
PARSNIP: Performant Architecture for Race Safety
with No Impact on Precision

Yuanfeng Peng
yuanfeng@cis.upenn.edu
University of Pennsylvania

Benjamin P. Wood
benjamin.wood@wellesley.edu

Wellesley College

Joseph Devietti
devietti@cis.upenn.edu

University of Pennsylvania

ABSTRACT

Data race detection is a useful dynamic analysis for multithreaded
programs that is a key building block in record-and-replay, enforc-
ing strong consistency models, and detecting concurrency bugs.
Existing software race detectors are precise but slow, and hardware
support for precise data race detection relies on assumptions like
type safety that many programs violate in practice.

We propose Parsnip, a fully precise hardware-supported data
race detector. Parsnip exploits new insights into the redundancy
of race detection metadata to reduce storage overheads. Parsnip
also adopts new race detection metadata encodings that accelerate
the common case while preserving soundness and completeness.
When bounded hardware resources are exhausted, Parsnip falls
back to a software race detector to preserve correctness. Parsnip
does not assume that target programs are type safe, and is thus
suitable for race detection on arbitrary code.

Our evaluation of Parsnip on several PARSEC benchmarks
shows that performance overheads range from negligible to 2.6x,
with an average overhead of just 1.5x. Moreover, Parsnip outper-
forms the state-of-the-art Radish hardware race detector by 4.6x.

CCS CONCEPTS

•Computer systems organization→Multicore architectures;
• Software and its engineering→ Software maintenance tools;

KEYWORDS

multithreaded programming, data race detection, hardware support

ACM Reference Format:

Yuanfeng Peng, Benjamin P. Wood, and Joseph Devietti. 2017. PARSNIP:
Performant Architecture for Race Safety with No Impact on Precision. In
Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3123946

1 INTRODUCTION

Data race freedom is a critical safety foundation for shared-memory
multithreaded programs. Data races may cause unpredictable be-
havior and factor in many higher-level concurrency errors such
as atomicity violations, ordering violations, or determinism viola-
tions. Memory consistency models for mainstream multithreaded

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4952-9/17/10.
https://doi.org/10.1145/3123939.3123946

languages guarantee sequential consistency in data race free pro-
grams, but offer weak or undefined semantics for programs with
data races [6, 28]. Thus data races may lead to silent violations of
sequential consistency and perplexing program behavior.

Researchers have proposed data race exceptions to make data
races explicit run-time errors in the programming model and sim-
plify semantics of multithreading [2, 12, 25, 30]. Data race excep-
tions have many programmability benefits but require data race
checking support that is sound (no missed data races), complete
(no false data races), and efficient enough for production use.

An extensive body of prior work on static, dynamic, and hybrid
techniques for general data race checking with software or hard-
ware support has yielded suitable assistants for debugging and test-
ing programs with data races (e.g., [1, 9, 12, 15, 20, 37, 46, 47, 55, 58]).
Yet existing approaches remain limited by missing true data races,
reporting false data races, or incurring large run-time overheads.
To date, implementation proposals focused on data race excep-
tions mainly focus on detecting data races that may violate se-
quential consistency, or other related memory consistency proper-
ties [5, 25, 30, 51]. Yet detecting all data races remains an important
goal. For example, identifying general data races is a key part of
several algorithms for checking or enforcing higher-level properties
of multithreaded programs, such as atomicity [17, 33] or determin-
ism [3, 8, 39].

Sound and complete data race detectors implemented in software
exhibit performance that is not acceptable in production [12, 15, 16].
The state-of-the-art sound and complete hardware-supported data
race detector, Radish [9], generally incurs run-time overheads below
2x. However, this performance is achievable only via two strong as-
sumptions: 1) applications perform only type-safe memory accesses
at consistent data granularities and 2) extra cores are available
to perform asynchronous checks with relaxed exception delivery.
Some C/C++ applications break the type-safety assumption. Re-
laxed exceptions complicate semantics and make useful exception
handling difficult or impossible. Radish is notably less efficient when
these unsafe optimizations are disabled. It remains an open ques-
tion whether efficient, precise data race detection can be provided
in more realistic settings.

This paper presents Parsnip, a novel sound and complete data
race detector that integrates hardware and software support to
achieve good performance by exploiting redundancy in data race
detection. Parsnip is based on the state-of-the-art sound and com-
plete software data race detection algorithm FastTrack [15], but
accelerates common cases of the analysis by hosting and analyzing
frequently used metadata directly in hardware with simple archi-
tecture support. Like Radish, the Parsnip hardware falls back on
a general software algorithm when finite hardware checking re-
sources are exceeded. In contrast to Radish, the Parsnip design

https://doi.org/10.1145/3123939.3123946
https://doi.org/10.1145/3123939.3123946

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

achieves a significant reduction in performance overheads by ex-
ploiting locality and redundancy much more effectively. Parsnip
removes metadata redundancy across arbitrary memory locations,
and is not subject to the limitations of static analysis like RedCard
[16], does not focus solely on arrays as SlimState [56] does, and does
not compromise on precision as with [52]. Furthermore, Parsnip
does not rely on Radish’s simplifying assumptions of type safety
and asynchronous checking; Parsnipworks for general C/C++ code
and does not require any spare cores.

Data race detectors must record and check the logical time of
the last access to each memory location. Logical time changes at
synchronization events, which are typically much less frequent
than memory accesses. The substantial temporal and spatial lo-
cality among data accesses translates into high rates of temporal
and spatial redundancy in data race checks and metadata. The key
contribution of Parsnip is a hybrid hardware-software design that
exploits redundancy of data race checks and metadata in two ways.
First, Parsnip deduplicates data race detection metadata storage ef-
ficiently on the fly by splitting and sharing metadata across multiple
locations. Second, Parsnip resolves many checks with only partial
metadata and lower storage overhead by memoizing the metadata
needed for common-case checks as compact access capabilities.

To maintain analysis metadata in hardware, Parsnip splits meta-
data storage for a given data location between (A) a metadata line
shadowing each data line in cache and (B) a small per-core metadata
table. Each metadata line stores information about the access his-
tory of each location in its shadowed data line in a flexible format,
including: (1) what thread performed the last access, (2) the type
(read or write) of the last access, and (3) a reference into a per-core
hardware table of additional metadata, where each hardware table
entry may be referenced by many locations.

Parsnip falls back on the software handler to persist or load
additional access history metadata when access capabilities or the
metadata table cannot satisfy a check, when the per-core table
overflows, and whenmetadata lines are filled or evicted in the cache.
Metadata lines share the standard data cache hierarchy along with
the data lines they track, by occupying an unused portion of the
physical address space.

This paper makes the following contributions:

• We describe the Parsnip architecture, which provides hard-
ware support for precise data race detection with an average
performance overhead of just 1.5x.
• Parsnip outperforms the state-of-the-art Radish race detec-
tor by 4.6x if Radish’s type safety assumption and extra cores
are removed. 3.4x faster than Radish even Radish uses its
unchecked assumptions, yet Parsnip does not rely on type
safety or require extra cores.
• We leverage cross-location redundancy in race detection
metadata for efficient on-chip metadata storage.
• We demonstrate how to encode the common cases of race
detection metadata as compact access capabilities, without
compromising soundness and completeness.

The remainder of this paper is organized as follows: Section 2 re-
views canonical algorithms for precise dynamic data race detection.
Section 3 introduces the core Parsnip system design, and Section 4

describes key optimizations. Section 5 presents our experimental
evaluation. Section 6 reviews related work and Section 7 concludes.

