should be greater than that of the thread creation and synchronization.

If there is data dependence between the regions A and the region B, then the instruction in region B that depend on the instruction in region A should wait until the instruction in region A execute. This will prevent the region B to be executed earlier than the code in region A. If the latency of region A is less than the time to create a thread creation and synchronization, then it will decrease the overall speed of the program.

In order to time-shift the region A later, they should satisfy the following conditions:

1. There is no true data dependence between the code in region A and code in region B.

2. At least one of the regions latency should be greater than that of the thread creation and synchronization. 
If the code in region A generates a value that is needed by the code in region B, then only the violations occurred. If the region A uses an address that is generated by the code in region B will not change the semantics of the sequential program. At least one of regions latency is greater than that of thread creation and synchronization then it will increase the performance of the program. 

3.2. Instrumentation Module

In order to find whether the side effects of region A affects region B or vice versa, the instrumentation module instruments the load and store instructions in the program. The instrumented version of the program will generate the series of load and store address information for the sample input. The load/store address profile will also keep track of which procedure and instruction that generates the address.

3.3. Analysis Module

A graph (LSGraph) is constructed from the profile information to simplify the process of identifying the time-shifted regions. The Load store graph node consists of a pointer to next node that represents the sequence of the events, a def-use chain pointer for the address, latency between the def and use, and the information about the procedure and instruction that generates the address.

Once the graph is constructed, the analyzer will find the regions that satisfy the time-shifted conditions described in section 3.1. It will first consider the procedure boundaries or the loop boundaries as the boundaries for a valid region, and try to validate the region. If the region violates the data dependence condition, then the tool will adjust the boundary of the region such that the instruction that violates the data dependence condition will move to the same region as its def or use node. It iteratively tries to find the boundary of region that satisfies both latency condition and data dependence condition. If the latency condition fails, it moves to next region in the dynamic trace. If a region is identified as time-shifted region, then the tool stores the region boundary information. Finally, the tool maps the valid region to the static program and identifies the regions that can be time-shifted in the static program.

A high-level algorithm used by the analysis module.

Input: LSG: LSGraph of the program P

RegionA, regionB, originalB: LSGraph

/*get the subgraph for next region: procedure or loop */

regionA := getNextRegion(LSG) 

while (LSG.hasNext()) {


found = false

(originalB,regionB) = getNextRegion(LSG)

while (found == false && LatencyCondition(A, B) == true) {

if (DataDepCondition(A,B) == false) {



AdjustRegionBoundary(A,B) 

} else {


found = true 

}

}

if (found == true) {


storeValidRegions(regionA, regionB)


regionA = regionB

} else {

regionA = originalB


}

}

4. Implementation Details

In this section, we present the implementation details of the tool. This tool is implemented in IBM Jalapeno JVM (Jikes). To simplify the implementation of the tool in Jikes, the following are assumed:

1. The number of instruction is used to measure the latency of the region and the overhead of the thread creation and synchronization.

2. The procedures that are called from the program are instrumented.

3. HIR level instrumentation is sufficient for Load and store profiling

The profiler is implemented as a new optimization phase at HIR level optimization plan. Since, it profiles the address of load and store instruction instead of just counting the number of load and store instruction, a new event manager is implemented. This new manager is responsible for managing the mapping between the events (load and store) and the procedure/loops. It is also the placeholder for the LSGraph of the program. After the program is executed with sample input, the LSGraph is analyzed in the report() function of the manager and generate the report.

5. Experiments and Results


<Results are not available yet. >

6. Related Work

There has been extensive study in functional languages to automatically extract task-level parallelism from sequential programs [2]. The time-shifted modules that exploit the module-level parallelism in imperative languages are studied by [7]. It showed that if properly implemented, the programs could be sped up by an average of 30%.

When threads are extracted at procedure-level and loop-level and run speculatively on a ideal speculative thread-level parallelism model (STP), it improves the performance of the program significantly [5]. But if the data dependence violations occurred frequently, it will severely impact the performance of the program [6]. Instead of finding the parallelism automatically and improve the performance of the program by avoiding data dependence violation, value prediction [3] is used to reduce data dependence violations in STP model.

There have been extensive studies to derive the instruction parallelism from the sequential programs using data dependence analysis and thereby increasing the performance by instruction scheduling [4]. Although there have been lot of literature available to derive parallelization from sequential programs, they are either restricted to loops or intra-procedural. Since, the approach in the paper derive the parallelism from dynamic trace, it has potential to find more parallelism from sequential program than a static analysis.

7. Conclusion

In this project, we constructed a tool that identify the regions in a sequential program that can be time-shifted. The tool consists of tow modules: instrumentation module, which instruments the program and analysis module, which construct the LSGraph and identify the regions that can be potentially time-shifted. 

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine. IBM System Journal, 39(1), February 2000.

[2] K. Hammond. Parallel Functional Programming: An Introduction. In First International Symposium on Parallel Symbolic Computation (PASCO’94), Sept.1994.

[3] M.H. Lipasti, C.B. Wilkerson and J.P. Shen. Value Locality and Load Value Prediction. Proceedings of the Seventh International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII), pp. 138-147, Cambridge, MA, Oct 1996.

[4] S. Muchnick Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997. ISBN 1-55860-320-4.

[5] J.T. Oplinger, D.L. Heine, M.S. Lam. In Search of Speculative Thread-Level Parallelism. In Proceedings of the 1999 International Conference on Parallel Architectures and Compilation Techniques (PACT ’99), pages 303-313, IEEE Computer Society, Oct. 1999.

[6] F. Warg and P. Stenstrom. Limits on Speculative Module-level Parallelism in Imperative and Object-oriented Programs on CMP Platforms. In Proceedings of the 2001 International Conference on Parallel Architectures and Compilation Techniques (PACT ’01), IEEE Computer Society, 2001.

[7] C. Zilles and G. Sohi Time-Shifted Modules: Exploiting Code Modularity for Fine Grain Parallelization University of Wisconsin-Madison Technical Report TR-1430 Oct 2001.

C:\Documents and Settings\vgovinda\Local Settings\Temporary Internet Files\OLKA7\ProjectReport1.doc - Last Saved 5/3/2002 4:10 AM
 -1- 
5/3/2002 4:10 AM

