
Data-Race Exceptions Have Benefits Beyond the Memory Model

Benjamin P. Wood Luis Ceze Dan Grossman
University of Washington

{bpw,luisceze,djg}@cs.washington.edu

Abstract
Proposals to treat data races as exceptions provide simpli-
fied semantics for shared-memory multithreaded program-
ming languages and memory models by guaranteeing that
execution remains data-race-free and sequentially consistent
or an exception is raised. However, the high cost of precise
race detection has kept the cost-to-benefit ratio of data-race
exceptions too high for widespread adoption. Most research
to improve this ratio focuses on lowering performance cost.

In this position paper, we argue that with small changes in
how we view data races, data-race exceptions enable a broad
class of benefits beyond the memory model, including per-
formance and simplicity in applications at the runtime sys-
tem level. When attempted (but exception-raising) racy ac-
cesses are treated as legal — but exceptional — behavior,
applications can exploit the guarantees of the data-race ex-
ception mechanism by performing potentially racy accesses
and guiding execution based on whether these potential races
manifest as exceptions. We apply these insights to concur-
rent garbage collection, optimistic synchronization elision,
and best-effort automatic recovery from exceptions due to
sequential-consistency-violating races.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Languages, Performance, Reliability

Keywords data-race exception, sequential consistency, con-
current garbage collection

1. Introduction
Among concurrency errors, data races are the most problem-
atic when defining the semantics of programming languages
and memory models for shared-memory multithreaded pro-
grams, since they may cause sequential consistency viola-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MSPC’11, June 5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0794-9/11/06. . . $10.00

tions. Memory models for Java and C++ guarantee sequen-
tial consistency for data-race-free programs [5, 18], but se-
mantics are murkier in the presence of races. The Java Mem-
ory Model gives racy programs weaker semantics that re-
tain security and safety guarantees, but its complexities have
resulted in subtle bugs despite extensive design effort [30].
C++ simply leaves semantics of racy programs undefined.

As consensus that sequential consistency for concurrent
programs is highly desirable — if not indispensable —
grows, researchers have proposed treating data races as ex-
ceptions to simplify memory models [2, 8, 11, 17, 19]. Such
exceptions vary in strength, but all guarantee that execution
either maintains sequential consistency or raises an excep-
tion. However, the cost-to-benefit ratio of precise data-race
exception support has been too high for widespread adop-
tion. Most ongoing research to improve this cost-to-benefit
ratio focuses on improving performance [12, 17, 19, 28].
In this position paper, we argue that with small changes
in how we view data races, data-race exceptions enable a
broad class of benefits beyond the memory model, including
performance and simplicity in concurrent runtime systems.

We propose that executions with data races need not be
inherently wrong, so long as these races are never allowed to
manifest. Rather, exception support should banish the harm-
ful effects of races by raising an exception whenever a racy
or sequentially inconsistent access is attempted, while en-
abling runtime systems or programs to react to useful and
timely information on an attempted racy access and continue
safe, sequentially consistent execution instead of halting. By
treating attempted data races or sequential consistency vio-
lations as exceptional, but legal, behavior, we can implement
runtime systems on top of data-race exception support, using
it for general and precise conflict detection without the need
for the cost or complexity of specialized rollback support.
We explore this idea as follows:

Section 2 gives a brief overview of data races and what we
require of data-race exceptions. We demonstrate the useful-
ness of data-race exceptions by sketching implementations
of concurrent garbage collection (Section 3) and optimistic
synchronization (Section 4) that use data-race exception sup-
port to implement conflict detection. We also outline exten-
sions to conventional race detection to support these runtime
systems. Section 5 describes conflict races, a principled sub-

set of data races that is cheaper to detect, and outlines uses of
conflict-race exceptions as compared to data-race exceptions
in runtime systems. Finally, Section 6 concludes.

2. Data Races and Exceptions
A data race is a pair of memory accesses to the same mem-
ory location by two different threads, where at least one ac-
cess is a write and neither access happens before the other.
The happens-before relation over operations in a program
execution is defined by the transitive closure of the pro-
gram order within each thread and the synchronization order
across synchronization operations in different threads.

2.1 Properties of Data-Race Exceptions
A data-race exception (DRE) is an exception raised when
a thread attempts a racy access. DRE support simplifies
memory models by guaranteeing:

• data-race freedom or an exception, preventing unre-
ported racy executions.

