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Abstract
Sparse matrix formats are typically implemented with low-level
imperative programs. The optimized nature of these implementa-
tions hides the structural organization of the sparse format and
complicates its verification. We define a variable-free functional
language (LL) in which even advanced formats can be expressed
naturally, as a pipeline-style composition of smaller construction
steps. We translate LL programs to Isabelle/HOL and describe a
proof system based on parametric predicates for tracking relation-
ship between mathematical vectors and their concrete representa-
tions. This proof theory automatically verifies full functional cor-
rectness of many formats. We show that it is reusable and extensible
to hierarchical sparse formats.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical Verifica-
tion

General Terms Languages, Verification

1. Introduction
Sparse matrix formats compress large matrices with a small number
of nonzero elements into a more compact representation. The goal
is to both reduce memory footprint and increase efficiency of op-
erations such as sparse matrix-vector multiplication (SpMV). More
than fifty formats have been developed; the reason for this diversity
is that a format may improve memory locality in a given memory
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hierarchy, expose parallelism that fits the hardware, and tailor the
layout to the operations that will be performed on the matrix. The
development of a sparse matrix format is nontrivial; formats exploit
algebraic properties such as commutativity, associativity and zero;
have to judiciously choose between linear and random access to ar-
ray data to improve cache locality, memory bandwidth and use of
vector instructions. Sparse codes are used heavily in scientific ap-
plications, simulations and data mining, as well as other domains.
It is expected that more formats will be designed to support future
(parallel) platforms. Our goal is to simplify their development.

Sparse matrix codes are typically implemented using imperative
languages like C and Fortran. This gives programmers control
over low-level details of the computation, allowing them to create
optimized implementations. However, imperative implementations
obfuscate the structure of the format because logically independent
steps of sparse matrix construction are fused, resulting in code
with loop nests that contain complex array indirections, in-place
data mutation and other low-level optimizations. Not only is the
code hard to read, it is also challenging to verify. In fact, we failed
to verify the functional correctness of even simple formats using
several state-of-the-art tools. The key reason was that describing
the properties of the format construction expressed using such
low-level implementations required complex invariants that were
hard to formulate. Consequently, we sought to raise the level of
abstraction in programming sparse matrix formats.

We describe a new approach to implementing and verifying
sparse matrix codes. The main idea is to specify sparse codes as
functional programs, where a computation is a sequence of high-
level transformations on lists. We then use Isabelle/HOL to verify
full functional correctness of programs.

We identify a“little language” (LL) for specifying a variety of
sparse matrix formats. LL is a strongly typed, variable-free func-
tional programming language in the spirit of FP [1]. It is also influ-
enced by such languages as APL, J, NESL and Python, but favors
simplicity and ease of programming over generality and terseness.
LL provides several built-in functions and combinators for opera-
tions over vectors and matrices common in sparse formats. LL is
restricted by design, lacking custom higher-order functions, recur-
sive definitions, and a generic reduction operator. These limitations
of LL, as well as its purely functional semantics, facilitate auto-
matic verification of sparse codes.

The contributions of this paper can be summarized as follows.

• We design a variable-free functional language for sparse matrix
codes. We show how interesting and complex sparse formats
can be naturally and concisely expressed in LL (Section 3).



• We describe a powerful proof method for automatic verification
of sparse matrix codes using Isabelle/HOL [11] (Section 4).

• We evaluate the reusability of proof rules in our theory and
its extensibility to proving additional formats. We show that
our language and verifier can accommodate complex formats
including Jagged Diagonals (JAD) and Coordinate (COO), as
well as hierarchical formats including Sparse CSR (SCSR),
register- and cache-blocking schemes (Section 5). As far as
we know, this is the first successful attempt in proving full
functional correctness of operations on such formats.

We are currently writing a compiler which automatically generates
efficient low-level code from LL programs.

2. Overview
This section outlines our solutions for implementing and verifying
sparse matrix programs. We demonstrate our language using the
JAD sparse format, and the proof system using the CSR sparse
format. These formats are introduced properly in Section 3; in this
section, we will make do with an informal overview of the formats
and the examples shown in Fig. 1.

2.1 Sparse matrix codes in the LL language

Sparse matrix formats are usually constructed with a sequence of
transformations. For example, a JAD sparse matrix is constructed
in three steps, by (i) compressing each row in the dense matrix;
(ii) sorting compressed rows by their length; and (iii) transposing
the rows. Efficient imperative implementations usually fuse these
distinct steps, which complicates code comprehension and mainte-
nance. We define a small functional language that keeps these steps
separate. The fusion, necessary for performance, will be performed
by a data-parallel compiler (which is under development and out-
side the scope of this paper).

Let us compare the characteristics of imperative and functional
implementations of JAD format construction. Consider first the
C code that compresses a dense matrixM into the JAD format,
represented by arraysP, D, J, andV. The low-level code reads and
writes a single word at a time, relies heavily on array indirections
(i.e., array accesses whose index expressions are themselves array
accesses), and explicitly spells out loop boundaries. The code does
not distinguish the three construction steps provides little insight
into the JAD format:

lenperm (M, P); /* obtain row permutation */

for (d = k = 0; d < n; d++) {

kk = k;

for (i = 0; i < n; i++) {

for (j = nz = 0; j < m; j++)

if (M[P[i]][j])

if (++nz > d) break;

if (j < m) {

J[k] = j;

V[k] = M[P[i]][j];

k++;

} }

if (k == kk) break;

D[d] = k; }

Contrast the C code with this LL program, which is a composition
of three functions corresponding to the steps in JAD construction.
The function composition operator is->.

def jad: csr -> lenperm -> (fst, snd -> trans)

LL is a functional language rooted in the variable-free style
of FP/FL [1], which means that functions do not refer to their







a 0 0 0
b c 0 0
0 0 0 0
0 d 0 e







P: [1 3 0 2]
D: [3 5]
J: [0 1 0 1 3]
V: [b d a c e]

R: [1 3 3 5]
J: [0 0 1 1 3]
V: [a b c d e]

(a) Dense matrix. (b) JAD sparse format. (c) CSR sparse format.

Figure 1. Two sparse matrix formats. Shown are “imperative”
representations; their LL counterparts are in Figures 2 and 4.

arguments by name; instead, they transform a single, unnamed
input parameter. For example, if the input to a function is a pair,
then a function extracts the first element using the built-in function
fst. LL is strongly typed and datatypes include numbers, Boolean
values, pairs and lists. Vectors are represented by lists, and matrices
by lists of (row) vectors. Compressed matrix representations use a
variety of nested data structures built of lists and pairs.

The three steps of JAD construction in LL are visualized in
Fig. 2, which shows the dense matrix, the resulting JAD matrix,
as well as the intermediate values of JAD construction. Notice that
the JAD representation in LL (the result in Fig. 2) is more abstract
than the JAD format in C (Fig. 1(b)). Where LL formats rely on
lists of lists, the C formats linearize the outer list and create explicit
indexing structures to access the inner lists. LL thus frees the
programmer from reasoning about these optimized data structure
layouts, eliminating dependence on explicit array indirection.

The first step compresses rows by invoking the constructor for
the sparse format CSR. In the second step, the functionlenperm

sorts the compressed rows by decreasing length:

def lenperm:

[(len, (#, id))] -> sort -> rev -> [snd] -> unzip

Here, the syntax[f] denotes a map that applies the functionf over
the elements of the input list:len, # andid return the length of the
current element, the position index of that element in the list, and
the element itself (identity), respectively. The third-step function
(fst, snd -> trans) takes a pair and produces a pair in which
first element is unchanged and the second element is transposed.

In summary, LL lifts an intricate imperative computation into
a cleaner functional form, exposes high-level stages and the flow
of data from one stage to another, and encourages the programmer
to think about invariants over intermediate results. These benefits
are not merely due to the use of functional programming. We be-
lieve that they are equally attributed to our careful selection of a
very simple subset of functional language features, designed with
the sparse matrix domain in mind. In particular, LL does not sup-
port lambda abstractions, which encourages expressing computa-
tions as pipelines of functions. LL also excludes definitions of re-
cursive functions and a general fold operator, both of which are
compensated for by a versatile set of built-ins (e.g., zip andsum)
and combinators for handling lists (e.g., map andfilter). These
restrictions contribute to our ability to automatically verify LL pro-
grams because they sidestep the need to infer induction invariants,
a hard task for automated tools. The LL language is introduced in
detail in Section 3.

We have recently developed compiler for LL that relies on opti-
mization techniques pioneered in NESL [3] and later generalized in
Data Parallel Haskell [4]. Thanks to LL’s simplicity, we were able
to simplify the compilation and indentify more opportunities for
optimization. Initial results indicate that code generated for real-
world formats such as register-blocked CSR (see Section 5.2) runs
as fast as a hand-optimized code and scales well to multiple cores.
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Figure 2. The three steps of JAD format construction. Shown are the dense matrix, the JAD matrix, and the two intermediate values.

2.2 Verifying sparse matrix codes

There are at least two arguments for full functional verification
of sparse matrix codes. First, classical static typing is insufficient
for static bug detection because these programs contain array in-
direction, whose memory safety would be typically guaranteed
only with run-time safety checks. Dependent type systems may be
able to prove memory safety but, in our experience, the necessary
dependent-type predicates would need to capture invariants nearly
as complex as those that we encountered during full functional veri-
fication. For example, to prove full functional correctness, one may
need to show that a list is some permutation of a subset of values
in another list; to prove memory safety, one may need to show that
the values in a list are smaller than the length of another list. It
thus seemed to us that with a little extra effort, we can use theorem
proving to extend safety to full functional correctness.

The second reason for full functional verification is synthesis of
sparse matrix programs, including the discovery of new formats. In
inductive synthesis, which is conceptually a search over a space of
plausible (i.e., potentially semantically incorrect) implementations,
a full functional verifier is a prerequisite for synthesis because it is
an arbiter of correctness of the selected implementation. Synthesis,
however, is outside the scope of this paper.

Before settling on the design presented in this paper, we set as
our goal the full functional verification ofimperativesparse code,
in the style presented in Section 2.1. However, even the simple
CSR format turned out to be rather overwhelming. We attempted
to verify its correctness in multiple ways: (i) manually with Hoare-
style logic, both with first-order predicates and inductive predi-
cates; (ii) with ESC/Java [6]; (iii) with TVLA [13]; and (iv) using a
SAT-based bounded model checker. The results were unsatisfactory
either because it took weeks to develop the necessary invariants (i,
ii), the abstraction was too complex for us to manage (iii), or be-
cause the checker scaled poorly (iv). Eventually, we concluded that
we needed to verify sparse codes at a higher level of abstraction
(and separately compile the verified code into efficient low-level
code). Turning our attention to functional programs allowed us to
replace explicit loops over arrays with maps and a few fixed re-
ductions over lists, which in turn simplified the formulation and
encapsulation of inductive invariants.

Let us the simple CSR format to give the rationale for the
design of our proof system. Suppose thatA and x are concrete
language objects that, respectively, contain dense representations
of a mathematical matrixB and a vectory. We want to prove that
the product of the CSR-compressedA with x produces an object
that is a valid (dense) representation of the vectorB · y. Note that
the product is CSR-specific. Formally, our verification goal is

csrmv(csr(A), x)
m
⊲ B · y

The goal expresses the relationship between a mathematical object

and its concrete counterpart with therepresentation relationa
k
⊲ b,

which states that the concrete objecta represents the mathematical
vectorb: for all i < k, a[i] equalsbi and the lengths ofa andb
arek. In the course of the proof, we may need to track relationships
on various kinds of concrete objects; one of our contributions is to

define suitable representation relations for the objects that arise in
sparse matrix programs.

We use Isabelle/HOL as our underlying theorem prover. We em-
bed LL functions in Isabelle using typedλ-calculus and Isabelle
libraries. Our proofs deploy two techniques: (a)term simplifica-
tion, which rewrites subterms in functions into simpler, equivalent
ones; and (b)introduction, which substitutes a proof goal with a
certain term for alternative goal(s) that do not contain the term, and
whose validity implies the validity of the original goal. In our ex-
ample, term simplification unfolds the definitions ofcsrmv andcsr
and applies standard rules for simplifying function application and
composition, map and filter operations on lists, and extraction of
elements from pairs. This results in the goal

[enum -> [snd != 0 ? ] ->[snd * x[fst]] -> sum](A)
m
⊲ B · y

(1)

The LL function on the left enumerates each row ofA into a
list of (column index, value) pairs, then filters out pairs whose
second element is zero ([snd != 0 ? ]). For the remaining pairs,
it multiplies the second (nonzero) component with the value ofx at
the index given by the first component ([snd * x[fst]]). Finally,
it sums the resulting products (sum). So far, simplification has done
a good job.

To carry out the next step of the proof, we observe that the
missing zeros do not affect the result of the computation, so we
would like to simplify the left-hand-side by rewriting away the fil-
ter ([snd != 0 ? ]); this would effectively “desparsify” the left-
hand side, moving it closer to the mathematical right-hand-side.
Unfortunately, standard simplification available in prover libraries
cannot perform the rewrite; we would need to add a rule tailored
to this format. The hypothetical rule, shown below, would matchp
with snd != 0 andf with snd * x[fst].

∀y . ¬p(y) −→ f(y) = 0

[p ? ] -> [f] -> sum = [f] -> sum

The rule would achieve the desired simplification but we refrain
from adding such a rule because it would take a considerable effort
to prove it. Additionally, the rule would of little use in cases where
the LL operations appear in just a slightly syntactically different
way.

We will instead rely on introduction which, by substituting the
current goal with a set of goals, isolates independent pieces of rea-
soning. Introduction rules tend to be more general than simplifica-
tion rules because they are concerned with a single construct from
the current goal. Also, the validity of introduction rules is easier to
establish.

Our first introduction rule substitutes in the goal (1) thewhole
result vectorwith a single elementof that vector. In effect, this
removes the outermost map from the LL function on the left-hand
side. Semi-formally, the rule for map can be stated as follows:

length ofA is m ∀i < m . f(A[i]) = Bi

[f](A)
m
⊲ B (2)



In goal (1),f matches the entire chain ofenum -> . . . -> sum and
the new subgoals are

(i) length ofA ism

(ii) ∀i < m .

enum -> [snd != 0 ?] ->

[snd * x[fst]] -> sum (A[i]) =
∑

j<n

Bi,j · yj

We now need a second introduction step to remove the summa-
tion on both sides of the equality: instead of requiring equivalence
betweensums of sequencesof numbers, we will require equiva-
lence between thevalues in the sequencesthemselves. In order
for such a rule to be general enough, we need to permit arbitrary
permutations of the values in a sequence to prove programs that
exploit associativity and commutativity of addition. A hypotheti-
cal rule may look as follows, where[xi|p(xi)]i=a,...,a+δ denotes a
construction of an ordered list of elements out ofxa, . . . , xa+δ that
satisfyp.

∃n′ ≤ n, permutationP .

f(A[i])
n′

⊲ [Bi,j | Bi,j 6= 0]j=P0,...,Pn−1

sum(f(A[i])) =
∑

j<n

Bi,j

This rule is problematic for two reasons. First, it is more com-
plex than what we may want to prove. For example, the premise
constructs a filtered and permuted mathematical vector on the right-
hand side (via list comprehension), rather than keeping the mathe-
matical object untouched. This might hinder our ability to link our
proof goal to the original input matrix in the assumptions of the the-
orem. Second, the rule is not as general as we would like because a
concrete representationmaycontain zeros.

Our approach is to enrich the representation relation (a
k
⊲ b).

This relation uses plain equality to relate single elements from the
two vector objects, which limits its applicability to more subtle
mappings. To express a relation where, say, each element in a con-
crete representation equals the corresponding vector element mul-
tiplied by some value, we parameterize the representation relation
with aninner relationthat describes how individual elements repre-
sent their mathematical counterparts. Individual elements need not
be scalars; they could be, recursively, lists. Therefore, inner rela-
tions could be parameterized by further inner relations.

Our domain proof theory for sparse matrices is novel in two
ways. First, we define common representation relations that occur
in our domain. Our infrastructure is powerful because we (a) in-
sist on relaxing invariants as much as possible (e.g., zeros may
still be present in a compressed representation); (b) encapsulate
many quantifications and implications in the representation rela-
tions (e.g., universal quantification on all indexes of a vector, exis-
tence of a permutation); (c) include necessary integrity constraints
in the representation relations (e.g., lengths must match). The repre-
sentation relations we define include indexed list (ilist), where the
element at positioni represents theith vector element; value list
(vlist), in which all nonzero values are represented; and associative
list (alist), which contains index-value pairs. These representation
relations raise the level of abstraction and focus theory develop-
ment on these prevalent data representation. The use of represen-
tation relations also prevents oversimplification of proof terms by
concealing their internal conjuncts from Isabelle’s simplifier.

The second novelty is parameterizing the inner predicate, which
describes how the vector elements represent their mathematical
counterparts. In the case of a vector of numbers, we use equal-

ity. For matrices, the inner relation relates a single row to its con-
crete indexed-list representation (ilist); technically, the inner rela-
tion predicate is a parameter to the (outer) representation predi-
cate for the whole matrix. In addition to reducing the number of
rules, parameterization helps with syntactic matching and substitu-
tion of inner comparators during introduction. For example, with
a parameterized relation, an introduction rule for map similar to
that in Eq. (2) can be written more generally and concisely: the
conclusion of the rule contains an indexed-list representation rela-
tion where the concrete object is the term[f](x) (i.e., map with
an arbitrary functionf over x) and the inner representation rela-
tion is some arbitrary predicateP—our parameter. The premise
of the rule is again an indexed-list representation relation where
the concrete object isx and the inner representation relation is
λi a b. P (i, a, f(b)). Fortunately, Isabelle can match and substi-
tute terms that contain parameters such asP (as well asf andx);
these rules can thus be applied automatically.

The representation relations are described in Section 4. Sec-
tion 5 evaluates whether they improve reuse of rules and thus sim-
plify theory development; we argue that the principles used in our
approach are crucial for proofs onnested data representations. It
may be interesting to apply such parameterized representation re-
lations also in other domains.

3. High-Level Sparse Matrix Programming
Sparse matrix codes can often be decomposed into sequences of
high-level transformations. This section describes LL and its use
for expressing such computations naturally and concisely.

3.1 Introduction to LL

The LL language constructs are presented in Fig. 3. The semantics
of each construct is shown, either by translation to Isabelle/HOL
λ-calculus and standard library for lists [11], or by de-sugaring to
simpler LL constructs. The language includes (a) general functions
such as identity, equality, constants, conditional branching, and a
name binding form used for assigning names to components of
an input value; (b) construction of pairs/tuples and extraction of
values from pairs; (c) pipeline- and application-style composition,
as well as a curried application operator; (d) standard arithmetic
operators and comparators; (e) Boolean logic operators; and (f) list
handling functions (e.g., distribution of values onto lists, zipping,
enumeration, concatenation) and combinators (map, filter, and a
unified comprehension syntax).

3.2 Specification of sparse codes using LL

Compressed sparse rows (CSR).This format compresses each
row by storing nonzero values together with their column indexes.
The resulting sequence of compressed rows is not further com-
pressed, so empty (all zero) rows are retained. This enables random
access to the beginning of each row, but requires linear traversal to
extract a particular element out of a row. CSR is widely used be-
cause it is relatively simple and entails good memory locality for
row-wise computations such as SpMV.

Implementing CSR in C, shown below,1 is not trivial. Traversal
of the dense matrix (construction) or the compressed rows (SpMV)
is done with nested loops. Single values are copied (construction)
or extracted (SpMV) through array indirection. Compressed row
boundaries need to be stored and observed. That said, the resulting
SpMV code is rather efficient as the inner product of each row is
incrementally accumulated, using very few instructions and avoid-
ing unnecessary memory accesses. Applying CSR construction to
the4-by-4 matrix in Fig. 1(a) yields the data structure in Fig. 1(c).

1 For brevity, we omit memory allocation and initialization and assume that
matrix dimensions are known at compile-time.



id λx. x
eq (=), neq (!=) λ(x, y). x = y, λ(x, y). x 6= y
n, true, false λy. n, λy. true, λy. false
f ? g | h λx. if f x theng x elseh x
l1,. . .,lk = f: g †

(

λ(x1, . . . , xk). g[li/λy. xi] (x1, . . . , xk)
)

◦ f
(f) f
(f1,f2,. . .,fk) λx. (f1 x, f2 x, . . . , fk x)
fst, snd λ(x, y). x, λ(x, y). y
f -> g g ◦ f
g(f1,. . .,fk) (f1,. . .,fk) -> g
g ‘ f (f, id) -> g

add (+), sub (-), mul (*), div (/), mod (%) λ(x, y). x+ y, λ(x, y). x− y,. . .
leq (<=), lt (<), geq (>=), gt (>) λ(x, y). x ≤ y, λ(x, y). x < y,. . .
sum (/+), prod (/*) foldl (op+) 0, foldl (op∗) 1
and (&&), or (||) λ(x, y). x ∧ y, λ(x, y). x ∨ y
neg (!) λx. ¬x
conj (/&&), disj (/||) foldl (op∧) True, foldl (op∨) False
len length
rev rev
sub (f[g]) λ(v, i). v ! i
subseq (f[g]) λ(v, s). map(λi. v ! i) s
distl, distr λ(x, v). map(λy. (x, y)) v, λ(v, x). map(λy. (y, x)) v
zip, unzip unsplit zip, λl. (map fst,map snd)
enum λv. zip [0 .. < lengthv] v
concat concat
infl λ(d, n, v). foldr (λ(i, x) v. v[i := x]) v (replicaten d)
gather λxs. map(λk. (k,map snd(filter (λ(k′, v). k = k′) xs))) (remdups(map fstxs))
sort sort_key fst
trans λv. [map(λv. v ! i) (takeWhile(λv. i < lengthv) v) .

i← [0 .. < if v = [] then0 else length(v ! 0)]]
map f mapf
filter f filter f
[l1,. . .,ln = f: g ? h] ‡ filter (l1,. . .,ln = f: g); map (l1,. . .,ln: h)

Figure 3. LL constructs and their translation to Isabelle/HOL. Here,f , g andh denote functions,n a number, andl a label. Alternative
infix, prefix or mixfix notation is shown in parentheses.† f defaults toid. ‡ Value naming is optional,f andh default toid andg to true.
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Figure 4. Conceptual phases in CSR construction.

/* CSR construction. */

for (i=k=0; i<m; i++) {

for (j=0; j<n; j++)

if (M[i][j] != 0) {

J[k] = j;

V[k] = M[i][j];

k++; }

R[i] = k; }

/* CSR SpMV. */

for (i=k=0; i<m; i++)

for (y[i]=0; k<R[i]; k++)

y[i] += V[k] * x[J[k]];

Fig. 4 shows the high-level stages in CSR compression men-
tioned above. Given (a), each row is enumerated with column in-
dexes, resulting in (b). Pairs containing a zero value are then fil-
tered, yielding (c). A dataflow view of such a computation is shown
in Fig. 5. Notice how similar it is to the following LL function.

def csr: [enum -> [snd != 0 ? ]]

Using name binding in comprehensions may improve clarity.

[

[ a 0 0 0 ]

[ b c 0 0 ]

[ 0 0 0 0 ]

[ 0 d 0 e ]
]

map

[ b c 0 0 ]

enum

[ 〈0, b〉 〈1, c〉 〈2, 0〉 〈3, 0〉 ]

filter

〈0, b〉

snd

b

0

neq

true

?

[ 〈0, b〉 〈1, c〉 ]

[

[ 〈0, a〉 ]

[ 〈0, b〉 〈1, c〉 ]

[ ]

[ 〈2, d〉 〈3, e〉 ]
]

Figure 5. Dataflow view of high-level CSR construction.

[enum -> [j, v: v != 0 ? ]]

Alternatively, one can use an explicit enumeration operator inside
comprehensions. The following variant appears more “integrated”,
but in fact entails the exact same semantics.

[[v: v != 0 ? (#, v)]]
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Figure 6. Conceptual phases in CSR SpMV.

A more verbose variant uses Python-style comprehension. This
variant is de-sugared to the original definition.

def csr(A):

[[(j, v) for j, v in enum(r) if v != 0]

for r in A]

Fig. 6 shows the stages in CSR SpMV. Each compressed row
is multiplied separately, as shown in (b). First, column indexes are
separated from nonzero values as in (c). They are used to retrieve
corresponding values fromx, pairing them with their respective
row values as in (d). Finally, values in pairs are multiplied and the
products are summed, yielding the inner-product in (e). This maps
to the following LL function.

def csrmv(A, x):

A ->

[J, V = unzip: (V, x[J]) -> zip -> [mul] -> sum]

Here, too, it is possible to write a more integrated variant that bun-
dles multiplication with the extraction of single values. Although
semantically equivalent, the resulting code is less amenable to vec-
torization due to the use of word-level operations.

A -> [[j, v: v * x[j]] -> sum]

Jagged diagonals (JAD). This format deploys a clever compres-
sion scheme that allows handling of sequences of nonzeros from
multiple rows, taking advantage of vector instructions. Theith
nonzero values from all rows are laid out consecutively in the com-
pressed format, constituting a “jagged diagonal”. Since nonzeros
are distributed differently in each row, column indexes need to be
stored as well. These steps can be thought of as per-rowcompres-
sion(as shown above for CSR), followed bytranspositionto invert
the direction of compressed rows andith-element columns.

However, packingith elements in a predetermined order—e.g.,
from the first to the last row—induces a problem: one needs to
account for compressed rows that are shorter than other rows that
succeed them.2 This is addressed by adding asortingstep between
row compression and transposition, in which rows are ordered by
decreasing number of nonzeros. The sort permutation is stored with
the resulting diagonals, so the correct order of rows can be restored.
These conceptual steps in JAD compression are visualized in Fig. 2
and the LL implementation is shown in Section 2.1.

Fig. 7 shows the high-level steps in JAD SpMV. (b) is obtained
by computing, for each diagonal, the cross-product of its induced
vector of values with the elements ofx corresponding to their
column indexes. These are transposed to obtain the lists of products
in each (nonzero) row as in (c). Products in corresponding rows are
summed, obtaining (d). In (e), each inner product is paired with

2 Transposition inverts columns up to the first missing element, below which
all other elements are omitted. In this respect it is “lossy” and the equality
A = ATT only holds for matrices whose rows are sorted by length.

its row index, which are then “inflated” to obtain the dense result
vector in (f). The following LL function implements these steps.

def jadmv((P, D), x):

(P,

D -> [unzip -> snd * x[fst]] -> trans -> [sum]) ->

zip -> infl(0, m, id)

Other formats. Two additional standard formats are Coordinate
(COO) and Compressed Sparse Columns (CSC) [10]. COO is a
highly-portable compression in which nonzeros are stored together
with their row and column indexes in a single, arbitrarily ordered
sequence. Construction can be implemented in LL as follows.

def coo: [i = #: [v: v != 0 ? (i, #, v)]] -> concat

COO SpMV is less straightforward: one needs to account for
the fact that nonzeros of a particular row might be scattered along
the compressed list. It is necessary togather those values prior to
computing the inner-product. This is expressed as follows.

def coomv (A, x):

A-> gather ->

[(fst, snd -> [j, v: v * x[j]] -> sum)] ->

infl(0, m, id)

A CSC representation is obtained by compressing the nonzero
values in the column direction, instead of row direction as in CSR.
In C, it is done by swapping the order of the loops iterating over the
dense matrix, and storing the row index with the nonzero values. In
LL, it amounts to prepending a transposition to CSR construction.

def csc: trans -> csr

Like COO, CSC SpMV calls for a gather operation prior to sum-
ming row cross-products.

def cscmv:

zip -> [cj, xj: cj -> [i, v: (i, v * xj)]] ->

concat -> gather ->

[(fst, snd -> sum)] -> infl(0, m, id)

Here, too, the fact that data layout is not in line with the compu-
tation entailed by matrix-vector multiplication calls for additional
steps to massage the result into a proper vector form.

In addition to the above formats, LL can naturally and suc-
cinctly describe hierarchical compression. This includes Sparse
CSR (SCSR) and different block variants of all of the above. These
will be described and studied in Section 5.

4. Verifying Sparse Codes using Isabelle/HOL
We make use of Isabelle’s rich infrastructure in implementing a
proof method for sparse matrix codes. This includes thesimplifier
and a powerfultactical language, which is used to combine existing
proof methods in forming new ones. All parts of our proofs are
checked from first principles by a small LCF-style kernel.
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Figure 7. Conceptual phases in JAD SpMV.

4.1 Translating LL to Isabelle/HOL

Fig. 3 constitutes ashallow embedding[16] of LL in Isabelle/HOL,
a standard technique when the goal is to verify correctness of pro-
grams in some language. In this approach, the functions and types
of an object language (LL) are written directly in the language of
the theorem prover (typedλ-calculus). Subsequent logical formulas
relate to these translated programs as ordinary HOL objects, which
allows to leverage existing support for proving properties of them.
The CSR implementation in Section 3.2 translates to the following
definitions, which will be used in our proofs.

csr = (filter(λ(j, v).v 6= 0)) ◦ enum and

csrmv(A, x) = map(listsum ◦ map(λ(x, y). x ∗ y) ◦

unsplit zip◦

(λ(J, V ). (V,map(λi. x ! i) J)) ◦

map unzip

(3)

We now pose the verification theorem: whenA index-represents the
m × n-matrixA′ andx then-vectorx′, the result of CSR SpMV
applied to a CSR version ofA and tox represents them-vector that
is equal toA′ · x′.

ilistM m n A′ A ∧ ilistv n x′ x

−→ ilistv m (λi. Σj < n. A′ i j ∗ x′ j) (csrmv(csrA, x))
(4)

The remainder of this section presents the formalism and explains
the reasoning used in proving this goal.

4.2 Formalizing vector and matrix representations

We begin by formalizing vectors and matrices in HOL. Mathemat-
ical vectors and matrices are formalized as functions from indexes
to values, namely nat→ α and nat→ nat → α, respectively;
note that the→ type constructor is right-associative, hence a ma-
trix is a vector of vectors. Dimensions are not encoded in the type
itself, and values returned for indexes exceeding the dimensions
can be arbitrary, which means that many functions can represent
the same mathematical entity. Concrete representations of dense
and sparse vectors/matrices are derived from the LL implementa-
tion and consist of lists and pairs. Commonly used representations
include indexed lists, value lists and associative lists, all of which
are explained below.

We introducerepresentation relations(defined as predicates in
HOL) to link mathematical vectors and matrices with different con-
crete representations, for three reasons. First, in proving correctness
of functions we map operations on concrete objects to their mathe-
matical counterparts. This is easy to do for indexed list representa-
tions but gets unwieldy with others. We hide this complexity inside
the definitions of the relations. Second, predicates can be used to
enforce integrity constraints of the representation. For example, an
associative list representation requires that index values are unique;
or the lengths of a list of indexed list representations need to be

fixed. Third, for some representations (e.g., value list) there exists
no injective mapping from concrete objects to abstract ones, forc-
ing us to use relations rather thanrepresentation functions. Using
relations across the board yields a more consistent and logically
lightweight framework.

An indexed listrepresentation of ann-vectorx′ by a listx is
captured by theilist predicate. Note that we refrain from fixing
vector elements to a specific type (e.g., integers) and instead use
type parametersα andβ to denote the types of inner elements of
the mathematical and concrete vectors, respectively.

ilist :: nat→ (nat→ α→ β → bool)→

(nat→ α)→ [β]→ bool

ilist n P x′ x ⇐⇒

(lengthx = n) ∧ (∀i < n. P i (x′ i) (x ! i))

The parameterP is a relation that specifies the representation of
each element in the vector. For ordinary vectors, it is equality of
elements. However,P turns useful for matrix representation, as
we can use arbitrary relations to determine the representation of
inner vectors. We introduce abbreviations for the common cases of
indexed list representations.

ilistv n x′ x ⇐⇒ ilist n (λj. op=) x′ x

ilistM m n A′ A ⇐⇒ ilist m (λi. ilistv n) A′ A

An associative listrepresentation is central to sparse matrix
codes as it is often used in vector compression. It is captured by
thealistpredicate.

alist :: nat→ (nat→ α→ β → bool)→

(α set)→ (nat→ α)→ [〈nat, β〉]→ bool

alistn P D x′ x ⇐⇒

distinct(map fstx) ∧

(∀(i, v) ∈ setx. P i (x′ i) v ∧ i < n) ∧

(∀i < n. x′ i 6∈ D −→ ∃v. (i, v) ∈ setx)

Here,distinct is a predicate stating the uniqueness of indexes (i.e.,
keys) inx. Each element in an associative list must relate to the re-
spective vector element, also requiring that index values are within
the vector length. Finally, each element in the vector that is not a
default value (specified by the set of valuesD) must appear in the
representing list. Note that asetof default values accounts for cases
where more than one such value exists, as in the case of nested vec-
tors where each function mapping the valid dimensions to zero is a
default value. Also note thatalist does not enforce a particular or-
der on elements in the compressed representation, nor does it insist
that all default values are omitted.

Sometimes concrete objects contain only the values of the el-
ements in a given vector, without mention of their indexes. This
value list representation often occurs prior to computing a cross-
or dot-product. It is captured by thevlist predicate, which states



that the list of values can be zipped with some list of indexesp to
form a proper associative list representation. (The length restriction
ensures that no elements are dropped from the tail ofx.)

vlist :: nat→ (nat→ α→ β → bool)→

(α set)→ (nat→ α)→ [β]→ bool

vlist n P D x′ x ⇐⇒

∃p. lengthp = lengthx ∧

alistn P D x′ (zip p x)

Additional representations can be incorporated into our theory.
For example, when a matrix is compressed into an associative list, a
dual-index representation relation can be defined similarly toalist.

4.3 Proving correctness of sparse matrix computations

We prove Eq. (4) using term rewriting and introduction rules. In-
troduction rules are used whenever further rewriting cannot be ap-
plied. An introduction rule is applied by resolution: applying the
rule G x ∧ H y −→ F x y to the goalF a b yields two new
subgoals,G a andH b.

The theorem in Eq. (4) makes the following two assumptions,

ilistM m n A′ A (5)

ilistv n x′ x (6)

which are added to the set of available introduction rules as
true−→ . . . . The conclusion of Eq. (4) is our initial proof goal,

ilistv m (λi. Σj < n. A′ i j ∗ x′ j) (csrmv(csrA) x) (7)

Simplifying the goal. We begin by applying Isabelle’s simplifier
using Eq. (3) and standard rules for pairs, lists, arithmetic and
Boolean operators. This removes most of the function abstractions,
compositions and pair formations due to the translation from LL.
Our new goal is analogous to Eq. (1) in Section 2.2.

ilistv m (λi. Σj < n. A′ i j ∗ x′ j)

(map(λr. listsum(map(λv. sndv ∗ x ! fst v)

(filter (λv. sndv 6= 0) (enumr)))) A)
(8)

Solving the entire goal using rewriting alone calls for simplifi-
cation rules that are too algorithm-specific. For example, the rule

(∀x ∈ setxs. ¬ P x −→ f x = 0)

−→ listsum(mapf (filter P xs)) = listsum(mapf xs)
(9)

allows further simplification of Eq. (8), but fails for all formats that
introduce more complex operations betweenmapandfilter.

Introduction rules on representation relations. Consider the
equation in the conclusion of Eq. (9). We know that it holds when
the two lists,xs and filter P xs, value-represent the same vec-
tor. By introducing rules, describing when it is allowed to apply
map, filter andenum operations to value list representations, we
prove that the result oflistsum in Eq. (8) equals the mathematical
dot-product.

Fig. 8 shows the introduction rules used in proving Eq. (4). Ap-
plication of introduction rules is syntax directed, choosing rules
whose conclusion matches the current goal. Given Eq. (8), the
prover appliesILIST-MAP, which moves the map from the repre-
senting object into the inner representation relation, followed by
ILIST-LISTSUM, which substituteslistsum with an equivalent no-

3 The predicateP and the vectorz′ are arbitrary, they just help to state that
x is a list of lengthm.

tion of value-represented rows. This results in

ilist m
(

λi r′ r. vlist n (λj. op=) {0} r′

(map(λv. sndv ∗ x ! fst v)

(filter (λv. sndv 6= 0) (enumr)))
)

(λi j. A′ i j ∗ x′ j) A

Further simplification is not possible at this point, nor can we
modify thevlist relation insideilist . Luckily, ILIST-VLIST matches
our goal, lifting the innervlist to the outermost level and permitting
to further operate on the concrete parameters ofvlist . Note that
ILIST-VLIST has two assumptions, resulting in new subgoals

ilist m ?Q ?B′ A (10)

and

∀i < m. vlist n (λj. op =) {0} (λj. A′ i j ∗ x′ j)
(

map(λv. sndv ∗ x ! fst v)

(filter (λv. sndv 6= 0) (enum(A ! i)))
)

(11)

In Eq. (10),?Q and?B′ are existentially quantified variables.
They do not get instantiated when we applyILIST-VLIST, and the
subgoal Eq. (10) merely certifies thatA has lengthn. Therefore,
the prover is allowed to instantiate them arbitrarily and Eq. (10) is
discharged by the assumption Eq. (5).

The rules VLIST-MAP, ALIST-FILTER and ALIST-ENUM can
now be applied to Eq. (11). Note that applying them amounts to
the effect of simplification using Eq. (9). However, they can be
applied regardless of the way in which the three operations—map,
filter and enum—are intertwined. Therefore, they are applicable
in numerous cases where the context imposed by Eq. (9) is too
restrictive.

The ALIST-FILTER rule forces us to prove thatfilter only re-
moves default values, in the form of the following new subgoals,

∀i < m. ∀j < n. ∀v v′.

¬ snd (j, v) 6= 0 ∧ v′ = v ∗ x ! j −→ v′ ∈ {0} (12)

∀i < m.

ilist n (λj v′ v. v′ = v ∗ x ! j) (λj. A′ i j ∗ x′ j) (A ! i)

Fortunately, subgoal Eq. (12) is completely discharged by the sim-
plifier. The remaining goal is solved using theILIST-MULT , ILIST-
NTH, and ILISTv→ ILISTM , as well as the assumptions Eq. (5)
and Eq. (6).

4.4 Automating the proof

The above proof outline already dictates a simple proof method. Is-
abelle’s tactical language [15] provides us with ample methods and
combinators that can be used to implement custom proof tactics.
Our proof method is implemented as follows.

1. The simplifier attempts to rewrite the goal until no further
rewrites are applicable, returning the new goal. If no rewrite
rule could be applied, it returns an empty goal.

2. Theresolutiontactic attempts to apply each of the introduction
rules and returns a new goal state for each of the matches. It
is possible that more than one rule matches a given goal,e.g.
ILIST-MAP and ILIST-NTH both matchilist n (λi v′ v. v′ =
y ! i) x′ (map f x), resulting in a sequence of alternative goal
states to be proved.

Invoking the proof method leads to a depth-first search on the
combination of the two sub-methods. It maintains a sequence of
goal states, initially containing only the main goal. After each



ilist n (λi a b. P i a (f b)) x′ x

ilist n P x′ (mapf x)
ILIST-MAP

ilist m (λi r′ r. vlist n (λj.op=) {0} r′ (f r)) A′ A

ilist m (λi r′ r. r′ = listsum(f r)) (λ i. Σ j < n. A′ i j) A
ILIST-LISTSUM

ilist m Q B′ A
∀i < m. vlist n (P i) (D i) (f (A′ i) i) (g (A ! i) i)

ilist m (λi r′ r. vlist n (P i) (D i) (f r′ i) (g r i)) A′ A
ILIST-VLIST

alistm (λi r′ r. P i r′ (f (i, r))) D x′ x

vlist m P D x′ (mapf x)
VLIST-MAP

alistn P D x′ x
(∀i < n. ∀v v′. ¬ Q (i, v) ∧ P i v′ v −→ v′ ∈ D)

alistn P D x′ (filter Q x)
ALIST-FILTER

ilist m P x′ x

alistm P D x′ (enumx)
ALIST-ENUM

ilist n (λi v′ v. v′ = f i v) x′ z
ilist n (λi v′ v. v′ = g i v) y′ z

ilist n (λi v′ v. v′ = f i v ∗ g i v) (λi. x′ i ∗ y′ i) z
ILIST-MULT

ilistv m x′ y ilist m P z′ x

ilist m (λi v′ v. v′ = y ! i) x′ x
ILIST-NTH3

ilistM m n A′ A i < m

ilistv n (A′ i) (A ! i)
ILISTv → ILISTM

Figure 8. Introduction rules used in the proof of CSR SpMV.

k 6= 0
ilistv n (λi. blockk 1 (λi′ j. A′ (i ∗ k + i′))) A

ilistv (n ∗ k) A′ (concat_vectorsk A)
ILIST-CONCAT_VECTORS

l 6= 0 ilistv (m ∗ l) x′ x

ilistv m (λi. block l 1 (λi′ j′. x (i ∗ l + i′)))
(block_vectorm l x)

ILIST-BLOCK_VECTOR

k 6= 0 l 6= 0 ilistM (m ∗ k) (n ∗ l) A′ A

ilistM m n (λi j. blockk l (λi′ j′.A′(i ∗ k + i′)(j ∗ l + j′)))
(block_matrixm n k l A)

ILIST-BLOCK_MATRIX

Figure 9. Introduction rules used for proving blocked format operations.

successful application of either sub-method, the result is prepended
to the head of the sequence. A failure at any level causes the search
to backtrack and continue with the next available goal state. When
the top element of the goal state sequence is empty, the main goal
has been discharged and the proof is complete.

5. Evaluation
In this section we evaluate programmability of sparse codes in LL
and the extensibility of our verification method to new formats.

5.1 Verifying additional sparse formats

We examine to what extent our prover design allows us to verify ad-
ditional formats without adding excessively many rules. Recall that
our initial implementation of the prover for CSR SpMV (Section 4)
insisted on minimizing reliance on format-specific rules, avoiding
duplication of logic, and keeping representation relations general,

for example by keeping the type of the value stored in the matrix
parametric. In this section, we extend our prover to verify several
formats that are strictly more complex than CSR.

Our experience indicates that our prover can overcome varia-
tions in both format construction and matrix-vector multiplication.
The variations were both syntactic (i.e., due to syntactic sugar) and
structural (i.e., inducing a different dataflow structure). This benefit
is thanks to Isabelle’s simplifier, which successfully canonicalizes
these differences, requiring only minor tweaks to the prover’s rule
base. Therefore, we consider below only a single implementation
for each format and argue that the single variant represents a larger
class of similar implementations.

Jagged Diagonals (JAD). A prominent feature of JAD’s proof
goal is the double use of transpose, once during compression (jad)
and once during multiplication (jadmv). This form can be simpli-
fied to the IsabelletakeWhilelist operator on the premise that com-



pressed rows are sorted by length prior to being transposed. The
form is matched by a rewrite rule fortranspose(transposexs).
Adding introduction rules forinfl, takeWhile, rev andsort_keywas
sufficient for our verifier to complete the proof.

The ability to prove full functional correctness of JAD SpMV
documents the strength of our prover; no other verification frame-
work that we know of can (i) handle the complex data transforma-
tions in JAD compression, and (ii) prove correctness of arithmetic
operations on the resulting sparse representation (see Section 6).

Coordinate (COO). As mentioned in Section 3.2, the COO for-
mat is challenging because it associates matrix values with both
row and column coordinates, and also because it requires concate-
nation and gather operations. It turns out that the COO pair coordi-
nates do not call for a new representation relation. In fact, thanks to
how the functionscoo andcoomv are composed, we need to han-
dle the pair coordinates only between concatenation (incoo) and
gather (incoomv). The simplifier moves these two functions to-
gether; therefore, we introduce a rule to relate the representation
of the input and output ofgather(concatxs), allowing the prover
to automatically complete the proof.

ALIST-GATHER-CONCAT

vlist n (λi. vlist m (λj a b. a = sndb ∧ i = fst b) {0})
{x.∀j < m.x j = 0}M xs

alistn (λi. vlist m (λi.op=) {0})
{x.∀j < m.x j = 0}M (gather(concatxs))

Compressed Sparse Columns (CSC).As CSC exhibits a peculiar
use of concatenation and gather operations, it is handled similarly
to COO. In contrast to COO, the input list toconcat represents a
transposed matrix, hence we use a rule similar toALIST-GATHER-
CONCAT, but with a transposed matrixM .

How many introduction rules did we need to prove our sparse
formats? In total, 24 rules were needed, including both introduc-
tion and simplification rules. Introduction rules were typically used
to (i) reason about some language construct such asmap, sum and
filter, in the context of a certain representation (e.g., rulesILIST-
MAP, ILIST-LISTSUM, ALIST-FILTER in Fig. 8); and (ii) formal-
ize algebraic operations on vector and matrix representations, such
as extracting an inner representation relation (ILIST-VLIST) and
substituting a vector representation with a matrix representation
(ILISTv → ILISTM ). Most operators were handled by a single in-
troduction rule; a few (e.g., map) required one rule per representa-
tion relation.

To quantify rule reuse in our prover, we summarize the reuse of
the 24 rules that were needed for proving five sparse formats (see
Fig. 10). On average, fewer than19% of rules used by a particular
format are specific to this format, while over66% of these rules
are used by at least three additional formats, a significant level of
reuse. Even of the rules needed for more complex formats (CSC
and JAD), only up to a third are format-specific. On the other hand,
format-specific rules tend to be harder to prove, as indicated by
the average number of lines of Isar code required to prove the
rules. A detailed examination reveals that two rules for handling
agather-concatsequence (used in CSC and COO) account for over
a hundred lines each. We believe that these rules can be refactored
for better reuse of simpler lemmas and greater automation. Note
that most of the effort in proving JAD was invested in stating and
proving simplification oftranspose-transposecomposition. Fig. 10
does not account for these rules, as they are quite general and were
implemented as an extension to Isabelle’s theory of lists.

5.2 Case study: hierarchical compression formats

This subsection evaluates expressiveness of the LL language. This
question is motivated by the absence from LL of some powerful

constructs, such as first-class functions and folds. We show that LL
can express advanced formats even without these constructs.

Sparse CSR (SCSR).The SCSR format extends CSR with an-
other layer of compression. SCSR compresses the list of (com-
pressed) rows, by filtering out empty rows (i.e., those rows that
have only zero-valued elements). The remaining rows are associ-
ated with their row index.

Implementing SCSR in LL amounts to obtaining the CSR for-
mat, which compresses individual rows, followed by compression
of the resulting list of compressed rows. Again, LL manages to ex-
press format construction as a pipeline of stages.

def scsr: csr -> [len != 0 ? (#, id)]

The corresponding SpMV implementation needs to account for the
row indexes. It must also inflate the resulting sparse vector into
dense format:

def scsrmv(A, x):

A ->

[i, r: r -> unzip -> snd * x[fst] ->

sum -> (i, id)] ->

infl(0, m, id)

Alternatively, we can reuse SpMV for CSR:

A -> unzip -> (fst, csrmv(snd, x)) -> zip ->

infl(0, m, id)

SCSR demonstrates the ability of our prover to peel off the
additional compression layer and prove correctness of the overall
result, while requiring only two rules in addition to those needed
by CSR (see Fig. 10).

Next, we investigate two optimizations for SpMV—register
blocking and cache blocking—designed to improve temporal local-
ity of the vectorx at two different levels of the memory hierarchy.
The locality is improved by reorganizing the computation to oper-
ate on smaller segments of the input matrix, which in turn allows
the reuse of a segment ofx.

Register blocking. This optimization is useful when the nonzero
values in the matrix appear in clusters [14]. The idea is to place
the cluster of nonzeros in a small dense matrix. To obtain register-
blocked format, instead of compressing single-cell values (i.e.,
numbers), a matrix is partitioned into uniformly sized rectangular
blocks. These dense blocks form the base elements for compres-
sion: a block is filtered away if all its elements are zeros; if the
block is nonzero, it is represented as a dense matrix. The size of
these blocks is chosen so that the corresponding portion of the vec-
tor x can reside in registers during processing of a block.

Register blocking can be applied to all sparse formats described
in Section 3.2. The2 × 2 blocked representation of Fig. 1(a) can
be seen in Fig. 11(a). Applying CSR compression to this blocked
matrix results in the register-blocked CSR format in Fig. 11(b).

To construct the register-blocked CSR (RBCSR) in LL, we
first “blockify” the dense matrix with theblock function, which
transforms a dense matrixA of sizemr × nc to anm × n matrix
of r× c dense blocks. Next, we pair these blocks with their column
indices using[enum], and filter out the all-zero blocks.

def rbcsr(A):

block(r, c, A) ->

[enum -> [snd -> [[neq ‘ 0] -> disj] -> disj ? ]]

In SpMV of an r × c-RBCSR matrixA and a dense vector
x, we first bind the namesB and l to each dense block and its
index, respectively, and perform dense matrix-vector multiplication
(densemv) on each block and the correspondingc-sub-vector ofx.



Reuse degree # Rules Avg. LOC CSR SCSR COO CSC JAD Total %
1 11 28.3 1 2 5 3 11 18.3
2 3 6.3 3 3 6 10.0
3 1 6.0 1 1 1 3 5.0
4 5 6.4 3 5 4 3 5 20 33.3
5 4 2.3 4 4 4 4 4 20 33.3

Figure 10. Reusability analysis of our sparse-matrix code prover.
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Figure 11. Example dense and sparse2× 2 blocked matrix representations.

The latter is obtained by breakingx into a list of c-vectors using
block(c, x) and selecting the appropriate sub-vector. The result
vectors in a row block are summed, and the final result is obtained
by concatenating the result sub-vectors from all row blocks.

def rbcsrmv(A, x):

A ->

[[l, B: (B, block(c, x)[l]) -> densemv] -> sum] ->

concat

Our prover allowed us to easily extend proofs to blocked for-
mats because our matrices are of parametric type; the prover can
work with matrices of numbers as well as with matrices whose el-
ements are matrices. Parameterization of matrices was expressed
with Isabelle/HOL type classes, which are used to restrict types in
introduction rules.

We use a theory of finite matrices [12]. Here, too, the size of a
matrix is not encoded in the matrix type (denotedα matrix) but it is
required that matrix dimensions are bounded. To represent matrices
as abstract values, we introduce thematrix conversion function:

matrix :: nat→ nat→ (nat→ nat→ α)→ α matrix

The first two parameters specify the row and column dimensions,
respectively. The third parameter is the abstract value encoded
into the matrix. Implementing functions on compressed matrices
necessitates a few more conversion functions:

block_vector:: nat→ nat→ [α]→ [α matrix]

block_matrix:: nat→ nat→ nat→ nat→ [[α]]→ [[α matrix]]

concat_vectors:: nat→ [α matrix]→ [α]

The operationblock_matrixm n k l A transforms the object
A, representing anmk × nl-matrix, into an object representing an
m× n-matrix ofk × l-blocks;block_vectorm k x transforms the
list x of lengthnk into a list ofn k-vectors;concat_vectorsk x is
the inverse operation, unpacking thek-vectors inx.

This code shows register-blocked CSR code in Isabelle.

rbcsrm n k l A = map (filter (λ(i, v). v 6= 0) ◦ enum)

(block_matrixm n k l A)

rbcsrmvm n k l (A, x) =

concat_vectorsk

(map(listsum◦

(map(λv.sndv ∗ block_vectorn l x ! fst v))) A)
We require that block dimensions are greater than zero and properly
divide the respective matrix and vector dimensions. The correctness

theorem follows.

k 6= 0 ∧ l 6= 0 ∧ ilistM (m ∗ k) (n ∗ l) A′ A ∧ ilistv (n ∗ l) x′ x

−→ ilistv (m ∗ k) (λi. Σj < n ∗ l. A′ i j ∗ x′ j)

(rbcsrmvm n k l (rbcsrm n k l A, x))
(13)

After adding the introduction rules in Fig. 9 and a few rewrite rules
for matrix, the prover automatically proves Eq. (13).

Cache blocking. The idea in cache blocking is to reduce cache
misses for the source vectorx when it is too large to entirely fit
in the cache during SpMV. We considerstatic cache blocking[7].
The sparse matrix is partitioned into rectangular sub-matrices of
sizer× c. While in register blocking these sub-matrices were kept
dense, in the cache-blocked format they are compressed.

Our cache blocking scheme differs from the one in [7] in that
we only allow cache blocks to start at column indices which are
multiples ofc; this restriction leads to suboptimal compression. We
believe that this restriction can be relaxed by augmenting LL with
a blocking function that creates optimally placed blocks.

Notice that the construction of a cache-blocked matrix is very
similar to the construction for register blocking. The only differ-
ence is the additional compression applied to each block. The LL
code for the CSR compressed cache-blocked matrix, whose blocks
are stored in CSR format, is shown below.

def cbcsr(A):

block(r, c, A) ->

[enum -> [snd -> [[neq ‘ 0] -> disj] -> disj ? ] ->

[l, B: (l, B -> csr)]]

The corresponding cache-blocked SpMV in LL:

def cbcsrmv(A, x):

A ->

[[l, B: (B, block(c, x)[l]) -> csrmv] -> sum] ->

concat

In the cache-blocked SpMV, we again notice the similarity to the
register-blocked SpMV. The two codes are identical except for the
function used for multiplying a block by a vector. It is somewhat
desirable to factor out these inner multiplications (densemv and
csrmv) but this is not possible in LL. The reason is that LL does
not support lambda abstraction, which would allow reuse of code
common to register- and cache-blocked versions. We have refrained
from enriching LL with first-order functions for now because this



allows for simpler verification and gives us broad verification cov-
erage. We do not consider the absence of lambda abstraction a
significant disadvantage because even optimized LL programs are
small. In the future, we may decide to extend LL with a template
mechanism that will be used to instantiate such hierarchical com-
position, allowing code reuse.

The verification of cache-blocked sparse formats was not yet
implemented. We expect that the amount of work will not be sub-
stantial, based on our experience with other hierarchical formats.

6. Related Work
Specifying sparse matrix codeBernoulli [8, 9] is a system that
synthesizes efficient low-level implementations of matrix opera-
tions given a description of the sparse format using relational al-
gebra. This is impressive and permits rapid development of fast
low level implementations. However, the functionality of the sys-
tem was limited and it had limited impact. Instead, we are express-
ing formats using a functional programming language which can be
mechanically verified. We believe that function-level programming
provides the right level of abstraction for expressing the desired
transformations. Moreover, LL can be embedded in existing call-
by-value functional programming languages. Compiling LL into
low-level code is a work in progress.

The synthesizer by Biket al. [2] produces efficient implemen-
tations by replacingA[i, j] in dense-matrix code with a representa-
tion function that maps to the corresponding sparse element; pow-
erful compiler optimizations then yield efficient code.

Verifying sparse matrix code We are not aware of previous work
on verifying full functional correctness of sparse matrix codes. We
are not even aware of work that verified their memory safety with-
out explicitly provided loop invariants. Our own attempts at veri-
fication included ESC/Java, TVLA and SAT-based bounded model
checking, neither of which was satisfactory. Furthermore, neither of
these tools was capable of proving higher-order properties like the
ones we currently prove. This led us to raising the level of abstrac-
tion and deferring to purely functional programs where loops are
replaced with comprehensions and specialized reduction operators.

Higher order verification Duanet al. [5] verified a set of block
ciphers using the interactive theorem prover HOL-4. They proved
that the decoding of an encoded text results in the original data.
Their proofs are mostly done using inversion rules, namely rules of
the formf (f−1 x) = x, and algebraic rules on bit-word identities.
For the block ciphers used by AES and IDEA special rules where
needed. The domain of block cipher verification does not seem to
require more complicated rules than bit-word identities.

7. Conclusion
In this paper we showed how to raise the level of abstraction
for sparse matrix programs from imperative code with loops to
functional programs with comprehensions and limited reductions.
We also developed an automated proof method for verifying a
diverse range of sparse matrix formats and their SpMV operations.
This was accomplished by introducing relations that map a sparse
representation to the abstract (mathematical) one. Through a clever
definition of these representation relations we were able to build a
reusable set of simplification and introduction rules, which could
be applied to a variety of computations.

We are currently working on the problem of compiling the func-
tional code into an efficient C code. Deploying techniques from pre-
decessor functional and data parallel languages, we already exhibit
promising performance results with real-world sparse formats.
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