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The computer system

• Many levels of granularity, each with unique 
performance problems

• internet WANS

• servers

• microprocessors

• Our goal: 
• quantitative approach for modern (out-of-order) 

processors

Who cares?

• Architects:

• circuit complexity
• power consumption

• Software engineers:
• performance-critical software

• Students:

• intuition how processors work
• Processors:

• understand themselves

A tour of a microprocessor museum   

Tour theme:

µ-architectural parallelism complicates 
performance understanding.

Tour game:  “Bottleneck Hunt”
Which instruction slowed down the 
execution, and by how much?

More specifically, why the following model fails?

execution time = 
cost(instruction1) + … + cost(instructionn)   [cycles]

A tour of a microprocessor museum  (0)   

no parallelism 
Intel 80386

• fetch
• decode
• execute

Write

A tour of a microprocessor museum  (1)   

scalar pipeline parallelism
Intel 80486

Fetch Decd Read Exe Mem



A tour of a microprocessor museum  (2)   

in-order superscalar pipeline
Intel Pentium

WriteFetch Decd Read Exe Mem

WriteFetch Decd Read Exe Mem

The Bill Cosby Rule:*
“You’re not a parent if you only have one child.”

*rule named by Amir Roth

A tour of a microprocessor museum  (3)   

out-of-order superscalar
Intel Pentium 4

A tour of a microprocessor museum  (end)   

out-of-order superscalar
typical buffers, queues, windows

decode
buffer

reservation
stations

reorder
buffer
(ROB)

store
buffer

missed
loads

F processors are good at tolerating latency,
but poor at deciding what to tolerate.

E Microprocessors are fine-grain parallel systems

like wide-area networks:

• queues are like routers, pipelines are like communication links.

• many (bad) events going on in parallel, their latency tolerated

Why critical path?

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

ð

Critical path of a microexecution

Critical path misconceptions :
• “Every ‘bad event’ is critical.”

• branch misprediction
• reorder-buffer stall

• L1 cache miss
• L2 cache miss

• “Critical path is obvious … ”
… it contains instructions providing data for ‘bad events’



Modeling: why hard?

Critical path consists of:

1. instructions and data dependences
• as in a traditional “compiler” view

2. microarchitectural resource constraints
• branch mispredictions, finite fetch b/w, etc.

Together describe the microexecution of a
given program executing on a given machine

How to model in a uniform way?

• Resource dependencies

Resources constrain the dataflow execution

Critical Path Models (1)

First, for a simple in-order machine
• Data dependencies

i1 i2 i3 i4 i5
Dynamic 
Instructions

oldest newest

Critical Path Models (2)

For an out-of-order machine

E E E E E

F F F F F

C C C C C

Fetch

Execute

Commit
in order

out of order

in order

i1 i2 i3 i4 i5
oldest newest

Critical Path Models (3)
OOO + finite re-order buffer

E E E E

F F F F

C C C C

Fetch

Execute

Commit

ROB Size

E

F

C

Critical Path Models (4)

OOO + finite ROB + branch misp

E E E E E

F F F F F

C C C C C

Fetch

Execute

Commit

mispredicted branch
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CP Length = 16 cycles ⇒ Exe Time  = 16 cycles

what if this load is an L1 miss?  
(3 cycles à 12 cycles)
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CP Length = 19 cycles ⇒ Exe Time  = 19 cycles

what if this load is an L1 miss?  
(3 cycles à 12 cycles)

Execution Modes

Three modes of execution

fetch limited (F-mode)

execute limited (E-mode)
commit limited (C-mode)
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Validation: can we trust our model?
Execution Time Reduction (in cycles) per Cycle of Latency Reduced
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Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and 
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

FCurrent policies are egalitarian:  all “bad” events equally harmful.

all misses

FIFO
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oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?
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critical firstOOO execution

bettermechanism

all misses

FIFO

on each prediction

oldest first

current
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bettermechanism

all misses

FIFO

on each prediction

oldest first

current

what to prefetch?

how to serve mem
requests?

when to speculate?

how to schedule?

policy:

only critical
prediction and 
speculation

prefetch critical
pre-fetch,
pre-execute

critical firstnon-blocking caches

critical firstOOO execution

bettermechanism

Why criticality predictor?  Policies!

