BAFL: Bottleneck Analysis of Fine-grain Parallelism

Prof. Rastislav Bodik

with Brian Fields
in part with Shai Rubin, Prof. Mark Hill, Prof. Mary Vernon

University of Wisconsin

A tour of a microprocessor museum

Tour theme:

marchitectural parallelism complicates
performance understanding.

Tour game: “Bottleneck Hunt”

Which instruction slowed down the
execution, and by how much?

More specifically, why the following model fails?
execution time =
cost(instruction,) + ... + cost(instruction,) [cycles]

The computer system

- Many levels of granularity, each with unique
performance problems

- internet WANS

- servers

- microprocessors
- Ourgoal:

- quantitative approach for modern (out-of-order)
processors

A tour of a microprocessor museum (0)

no parallelism
Intel 80386

« fetch
= decode
= execute

Who cares?

- Architects:

- circuit complexity

- power consumption
- Software engineers:

- performance-critical software
- Students:

- intuition how processors work
- Processors:

- understand themselves

A tour of a microprocessor museum (1)

scalar pipeline parallelism
Intel 80486

— Fetch | Decd Read_ Exe Mem Write—

A tour of a microprocessor museum (2)

in-order superscalar pipeline
Intel Pentium

Fetch | Decd | Read— Exe Mem [Write

Fetch | Decd Reatﬁ— Exe Mem —|Write

L |

The Bill Cosby Rule:*
“You’re not a parent if you only have one child.”

“rule named by Amir Roth

Why critical path?

< Microprocessors are fine-grain parallel systems
like wide-area networks:

- queues are like routers, pipelines are like communication links.
- many (bad) events going on in parallel, their latency tolerated

I HIH -

A tour of a microprocessor museum (3)

out-of-order superscalar
Intel Pentium 4

o u | w]ur N ENES
s L

ol | o o [son [oie

HEERHE
7
i

£ -lr-]8-
3

A EE ([

ol | ol

Outline

The model of micro-execution
- capture both program and processor constraints

Four metrics:

- criticality

- slack

- execution modes

- cost

A tour of a microprocessor museum (end)

out-of-order superscalar
typical buffers, queues, windows

AT HIH -

decode reorder store
buffer buffer buffer
(ROB)
reservation missed
stations loads

@ processors are good at tolerating latency,
but poor at deciding what to tolerate.

Critical path of a microexecution

Critical path misconceptions :

“Every ‘bad event’ is critical.”
« branch misprediction
- reorder-buffer stall

« L1 cache miss
« L2 cache miss

“Critical path is obvious ... ”
... it contains instructions providing data for ‘bad events’

Modeling: why hard?

Critical path consists of:

1. instructions and data dependences
- asina traditional “compiler” view

2. microarchitectural resource constraints
- branch mispredictions, finite fetch b/w, etc.

Together describe the microexecution of a
given program executing on a given machine

How to model in a uniform way?

Critical Path Models (3)

000 + finite re-order buffer

. ROB Size |

Critical Path Models (1)

First, for a simple in-order machine
- Data dependencies
- Resource dependencies

Dynamic i i i i i
! 1 2 3 4 5

Instructions

oldest newest

Resources constrain the dataflow execution

Critical Path Models (4)

000 + finite ROB + branch misp

mispredicted branch ——-—J

Critical Path Models (2)

For an out-of-order machine

Fetch

in order

Execute
out of order

Commit
in order

iy iy i3 iy is
oldest newest

Example

first instruction

last instruction

Example

CP Length = 16 cycles P Exe Time = 16 cycles

Example

what if this load is an L1 miss?
(3 cycles > 12 cycles)

CP Length = 16 cycles P Exe Time = 16 cycles

Example

what if this load is an L1 miss?
(3 cycles > 12 cycles)

CP Length = 19 cycles P Exe Time = 19 cycles

Execution Modes

Three modes of execution
fetch limited (Fmode)
execute limited (E-mode)
commit limited (Cimode)

Execution Modes

Entering F-mode
Start of program Branch misp. ROB stall

1stinSt. in program

Entering E-mode Entering C-mode
Fetch catches up ROB stall

Validation: can we trust our model?

Execution Time Reduction (in cycles) per Cycle of Latency Reduced

09

8 .ﬁReducing CP Latencies] — _

07

06

4
05 T [1 1
04 11 feeq |—r I
o3 H 1 F1F .

02 H{ [—{Reducing non-CP Latencies |51
B i ~ i |

crafy eon gcc gzip parser perl twolf vortex ammp art galgel mesa

Outline

The model of micro-execution

- capture both program and processor constraints

Four metrics:

- criticality

« slack

- execution modes

- cost

Step 1. Observing

R2
R3 R1— R2 + R3
=
Dependence

resolved early

If dependence into R2 is on critical path,
then value of R2 arrived last.

critical b arrives last

arrives last Iy critical

Why criticality predictor? Policies!

Last-arrive edges: a CPU stethoscope

mechanism policy: current better
000 execution how to schedule? oldest first critical first
predlcm?n 2 when to speculate? | on each prediction only critical
speculation

. how to serve mem - 3
non-blocking caches FIFO critical first
requests?

pre-fetch, what to prefetch? all misses prefetch critical
pre-execute

< Current policies are egalitarian: all “bad” events equally harmful.

Prediction: why hard?

Three steps:

1. observe the microexecution b hard!
- measuring edge latencies is intrusive

2. analyze to find critical path P hard!
- graph too large to buffer
- and topological sort too complex

3. store prediction for later usep easy!
- store in table indexed by PC

Implementing last-arrive edges a2
Observe events within the machine %

? ® @ (Can]
® ® © ©® ® @
© © © © © ©

E->F if branch misp. C->F if ROB stall F->F otherwise

|

© ©

®Q

So

®0

1o

© © © © ©
E->E observe F->E if data E->Cif commit C->C otherwise

arrival order of ready on fetch pointer is
operands delayed

Last-arrive edges

...and we’ve found the critical path!

Backward propagate along last-arrive edges

= Found CP by only observing last-arrive edges
< but still requires constructing entire graph

Remove latencies

Prediction: why hard?

Do not need explicit weights

Three steps:

1. observe the microexecution b solved!
- measuring edge latencies is intrusive

2. analyze to find critical path
- graph too large to buffer P hard!
- and topological sort too complex b solved!

3. store prediction for later use b easy!
- store in table indexed by PC

Prune the graph

Step 2. Efficient analysis (predictor training)

Only last-arrive edges needed
(other edges must be non-critical)

CP is a ”long” chain of last-arrive edges.
p the longer a given chain of last-arrive
edges, the more likely it is part of the CP

Algorithm: find sufficiently long last-arrive chains
1. Plant token into a node n
2. Propagate forward, only along last-arrive edges
3. Check for token after several hundred cycles
4. If token alive, n is assumed critical

Token-passing example

Steps to exploiting critical path

—ROB Size —
1. plan] . _@
token <
®
QO

2. propagate
token
3. is token alive?

« Found CPwithout constructing entire graph 4. yes, train
critical

v/ modeling

v' predicting

= applying
1. resource arbitration
- case study: cluster scheduling
2. speculation control
- case study: value prediction

Implementation: a small SRAM array

Last-arrive producer node (instid, F/E/Q

o oY

Token QueueE Commited (inst id, F/E/C)
=

Size of SRAM: 3 bits x ROB size < 200 Bytes

can simply replicate for additional tokens

Experiment Setup

Aggressive Core

- 8-way issue, 256-entry window,

- three configurations: core splitinto 1, 2, or 4 clusters:
- unclustered, 8-way, 256-entry
=2 clusters, each 4-way, 128-entry
=4 clusters, each 2-way, 64-entry

CP Predictor

- 8 tokens (1.5 KB token-passing array)

- 16K-entry array for storing predictions (12 KB)
- 6-bit hysteresis

Putting it all together

Prediction Path

s PC
prigtif"tei on E-critical?

Training Path [Token-Passing| _Lastarrive edges

Analyzer (producer => retired instr)

Case Study #1: Clustered architectures

issue 17T T T DT a
window :

steering

scheduling b e e e 3

1. current state of art (Base)
2. base + CP Scheduling
3. base + CP Scheduling + CP Steering

Current State of the Art

Normalized IPC

Constant issue width, clock frequency

1.10
1.00
0.90 1 — F—1
0.80 7 unclustered |
4
0.70 4 § 2 cluster
1| [4cluster
crafty eon gce gzip perl vortex galgel mesa

= Avg. clustering penalty for 4 clusters: 19%

Local vs. Global Analysis

Previous CP predictors:
local stall-based predictions (HPCA 01, ISCA 01 by others)

25.0%

20.0%

 Akenpessing]

Pic==

[o

crafty eon gcc gzip perl vortex galgel mesa

-5.0%

= CP exploitation seems to require global analysis

CP Optimizations

Normalized IPC

Base + CP Schedulin

unclustered |
2 cluster ||
1| T4 cluster
crafty eon gce gzip perl vortex galgel mesa

Criticality: contributions

1. Critical Path of a microexecution consists of :

« program-induced data dependences
= machine-induced resource dependences

QRO =

2. CP Prediction = global run-time analysis

= observe last arrive = analyze = apply predictions

3. One predictor = many optimizations

= schedule critical instructions first = up to 20% speedup
= value predict only critical = up to 5% speedup

CP Optimizations

Normalized IPC

Base + CP Scheduling + CP Steering

unclustered |
2 cluster ||

4 cluster

crafty eon gce gzip perl vortex galgel mesa

N

< Avg. clustering penalty reduced from 19% to 6%

Outline

The model of micro-execution

- capture both program and processor constraints

Four metrics:

- criticality

- slack

- execution modes

- cost

Beyond criticality

Experiments

- Slack (definition):
number of cycles an instruction can be slowed down
before it becomes critical.

- Slack is prevalent:
75% dynamic instructions can be delayed by at least 5
cycles without impact on performance (no slow down)

- How to compute slack?
- insimulator
- inhardware

- Power-aware machine:
- two clusters:
- fast: full frequency
- slow: half frequency (consumes % power)

- three non-uniformities
1.
2.
3.

- results:
= 3% within performance of two fast clusters
- existing techniques: 10% slowdown

Why is slack useful?

Outline

- Non-uniform machines
= resources at multiple levels of quality
= to deal with technological constraints
- to save power: slow/fast clusters of ALUs
- wire delay: some caches further away
- Problem boils down to controlling non-
uniform machines
- goal: hide the (longer) latency of low-quality
resources
= can do this with slack

The model of micro-execution
- capture both program and processor constraints

Four metrics:

- criticality

- slack

- execution modes
- cost

How to compute slack?

Reconfigurable machines

- On the graph
= two-pass topological sort

- In the processor

- delay and observe: by reduction to criticality
analysis
- delay instruction i by n cycles

- if i is not critical,
then i did have at least n cycles of slack.

- Imagine that, to save power, you can
dynamically:
1. turn on/off some ALUs
2. change their frequency

Problem: how to adapt the machine
configuration to the program needs?

Outline

Effect of CP scheduling on future designs?

The model of micro-execution

- capture both program and processor constraints

Four metrics:

criticality

slack

execution modes

- cost

110%

] o 1) Cluster the machine:
peed 5 1 = 8-way machine split into 1, 2, 4 clusters
el m— = as in the previous experiment
ws
1 2 4
oo — 2) Enlarge scheduling window:
e = 4 cluster x 2-way machine
< = vary the window size in each cluster

7d 3) Add clusters:
=z « each cluster is 2way, 64 -entry window

Finally, the quantitative approach

- All boils down to computing a cost of
instruction:

- can easily compute from the graph, if the
graph is available (in the simulator)

- can compute in hardware? a new version of
the randomized algorithm?

This talk is about:

Making processors smarter
- amodern processor: strong body, weak mind

- example: can execute instructions out of order,
but does so without considering instruction cost

Making smarter = teach how to find bottlenecks
- instructionswhose latency hurts
- resources whose contention hurts

1 will show how to
- find bottlenecks (at run-time, with simple hardware), and
- alleviate them (using existing resources, retrofitting)

The future

Superscalar complexity haunts
= not only circuit designers
- and verification engineers
- but also performance engineers
- and hence also architects themselves

Critical-path instruction processing helps
- understand performance complexity
- and hence also
- exploit better existing designs
- lead to simpler designs

Our solution:

Critical-Path Instruction Processing
- critical-path analysis of mexe performance
- critical-path prediction
- critical-path hardware optimizations

critical -path instruction processing
is
taming the m-architectural evil

which is

taming the superscalar performance complexity:

- find execution bottlenecks, and
- alleviate them.

Are critical instructions value predictable?

50.0%

45.0%

40.0%

35.0%

30.0%

25.0%

20.0%

15.0%

10.0%

50%

0.0%

compress gce mB8ksim gzip applu swim waves

Why critical path?

CP used to understand bottlenecks in large-scale systems:
- message passing, and locking in shared-memory systems
Hollingsworth [IEEE PDS ‘98]
- TCP transactions
Barfordand Crovella [SIGCOMM *00]

Focused Value Prediction

Speedup over no value prediction

55.0%
e No CP
45.0%
/ oldest -uncommitted
40.0%
[]) odest-unissued
= - 17 7 Torenpaosma |
A
0% - s
200%
150%
100%
-] Em AT
00% L T T T

goo gzip parser perl twolf ammp art

Speculation Control: Value prediction

Optimization:
Value predict only critical instructions

- removes speculations that
- have no benefit, but
- may have high misspeculation recovery cost

Focused Value Prediction (2)

less confident value predictor - more value mispredictions:

60%

50%

40%

30%

20% 1

10% 1

parser g ot

-10%

-20%

-30%