Since modern systems ensure that data-race freedom implies
sequential consistency, sound-and-complete DRE support
also guarantees “sequential consistency or an exception,”
which is generally as useful for simplifying memory models.

Recoverability To be more broadly useful, DREs must also
be recoverable, meaning they are:

• precise, suspending execution of the thread immediately
on the racy access, without allowing the thread to com-
plete the racy access or any subsequent operation; and

• handleable, taking the form of a trap that supplies an
exception handler with information about the race.

Recoverable DREs can be caught and execution can con-
tinue without breaking sequential consistency.

Atomicity Data-race detection providing “data-race free-
dom or a precise DRE” guarantees that exception-free re-
gions of a thread’s execution containing no synchronization
(and, in fact, larger regions) are atomic. This is the key prop-
erty that makes DRE support useful for conflict detection.

Implementations Static data-race detectors (e.g., [1, 6,
21]) guarantee data-race-freedom at compile time, but they
are too conservative for some reasonable data-race-free pro-
grams, and our goal is to exploit races not present in the orig-
inal program. Goldilocks [11] was the first system to propose
and provide DREs. It implements sound (catch all races) and
complete (catch only real races) dynamic race detection in
a JVM, but its performance is limiting. Even state-of-the-
art precise software race detection costs roughly 10x over-
head [12]. Existing hardware race detectors (e.g., [25, 31])
are unsound, lacking the guarantees memory models require.

Beyond the requirements of precise and recoverable ex-
ceptions, the exact implementation of data-race exception
support is not important in this paper. For presentation pur-
poses we assume it involves hardware support.

3. Concurrent Garbage Collection
Concurrent garbage collectors address the scalability prob-
lems of stop-the-world GC pauses by collecting concurrently
with the execution of mutator threads. The challenge for con-
current GCs is to obtain a consistent view of the heap while
mutators update it. Concurrent GCs insert read barriers or
write barriers before each mutator access to keep the GC’s
view of the heap sufficiently consistent with the actual heap.
This approach works, but requires extra work on every muta-
tor access, at least during collection. Furthermore, it requires
careful reasoning about the memory ordering semantics of
the architecture, since adding full synchronization in muta-
tors is to be avoided at all costs. Concurrent compaction,
where objects are moved to reduce fragmentation while mu-
tators continue to execute, is an even harder problem.

When mutators and the GC run on top of DRE sup-
port, exceptions on mutator-GC races capture those accesses
where barriers actually perform useful work. Moving barrier
work to exception handlers, we can reduce mutator perfor-
mance overheads and reason less about memory ordering.

In the rest of this section we sketch implementations of
concurrent mark-sweep heap tracing and concurrent object
copying using DRE support. Then, we outline extensions to
DREs support to enable these implementations. Finally, we
discuss issues in using DRE support to detect program races
in the presence of GC.

3.1 Concurrent Mark-Sweep
Mark-sweep GCs walk the heap to find all reachable ob-
jects, generally using tri-color marking [10]. Objects are
initially marked white, meaning they have not been shown
to be reachable. Objects marked gray are reachable, but ob-
jects they reference may not be marked yet. Objects marked
black are reachable and all objects they reference have been
marked. Collection starts by marking the roots gray. Mark-
ing proceeds until every object is either black or white, once
all reachable objects have been visited. When a gray object
is visited, it is marked black and any white objects to which
it refers are marked gray. When no gray objects remain, all
white objects are unreachable and may be collected. To pre-
vent collection of reachable objects, we must ensure that no
black-to-white references ever exist.

Figure 1 shows how concurrent heap updates by mutators
could cause a naive mark-sweep GC to collect a reachable
object. At (0) the collector visits node a, the head of a
linked list, marking it black and marking b, referenced by
a.next, gray. The third node in the list, c, remains white.
Next, a mutator interleaves at (1), removing node b from
the linked list, and breaking the no black-to-white references
invariant. At (2), the collector dequeues b and, finding that b
holds no non-null references, marks b black, and marking is
complete. In the sweep phase, the collector frees the white
c object at (3), even though it is reachable. Additionally, b,
now unreachable, is not collected.

nextnext

nextnext

nextnext

nextnext

next

next

next

GC Thread Mutator Resulting Heap

gray(b.next)
black(b)

free(c)

n = a.next
a.next = a.next.next
n.next = null

0

2

3

R-W
race

gray(a.next)
black(a)

1

next
cb

a

cb

a

cb

a

cb

a

W-R
race

Figure 1. A naive mark-sweep collector collects reachable
objects when mutators modify the heap during tracing.

3.1.1 Related Work
A conventional concurrent mark-sweep GC prevents this
black-to-white reference problem with a write barrier that
marks the target of the new reference gray to ensure the
collector sees it is reachable [10]. An alternative is to mark
the source, a, gray if it is already black [29], ensuring that
the collector revisits it and finds the new reference to c. Other
systems improve barrier efficiency by combining GC and
STM barriers [20] (similar in spirit to our approach) or using
specialized hardware support for barriers [9].

3.1.2 Implementation with DRE Support
Note that the update in Figure 1 that caused the GC to collect
a reachable object includes a read-write data race between
the GC and the mutator. Any potential black-to-white refer-
ence written during marking will raise an exception, since all
reference fields of black objects, such as o.x, have been read
by the GC thread and there is no synchronization between
the GC and mutators during marking. Mutator reads do not
raise exceptions due to the GC reads, since races include at
least one write. Thus the check and marking performed by
a conventional write barrier can be moved to DRE handlers
for mutator updates and GC reads.

Exception in mutator: A mutator raises an exception on a
write that races with a previous read by the GC, as in the race
between (0) and (1) in Figure 1. The mutator marks the refer-
ence target gray if it raced with the GC. Races between mu-
tators are treated normally. Next, the mutator should perform
the access that raised the exception. However, it will still race
with the GC’s read until the next synchronization from the
GC to the mutator (after the end of the marking phase), likely
defeating the no-pause goal of concurrent mark-sweep, so it
must interact closely with the race detector to allow the up-
date. In Figure 1, when the mutator thread, which we name
m1, raises an exception attempting to update a.next at (1),
it first marks c gray. Before attempting the update again,

it erases the race detector’s record of the GC’s last read of
a.next. It then updates a.next and replaces the GC’s last
read in the race detector, so subsequent mutator updates raise
exceptions.

While the GC’s last read is missing during m1’s handling
of the exception, another mutator m2 may write a new black-
to-white reference in a.next. In this case, m2 must have a
real program race with m1, since m1 has not synchronized
with m2 since initially attempting the write. If m2 writes
after m1 has successfully written its new value, but before
the GC’s last read is reinstalled, then m2 will raise an ex-
ception on its potential black-to-white write. Otherwise, if
m2 writes before m1, then m1 will raise an exception on
its write, which we handle by first reinstalling the GC’s last
read in the race detector and marking a (the source, not the
target, of the reference in question) gray before raising the
exception to the program. Since arbitrarily many mutators
may interleave writes here, it is much simpler to mark a to
be revisited than to determine the new target of a.next cor-
rectly in m1.

Finally, once marking is done, exceptions raised due to
mutator writes racing with GC reads are no longer useful.
The GC should proceed to clear all its last reads so that
subsequent mutator updates to that location will no longer
race with the GC. This could be accelerated by support in
the race detector to clear all last reads of a given thread (i.e.,
the GC thread).

Exception in collector: When the GC raises an exception,
it is on a write-read race with a mutator update, as in the
data race between (1) and (2) in Figure 1. The GC must
ensure that it sees the new value written by the mutator, but
it does not need to perform any special marking. If write-
read DREs also deliver the value written by the racing write,
this is simple. Otherwise, the GC must wait until the mutator
update has been published to do its read. In either case, we
need the detector to allow and record the GC’s read even if
it races with the last write so that future mutator updates to
this location will raise exceptions and perform marking.

3.2 Concurrent Object Copying
Copying and compacting GCs help reduce heap fragmen-
tation, but concurrent copying is challenging: only a hand-
ful of fully concurrent copying GCs have been developed
(e.g., [20, 23, 24]). Copying GCs typically use a forwarding
pointer in the header of each object to point to the current
version of that object. Mutators always read the forwarding
pointer in an object to redirect their accesses to the right lo-
cation: reading o.x becomes a read of o.forward.x. The
forwarding pointer in object o points back to o initially; after
the GC copies o to o′, it points o’s forwarding pointer at o′.

Figure 2 shows a type of schedule that concurrent object
copying must avoid. After the GC copies o.x in the old
object o to o′.x in the new copy o′ at (2), but before it installs
the forwarding pointer from o to o′ at (4), the mutator writes

GC Thread Mutator Resulting Heap

tmp = o.x
o'.x = tmp

o.forward = o'

p = o.forward
p.x = 2

p = o.forward
p.x = 1 forward

o

x 1

forward
o

x 1

forward
o

x 2

forward
o

x 2

forward
o'

x 1

forward
o'

x 1

forward
o'

x 1

0

2

3

4

R-W
race

o' = malloc(...)
o'.forward = o'

forward
o'

x
1 forward

o

x 1

Figure 2. A naive copying collector causes lost updates
when mutators modify the heap during copying.

to o.x again at (3). This new update is never copied to o′,
so subsequent reads follow the forwarding pointer in o to o′,
missing the update to x.

3.2.1 Related Work
To avoid missed updates, existing concurrent copying col-
lectors use approaches such as copying only immutable
objects concurrently [14], integration with transactional
memory [20], batch page-granularity copying using virtual
memory page protection (effectively reintroducing some
pauses) [15], an intricate lock-free algorithm to copy re-
quested objects at all costs (including nontermination in
pathological cases) [23], and a simple lock-free algorithm
that eagerly abandons copies on missed updates [24].

3.2.2 Implementation with DREs
In the example in Figure 2, observe that the mutator’s lost
update to o.x at (3) races with the GC’s previous read of o.x
when copying o.x to o′.x at (2). This will raise an excep-
tion in the mutator, which we handle by spinning on the for-
warding pointer until it changes. This may introduce pauses
in mutators, especially for large objects. However, this sce-
nario is relatively unlikely in practice, occurring on less than
6% of copies in the worst case, and on less than 1% on aver-
age [24]. Pauses in these rare cases seem acceptable.

If the race in Figure 2 happened in the opposite order,
then the GC would raise an exception reading o.x. We could
abandon the copy, but the chance of raising this exception is
somewhat higher than the first possibility. Working around
this requires deep cooperation with the race detector, to
allow unchecked accesses in the GC to interact with checked
access in mutators.

Once the GC has finished copying an object, it executes a
fence, to ensure all the object’s fields are visible, before in-
stalling the forwarding pointer. Proper copying also requires
synchronizing the race-detection state of the old and new ob-
ject, but this is a complex endeavor (see Section 3.4).

3.3 Extensions to DRE Support to Improve GC
Running a concurrent GC on top of low-level DRE support
has clear benefits for low-overhead conflict detection, but to
fully exploit the DRE support, some extensions are required.

The main requirements for the interface DRE support
provides to a GC running on top of it are the extensions
mentioned in our mark-sweep and copying algorithms. The
DRE system must support removal and replacement of the
record of a thread’s last read or last write to a given location.
Furthermore, the DRE system must support recording and
executing a read that races with a previous write, while
checking future accesses against it. Both of these features
break assumptions of existing race detectors, but seem to
require only small changes to support.

Another concern is support for data-carrying exceptions,
where the DRE system supplies the up-to-date value of the
last write to a location when raising an exception that races
with that write. This is clearly an unsafe tool, as it can leak
sequentially inconsistent values, but for the GC it appears
necessary. Certainly, programs must not see such values.

3.4 Issues in Running GC on Top of DRE Support
Despite the potential benefits of a DRE-exploiting GC, it
is not immediately obvious whether DRE semantics can be
preserved for the program when garbage collection is run
between the DRE system and the program, especially if the
GC performs copying or moving. The chief complicating
factor is that GC accesses are not explicitly part of the
program; they must remain transparent to both the DRE
system and the program.

Every GC must obey the following rules to avoid false
or missed DREs for the program when running on top of
DRE support, regardless of whether it uses DREs internally
as proposed earlier in this section. First, transitive order-
ing between mutators via synchronization with the GC must
not break program DRE semantics by hiding program-level
races. Second, object copying must be transparent. Only pro-
gram writes in the heap may be recorded by the race de-
tector; GC writes should be ignored. Similarly, the GC and
race detector must cooperate to ensure that when an object is
moved, its race-detection state follows it, continuing to rep-
resent one logical object. Ensuring this is atomic in a con-
current copying GC is nontrivial. Finally, when an object is
allocated, its race-detection state must be fresh, to avoid false
races due to detection state reincarnated from a previous al-
location of the same memory. This may be accomplished by
clearing race detection state on collection or on allocation.

4. Optimistic Synchronization
In this section, we show how to exploit the atomicity of
DRE-free regions to transform some lock-protected critical
sections to lock-free versions, reducing the cost of synchro-
nization and eliding unnecessary mutual exclusion, all with-
out the need for rollback support.

try { HB.in(lock);

a.x = b.y + c.z; // <-- optimistic

HB.out(lock);

} catch (DataRaceException e) {

do { try { synchronized(lock) {

HB.in(lock);

a.x = b.y + c.z; // <-- pessimistic

HB.out(lock); }

break;

} catch (DataRaceException e1) { }

} while (true);

}

Figure 3. Pseudocode for optimistic execution of the criti-
cal section synchronized(lock){a.x = b.y + c.z;}

The basic idea is to retain the ordering information pro-
vided by the race detector’s locking instrumentation, but
elide the mutual exclusion provided by the lock itself. Fig-
ure 3 shows Java pseudocode for the optimistic version of
synchronized(lock){a.x = b.y + c.z;} with DREs.
The detector instruments the synchronized block to re-
port happens-before ordering induced by lock acquires
(HB.in(lock)) and releases (HB.out(lock)). This essen-
tially transforms the lock-based critical section to a transac-
tion. DRE support suffices to provide eager conflict detec-
tion, and we avoid rollback entirely by allowing the trans-
formation only on a limited class of critical sections.

When the optimistically synchronized critical section ex-
ecutes without raising any DREs, it is effectively mutually
exclusive. If two threads enter critical sections originally
guarded by lock concurrently and perform conflicting ac-
cesses, then one will raise a DRE. At this point, the handler
in Figure 3 begins trying to reexecute the fully synchronized
version. To distinguish a program data race from one caused
by lock elision, a thread in a retry loop checks if all other
looping threads are also trying fully synchronized critical
sections. If so, the race is a program data race.

Restrictions Within each optimistic critical section and
all critical sections using the same data (they may also be
aborted and retried due to a race), we allow any number
of reads followed by at most one write (and no subsequent
reads) and disallow updates to initially live local variables.

By eliding lock operations, we make two important as-
sumptions about the DRE mechanism. First, instrumentation
of synchronization operations must not rely on those opera-
tions to ensure its own consistency. Second, DRE support
must not assume a total order on releases of the same lock.
Optimistic synchronization breaks this total order, allowing
two threads into an optimistic critical section concurrently
and causing unordered logical releases. Subsequent acquires
must be ordered after both logical releases.

4.1 Performance
Optimistic synchronization is best for frequently executed,
low-contention critical sections. Profile- or feedback-guided

selection of full or optimistic synchronization can help avoid
excessive conflicts and repeated reexecution under high con-
tention. Nested optimistic critical sections further compli-
cate contention, as it is not obvious what level of nesting
needs to be retried. A conservative approach retries the out-
ermost level with full synchronization.

Previous work to elide synchronization in read-only crit-
ical sections showed that read-only critical sections do ac-
count for a small, but targetable, fraction of all critical sec-
tions. Though the cost of memory ordering via CAS and
fences was substantial, lock elision achieved performance
gains of up to 5% [22]. In comparison, DRE-based opti-
mistic synchronization is safe for a larger class of critical
sections and memory ordering costs may be absorbed by
data-race detection cost. With careful contention manage-
ment, optimistic synchronization could yield similar gains.

4.2 Related Work
Modern JVM implementations use techniques like thin
locks [4] and biased locking [27] to make unnecessary or un-
contended lock operations cheap. Our orthogonal proposal
takes into account the cost of instrumenting synchroniza-
tion operations for race detection, and allows elision of lock
operations except in contended cases, relying on the race
detector to identify these cases.

Systems for safe optimistic concurrency, such as software
transactional memory (e.g., [13]) or Speculative Lock Eli-
sion [26] generally require specialized support for specu-
lation or rollback. Our transformation is similar to eager-
update/eager-conflict-detection TM [16]; we avoid problems
of escaping and rollback by restricting the transformation
to limited critical sections. DRE-based optimistic synchro-
nization makes a compromise, supporting more (but not all)
critical sections than software lock elision [22], with no spe-
cialized support beyond DREs.

5. Conflict-Race Exceptions
Given the expense of sound-and-complete dynamic data-
race detection, recent research has explored detection of a
principled subset of data races: those that cause sequential
consistency violations. Detecting this subset of data races
is sufficient to provide simple memory models and can be
significantly cheaper than detecting all data races.

A conflict race is a data race whose accesses are in two
synchronization-free regions executing concurrently in real
time. A synchronization-free region (SFR) is a region of a
thread’s execution that contains no synchronization. Conflict
races differ from general data races in that the potential for
an access to be involved in a conflict race is not arbitrarily
long-lived. If no access in a synchronization-free region is
involved in a conflict race before that SFR completes, none
of its accesses will ever be involved in a conflict race. As
such, conflict races are a much closer — but still conserva-

tive — approximation of sequential consistency violations
than general data races.

5.1 Properties of Conflict-Race Exceptions
Conflict-race exceptions (CREs) are similar to DREs, but in-
stead of using data-race-freedom, they support the memory
model by guaranteeing:

• sequential consistency or an exception, preventing un-
reported sequentially inconsistent executions.

CREs guarantee that exception-free SFRs are atomic. Like
DREs, they must be recoverable to be useful for our goals.

Implementations Conflict Exceptions [17] provides re-
coverable CREs, but has nontrivial complexity costs. DRFx
[19, 28] achieves low overheads for conflict-race detection
by sacrificing precise exceptions, and thus recoverability,
guaranteeing only that an exception will be raised eventually
(e.g., before a system call) if a conflict race occurs. DRFx is
thus unsuitable for the applications in this paper.

5.2 Applications
With small changes to the concurrent GC in Section 3, CRE
support is a sufficient replacement for DRE support, and per-
haps a more natural choice. Space limits preclude a discus-
sion of these changes.

Despite their similarities, CREs cannot be treated as
DREs in the general case, nor vice-versa, since the absence
of an exception is as meaningful as its presence. For exam-
ple, CREs are a poor fit for the optimistic synchronization
algorithms in Section 4, since their atomicity guarantees are
restricted to single SFRs, whereas nested critical sections
expect atomicity across multiple SFRs.

Best-Effort Automatic Recovery from CREs CREs are
well-suited for driving execution away from sequential-
consistency-violating schedules (i.e., CRE-raising sched-
ules) in programs where some schedules are sequentially
consistent and others are not. We can exploit this to reduce
(but not eliminate) the probability that an execution termi-
nates with an unhandled CRE. This behavior is desirable for
deploying a program with known problematic races: a suc-
cessful non-buggy execution is highly preferable to termi-
nation with an exception. Unlike our proposals for concur-
rent GC and synchronization elision, this technique reacts to
races in the original program, rather than inducing new ones.

We exploit the fact that conflict races are defined in terms
of real-time overlap of SFRs to delay accesses until they
no longer cause conflict races.1 Consider the execution in
Figure 4. Boxes represent SFRs in each thread; time flows
down. Assume that Thread 2 has accessed neither x nor y
in its current SFR before reading x at (1). When Thread 2
tries to read x at (1), it conflicts with the previous write to x

1 Note that DREs are poorly suited for automatic recovery since, by defini-
tion, no delay can make a previously racy access data-race-free.

Thread 1 Thread 2

rd x

conflict
racewr x

wr y

rd xrd y

...

1

2
[delay]

✘

✔

Figure 4. Some conflict races are avoidable: the read at (1)
raises a CRE, but retrying at (2), it succeeds.

by Thread 1, because Thread 1 is still executing the SFR in
which this write occurred. Allowing the read may violate
sequential consistency. Thread 2 handles the CRE with a
brief delay and a second attempt to read x. The delay lets
Thread 1 finish and retire its SFR, so there is no longer a
conflict race on x when Thread 2 retries the read at (2), and
execution continues safely.

Hardware can offer optimal-length delays. When retiring
an SFR, Conflict Exceptions sends an end-of-region mes-
sage to other caches, listing locations it is relinquishing with
the SFR [17]. A message relinquishing x can also serve as
notification to retry pending delayed accesses to x.

Delay is sufficient to avoid many — but not all — con-
flict races. For example, no delay on a CRE in one of two
concurrent nonserializable SFRs can yield a conflict-race-
free execution. Hence we cannot guarantee sequential con-
sistency on all executions, but we can improve the chances of
preserving it and lessen the chances of an unavoidable con-
flict race exception. Systems such as BulkCompiler [3] or
BulkSC [7] do guarantee sequential consistency in all cases,
but via more specialized mechanisms.

6. Conclusions
We have outlined uses of data-race exceptions and conflict-
race exceptions as general primitives for implementing con-
flict detection in concurrent garbage collectors, as well as
two simpler applications. We hope future research will tip
the cost-to-benefit ratio in favor of data-race exception sup-
port by combining ongoing advances in the performance of
data-race detection, research to harness data-race exceptions
for performance, simplicity, and power in new applications,
and the programmability benefits of sequential consistency.

Future Work The viability of GC integration with DRE
or CRE support merits careful consideration, especially for
concurrent copying GC. Also interesting to consider are
application-specific responses to data races, such as check-
pointing and recovery or application semantics-level retry,
and potential supporting programming models.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe

Locking: Static Race Detection for Java. TOPLAS, 28(2),
2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. CACM, 53,
August 2010.

[3] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang,
S. Midkiff, and D. Wong. BulkCompiler: High-Performance
Sequential Consistency Through Cooperative Compiler and
Hardware Support. In MICRO, 2009.

[4] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
Locks: Featherweight Synchronization for Java. In PLDI,
1998.

[5] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In PLDI, 2008.

[6] C. Boyapati and M. Rinard. A Parameterized Type System for
Race-Free Java Programs. In OOPSLA, 2001.

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk Enforcement of Sequential Consistency. In ISCA, 2007.

[8] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for
System Support for Concurrency Exceptions. In HotPar,
2009.

[9] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm.
In VEE, 2005.

[10] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. CACM, 21, November 1978.

[11] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, 2007.

[12] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, 2009.

[13] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In OOPSLA, 2003.

[14] L. Huelsbergen and J. R. Larus. A Concurrent Copy-
ing Garbage Collector for Languages that Distinguish
(Im)mutable Data. In PPoPP, 1993.

[15] H. Kermany and E. Petrank. The Compressor: Concurrent,
Incremental, and Parallel Compaction. In PLDI, 2006.

[16] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[17] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm.
Conflict Exceptions: Simplifying Concurrent Language Se-
mantics with Precise Hardware Exceptions for Data-Races. In
ISCA, 2010.

[18] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In POPL, 2005.

[19] D. Marino, A. Singh, T. D. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory
Model for Concurrent Programming Languages. In PLDI,
2010.

[20] P. McGachey, A.-R. Adl-Tabatabai, R. L. Hudson, V. Menon,
B. Saha, and T. Shpeisman. Concurrent GC Leveraging Trans-
actional Memory. In PPoPP, 2008.

[21] M. Naik, A. Aiken, and J. Whaley. Effective Static Race
Detection for Java. In PLDI, 2006.

[22] T. Nakaike and M. M. Michael. Lock Elision for Read-Only
Critical Sections in Java. In PLDI, 2010.

[23] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stop-
less: A Real-Time Garbage Collector for Multiprocessors. In
ISMM, 2007.

[24] F. Pizlo, E. Petrank, and B. Steensgaard. A Study of Concur-
rent Real-Time Garbage Collectors. In PLDI, 2008.

[25] M. Prvulovic. CORD: Cost-effective (and nearly overhead-
free) Order-Recording and Data race detection. In HPCA,
2006.

[26] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In
MICRO, 2001.

[27] K. Russell and D. Detlefs. Eliminating Synchronization-
Related Atomic Operations with Biased Locking and Bulk
Rebiasing. In OOPSLA, 2006.

[28] A. Singh, D. Marino, S. Narayanasamy, T. D. Millstein, and
M. Musuvathi. Efficient Processor Support for DRFx, a Mem-
ory Model with Exceptions. In ASPLOS, 2011.

[29] G. L. Steele, Jr. Multiprocessing Compactifying Garbage
Collection. CACM, 18, September 1975.

[30] J. Ševčı́k and D. Aspinall. On Validity of Program Transfor-
mations in the Java Memory Model. In ECOOP, 2008.

[31] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In HPCA, 2007.