Prediction: why hard?

Three steps:

1. observe the microexecution ⇒ hard!
• measuring edge latencies is intrusive

2. analyze to find critical path   ⇒ hard!
• graph too large to buffer
• and topological sort too complex

3. store prediction for later use ⇒ easy!

• store in table indexed by PC 

Step 1. Observing 

R1     R2 + R3 

If dependence into R2 is on critical path, 
then value of R2 arrived last.

critical  ⇒ arrives last

arrives last ⇒ critical

E

R2

R3

Dependence 
resolved early

⁄

Last-arrive edges: a CPU stethoscope

CPU

E ð C

E ð E
F ð E

C ð F

F ð F
E ð F

C ð C

Implementing last-arrive edges

Observe events within the machine
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Last-arrive edges
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Do not need explicit weights

Prune the graph

Only last-arrive edges needed
(other edges must be non-critical)
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…and we’ve found the critical path!

Backward propagate along last-arrive edges

F

E

C

F Found CP by only observing last-arrive edges
F but still requires constructing entire graph

Prediction: why hard?

Three steps:

1. observe the microexecution ⇒ solved!
• measuring edge latencies is intrusive

2. analyze to find critical path
• graph too large to buffer                   ⇒ hard!
• and topological sort too complex       ⇒ solved!

3. store prediction for later use       ⇒ easy!

• store in table indexed by PC 

Step 2. Efficient analysis (predictor training)

CP is a ”long” chain of last-arrive edges.

⇒ the longer a given chain of last-arrive 
edges, the more likely it is part of the CP

Algorithm: find sufficiently long last-arrive chains

1. Plant token into a node n

2. Propagate forward, only along last-arrive edges
3. Check for token after several hundred cycles
4. If token alive, n is assumed critical



1. plant 
token

Token-passing example

2. propagate 
token

3. is token alive?

4. yes, train 
critical

Critical

F Found CPwithout constructing entire graph

ROB Size

Implementation: a small SRAM array

Last-arrive producer node (inst id, F/E/C)

Token  Queue

Read

W
ri

te Commited (inst id, F/E/C)

…

Size of SRAM: 3 bits x ROB size < 200 Bytes

can simply replicate for additional tokens

Putting it all together

CP 
prediction

table

Last-arrive edges

(producer è retired instr)

OOO CoreE-critical?

Training Path

PC 

Prediction Path

Token-Passing
Analyzer

Steps to exploiting critical path

modeling

predicting

applying
1. resource arbitration 

• case study: cluster scheduling

2. speculation control

• case study: value prediction

ð

ü
ü

Experiment Setup

Aggressive Core
• 8-way issue, 256-entry window, 
• three configurations:  core split into 1, 2, or 4 clusters:

• unclustered,      8-way, 256-entry
• 2 clusters, each 4-way, 128-entry
• 4 clusters, each 2-way, 64-entry

CP Predictor
• 8 tokens (1.5 KB token-passing array)
• 16K-entry array for storing predictions (12 KB)
• 6-bit hysteresis

Case Study #1: Clustered architectures

steering

issue 
window

scheduling

1. current state of art (Base)

2. base + CP Scheduling

3. base + CP Scheduling + CP Steering
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F Avg. clustering penalty for 4 clusters: 19% 

Constant issue width, clock frequency
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CP Optimizations

F Avg. clustering penalty reduced from 19% to 6%

Base + CP Scheduling + CP Steering

Local vs. Global Analysis

Previous CP predictors:
local stall-based predictions (HPCA 01, ISCA 01 by others)
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F CP exploitation seems to require global analysis

oldest-uncommited

oldest-unissued

token -passing

3. One predictor ð many optimizations

• schedule critical instructions firstð up to 20% speedup
• value predict only criticalð up to 5% speedup

Criticality: contributions

ð

1. Critical Path of a microexecution consists of :

• program-induced data dependences
• machine-induced resource dependences

2. CP Prediction = global run-time analysis

• observe last arriveð analyzeð apply predictions
ð ðToken

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost



Beyond criticality

• Slack (definition):

number of cycles an instruction can be slowed down 
before it becomes critical.

