
BAFL: Bottleneck Analysis of Fine-grain Parallelism

Prof. Rastislav Bodík

with Brian Fields

in part with Shai Rubin, Prof. Mark Hill, Prof. Mary Vernon

University of Wisconsin

The computer system

• Many levels of granularity, each with unique
performance problems

• internet WANS

• servers

• microprocessors

• Our goal:
• quantitative approach for modern (out-of-order)

processors

Who cares?

• Architects:

• circuit complexity
• power consumption

• Software engineers:
• performance-critical software

• Students:

• intuition how processors work
• Processors:

• understand themselves

A tour of a microprocessor museum

Tour theme:

µ-architectural parallelism complicates
performance understanding.

Tour game: “Bottleneck Hunt”
Which instruction slowed down the
execution, and by how much?

More specifically, why the following model fails?

execution time =
cost(instruction1) + … + cost(instructionn) [cycles]

A tour of a microprocessor museum (0)

no parallelism
Intel 80386

• fetch
• decode
• execute

Write

A tour of a microprocessor museum (1)

scalar pipeline parallelism
Intel 80486

Fetch Decd Read Exe Mem

A tour of a microprocessor museum (2)

in-order superscalar pipeline
Intel Pentium

WriteFetch Decd Read Exe Mem

WriteFetch Decd Read Exe Mem

The Bill Cosby Rule:*
“You’re not a parent if you only have one child.”

*rule named by Amir Roth

A tour of a microprocessor museum (3)

out-of-order superscalar
Intel Pentium 4

A tour of a microprocessor museum (end)

out-of-order superscalar
typical buffers, queues, windows

decode
buffer

reservation
stations

reorder
buffer
(ROB)

store
buffer

missed
loads

F processors are good at tolerating latency,
but poor at deciding what to tolerate.

E Microprocessors are fine-grain parallel systems

like wide-area networks:

• queues are like routers, pipelines are like communication links.

• many (bad) events going on in parallel, their latency tolerated

Why critical path?

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

ð

Critical path of a microexecution

Critical path misconceptions :
• “Every ‘bad event’ is critical.”

• branch misprediction
• reorder-buffer stall

• L1 cache miss
• L2 cache miss

• “Critical path is obvious … ”
… it contains instructions providing data for ‘bad events’

Modeling: why hard?

Critical path consists of:

1. instructions and data dependences
• as in a traditional “compiler” view

2. microarchitectural resource constraints
• branch mispredictions, finite fetch b/w, etc.

Together describe the microexecution of a
given program executing on a given machine

How to model in a uniform way?

• Resource dependencies

Resources constrain the dataflow execution

Critical Path Models (1)

First, for a simple in-order machine
• Data dependencies

i1 i2 i3 i4 i5
Dynamic
Instructions

oldest newest

Critical Path Models (2)

For an out-of-order machine

E E E E E

F F F F F

C C C C C

Fetch

Execute

Commit
in order

out of order

in order

i1 i2 i3 i4 i5
oldest newest

Critical Path Models (3)
OOO + finite re-order buffer

E E E E

F F F F

C C C C

Fetch

Execute

Commit

ROB Size

E

F

C

Critical Path Models (4)

OOO + finite ROB + branch misp

E E E E E

F F F F F

C C C C C

Fetch

Execute

Commit

mispredicted branch

Example

last instruction

F

E

C

first instruction

0 1 0 1 0 1 0

1

3

2 1

0 1

2 1

1

4

0

0

2

1 11

2

0 1 0

21

14
1 1

21

1

2

3

1

000 0

Example

F

E

C

0 1 0 1 0 1 0

1

3

2 1

0 1

2
1

1

4

0

2

1 11

2

0 1 0

2
1

14
1 1

2
1

1

2

3

1

CP Length = 16 cycles ⇒ Exe Time = 16 cycles

0000 0

Example

F

E

C

0 1 0 1 0 1 0

1

3

2 1

0 1

2
1

1

4

0

0

2

1 11

2

0 1 0

2
1

14
1 1

2
1

1

2

3

1

CP Length = 16 cycles ⇒ Exe Time = 16 cycles

what if this load is an L1 miss?
(3 cycles à 12 cycles)

Example

F

E

C

0 1 0 1 0 1 0

1

3

2 1

0 1

2
1

1

4

0

0

2

1 11

2

0 1 0

2
1

14
1 1

2
1

1

2

12

1

CP Length = 19 cycles ⇒ Exe Time = 19 cycles

what if this load is an L1 miss?
(3 cycles à 12 cycles)

Execution Modes

Three modes of execution

fetch limited (F-mode)

execute limited (E-mode)
commit limited (C-mode)

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

F-mode

E-mode

C-mode

Execution Modes
Entering F-mode

E

F

C

E

F

C

E

F

C

Start of program

1st inst. in program

... E

F

C

E

F

C

E

F

C

Branch misp.

... ... E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

ROB stall

... ...

Entering E-mode

E

F

C

E

F

C

E

F

C

E

F

C

E

F

C

Fetch catches up

... ... E

F

C

E

F

C

E

F

C

ROB stall

... ...

Entering C-mode

Validation: can we trust our model?
Execution Time Reduction (in cycles) per Cycle of Latency Reduced

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

crafty eon gcc gzip parser perl twolf vortex ammp art galgel mesa

Reducing CP Latencies

Reducing non-CP Latencies

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

FCurrent policies are egalitarian: all “bad” events equally harmful.

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

Why criticality predictor? Policies!

Prediction: why hard?

Three steps:

1. observe the microexecution ⇒ hard!
• measuring edge latencies is intrusive

2. analyze to find critical path ⇒ hard!
• graph too large to buffer
• and topological sort too complex

3. store prediction for later use ⇒ easy!

• store in table indexed by PC

Step 1. Observing

R1 R2 + R3

If dependence into R2 is on critical path,
then value of R2 arrived last.

critical ⇒ arrives last

arrives last ⇒ critical

E

R2

R3

Dependence
resolved early

⁄

Last-arrive edges: a CPU stethoscope

CPU

E ð C

E ð E
F ð E

C ð F

F ð F
E ð F

C ð C

Implementing last-arrive edges

Observe events within the machine

E

F

CC

E

F

CC

FàE if data
ready on fetch

E

F

CC

E

F

CC

E

F

CC

EàE observe
arrival order of
operands

E

F

CC

E

F

CC

EàC if commit
pointer is
delayed

CàC otherwise

E

F

CC

E

F

CC

E

F

CC

E

F

CC

E

F

CC

E

F

CC

EàF if branch misp.

E

F

CC

E

F

CC

E

F

CC

E

F

CC

CàF if ROB stall FàF otherwise

Last-arrive edges

F

E

C

0 1 0 1 0 1 0

1

3

2
1

0 1

2
1

1

4

0

0

2

1 11

2

0 1 0

2
1

14 1
1

2
1

1

2

3

1

00 0 0

Remove latencies

F

E

C

Do not need explicit weights

Prune the graph

Only last-arrive edges needed
(other edges must be non-critical)

F

E

C

…and we’ve found the critical path!

Backward propagate along last-arrive edges

F

E

C

F Found CP by only observing last-arrive edges
F but still requires constructing entire graph

Prediction: why hard?

Three steps:

1. observe the microexecution ⇒ solved!
• measuring edge latencies is intrusive

2. analyze to find critical path
• graph too large to buffer ⇒ hard!
• and topological sort too complex ⇒ solved!

3. store prediction for later use ⇒ easy!

• store in table indexed by PC

Step 2. Efficient analysis (predictor training)

CP is a ”long” chain of last-arrive edges.

⇒ the longer a given chain of last-arrive
edges, the more likely it is part of the CP

Algorithm: find sufficiently long last-arrive chains

1. Plant token into a node n

2. Propagate forward, only along last-arrive edges
3. Check for token after several hundred cycles
4. If token alive, n is assumed critical

1. plant
token

Token-passing example

2. propagate
token

3. is token alive?

4. yes, train
critical

Critical

F Found CPwithout constructing entire graph

ROB Size

Implementation: a small SRAM array

Last-arrive producer node (inst id, F/E/C)

Token Queue

Read

W
ri

te Commited (inst id, F/E/C)

…

Size of SRAM: 3 bits x ROB size < 200 Bytes

can simply replicate for additional tokens

Putting it all together

CP
prediction

table

Last-arrive edges

(producer è retired instr)

OOO CoreE-critical?

Training Path

PC

Prediction Path

Token-Passing
Analyzer

Steps to exploiting critical path

modeling

predicting

applying
1. resource arbitration

• case study: cluster scheduling

2. speculation control

• case study: value prediction

ð

ü
ü

Experiment Setup

Aggressive Core
• 8-way issue, 256-entry window,
• three configurations: core split into 1, 2, or 4 clusters:

• unclustered, 8-way, 256-entry
• 2 clusters, each 4-way, 128-entry
• 4 clusters, each 2-way, 64-entry

CP Predictor
• 8 tokens (1.5 KB token-passing array)
• 16K-entry array for storing predictions (12 KB)
• 6-bit hysteresis

Case Study #1: Clustered architectures

steering

issue
window

scheduling

1. current state of art (Base)

2. base + CP Scheduling

3. base + CP Scheduling + CP Steering

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 IP
C

eoncrafty gcc gzip perl vortex galgel mesa

unclustered

2 cluster

4 cluster

Current State of the Art

F Avg. clustering penalty for 4 clusters: 19%

Constant issue width, clock frequency

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 IP
C

eoncrafty gcc gzip perl vortex galgel mesa

unclustered

2 cluster

4 cluster

CP Optimizations

Base + CP Scheduling

0.60

0.70

0.80

0.90

1.00

1.10

N
or

m
al

iz
ed

 IP
C

eoncrafty gcc gzip perl vortex galgel mesa

unclustered

2 cluster

4 cluster

CP Optimizations

F Avg. clustering penalty reduced from 19% to 6%

Base + CP Scheduling + CP Steering

Local vs. Global Analysis

Previous CP predictors:
local stall-based predictions (HPCA 01, ISCA 01 by others)

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

crafty eon gcc gzip perl vortex galgel mesa

S
p

ee
d

u
p

F CP exploitation seems to require global analysis

oldest-uncommited

oldest-unissued

token -passing

3. One predictor ð many optimizations

• schedule critical instructions firstð up to 20% speedup
• value predict only criticalð up to 5% speedup

Criticality: contributions

ð

1. Critical Path of a microexecution consists of :

• program-induced data dependences
• machine-induced resource dependences

2. CP Prediction = global run-time analysis

• observe last arriveð analyzeð apply predictions
ð ðToken

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

Beyond criticality

• Slack (definition):

number of cycles an instruction can be slowed down
before it becomes critical.

• Slack is prevalent:
75% dynamic instructions can be delayed by at least 5

cycles without impact on performance (no slow down)

• How to compute slack?
• in simulator

• in hardware

Why is slack useful?

• Non-uniform machines
• resources at multiple levels of quality

• to deal with technological constraints
• to save power: slow/fast clusters of ALUs
• wire delay: some caches further away

• Problem boils down to controlling non-
uniform machines
• goal: hide the (longer) latency of low-quality

resources

• can do this with slack

How to compute slack?

• On the graph
• two-pass topological sort

• In the processor
• delay and observe: by reduction to criticality

analysis
• delay instruction i by n cycles
• if i is not critical,

then i did have at least n cycles of slack.

Experiments

• Power-aware machine:
• two clusters:

• fast: full frequency
• slow: half frequency (consumes ¼ power)

• three non-uniformities
1.
2.

3.

• results:
• 3% within performance of two fast clusters
• existing techniques: 10% slowdown

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

Reconfigurable machines

• Imagine that, to save power, you can
dynamically:
1. turn on/off some ALUs

2. change their frequency

Problem: how to adapt the machine
configuration to the program needs?

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

Finally, the quantitative approach

• All boils down to computing a cost of
instruction:

• can easily compute from the graph, if the
graph is available (in the simulator)

• can compute in hardware? a new version of
the randomized algorithm?

The future

Superscalar complexity haunts

• not only circuit designers

• and verification engineers

• but also performance engineers

• and hence also architects themselves

Critical -path instruction processing helps

• understand performance complexity

• and hence also
• exploit better existing designs
• lead to simpler designs

Effect of CP scheduling on future designs?

70%
75%

80%
85%

90%
95%

100%
105%

110%

1 2 4

No CP

With CP

1) Cluster the machine:
• 8-way machine split into 1, 2, 4 clusters
• as in the previous experiment

2) Enlarge scheduling window:
• 4 cluster x 2 -way machine
• vary the window size in each cluster

80%

100%

120%

140%

160%

180%

32 64 128 256

No CP

With CP

3) Add clusters:
• each cluster is 2-way, 64 -entry window

8 0 %

100%

120%

140%

160%

180%

200%

220%

240%

1 2 4

No CP

With CP

This talk is about:

Making processors smarter

• a modern processor: strong body, weak mind
• example: can execute instructions out of order,

but does so without considering instruction cost

Making smarter = teach how to find bottlenecks

• instructionswhose latency hurts
• resources whose contention hurts

I will show how to

• find bottlenecks (at run-time, with simple hardware), and
• alleviate them (using existing resources, retrofitting)

Our solution:

Critical-Path Instruction Processing

• critical-path analysis of µ-exe performance

• critical-path prediction

• critical-path hardware optimizations

critical -path instruction processing
is

taming the µ -architectural evil

which is

taming the superscalar performance complexity:

• find execution bottlenecks, and

• alleviate them.

Why critical path?

CP used to understand bottlenecks in large-scale systems:

• message passing, and locking in shared-memory systems

Hollingsworth [IEEE PDS ‘98]

• TCP transactions

Barfordand Crovella [SIGCOMM ‘00]

0 0 0

0 0 0

1 3 1

0 0 00 0

call

arrive at barrier

leave barrier

Speculation Control: Value prediction

Optimization:
Value predict only critical instructions

• removes speculations that
• have no benefit, but
• may have high misspeculation recovery cost

Are critical instructions value predictable?

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

compress gcc m88ksim gzip applu swim wave5

On CP Rate

Off CP Rate

Focused Value Prediction

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

gcc gzip parser perl twolf ammp art

S
pe

ed
up

 o
ve

r
no

 v
al

ue
 p

re
di

ct
io

n No CP

oldest -uncommitted

oldest -unissued

token -passing

Focused Value Prediction (2)

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

ammp gcc gzip parser perl twolf

No CP
oldest-uncommitted

oldest-unissued

token-passing

less confident value predictor à more value mispredictions:

