Browsing Web 3.0 on 3.0 Watts

or Why Browsers Will Be Parallel and Implications for Education

Rastislav Bodik

with Chris Jones, Rose Liu, Leo Meyerovich,
Krste Asanovic and the rest of Par Lab

UC Berkeley

Milestones in computing?

What are your top 3 milestones in computing?
- enabled new ways of thinking/doing things

Some candidates:
- hard disks and databases
- langquages and their compilers
- the transistor
- theory of NP-completeness
- Web/internet
- the PC

Bell's Law of Computer Classes

Moore's Law Enables Two Evolution Paths

Path 1: increasing performance, same cost and form factor

Path 2: constant performance, decreasing cost and form factor

slide courtesy Dave Patterson

Maini computing

in the Cloud

price /form factor

Handset @, &

o

0’.
L 4

. 'L,: .
. . ’\{_,_‘;‘:*fjff: *
Ubiquitous A‘ T

time slide courtesy Dave Patterson :

Handheld's Killer Apps

The laptop—~>handheld transition will happen if ...
- handhelds do to laptops what laptops did to desktops

Handheld killer apps that will make laptops irrelevant:

1. Device convergence
» phone + music player + PDA + gaming
2. Laptop replacement

» small form factor = convenience

3. Personal assistant
« vision, hearing, memory, health improvement

Handheld as a Laptop Replacement

« When will handhelds take over?
- when they have laptop-quality browser

» Whyis a web browser enough?
- In Web 3.0: most apps will be browser-based
- In Web 2.0: some apps are still native (Picassa, Google Earth)

A handheld browser may be soon possible

A guy walks into a bar, asks for a cup, and starts his browser.

Display: cell phone projector or "wearable”

Texas Instruments, CES 2008

10

Input: idea for tablet input for a handheld

» Inspiration: mimio, a whiteboard recorder (mimio.com)

microphones light sensor

How mimio works: *
triangulates in the same way that one measures lightning distance

1.
2.
3.

marker simulates a lightning strike: simultaneously emits light and sound signals;
capture bar measures sound travel time: yields marker distance to each mic;

the two distances determine marker location on the whiteboard; goto step 1
11

Dasher + picomimio = keyboard-rate input

Dasher: replacement for traditional keyboards
» Input rates up to ~30 words/minute

» Only needs 1 input axis (up/down) to work
- can be controlled by picomimio, eyes, tilt sensor, ...

il El e e ks s

« o

See for more info, online demo

12

http://www.inference.phy.cam.ac.uk/dasher/

Other input alternatives

» speech recognition

- we'll have enough MIPS for low-noise environments

» sensors for gestures

- iPhone has sensors: ex. to zoom into a map, move it so

» virtual laser keyboard:

13

What about CPU performance?

Display: many alternatives
Input: half as many
Network: plenty fast soon (all we need is better providers)

CPU speed: no longer considered a bottleneck. Is it true?

Why is iPhone slow? Network or CPU?

Experiment: time to load+render cnn.com on two networks

machine seconds
a modern desktop (2Mbps network) 2
T40 1.6GHz (a very old laptop; 2Mbps network) 7
T40 1.6Ghz (same laptop&network, battery mode) 13
iPhone 600MHz (2Mbps network) 37
iPhone 600MHz (1Mbps network) 40

= CPU performance is critical

15

Performance (vs. VAX-11/780)

Uniprocessor Performance (SPECint)

10000 /I;

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th 2?2%lyear
edition, 2006
10004 A
. i/
1 &— T T T T T T T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Proxy Web Servers?

Recently introduced Skyfire browser uses a proxy server
- server parses the web page, sends images to handheld
- not unlike the X11 client/server architecture

Limitations:
- network latency: impact on interactivity
- radio power: may be cheaper to decompress than to receive
- server CPU cycles needed: average browser CPU load is 5%!

17

End of Bell's Law?

Undergraduate Course in PL and Compilers

18

Is our field slowly dying?

Observations from graduate admissions:
~ Al, bio, NLP, OS much better at recruiting the brightest minds

This may have roots in undergraduate education

Enroliments at Berkeley:
- Algo=165; 0S=155; AI=160; DB=110
- compare with compilers=60

The trend goes beyond Berkeley, | suspect
- Amazon rank for Silberschatz =800
- for Dragon Book=8,000

Why this lack of interest?

So much excitement
- eg, Web languages and frameworks
So many interesting open problems remain
- egq, parallelism, speeding up scripting lanquages
Recognition: 6 out of last 10 Turing Awards to our discipline
- perhaps this is a sign of "mature and solved™?
Is Al viewed as the hero of web2.0 success (web search)?
- while web2.0 is arquably a programming success

Education problem? Political mistakes? Marketing?
- Nolonger arequired "core” course?

20

Relevance?

My survey why people take Al not compilers
- compilers “too hard”, “solved, old stuff”

OS texbook revised more often
- Silberschatz in 7th edition
- Dragon in 2" edition
| looked at a few OS lectures
- was stuff | wanted to learn! (eg PKK, peer-to-peer networks)
- compare this with register allocation

21

End of Bell's Law?

Course in PL and Compilers

Browsers for Handhelds

22

Good news, bad news

Current laptops: how powerful?
~20GOPS at 20W, more with SIMD

Good news: we should be able to get 50GOPS at 2W

- even in current 65nm technology (40p)/op)

Bad news: the 50GOPS will come from 10-100 parallel cores

& & & We must build a parallel browser

23

Log price

Power Wall: Previous Bell steps
were easy. We can now no
longer wait for smaller, lower
power processors. Instead,
software must be parallelized.

- #* -
L 2 N .
- #

L 4
. . * ST
Ubiquitous Y v oa

Time

24

Browser autopsy: three major components -~

web page "compilation”: HTML to DOM

- lexing, parsing, and syntax-directed translation

- our project: parallelize all three
scripting
- JavaScript (AJAX)
- our project: a dataflow-ish web client language

page layout and rendering:
- similar to formatting a latex document
- our project: design web lanquage hand in hand with layout/rendering

But these bottlenecks invoke Amdahl's Law
- current browsers “inherently” sequential

- for neither of these components, parallel successes exist

25

End of Bell's Law?

Course in PL and Compilers

\ 4

Parallel Browser

Vv

How to modernize the course?

28

Experience from Berkeley

» My students and | have been remodeling the
undergraduate PL and compiler course since 2003

» Two major revisions, each offered twice
» Student survey results on “usefulness of the course”:

Fall 2003 5.4/7.0

Fall 2004 5.8

Spring 2007 5.9

Fall 2007 6.3 < 15-year high for the course

No less “useful” than OS, Al. Still limping behind architecture.

How to revise course?

Our initial thinking in 2003: Modernize it!

- incorporate latest research: latest analyses, type systems

Then the key question arose: Who is the target audience?
- compiler writers or software engineers?

But do programmers need language technologies?
- surprisingly yes

But the content needs to go back to basics

30

Why do you want to take the course?

Write code that writes code.

- don’t write "mindless” code, write a generator

- ex: database schema—> Java wrapper classes
New languages will keep coming. Be ready.

- CSS, HTML, JavaScript, JSP, PHP, Python, Ruby, XML

- know advantages of picking a particular lanquage
Develop your own language.

- Many web languages created practically in the garage,
not in a research lab: PHP, JavaScript, Ruby, perl

Learn about compilers and interpreters.

- language is the most important of all programmer tools
- Typical job ad: if you had to take one course, it'd be PL+compilers

Take ¢s164. Become unoffshorable.

“We desigere, but the labor is cheaper in Hell.”

languages, frameworks, APIs

Change 1: Raise Level of Abstraction

What are the source/target programming model?

Before: compile Java-like 2> x86-like
Now: compile a Dataflow extension to AJAX = JavaScript

Change 2: Language landscape is broader today

» Dynamiclanguages in wide use
» Interpretersin wide use

« Programmer choice of data structures in dynamic,
interpreted makes huge difference on performance

Change 3: Back to Basics

Some course content decisions go back 30 years
- when computers were 1,000,000-times slower
- when those topics were research topics

Go back to simple parsers: CYK and Earley
- CYK can be explained 10-times faster than LALR
- easy to implement - leads to better understanding

End of Bell's Law?

Course in PL and Compilers

Parallel Browser

Back to basics and to parallelism

D
c

40

End of Bell's Law?

Course in PL and Compilers

Parallel Browser l

Back to basics and to parallelism

/

Reqular Expressions
Parsing
Web Scripting
Applications

41

What fraction is HTML compilation?

(Informal) Performance of Firefox 3

15

» 10-40% of time spentin 1,
lexing, parsing, syntax- 1,
directed translatio

» (remainder in layout/rendering)

» loading a fark.com page from
disk cache; little JavaScript

4
» on (old) debug build of Firefox 3 2:

1_

0

1 | 2
HTML File Size (MB)

= HTML compilation must be parallelized

42

Lexing, from 10,000 feet

Goal: given lexical specification and input, find lexemes

Content ::= ["<]+
ETag = </ [">]*>
STag = L[>]F>

44

Problem: lexing seems “inherently sequential”

» To know automaton state at input position /+7

» We need to know the automaton state at position /!

¢ N

I | I+1

<|b|>|Ble|r|k|e|l|e|ly|!"|<|/|Db]|>

STag Content

Ideal solution

» Divide input among the processors

» For each processor starting at position j+7
- Ask an oracle in which state the neighbor at / finished
- Scanin parallel from next state, ati+7

« Finally, merge the results

Practical solution: guess! (speculate)

How can we quess from position /+7 the state at position /?

« (1) assume state(i) could have been any automaton state
the "speculation” is always correct (not really a quess)
canyield O (log n) algorithm [Hillis and Steele] ...

- ® ... but prohibitively expensive in practice

» (2) Was one of a "likely set” of automaton states
can be more efficient than algorithm (1)
can fine-tune speculation based on language and workload
- ® speculation can be wrong
- @ still can be expensive (memory overhead, bad guesses)

s Butwe can do better...

Our solution (1/2)

Observation: in "real” lexers, the DFA converges to a stable,
recurring state (often, the “start state”), from multiple
initial states, after a small number k of characters

Lexing: <|b|>|B|le|r|k|le|l|e|ly|!|<|/]|Db
From: K

r A

“start’ s0 ——| s1 | s4 55/\
5

“inSTag’, s4 ——| s4|s4|s

s6|s6|s6|s6|[s6|[s6|[s6|s6|s6|sT|s2]|s2

‘inETag’, s2 ——{s2|s2 53\%‘

“in Content’ s6 ——| s1|s4|s5

%= Only need to follow one DFA path instead of several

Our solution (2/2)

« Sketch of our algorithm:
- splitinput into blocks with k-character overlap
- scan blocks in parallel, each starting from “good” initial state

Processor 2

Our solution (2/2)

« Sketch of our algorithm:
- splitinput into blocks with k-character overlap
- scan blocks in parallel, each starting from “good” initial state
- find if blocks converge: expected in k-overlap
- speculation may fail; if so, block is rescanned

. NN

Preliminary results: speedup over flex

» flex: optimized, single-thread lexer on fat Cell core
» Speedup computed by flex time / cellex time

Speedup over flex for various numbers of cores

4 future page |
sizes: 5 cores
7@

are 6x faster
N than flex

today’s page

sizes: 5 cores

are 4.5x faster
N than flex

2cores —+——
3 cores
4 cores —x— -
Scores —=—
6 cores
| 7 cores

| | | | |
1.5 2 25 3 35 4 45 5
File size (MB)

Reqgular expressions

Most teachers, happily cut RE to a single lecture.

We just saw that automata offer fun algorithmic exercises.

Are reqular expressions also useful?
- probably the most frequently embedded lanquage
- ex: mashups (extract info from HTML pages, ...)

Embedding presents language semantics challenges
- consider the following example ...

Example from Jeff Friedl's book

Imagine you want to parse a config file:
filesToCompile=a.cpp b.cpp

The regex:
[a-zA-Z]+=.%*

Now let's allow an optional \newline-separated 2" line:
filesToCompile=a.cpp b.cpp \[NL] d.cpp e.h

We extend the original regex:
[a-zA-Z]+=.*(\\\n.*)?

This regex does not match our two-line input. Why?

What compiler textbooks don't teach you

First, the string matching problem in the Textbook World:
- "Does a regex r match the entire string s?”
- thisis a clean statement and suitable for theoretical study
- here is where equivalence of regex and FSM is defined
The matching problem in the Real World:
- "Given a string s and a regex r, find a substring in s matching r.”
Do you see the language design issue here?
- There may be many such substrings.
- We need to decide what substring to find.
It is easy to agree where the substring should start:
- the matched substring should be the leftmost match

Two schools of Real World regexes

They differ in where it should end:

Declarative approach: return the longest of all matches
- conceptually, enumerates all matches and returns longest

Operational approach: define behavior of *, | operators
e* match e maximally such that remainder of regex matches
ele select leftmost choice while allowing remainder to match

filesToCompile=a.cpp b.cpp \[NL] d.cpp e.h

[a-zA-Z]+=.*(\\\n.*)?

These are important differences

« We saw that a non-contrived regex behaves differently

- personal story: | spent 3 hours debugging a similar regex
- despite reading the manual carefully

» The operational semantics of *
- does not guarantee longest match
- forces the programmer to reason about backtracking

» Itseems that backtracking is nice to reason about
- because it's local: no need to consider the entire regex
- the cognitive load is actually higher, as it breaks composition

56

Lessons: WTH did things go wrong?

Likely problem:

- long time ago, someone did not know that NFA can find all
matches simultaneously and/or

- NFA can be implemented efficiently

| would like to blame perl,
- but this regex semantics seems older

The theory of finite automata is elegant
- a big success of computer science
- we should make sure that our students know it
- and design clean languages

CYK Parser

Simple context-free-language parser
- running time is O(n?), space O(n?)

Shunned for many years.

“Even tabular methods [CYK, Earley] should be avoided if the language at hand
has a grammar for which more efficient algorithms [LL, LALR] are
available.” The Theory of Parsing ..., Aho, Ullman, 1972

But in practice, running time is more like 6(n="-?)
- plus computers are now 1,000,000-times faster than in 1972
- browser: we plan to parallelize CYK + Earley parser

58

Parsing, from 10,000 Feet

Doc = STag ETag
ETag 2 ‘</’ Name ‘>’

STag =2 ‘<' Name ‘>’
Name 2> [id] \
4

Doc

<html></html>

4 STag ETag

html html

CYK

» reduction = adding a non-terminal edge

» reduce until start symbol added

Doc — Open Close
Open — '<!' Name '>'
Close —» '</'" Name '>'
Name — [1d]

< html > </ html >

60

Parallel CYK

« CYKisinherently parallel: lots of independent work
- Bad for serial processing, great for parallel
- Parse graph is lock-free sparse array (n % n x |G])

edge added when parallel results are combined.

independent work done in parallel 61

Parsing in the course

Back to basics: from LALR to CYK

- Idon't have to relearn LALR each time ©

Students used CYK to build their own bison
- including declarative disambiguation, accepts all grammars
- teaches ambiguous grammars, needed for real world tasks

- google calculator:
* 34 knots in km/h

» half a dozen pints * (110 Calories per 12 fl 0z) / 25W in days
* 5ininin
- live programming (gcalc, PHP in 20 LOC)
More on parallelism in parsing

- rethink attribute grammars .

A new web client language

AJAX reactive programming is based on clunky callbacks
- too much "plumbing” in the code
- hard to parallelize

Dataflow is a cleaner abstraction

As an example, consider this “follower” program

- where a box follows mouse, with a delay

63

http://www.cs.berkeley.edu/~bodik/teaching/cs164-fa07/follower.swf

AJAX code: callbacks

<div id="box" style="position:absolute; background: black;">
Seconds to deadline: ... time ...

</div>
<script>

document.addEventListener (
‘'mousemove’,
function (e) {

var left = e.pageX;
var top = e.pageY;
setTimeout(function() {

This code moves the box with a delay. We
need to set up two nested callbacks. We need
to refer to the DOM explicitly by element ids.
Code does make it clear at all what's going on.
How would you parallelize the program if
multiple box were moving on the screen?

document.getElementByld("box").style.top = top;
document.getElementByld("box").style.left = left,

}, 500);

}, false);
</script>

64

Flap)ax code: from callbacks to streams

* Program is clearer when data flow in it directly exposed
* in dataflow version: changing mouse coordinates are streams
* coordinate streams adjust box position after they are delayed
* another stream (time) adjusts text after it is formatted

t delay 500 top text
P — y div Kk

mouse /lfj .
eft ca
TefE delay 500

“Seconds to deadline:” | time

65

Future apps

» Future web apps will be like desktop apps and more ...
- browser = the new windows manager =» tabs outdated
- browser =new OS (local storage, refined security policies)
- new usage modes (multi-touch, camera-based input, data)

» We want to identify domains that a browser can support
- hypertext documents and media
- office suites
- simpler games
- rich visualization, for data presentation (eq search results)

Ras Bodik, CS 164, Fall

71

Example 1: Baryl Desktop Manager

72

http://www.youtube.com/watch?v=ZD7QraljRfM
http://www.youtube.com/watch?v=ZD7QraljRfM
http://www.youtube.com/watch?v=ZD7QraljRfM
http://www.youtube.com/watch?v=ZD7QraljRfM
http://www.youtube.com/watch?v=ZD7QraljRfM
http://www.youtube.com/watch?v=ZD7QraljRfM

Example 2: ManyTube mockup demo

» Example of a new media app

¥) Strawman Application Skeleton - Mozilla Firefox = | X
File Edit View History Bookmarks Tools Help R bodik@cs.berkeley.edu ~
b4 > @ {I_J‘ ‘ L file:///C:/Users/Rastislav/Documents/renderl.html ‘ v ‘ > ‘]'} Google !»\ [’@; v

ManyTube I

Searchil]
HEN = HEEEEEEEERN

Read i.ytimg.com S 0

T X : I {&] Microsoft... ' (@ Inbox- M...

73

Example 3: 0S X Time Machine

=B £

Lol Preferences

.

At
Waree
A 11800k Me plit

Byton

com apple Addredss

com apple AddresiS

sle AppleShared

apple.dashde

sppleda

B3 Ocskizg
=
apple.dnver ApplestiDMOusE phst
N Azoncatara PP
appleNnder.phat

Documerts Soleiei

A0ple Cal heiper. plar
spple Chat AIM phst

L A1 E) selncinit 47 .06 CA asadatie

Yesterday at 4:35 P\

Date Mo hed

Yeste
Yeste

Yestas

Yeste
Yeste

Yeste

Yester

day
day
day
day

day

rday

day
day
day
day

day

Example 4: Multi-touch interfaces

 http://www.youtube.com/watch?v=ysEVYwa-

75

http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM

Example 5: Stereoscopic displays (VR)

» May force us to rethink the desktop metaphor

76

What should the programming model/"'
support?

QoS:
- latency specifications for GUI responsiveness
- video frame rate, etc

Animation with physical properties (both GUI and games)
- property changes over time, stated declaratively
- trajectories: how to declare them?
- physical properties: stretching, gravity, friction, but maybe
also flow, fracture

2.5D and/or 3D
- web page = logical structure + script-produced 3D view?
» What will a 3D nytimes.com look like? Will 3D ease browsing?

- Q: how to project a part of 3D scene for 2D viewing/reading?

77

Summary

Power Wall: Previous Bell steps
were easy. To make the net step,
however, we cannot wait for
smaller, lower power processors.
Instead, software must be
parallelized.

Main

Log price

Ubiquitous

Time

Conclusion: parallelism

If parallel parsing, layout, and scripting succeeds,
browsing on the handheld could be as rich as browsing
on the desktop ...

... and the next Bell "computer class” will happen.

And all this thanks to advances in langauges and
compilation.

Conclusion: undergraduate course

Back to basics

Simpler to teach

Allows students invent new technology,
rather than just learn about it

Need to rethink the course also for parallelism

Backup slides

81

Course tricks

» debug professor's code

» submit test cases for grading on a curve
» reinvent CYK

» live programming

82

Applications

» Drivelanguage development
- both small in the course
- and future AJAX in Par Lab
» Course
- google calculator
- mashups
- animation, interaction with flickr

» Future web applications: challenge problems for web
client language design

83