• Slack is prevalent:
75% dynamic instructions can be delayed by at least 5 

cycles without impact on performance (no slow down)

• How to compute slack?
• in simulator

• in hardware

Why is slack useful?

• Non-uniform machines
• resources at multiple levels of quality

• to deal with technological constraints
• to save power: slow/fast clusters of ALUs
• wire delay: some caches further away

• Problem boils down to controlling non-
uniform machines
• goal: hide the (longer) latency of low-quality 

resources

• can do this with slack

How to compute slack?

• On the graph
• two-pass topological sort

• In the processor
• delay and observe: by reduction to criticality 

analysis
• delay instruction i by n cycles
• if i is not critical, 

then i did have at least n cycles of slack.

Experiments

• Power-aware machine:
• two clusters:

• fast: full frequency
• slow: half frequency (consumes ¼ power)

• three non-uniformities
1.
2.

3.

• results:
• 3% within performance of two fast clusters
• existing techniques: 10% slowdown

Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

Reconfigurable machines

• Imagine that, to save power, you can 
dynamically:
1. turn on/off some ALUs

2. change their frequency

Problem: how to adapt the machine 
configuration to the program needs?



Outline

The model of micro-execution
• capture both program and processor constraints

Four metrics:
• criticality

• slack

• execution modes

• cost

Finally, the quantitative approach

• All boils down to computing a cost of 
instruction:

• can easily compute from the graph, if the 
graph is available (in the simulator)

• can compute in hardware?  a new version of 
the randomized algorithm?

The future

Superscalar complexity haunts

• not only circuit designers

• and verification engineers

• but also performance engineers

• and hence also architects themselves

Critical -path instruction processing helps 

• understand performance complexity

• and hence also
• exploit better existing designs
• lead to simpler designs

Effect of CP scheduling on future designs?

70%
75%

80%
85%

90%
95%

100%
105%

110%

1 2 4

No CP

With CP

1) Cluster the machine:
• 8-way machine split into 1, 2, 4 clusters
• as in the previous experiment

2) Enlarge scheduling window:
• 4 cluster x 2 -way machine
• vary the window size in each cluster
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3) Add clusters:
• each cluster is 2-way, 64 -entry window
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This talk is about:

Making processors smarter

• a modern processor: strong body, weak mind
• example: can execute instructions out of order,

but does so without considering instruction cost

Making smarter = teach how to find bottlenecks

• instructionswhose latency hurts
• resources whose contention hurts

I will show how to 

• find bottlenecks (at run-time, with simple hardware), and 
• alleviate them (using existing resources, retrofitting)

Our solution:

Critical-Path Instruction Processing

• critical-path analysis of µ-exe performance

• critical-path prediction

• critical-path hardware optimizations



critical -path instruction processing
is

taming the µ -architectural evil

which is

taming the superscalar performance complexity:

• find execution bottlenecks, and 

• alleviate them.

Why critical path?

CP used to understand bottlenecks in large-scale systems:

• message passing, and locking in shared-memory systems 

Hollingsworth [IEEE PDS ‘98]

• TCP transactions

Barfordand Crovella [SIGCOMM ‘00]
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0 0 0

1 3 1

0 0 00 0

call

arrive at barrier

leave barrier

Speculation Control: Value prediction

Optimization: 
Value predict only critical instructions

• removes speculations that 
• have no benefit, but
• may have high misspeculation recovery cost

Are critical instructions value predictable?
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less confident value predictor à more value mispredictions:


