
Data-Race Exceptions
Have Benefits Beyond the Memory Model

Benjamin P. Wood, Luis Ceze, Dan Grossman

University of Washington

1

Why data-race exceptions?

[Elmas et al., PLDI 2007; Adve and Boehm, CACM Aug. 2010;
Marino et al., PLDI 2010; Lucia et al., ISCA 2010; ...] 2

Why data-race exceptions?

Find bugs.

[Elmas et al., PLDI 2007; Adve and Boehm, CACM Aug. 2010;
Marino et al., PLDI 2010; Lucia et al., ISCA 2010; ...] 2

Why data-race exceptions?

Find bugs.

Simplify memory models.
(DRF ⇒ SC)

[Elmas et al., PLDI 2007; Adve and Boehm, CACM Aug. 2010;
Marino et al., PLDI 2010; Lucia et al., ISCA 2010; ...] 2

Why data-race exceptions?

Find bugs.

Simplify memory models.

Avoid reasoning about memory reorderings.

(DRF ⇒ SC)

[Elmas et al., PLDI 2007; Adve and Boehm, CACM Aug. 2010;
Marino et al., PLDI 2010; Lucia et al., ISCA 2010; ...] 2

Why not data-race exceptions?

3

Why not data-race exceptions?

Lock-free algorithms

3

Why not data-race exceptions?

“Benign” races

Lock-free algorithms

3

Why not data-race exceptions?

“Benign” races

Lock-free algorithms
unchecked annotations

3

Why not data-race exceptions?

“Benign” races

Lock-free algorithms

Performance overheads

unchecked annotations

ongoing research

3

Overheads

memory models.

Find bugs.

costs benefits

Simplify

4

Overheads

memory models.

Find bugs.

costs benefits

Simplify

4

Overheads

memory models.

Find bugs.

costs benefits

Simplify

4

Overheads

memory models.

Find bugs.

costs benefits

Simplify

?

4

This talk explores hidden benefits (and costs)
of data-race exceptions in runtime systems.

Overheads

memory models.

Find bugs.

costs benefits

Simplify

?

?

4

This talk explores hidden benefits (and costs)
of data-race exceptions in runtime systems.

costs benefits

This talk explores hidden benefits (and costs)
of data-race exceptions in runtime systems.

Overheads

?

memory models.

Find bugs.
Simplify

?

5

All races are inherently wrong.

6

unannotated

All races are inherently wrong.

6

^

unannotated

Attempts at racy accesses
are exceptional, but legal.

All races are inherently wrong.

6

^

Exceptions ensure all races are impossible.
unannotated

^

unannotated

^

Contributions

Review data races, exceptions, and sequential consistency.

Properties of data-race exceptions enable conflict detection.

Exploit data-race exceptions in concurrent garbage collection.

Low-level data-race exceptions have subtle implications.

Conclusions

contributions

7

Outline

Review data races, exceptions, and sequential consistency.

Properties of data-race exceptions enable conflict detection.

Exploit data-race exceptions in concurrent garbage collection.

Low-level data-race exceptions have subtle implications.

Conclusions

outline

8

data race
a pair of concurrent, conflicting accesses

x := 1

r1 := y

y := 1

Thread 1 Thread 2

ti
m

e

data race r2 := x

release(m)

acquire(m)

synchronization

9

x := 1

r1 := y

y := 1

Thread 1 Thread 2

ti
m

e

data race r2 := x

release(m)

acquire(m)

synchronization

10
exception on second access

data-race exceptions
guarantee either data-race-free or exception

x := 1

r1 := y

y := 1

Thread 1 Thread 2

ti
m

e

data race r2 := x

release(m)

acquire(m)

synchronization

10
exception on second access

data-race exceptions
guarantee either data-race-free or exception

x := 1

r1 := y

y := 1

Thread 1 Thread 2

ti
m

e

data race r2 := x

release(m)

acquire(m)

synchronization

exception

10
exception on second access

Java/C++

DRF ⇒ SC

Data-race exceptions

DRF ⊕ exception and

SC or exception

⇓

11

data-race exceptions in HW
 precise
Suspend the thread just before its racy access.
Respect program order.

handleable
Deliver a trap with information about the race.

y := 1

... race r2 := x

acquire(m)

r3 := z

exception
deliveryti

m
e

12

Concurrent Garbage Collection

Concurrent mark-sweep: atomic/consistent heap traversal

tri-color marking and write barriers

Concurrent copying/moving: atomic object copying

Piggyback on STM runtime [McGachey et al., PPoPP 2008]

Lock-free algorithms [Pizlo et al., ISMM 2007, PLDI 2008]

concurrent GC

13

Heap

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

mark-sweep

14

GC thread

next

next

next

a

b

c

gray(a)
Mutator

Heap

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

mark-sweep

14

GC thread

next

next

next

a

b

c

gray(a)

gray(a.next)

Mutator

Heap

mark-sweep

15

GC thread

next

next

next

a

b

c

gray(a)

gray(a.next)

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Mutator

Heap

mark-sweep

15

GC thread

next

next

next

a

b

c

gray(a)

gray(a.next)

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

black(a)

Mutator

Heap

mark-sweep

16

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

16

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next
n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

16

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next
n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)

Heap

mark-sweep

17

GC thread Mutator

next

next

a

b

next

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next
n.next := null

gray(b.next)
black(b) reachable, refs visited

reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

17

GC thread Mutator

next

next

a

b

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next
n.next := null

gray(b.next)
black(b)

collect(c)

✘
reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

17

GC thread Mutator

next

next

a

b

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next
n.next := null

gray(b.next)
black(b)

collect(c)

✘
reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

18

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

Heap

mark-sweep

18

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(c)

Heap

mark-sweep

19

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(c)

Heap

mark-sweep

19

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)

gray(c)

Heap

mark-sweep

20

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)

gray(c)

Heap

mark-sweep

20

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)
gray(c.next)
black(c)

gray(c)

Heap

mark-sweep

21

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)
gray(c.next)
black(c)

gray(c)

Heap

mark-sweep

21

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)
gray(c.next)
black(c)

gray(c)

Heap

mark-sweep

21

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)
gray(c.next)
black(c)

exception:
gray(c)

gray(c)

Heap

mark-sweep

21

GC thread Mutator

next

next

next

a

b

c

gray(a)

gray(a.next)

black(a)
n := a.next
a.next := a.next.next

n.next := null

reachable, refs visited
reachable, refs unvisited
unreachable/unknown

gray(b.next)
black(b)
gray(c.next)
black(c)

exception:
gray(c)

gray(c)

exception:
???

Extensions for implementing GC with DREs

Erase tracks
Remove and replace last reads and last writes.

Racy read
Record and execute a read even if it races.

Data-carrying exceptions
Deliver a racing write value to a racing read.

...

extensions for GC

22

23

Use HW data-race exceptions
in runtime systems.

SO FAR

23

Use HW data-race exceptions
in runtime systems.

Do guarantees
from HW data-race exceptions

apply at the program level?

SO FAR

NOW

hardware

hypervisor

source program

compiler

garbage collector

operating system

24

high-level
support

hardware

hypervisor

source program

compiler

garbage collector

operating system

24

hardware

hypervisor

source program

compiler

garbage collector

operating system

25

hardware

hypervisor

source program

compiler

garbage collector

operating system

25

non-program
accesses
and sync.{

Running GC on top of DRE

Movement
Race-detector state must follow moved objects atomically.

Invisibility
Only program heap writes should be seen by the race detector.
GC writes to the heap should be ignored.

No transitive ordering
GC must not induce ordering between mutators.

caveats for any GC

26

hardware

hypervisor

source program

compiler

garbage collector

operating system

d
at

a-
ra

ce
 e

xc
ep

tio
ns

27

cooperation
vs.

abstraction

Luis said I should have this slide.

More details on concurrent GC using data-race exceptions

Lock elision with no rollback support

Conflict races and conflict-race exceptions

also in the paper...

28

Conclusions

Data-race exceptions have benefits beyond the memory model.

Exceptions make races impossible.
Attempted races are exceptional, but legal.

Data-race exceptions enable general conflict detection
for runtime systems like concurrent GC.

Low-level data-race detection has subtle implications.

conclusions

29

30

This slide intentionally not left blank.

conflict race
data race across synchronization-free regions
running concurrently in real time

ti
m

e

Thread 1 Thread 2

wr y
conflict

race

wr x

rd y
rd x

...
rd x data race,

no conflict race

31

ti
m

e

Thread 1 Thread 2

wr y
conflict

race

wr x

rd y
rd x

...
rd x data race,

no conflict race

32

conflict-race exceptions
guarantee sequential consistency or exception

ti
m

e

Thread 1 Thread 2

wr y
conflict

race

wr x

rd y
rd x

...
rd x data race,

no conflict race

32

conflict-race exceptions
guarantee sequential consistency or exception

ti
m

e

Thread 1 Thread 2

wr y
conflict

race

wr x

rd y
rd x

...
rd x data race,

no conflict race

exception

32

Best-effort automatic recovery from conflict races

Thread 1 Thread 2

rd x

conflict
racewr x

wr y

rd xrd y

...

1

2
[delay]

!

"

ti
m

e

33

Best-effort automatic recovery from conflict races

Thread 1 Thread 2

rd x

conflict
racewr x

wr y

rd xrd y

...

1

2
[delay]

!

"

exceptionti
m

e

33

Best-effort automatic recovery from conflict races

Thread 1 Thread 2

rd x

conflict
racewr x

wr y

rd xrd y

...

1

2
[delay]

!

"

exception

success

ti
m

e

33

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

moving/copying

34

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

moving/copying

34

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

moving/copying

34

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

moving/copying

34

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

moving/copying

34