2 DATA RACE DETECTION OVERVIEW

This section gives a brief overview of happens-before race detection,
the algorithm underpinning Parsnip and other precise data race
detectors. We start by defining a multithreaded program as a single
trace of operations, with operations from each thread interleaved.
Operations consist of memory reads and writes, lock acquires and

releases, and thread fork and join. The happens-before relation
hb
−−→

is a partial order over these trace events [22]. Given events a and b,

we say a happens before b, written a
hb
−−→ b, if: (1) a and b are from

the same thread and a precedesb in program order; or (2) a precedes
b in synchronization order, e.g., a is a lock release relt (m) and b the
subsequent acquire acqu (m); or (3) (a,b) is in the transitive closure
of program order and synchronization order. If a happens before b
then we can equivalently say that b happens after a. Two events not
ordered by happens-before are said to be concurrent. Two memory
accesses to the same address form a data race if they are concurrent
and at least one access is a write.

Vector clocks [14, 18] have been proposed as a data structure to
track the happens-before relation at runtime. A vector clock v is a
map from thread ID’s to logical clocks (integers). Two important
operations on vector clocks are union: the element-wise maximum
of two vector clocks (v1⊔v2 = v3 s.t. ∀t ,v3 (t) = max(v1 (t),v2 (t)));
and happens-before: the element-wise comparison of two vector
clocks (va ⊑ vb is defined to mean ∀t ,va (t) ≤ vb (t)).

If a trace is race-free, then all writes to an address must be totally
ordered. Thus every read and write of x must happen after the last
write tox and everywrite tox must also happen after all last reads of
x since the last write to x . Optimized race detectors [12, 15] exploit
this property by recording only a single last write per address, and
Parsnip operates similarly. The last write information that must
be recorded can be thought of as one thread-clock mapping from
the vector clock, and is referred to as an epoch [15] and is written
t@c to represent a write by t at local time c . We generalize the
happens-before operation ⊑ to allow comparing a “scalar” epoch
with a vector clock; the epoch is conceptually expanded into a vector
where all entries are zero except the entry the epoch represents, and
then the normal element-wise vector comparison occurs. Much of
the time, read operations are also totally ordered which allows the
last read to be represented as an epoch as well [15]. We elide this
important optimization here for simplicity, but discuss Parsnip’s
use of it later in Section 3.2.

A vector-clock race detector keeps four kinds of state:

• For each thread t , vector clock Ct represents the last event
in each thread that happens before t ’s current logical time.
• For each lockm, vector clock Lm represents the last event
in each thread that happens before the last release ofm.
• For each address x , vector clock Rx represents the time of
each thread’s last read of x since the last write by any thread.
If thread t has not read x since this write, then Rx (t) = 0.
• For each address x , epochWx represents the thread that last
wrote to x and the time of its write.

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Initially, set all L and R vector clocks to v0, where ∀t ,v0 (t) = 0.
W write epochs are set to e0, which is equivalent to v0. Each thread
t ’s initial vector clock is Ct , where each thread increments its own
entry in its vector clock, i.e., Ct (t) = 1 and ∀u , t ,Ct (u) = 0. This
represents the fact that threads are initially executing concurrently
with respect to one another.

On a lock acquire acqt (m), set Ct := Ct ⊔ Lm . By acquiring
lockm, thread t has synchronized with all events that happened
before the last release of m, so t increases its logical clock to be
well-ordered with these prior events. On a lock release relt (m), set
Lm := Ct , ordering t with events that happened before this release,
then increment t ’s entry in its own vector clock Ct to ensure that
subsequent events in t are marked as concurrent with respect to
other threads.

On a read rdt (x), first check ifWx ⊑ Ct . Failure of this check
indicates a data race, where t ’s read of x is concurrent with the
most recent write to x . Otherwise, set t ’s entry in Rx to t ’s current
logical clock, Ct (t). On a writewrt (x), check that t is well-ordered
with respect to the previous writeWx ⊑ Ct and with respect to
previous reads Rx ⊑ Ct . Failure of either of these checks indicates
a data race. If t ′s write is race-free, clear all last reads by setting Rx
to v0, and set the last write to t ’s current timeWx := t@Ct (t).

3 THE Parsnip SYSTEM

The work of a precise dynamic data race detector comprises two
components. The detector must: update information about cross-
thread ordering on each synchronization event; and check and
update per-location access history on each memory access event.
Memory accesses typically occur much more frequently than syn-
chronization, so optimizing the analysis, update, and representation
of per-location access histories is crucial to data race detector per-
formance.

The guiding principle of the Parsnip system is to handle the com-
mon cases of memory access checks and access history metadata
storage in hardware and fall back on a flexible software layer for
uncommon cases that require additional access history to maintain
soundness and completeness. Parsnip leverages the following ob-
servations about the empirical behavior of dynamic race detection.
First, access history metadata for adjacent data locations are likely
to be similar or identical, so Parsnip tries to reduce access history
metadata redundancy across memory locations at various levels.
Second, most runtime checks need information about only the most
recent access, so Parsnip organizes access history metadata to keep
last-access information in a hardware-managed format on chip or
in cache, even when full access history for a memory location may
be available only in a software-managed format in memory.

The remainder of this section defines the core Parsnip system
in detail. Section 3.1 describes how a simplified version of Parsnip
addresses central design issues. Sections 3.2-3.5 remove these sim-
plifications and describe in detail how key pieces of Parsnip state
are organized. Section 3.6 describes Parsnip’s hardware support,
Section 3.7 how runtime checks operate, and Section 3.8 Parsnip’s
system-level interactions. Finally, Section 3.9 shows how Parsnip
works on a detailed example trace.

L1D$

data line

primary
ParsnipLine

secondary
ParsnipLine

core ParsnipTable

access history

ParsnipRef

ParsnipRef

access history

Figure 1: An overview of Parsnip’s key pieces of state: ParsnipLines,
ParsnipRefs and the per-core ParsnipTable.

lin
e

A

data Primary
ParsnipLine

Secondary
ParsnipLine

lin
e

F

...

PP
L

A

PP
L

F

...

SP
L

A

SP
L

F

... unused

Figure 2: Parsnip’s physical address space layout.

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

ca
nn
ea
l

de
du
p

fe
rr
et

flu
id
an
im
at
e

ra
yt
ra
ce

st
re
am
cl
us
te
r

vi
ps

x2
64

0%

50%

100%

73
.1
%

96
.5
%

95
.2
%

99
.9
%

66
.0
%99
.8
%

83
.6
%

80
.8
%

68
.4
%

10
0.
0%

#distinct
AHs
(32,64]
(16,32]
(8,16]
(4,8]
[0,4]

Figure 3: Distribution of the number of distinct access histories per
64B cache line.

3.1 Simplified Parsnip

Here we outline the operation of a simplified version of Parsnip,
and in subsequent sections we discuss how this simple scheme is
extended to improve performance and retain precision.

The first task a race detector faces when needing to check an
access to location x is to find the associated metadata for x . Parsnip
steals 2 bits from the physical address space to afford a simple
data:metadata mapping based on physical addresses (Figure 2), con-
structed to map x and its metadata to different cache sets to reduce
conflict misses. We describe interactions with address translation
in Section 3.8. Parsnip manages metadata at cache line granularity,
so for each cache line of program data, there is a corresponding
ParsnipLine given by this mapping. These ParsnipLines reside in the
data cache hierarchy and compete for space with regular program
data (as shown in Figure 1; Primary versus Secondary ParsnipLines
are explained later in Section 3.2).

While the most straightforward use for a ParsnipLine would be
to record an access history directly, we find that doing so is not
space efficient. We counted how many unique access histories ap-
pear across ParsnipLines for our workloads, and show the results in

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

Access History Read Check Write Check
Type requires: requires:

last access last access last access
RAW last read + last write, last access

or last access
RsAW last read + last write, all reads

or last access
Rs last access all reads

Table 1: Components required for different types of access histories
and memory access checks.

Figure 3. While the 64B cache lines in our system can theoretically
require a distinct access history for each byte, on every program
(except fluidanimate and x264) the number of distinct access histo-
ries per line is never more than 16. Even for fluidanimate and x264,
fewer than 2% of lines have more than 16 distinct access histories.
This result is unsurprising given that programs typically access
data at multi-byte granularity, and exhibit spatial locality. These
properties make it highly likely that nearby locations will have the
same access history.

To take advantage of the redundancy among access histories, a
ParsnipLine contains a collection of references (called ParsnipRefs)
which point to entries in a per-core ParsnipTable. The Parsnip-
Table entries themselves contain the access history information. By
adding a level of indirection, Parsnip is able to share ParsnipTable
entries across a large number of program locations. Because only
a small number of ParsnipTable entries are typically needed, each
ParsnipRef can itself be small, helping to reduce Parsnip’s footprint
in the data cache.

However, several challenges remain. Access histories are of vari-
able size, and at their largest can require tracking a clock value for
each thread in the program – much larger than can fit into a fixed-
size hardware table. The ParsnipLine encoding must similarly be
able to exploit the common case while supporting precise tracking
even when there are 64 unique histories in a single line. We address
these challenges in the following sections.

3.2 Access History Organization

To encode access histories of memory locations efficiently, Parsnip
exploits the observation that most data race checks need only a
small part of the full access history.

Access histories of memory locations can be classified into the
following types: 1) last access, which contains only the most recent
write/read; 2) RAW, which consists of the last write and the last
read that happens-after the write; 3) RsAW, which keeps the last
write and all concurrent reads that happen-after the write; and 4)
Rs, which tracks all concurrent reads with no prior write.1

Table 1 shows what piece(s) of the access history a runtime read
or write check needs. In most cases a check can be done with only
the last access, or both the last read and the last write; only when a
write occurs after some concurrent reads (where the access history

1 Well-defined C/C++ programs should precede any read to a memory location by an
initializing write, but some programs (including our benchmarks) read uninitialized
data in practice. Another potential source of reads before writes is the use of facilities
such as demand-zeroed pages that initialize memory contents with other mechanisms.

0 1 6362…

64 bytes

data line

1:1 ParsnipLine 0 1 6362…
64x 8-bit Short ParsnipRefs

m:1 ParsnipLine 0 1 6362…
64x 4-bit ParsnipRef indices

0 …1 14 15

16x 12-bit Long ParsnipRefs

m
od

e

unused

Figure 4: A ParsnipLine in 1:1 mode (middle) and m:1 mode (bot-
tom)

is in RsAW/Rs form) does the check require all concurrent reads
since the last write. In fact, such cases are rare in practice, which
implies that an efficient race detector can complete most checks
with a history of at most two accesses, without losing soundness.

Based on this observation, Parsnip organizes the access history
in a way such that the last read and last write information is in
hardware in most cases, with the rest of the access history stored
in software. As discussed in Section 3.1, each data location x has a
corresponding Primary ParsnipRef that points to its access history
in the ParsnipTable. To maintain a fixed size, each ParsnipTable
entry contains a single clock value (and a reference count, explained
later in Section 3.5). Thus, tracking the last read and last write
for x requires two ParsnipRefs: the Primary ParsnipRef and the
Secondary ParsnipRef. These primary and secondary references
are stored in Primary and Secondary ParsnipLines, accordingly, and
their locations are computed from the corresponding data address
(Figure 2).

The Primary ParsnipRef refers to the last access, which is a read
for the RAW and RsAW access history types. A Primary ParsnipRef
contains several fields (detailed in Section 3.4), including a hasNext
bit indicatingwhether x has a Secondary ParsnipRef. The Secondary
ParsnipRef contains the last write when the access history is of RAW
or RsAW type. The Secondary ParsnipRef has the same structure
as the Primary ParsnipRef, but its hasNext bit indicates whether
additional access history information, i.e., additional concurrent
readers, is stored in software.

The access history of a data location x is thus stored across up to
3 parts: Primary ParsnipRef, Secondary ParsnipRef, and remaining
information in software. This organization helps minimize cache
pollution, as most race checks can be discharged with the Primary
ParsnipRef alone.

3.3 ParsnipLine Format

The results shown in Figure 3 indicate an opportunity for Parsnip
to have ParsnipRefs that are larger than a byte while using a single
ParsnipLine to track all the ParsnipRefs for a cache line of data.
Specifically, ParsnipLines in Parsnip have two modes: 1:1 mode
and m:1 mode. Figure 4 shows the two ParsnipLine formats. In 1:1
mode, a ParsnipLine is filled with 8-bit ParsnipRefs, each associated

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

in a 1:1 fashion with the bytes in the corresponding data line. In
m:1 mode, each ParsnipRef is 12 bits in size, and we introduce
another layer of indirection to map data line bytes through a 64-
entry bitmap to one of the 16 ParsnipRefs. For the ith byte of a data
line, its ParsnipRef can be found by first looking up the bitmap to
get an index bitmap[i], then reading the bitmap[i]th ParsnipRef.
The bitmap occupies 32B, and the ParsnipRefs 24B, with 8B left over.
The byte following the ParsnipRefs is used to indicate whether a
ParsnipLine is in m:1 or 1:1 mode by reserving a special bit pattern.
(detailed in Section 3.4). The other 7B are unused.

Having smaller ParsnipRefs in 1:1 mode means that for each
byte less information of the access history can be encoded than the
m:1 mode, but in practice even these 8-bit ParsnipRefs is sufficient
for many access checks(see Figure 10 in Section 5). The number
of distinct ParsnipRefs per ParsnipLine is computed by dedicated
hardware (see Figure 6). Whenever a ParsnipRef in m:1 mode needs
to switch to 1:1 mode or vice versa, the ParsnipLine logic triggers a
rewrite of the ParsnipLine. In practice, 1:1 mode ParsnipLines are
rarely needed and mode switches are rare.

3.4 ParsnipRef Format

As described in Section 3.3, Parsnip can have two modes of Parsnip-
Lines. In m:1 ParsnipLines, ParsnipRefs occupy 12 bits, whereas in
1:1 ParsnipLines, ParsnipRefs occupy 8 bits. For brevity, we refer to
the 12-bit ParsnipRefs as Long ParsnipRefs, and the 8-bit Parsnip-
Refs as Short ParsnipRefs. Figure 5 shows the format of both Long
and Short ParsnipRefs. Each ParsnipRef starts with a 6-bit tid that
stores the thread that performed the access, followed by a R/W bit
indicating whether the ParsnipRef points to a read or write access,
and a hasNext bit (introduced in Section 3.2) indicating whether
additional access history information is available in a Secondary
ParsnipRef or in software. For brevity, we define the pair (tid, r/w)
to be an access capability; therefore, a Short ParsnipRef encodes
an access capability. In a Long ParsnipRef, another 4 bits are used
to hold an index into the 16-entry ParsnipTable, whose entries
contain clock values. Together, the tid field and ParsnipTable entry
constitute an epoch which can be used to perform race detection
checks.

As mentioned in Section 3.3, Parsnip reserves a special bit pat-
tern to distinguish m:1 mode ParsnipLines from 1:1 lines. Specifi-
cally, the byte value 0xFF is reserved to mean m:1 mode, whereas all
other values of the mode byte are interpreted as a Short ParsnipRef,
indicating that the current ParsnipLine is in 1:1 mode. One implica-
tion is that any Short ParsnipLine must not have the tid field set to
be 0b111111 to avoid collision with the special mode byte pattern.

3.5 ParsnipTables

ParsnipTables are small per-core tables that hold logical times. Each
ParsnipTable entry consists of a 64-bit clock and a 24-bit reference
count to record ParsnipRefs that refer to this entry. Parsnip recycles
an entry once its reference count reaches 0. The value i of the 4-
bit index field in a Long ParsnipRef points to the ith entry in the
ParsnipTable of thread t , where t is the value of the ParsnipRef’s
tid field. Parsnip reserves the value 0xF to indicate an “invalid”
ParsnipTable index, which is used to represent clock values that
are not present in the ParsnipTable (and must be retrieved from

thread id R/W has
Next ParsnipTable index

0 1 2 3 4 5 6 7 8 9 10 11

Short ParsnipRef

Long ParsnipRef

bit:

Figure 5: Format of Short and Long ParsnipRefs.

pipeline

L1I$

…

…

…

L2 $

ParsnipTable
comparison logic
thread vector clock
ParsnipLine logic

Epoch buffer
L1D$

Figure 6: Parsnip additions (shaded) to a conventional core.

software instead). Given the 4-bit indices in a Long ParsnipRef, each
ParsnipTable can hold up to 15 distinct clock values. A 15-entry
ParsnipTable occupies just 165B of space.

Although quite small in size, ParsnipTables allow a large propor-
tion of the runtime checks to be completed in hardware. Whenever
an epoch c@t of an access to a memory location x needs to be
recorded, Parsnip first traverses the ParsnipTable of thread t look-
ing for an entry that already holds the clock value c . If such an entry
is found, the reference count of the entry is incremented and the
index of the entry is written in the corresponding ParsnipRef for x .
Otherwise, a new ParsnipTable entry needs to be allocated to hold
c . If there is free space in the ParsnipTable, then the index of the
newly allocated entry is written in the ParsnipRef of x . Otherwise,
the ParsnipTable is full and a ParsnipTable rejection occurs: the
invalid index 0xF is written in the ParsnipRef, and the epoch value
is persisted into software.

The reference count in a ParsnipTable entry tracks the number
of ParsnipRefs in cache that point to that entry. Therefore, if a
ParsnipRef leaves the data cache, the corresponding reference count
is decremented. To implement this, an eviction handler is triggered
when a ParsnipLine is evicted from the last-level data cache; inside
this eviction handler, all reference counters corresponding to the
indices of the ParsnipRefs being evicted are decremented.

Parsnip adopts the above ParsnipTable rejection and reference
count policy as a simpler alternative to conventional preemptive
eviction of least recently used ParsnipTable entries. LRU eviction of
table entries is impractical because it requires changes to all Parsnip-
Refs referencing the victim entry, an unbounded set. Section 4.3
discusses refinements to the ParsnipTable management policy to
improve utilization.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

3.6 Parsnip Hardware Support

Figure 6 shows an overview of a Parsnip processor core, with
shaded blocks showing the components Parsnip adds to a conven-
tional design. As per-thread vector clocks are necessary in most
runtime checks, Parsnip stores them on-chip. Parsnip also adds
simple logic to compare a component of the per-thread vector clock
with an epoch from a location’s access history, and a small Parsnip-
Table to remove redundancy among the access histories of different
memory locations (Section 3.5). Parsnip also adds custom logic
to track the number of distinct last accesses in a ParsnipLine, to
determine whether the line can be encoded in m:1 or 1:1 format
(Section 3.3). Due to the limited capacity of ParsnipTables, some ac-
cess histories may need to be persisted into software. To reduce the
latency incurred for these updates, Parsnip adds a hardware struc-
ture to buffer these updates (see Section 4.1). Parsnip (like Radish)
adds an extra read port to the L1D$ to read data and metadata in
parallel.

3.7 Parsnip Access Checks

When a program accesses a location x , Parsnip first looks up x ’s
Primary ParsnipRef in the data cache; if the Primary ParsnipLine is
not in cache, a software handler will be invoked to complete the
current check, after which the ParsnipLine of x will be updated. If
the Primary ParsnipLine is in cache, the ParsnipLine logic decodes it
and gets the Primary ParsnipRef of x . Depending on the type of the
current access and the content of the Primary ParsnipRef, Parsnip
can decide whether all necessary information for the current check
has been collected. If so, the check is complete, after which the
Primary ParsnipRef of x is updated. Otherwise, Parsnip continues
to look up the Secondary ParsnipRef of x . If the Secondary Parsnip-
Line is not in cache, or the Secondary ParsnipRef still does not
provide all necessary information required by the current check, a
software handler will be invoked to handle the check and update
the ParsnipRefs.

3.8 System-Level Considerations and ISA

The address of a ParsnipLine is derived from the physical address
of the corresponding data. Because a ParsnipLine is the same size
as a data cache line, cache indexing can occur in parallel with data
address translation as with a conventional cache. Once the virtual
tag of the data address has been translated to a physical tag by the
TLB, the corresponding tag for the associated ParsnipLine can be
computed directly. Parsnip does not require a separate TLB access
to obtain the tag for the ParsnipLine address.

Because ParsnipLines are physically-addressed, they do not need
to be saved and restored on a context switch. Conventional address
space isolation between processes keeps ParsnipLines isolated as
well. Context switches must, however, save and restore Parsnip-
Table contents and per-core vector clocks.

Parsnip’s ISA support consists primarily of checked load and
store instructions that trigger a race check when executed, similar
to [57]. This allows application code to interleave at fine granularity
with code for a runtime system or trusted library, and allows users
to easily opt-in to Parsnip support. Parsnip additionally requires
the following work to be done in software: 1) handling Parsnip-
Line evictions from cache, 2) doing race checks in software when

the hardware has insufficient information, and 3) updating the
per-thread vector clocks on synchronization operations. User-level
interrupts are used to quickly transfer control to software when
these events occur.

An eviction handler is invoked when a ParsnipLine l leaves the
cache hierarchy. The software handler must determine l ’s owning
process (which may be de-scheduled). This is done with OS support
by looking up l ’s corresponding data physical address in the OS
“reverse frame map” which maps from physical pages to virtual
pages. For every Long ParsnipRef containing a valid index idx into
thread t ’s ParsnipTable, the handler gets the clock value c from
thread t ’s ParsnipTable, decrements the entry’s reference counter,
and saves the epoch c@t into a software representation. For Short
ParsnipRefs, or Long ParsnipRefs with an invalid ParsnipTable
index, the access history in software is already up-to-date and no
further action needs to be taken.

A software check handler is called when the hardware has insuf-
ficient information for a runtime check (e.g., the Primary ParsnipRef
is not cached, or a write needs to check against the complete set of
concurrent readers). The software check handler is invoked with
the partial access histories from hardware (if available from the
ParsnipTable), which, combined with the information stored in soft-
ware, forms the complete access history of the memory location
being checked. After finishing the current check, this handler also
updates the Primary ParsnipRef and, if necessary, the Secondary
ParsnipRef, in accordance with the updated access history.

In order for Parsnip to track synchronization events across
threads, the synchronization library must be modified such that
Parsnip’s per-thread vector clocks are updated properly during
each synchronization operation.

3.9 Parsnip Example Trace

Table 2 gives an example trace illustrating how Parsnip works
for a memory location x . The first column indexes the trace. The
next three columns show operations by three threads. The symbol
“!” marks accesses on which a data race is reported. Remaining
columns show status of analysis metadata after the corresponding
operation is completed. Next is the Parsnip access history, including
ParsnipRefs, a partial ParsnipTable, and the access history stored by
the software layer. The final columns show vector clocks tracking
synchronization order as in Section 2. Vector clocks are notated as
sets of epochs. We conflate cores with threads. Additional notation
is introduced below.

At step 1, t1 writes x . No primary ParsnipRef exists for x , so
Parsnip invokes a software handler. The software handler finds
that there are no prior accesses to x in software access history,
so the check succeeds. Free entry 0 from t1’s ParsnipTable is allo-
cated to store the clock at which this access occurs (1, as obtained
from the thread VC for t1). ParsnipTable entries take the form
index 7→ (clock, ref count). We show only some entries for each
ParsnipTable in Table 2. A ParsnipRef t1,W, F, [0] is initialized for
x , showing that the last access was a write (W) by thread t1. There
is no secondary ParsnipRef (F). The ParsnipRef contains an index
[0] into t1’s ParsnipTable, where the local clock of the access is
recorded.

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Execution Trace Parsnip Access History for x Synchronization History

Threads ParsnipRefs ParsnipTables (partial) SW Metadata C : Thread VCs L : Lock VCs
Step t1 t2 t3 Primary Secondary t1 t2 t3 Wx Rx t1 t2 t3 l1

0 4 7→ (16, 1) {1@t1} {1@t2} {16@t3}
1 wr x t1,W, F, [0] 0 7→ (1, 1) 4 7→ (16, 1) {1@t1} {1@t2} {16@t3}
2 rd x t1,W, F, [0] 0 7→ (1, 1) 4 7→ (16, 1) {1@t1} {1@t2} {16@t3}
3 rel l1 t1,W, F, [0] 0 7→ (1, 1) 4 7→ (16, 1) {2@t1} {1@t2} {16@t3} {1@t1}
4 rd x t1,R, T, [1] t1,W, F, [0] 0 7→ (1, 1) 4 7→ (16, 1) {2@t1} {1@t2} {16@t3} {1@t1}

1 7→ (2, 1)
5 acq l1 t1,R, T, [1] t1,W, F, [0] 0 7→ (1, 1) 4 7→ (16, 1) {2@t1} {1@t1, 1@t2} {16@t3} {1@t1}

1 7→ (2, 1)
6 rd x t2,R, T, [1] t1,W, T, [0] 0 7→ (1, 1) 1 7→ (1, 1) 4 7→ (16, 1) {2@t1} {2@t1} {1@t1, 1@t2} {16@t3} {1@t1}
7 rel l1 t2,R, T, [1] t1,W, T, [0] 0 7→ (1, 1) 1 7→ (1, 1) {2@t1} {2@t1} {1@t1, 2@t2} {16@t3} {1@t1, 1@t2}
8 acq l1 t2,R, T, [1] t1,W, T, [0] 0 7→ (1, 1) 1 7→ (1, 1) 4 7→ (16, 1) {2@t1} {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 16@t3} {1@t1, 1@t2}
9 ! wr x t3,W, F, [4] — — — 4 7→ (16, 2) {2@t1} {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 16@t3} {1@t1, 1@t2}
10 rel l1 t3,W, F, [4] — — — 4 7→ (16, 2) {2@t1} {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 17@t3} {1@t1, 1@t2, 16@t3}
11 rd x t3,R, T,⊥ t3,W, F, [4] — — 4 7→ (16, 2) {17@t3} {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 17@t3} {1@t1, 1@t2, 16@t3}
12 rel l2 t3,R, T,⊥ t3,W, F, [4] — — 4 7→ (16, 2) {17@t3} {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 18@t3} {1@t1, 1@t2, 16@t3}
13 wr x t3,W, F,⊥ — — — 4 7→ (16, 1) 18@t3 — {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 18@t3} {1@t1, 1@t2, 16@t3}
14 ! rd x · {2@t1} {1@t1, 2@t2} {1@t1, 1@t2, 18@t3} {1@t1, 1@t2, 16@t3}

Table 2: An example trace showing how Parsnip checks accesses to a memory location x .

Lock operations in steps 3 and 5 induce happens-before order-
ing. Vector clock updates follow Section 2. Since the lock release
increments t1’s epoch to 2@t1, the read at step 4 is in an epoch
different from the epoch encoded in x ’s primary ParsnipRef, so it
needs to be recorded as the last access to x . Since this access is
a read, information about the prior write must be retained. The
ParsnipRef for the past access becomes the secondary ParsnipRef
and a fresh primary ParsnipRef is recorded, with a freshly allocated
entry [1] in the ParsnipTable, where the current clock (2) is stored.

The next read of x at step 6 is done by thread t2, concurrently
with the last read encoded in the primary ParsnipRef. To check
for a potential write-read race, Parsnip also checks the secondary
ParsnipRef. Since there is space for information about only 2 ac-
cesses in hardware, the older read by t1 is saved to software and the
read by t2 is recorded as a fresh primary ParsnipRef, using a newly
allocated entry [0] in t2’s ParsnipTable. The target ParsnipTable is
determined by the thread in the ParsnipRef.

Next, thread t2 releases lock l1 (step 7) and t3 acquires it (step 8),
establishing happens-before order. At step 9, the write by thread
t3 checks against both ParsnipRefs, but the secondary ParsnipRef
indicates with its hasNext bit (T) that there is additional history in
software. A software check is invoked and finds a data race with the
read at 2@t1 (step 4). For illustration purposes, we assume Parsnip
continues past this data race report and records this access as usual.
Since it is a write, all access history about x is obsolete, and it
returns to a single primary ParsnipRef recording the write in epoch
16@t3, using entry [4] in t3’s ParsnipTable, which currently holds
clock 16. Note that the software history retains information about
an older read. Parsnip could preemptively erase this, but there is
no need since the new primary ParsnipRef shows with its hasNext
bit (T) that there is neither a secondary ParsnipRef nor history in
software, so future accesses will never inspect that history (even
though doing so would not affect precision).

Thread t3 then releases lock l1 at step 10, incrementing its logical
clock to 17. Thread t3 reads x at step 11 in the same thread as
the last access indicated by the primary ParsnipRef, but in a new
epoch. However, the ParsnipTable of t3 is still full (not shown) and
a 17 entry is not available, so the clock value 17 cannot be stored.

Parsnip records a fresh primary ParsnipRef for x , assigned to t3,
but with the invalid index (notated ⊥). Parsnip also saves the full
epoch value 17@t3 to software. Since the existing primary Parsnip-
Ref indicated that there was neither a secondary ParsnipRef nor
history in software, the software overwrites outdated history.

Lock l2 is released by thread t3 at step 12 (Table 2 does not show
metadata for l2 in L), followed by a write to x in t3 at step 13. The
check on this write completes after decoding the primary Parsnip-
Ref alone. Even though the primary ParsnipRef indicates there is a
secondary ParsnipRef, the current write is in the same thread as the
last read encoded by the primary ParsnipRef, so the current write
is race-free. Since t3’s ParsnipTable is still full (not shown), the full
epoch value 18@t3 is persisted into software. As this is a write, all
software read history is now stale and is erased. Finally, when t2
reads x at step 14, the primary ParsnipRef lacks a table index, so
Parsnip performs a software check to check the last write epoch,
finding a write-read race.

4 OPTIMIZATIONS

This section describes three key optimizations to reduce dependence
on the high latency Parsnip software layer in cases where on-chip
resources are insufficient to recover or record necessary access
history. These optimizations avoid unnecessary software interac-
tions by buffering the transfer of evicted access history metadata
to software (Section 4.1); prefetching access history information
from software (Section 4.2); and varying the policy for eviction of
ParsnipLines from cache (Section 4.3).

4.1 Buffering Evictions of Access History

to Software

Parsnip must persist access history information to software to
preserve soundness in two cases that are neither common nor
rare enough to ignore the high latency of the software layer: (1)
on ParsnipTable rejections (Section 3.5) and (2) when recording a
new read epoch in a RsAW-mode access history, where Parsnip
stores only the last read and last write in hardware and maintains
information about other reads in software (Section 3.2).

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

To reduce the latency of persisting epochs to software, we extend
the basic Parsnip design to add a 32-entry coalescing epoch store
buffer to each core (Figure 6). Each entry holds the address of the
accessed data location, the memory access type (read/write), and
the epoch in which the access occurred. Parsnip buffers an entry
when it needs to persist access history to software. The latency of
inserting an entry into the buffer can be hidden by the cost of the
corresponding ParsnipLine update. When the buffer fills, a software
handler is invoked to drain all buffered entries to software.

When insufficient access history is available on-chip in Parsnip-
Lines or ParsnipTables, Parsnip queries the software layer only if it
cannot find the required access history by snooping the epoch store
buffer. The buffer also coalesces entries for the same address and
access type. For example, if the buffer contains an entry for a read
to data location x in epoch e1 and a read to x in newer epoch e2
must be persisted to software, the entries are coalesced, preserving
only the most recent read to x in e2. Upon last-level cache misses
on a ParsnipLine, the software handler also snoops the epoch store
buffers to ensure that any pending updates to x ’s access history is
visible to later accesses.

4.2 Access History Prefetching and Prediction

When an access check by thread t for data location x finds in-
sufficient in-hardware access history, Parsnip invokes a software
handler to resolve the check for location x from the full software-
managed access history. To exploit spatial locality, Parsnip addi-
tionally fills the ParsnipLine for x , setting access capabilities for all
other locations that are tracked by the same ParsnipLine.

Rather than simply filling ParsnipRefs for other locations y , x
in the same ParsnipLine as x ’s ParsnipRef based on access history,
the software handler speculatively checks a future access to y of the
same type (read/write) and by the same thread t as the access that
triggered the software check of y’s neighbor, x . If the speculative
check determines that such an access to y would be data race free
according to the current access history, it fills a ParsnipRef for y
with the access capability component set to describe this predicted
future access, but leaves the ParsnipTable index component of the
ParsnipRef invalid.

This optimization preserves soundness and completeness if the
next access toy is predicted correctly, as the predicted future access
check will resolve based on the ParsnipRef access capability for y
and record the up-to-date epoch of this new access, achieving the
same result as if it had dispatched the check to software.

If a speculative check mispredicts the next access to y and a
different thread u , t makes the next access to y, soundness and
completeness are still preserved. An access to y by thread u will
find the ParsnipRef access capability assigned to t with an invalid
ParsnipTable index, thus triggering a search through the epoch store
buffer (Section 4.1) or the software layer to find the most up-to-
date access history for y. Since speculative checks update only the
access capability of a ParsnipRef, no record of the predicted access
is found in either the epoch store buffers or software. Parsnip will
thus complete a full access check against the same access history it
would have checked without speculation. In sum, Parsnip remains
sound and complete with this optimization.

4.3 ParsnipTable and ParsnipLine Management

To ensure effective use of limited table space, ParsnipTable man-
agement must exploit locality and favor entries that are likely to be
reused soon. However, the simple policy of reference counts and
rejections established in Section 3.5 has limitations. ParsnipRefs for
old, infrequently-used data that remain in the last-level cache may
pin ParsnipTable entries with nonzero reference counts, leaving no
table space for newer, frequently-used epochs, creating high rates
of ParsnipTable rejections and expensive software checks.

A simple alternative is to invalidate and persist a ParsnipLine to
software as it leaves the L1 cache. ParsnipRefs for memory locations
not accessed recently thus tend to be evicted from L1, decrementing
reference counts and freeing more ParsnipTable entries to represent
new epochs. However, even hot data locations in programs with
large working sets experience frequent evictions and refills to the
L1 or even L2. The associated ParsnipLines then suffer frequent
round trips to and from to the software layer.

To balance ParsnipTable utilization and software costs, Parsnip
adaptively selects an L1 or LLC residence policy for ParsnipLines by
tracking the rate of software checks in a window of recent events.
Under policies that allow ParsnipLines to reside in the LLC, the
heuristic responds to software checks due to excessive Parsnip-
Table rejections when old ParsnipRefs in the last-level cache pin
too many useless ParsnipTable entries. Under L1-only ParsnipLine
residence, the heuristic responds to software checks for repeatedly
invalidated and refilled ParsnipLines in L1. A user may alsomandate
a cache residence policy based on profiling or experience. Extending
Parsnip to support other heuristics is a promising avenue for future
work.

5 EVALUATION

To evaluate Parsnip’s performance, we implemented a simulator
using Intel PIN [27] to model a 16-core systemwith MESI coherence
protocol, with a realistic memory hierarchy common in commodity
processors. Cache lines are 64 bytes. Each core has an 8-way 32KB
L1 cache and an 8-way 256KB L2 cache; all cores share a 16-way
32MB L3 cache. Latency of L1, local L2, remote L2, L3, and main
memory accesses are 1, 10, 15, 35, and 120 cycles, respectively.
The cache subsystem of the Parsnip simulator is implemented by
extending the cache implementation in ZSim [45].

Each per-core ParsnipTable has 15 entries (165 bytes total), with
each entry consisting of a 64-bit clock and a 24-bit reference count.
Each per-core epoch store buffer has 32 entries (544 bytes total),
with each entry holding a 64-bit address, a 64-bit clock, and an
extra byte encoding both a tid and a r/w bit. Lookups in the local
core’s ParsnipTable cost 1 cycle; requesting an entry from a remote
core’s ParsnipTable takes 10 cycles. Latency of epoch store buffer
insertions is hidden by the cycles of updating the corresponding
ParsnipLine. Accesses to locations on the stack are assumed to be
thread-local, and no data race checks are done for stack locations.
Software checks and epoch-buffer drains cost 500 cycles plus the
cost of any cache accesses triggered.

5.1 Experimental Setup

We evaluate Parsnipwith 10 programs from the PARSEC 3.0 bench-
mark suite [4], including blackscholes, bodytrack, canneal, dedup,

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

blackscholes bodytrack canneal dedup ferret fluidanimate streamcluster vips x264

0.0x

2.0x

4.0x

6.0x

S
lo

w
do

w
n

ov
er

 n
at

iv
e

10
.5

x

11
.6

x

33
.8

x

10
.0

x

16
.0

x

17
.6

x

17
.4

x

Parsnip

Radish

Radish-ts

Figure 7: Slowdown of Parsnip, Radish, and Radish-ts, normalized to a system without data race detection support.

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster vips x264

0.0x

1.0x

2.0x

S
lo

w
do

w
n

ov
er

 n
at

iv
e

Threads

2

4

8

16

Figure 8: Slowdown of Parsnip with 2, 4, 8 and 16 threads, using the simmedium input.

ferret, fluidanimate, raytrace, streamcluser, vips and x264. We omit
the benchmarks facesim, which forks child processes as parallel
workers, and swaptions, which has high variance across runs in
our experiments. We report performance as the mean of 3 runs.

5.2 Performance

This section compares the performance of Parsnip with Radish [9],
the most related work. Figure 7 shows the CPIs of Parsnip and
Radish, normalized to the native executions of the respective simu-
lator without data race detection extensions. Results shown here
were collected when running with 8 threads and the simsmall input
size.2 We exclude raytrace from these results, since it did not run
correctly on the Radish simulator in our experiments.We ran Radish
with its relaxed asynchronous checking and unsafe type-safety op-
timization disabled [9] for the most direct comparison to Parsnip,
which provides synchronous data race checks and does not make
assumptions about type safety. Additionally, we ran Radish with
its type-safety assumption enabled, represented by the Radish-ts
bars in Figure 7. This enables better performance but is unsound
and incomplete in the presence of type-safety violations.

On all 9 PARSEC benchmarks on which we compare Parsnip
against Radish, Parsnip runs faster than Radish. On average (ge-
omean), Parsnip slows the baseline CPI by 1.5x, whereas Radish’s
average slowdown is 6.9x. The maximum slowdown caused by
Parsnip is 2.6x on x264. Radish slows ferret by 33.8x. Parsnip is
on average 4.6x faster than Radish, and runs ferret 27.2x faster
than Radish. Enabling Radish’s type-safety assumption in Radish-ts
yields a 1.3x boost over the safe version of Radish. Nonetheless, the
optimized Radish-ts remains 3.4x slower than Parsnip on average,
and runs vips 12.3x slower than Parsnip does.

2Long running times and high memory usage of the Radish simulator made perfor-
mance experiments for larger input sizes or thread counts infeasible on the Radish
simulator in our experiments.

5.3 Scalability

To evaluate Parsnip’s performance scaling over the number of
threads of the target program, we ran Parsnip experiments with
2, 4, 8 and 16 threads on 16 simulated cores with the simmedium
input size. Slowdown of Parsnip’s CPI with respect to CPI of the
baseline system is shown in Figure 8. On 4 benchmarks (blacksc-
holes, canneal, fluidanimate, streamcluster), Parsnip’s overhead
decreases with more threads. On 4 additional other benchmarks
(bodytrack, dedup, ferret, x264), Parsnip overhead increases with
more threads. Parsnip’s overhead shows no significant difference
on the remaining 2 benchmarks (raytrace and vips). For raytrace,
Parsnip shows no appreciable slowdown at all. Parsnip’s worst
slowdown is 2.7x on x264 with 16 threads.

5.4 Effectiveness of Optimizations

This subsection presents results of several experiments conducted
to evaluate the effectiveness of each optimization described in Sec-
tion 4. Figure 9 shows the slowdown in CPI of several variants
of Parsnip, as normalized to the standard Parsnip configuration.
Epoch store buffers (described in Section 4.1) have the largest im-
pact. Parsnip runs on average 3.7x slower with epoch store buffers
disabled (“no epoch buffers”). Parsnip with access history prefetch-
ing and prediction (Section 4.2) offers an average 10% performance
improvement versus without (“no AH speculation”). The baseline
adaptive selection of the ParsnipLine cache residence policy (Sec-
tion 4.3) shows comparable average performancewith both the fixed
L1 and LLC ParsnipLine residence policies (“ParsnipLines in L1,
LLC”). However, the adaptive policy avoids the larger slowdowns
of the L1 policy on bodytrack, and the LLC policy on blackscholes.
In summary, all benchmarks see (often substantial) performance
improvement from at least one of the optimizations described in
Section 4.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamclust.. vips x264

0.0x

0.5x

1.0x

1.5x

2.0x

sl
ow

do
w

n
ov

er
 s

td
. P

ar
sn

ip

4.
9x

8.
7x

8.
3x

4.
8x

4.
9x

no epoch buffers

no AH speculation

ParsnipLines in L1

ParsnipLines in LLC

Figure 9: Slowdown of Parsnip with different optimizations disabled.

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fe
rre

t

flu
id

an
im

at
e

ra
yt

ra
ce

st
re

am
cl

us
te

r

vi
ps

x2
64

0%

25%

50%

75%

100% Access Capability
Local ParsnipTable
Remote ParsnipTable
Software

Figure 10: Breakdown of how often each access history source resolves a data race check.

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fe
rre

t

flu
id

an
im

at
e

ra
yt

ra
ce

st
re

am
cl

us
te

r

vi
ps

x2
64

0%

25%

50%

75%

100% ParsnipLine Access
ParsnipLine Initialization
Local ParsnipTable Access
Remote ParsnipTable Access
Epoch Store Buffer Drain
Software Check

Figure 11: Contribution of architectural events to overall Parsnip overhead.

5.5 Architectural Characterization

We ran several characterization experiments to better understand
the sources of Parsnip’s overhead.

Figure 10 shows the percentage of data race checks that are
resolved by each Parsnip mechanism. ParsnipRefs and the local
core’s ParsnipTable suffice to resolve at least 84% of checks in
each benchmark. Access capabilities in ParsnipRefs alone resolve
68-90% of checks in bodytrack, dedup, and fluidanimate. Remote
ParsnipTable lookups resolve a modest number of checks, up to
12% in blackscholes. With the exception of canneal, which requires

software checks on 8% of accesses, all other benchmarks require
software checks on <1% of accesses, with most <0.6%.

Figure 11 shows the breakdown of Parsnip’s overhead from 6
different sources: (a) the cost of accessing ParsnipRefs in cache; (b)
the cost of software handling when a ParsnipRef is not in cache; (c)
the cost of runtime checks that complete after comparing with a
clock in the local ParsnipTable; (d) the cost of runtime checks that
finish after comparing with a clock in some remote ParsnipTable;
(e) the cost of software check handlers; (f) the cost of saving the
contents of an epoch buffer to software.

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Epoch Parsnip- Parsnip-
buffer Line Table SW

Benchmark drains evictions rejections checks
blackscholes 0.00 0.00 0.00 0.01
bodytrack 0.00 0.00 0.13 0.91
canneal 0.00 0.00 0.03 2.57
dedup 0.01 0.00 0.49 0.57
ferret 0.00 0.00 0.00 0.17

fluidanimate 1.38 0.00 79.15 0.34
raytrace 0.00 0.00 0.00 0.02

streamcluster 0.00 0.00 0.01 0.05
vips 0.00 0.00 0.02 0.45
x264 0.00 0.00 0.00 1.45

Table 3: Events per 1K instructions in Parsnip.

Table 3 shows the frequency of the most expensive architec-
tural events in Parsnip. With 32-entry epoch buffers, persisting
epoch values to software is rare (column 2). The highest rate of
epoch buffer drains is 1.38/1K instructions, in fluidanimate. Parsnip-
Lines evictions are also rare (column 3). Column 4 shows that
ParsnipTable rejections occur at a rate below 0.5/1K instructions
in all benchmarks except fluidanimate. Despite its high rate of
79.15 ParsnipTable rejections per 1K instructions, most fluidan-
imate checks complete in hardware partly due to epoch buffers
and the use of access capabilities (see Figure 10). Column 5 shows
software checks per 1K instructions. While canneal and x264 have
high software check rates of 2.57/1K instructions and 1.45/1K in-
structions, respectively, all other benchmarks execute fewer than 1
software check per 1K instructions.

Overall, Parsnip’s access history organization and optimizations
are effective in allowing most runtime checks to be performed in
hardware.

5.6 Hardware Overheads

We used CACTI 5.3 [53] to model the area and latency overheads
of the hardware Parsnip adds to a conventional processor core.
Parsnip’s storage costs are modest: the epoch buffer and Parsnip-
Table for each core occupy less than 0.02 mm2 in 32nm technology.
For comparison, [54] states that a 2-wide in-order core at 32nm
(excluding caches) occupies 0.1875 mm2. Parsnip does require an
extra L1D$ read port to allow data and metadata to be read in paral-
lel, increasing access latency by about 20%. In a superscalar design,
Parsnip could reuse an existing cache port but would reduce the
number of memory operations that could be scheduled in parallel.

6 RELATEDWORK

Hardware Approaches. The work most closely related to Parsnip
is the Radish system [9] for hardware-accelerated sound and com-
plete race detection. We compare extensively to Radish in previous
sections. The LARD system [57] showed that naive usage of even
sound and complete hardware data race detection can result in false
and missed data races due to interactions with layers of the system
stack like the OS and language runtime. LARD also demonstrates
how to convey sufficient information across these layers to restore
precision. Other hardware race detectors [21, 32, 36, 38, 41–43, 60]

sacrifice soundness and completeness in favor of simpler and faster
hardware.

The Vulcan [35] and Volition [44] hardware architectures have
been proposed for detecting and recovering from sequential-consis-
tency violations, which arise from two or more cyclically-coupled
data races. These schemes provide sequential consistency at the
instruction level by detecting the underlying data races that can
violate SC. Both schemes implement precise data race detection,
however, it is only needed during a short window within which
instruction reordering can occur, which simplifies the implemen-
tation and allows for almost-negligible performance overheads.
Other hardware schemes enforce stronger memory consistency
models design to preserve sequential consistency or related proper-
ties [25, 30, 47, 51]. SC violation detectors ignore data races where
at least one access occurs outside of the current detection window.
Sound techniques like Parsnip can find these additional races, mak-
ing debugging easier and supporting a wide range of race-detection
clients such as record-and-replay and deterministic execution.

Beyond data races, many techniques have targeted detecting
or protecting against a wider range of concurrency bugs such as
atomicity violations [23, 26, 34] or general concurrency bugs [24],
though these techniques suffer from occasionally reporting false
bugs since the definitions of these bugs are inherently imprecise or
application-specific.

Software Approaches. Many sound and complete pure-software
dynamic data race detectors have been proposed [12, 40, 50]. The
Parsnip design draws motivation and inspiration from this prior
work, in particular FastTrack’s optimized per-location metadata
[15], and also [52], RedCard [16] and SlimState [56] for removal of
some cross-location metadata redundancy. Despite these advances,
pure-software approaches for sound and complete race detection
commonly introduce slowdowns over 10x [56]. To combat perfor-
mance overhead, several forms of sampling-based dynamic race
detection have been proposed. Such schemes run faster but occa-
sionally miss races [7, 11, 13, 19, 29].

In parallel to hardware proposals, software implementations of
stronger serializable memory models reduce overheads relative to
full software data race detection [5, 48] , but still incur notable
run-time overheads and lack the benefits of full data race detection
provided by Parsnip or sound and complete software systems. Some
software systems have explored the use of commodity hardware
transactional memory (HTM) support to assist in serializability
checking [49]. Others have applied HTM to data race detection,
but compared to Parsnip, they remain either unsound [59] or slow
[31].

Lockset-based race detection [10, 46], an alternative to the hap-
pens-before data race detection algorithm, can report false races
on code idioms like privatization or complicated locking protocols.
However, the lockset algorithm can sometimes detect more races
on a given execution than happens-before does. [60] proposed hard-
ware support for lockset race detection to reduce its performance
overheads.

7 CONCLUSION

With the prevalence of parallel programs and systems, efficient
data race detection is an increasingly important topic. However,

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Y. Peng et al.

previous software solutions incur high performance overheads,
restricting their usability in real-world scenarios. Fast hardware
race detectors either trade precision for performance, or make
overly strict assumptions.

We proposed Parsnip, a sound and complete data race detec-
tor that can track memory accesses at byte granularity efficiently.
Parsnip adds moderate hardware modifications to a conventional
multicore processor, and does not rely on unsound type-safety as-
sumptions. Parsnip outperforms Radish, the leading hardware race
detector, by 4.6x on average. Parsnip incurs just 1.5x overhead over
native execution on average.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable feedback on prior versions of this work. This work
is supported by the National Science Foundation through grant
#1337174.

REFERENCES

[1] Martin Abadi, Cormac Flanagan, and Stephen N. Freund. 2006. Types for safe lock-
ing: Static race detection for Java. ACM Transactions on Programming Languages
and Systems 28, 2 (March 2006), 207–255. https://doi.org/10.1145/1119479.1119480

[2] Sarita Adve. 2010. Data races are evil with no exceptions. Commun. ACM 53, 11
(Nov. 2010), 84. https://doi.org/10.1145/1839676.1839697

[3] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson.
2004. On-the-fly maintenance of series-parallel relationships in fork-join multi-
threaded programs. In Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures (SPAA ’04). ACM, New York, NY, USA,
133–144. https://doi.org/10.1145/1007912.1007933

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PAR-
SEC Benchmark Suite: Characterization and Architectural Implications. Technical
Report TR-811-08. Princeton University.

[5] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. 2015.
Valor: Efficient, Software-only Region Conflict Exceptions. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015). ACM, New York, NY, USA,
241–259. https://doi.org/10.1145/2814270.2814292

[6] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency
memory model. In Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation - PLDI ’08. Tucson, AZ, USA, 68.
https://doi.org/10.1145/1375581.1375591

[7] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER: Pro-
portional Detection of Data Races. In Proceedings of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementation - PLDI ’10. Toronto,
Ontario, Canada, 255. https://doi.org/10.1145/1806596.1806626

[8] Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan. 2009. SingleTrack:
A Dynamic Determinism Checker for Multithreaded Programs. In Proceedings of
the 18th European Symposium on Programming Languages and Systems: Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009.

[9] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and
Shaz Qadeer. 2012. RADISH: always-on sound and complete RAce Detection In
Software and Hardware. In Proceedings of the 39th Annual International Sympo-
sium on Computer Architecture (ISCA ’12). IEEE Computer Society, Washington,
DC, USA, 201–212. http://dl.acm.org/citation.cfm?id=2337159.2337182

[10] Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies in pro-
grams with critical sections. In Proceedings of the 1991 ACM/ONR workshop on
Parallel and distributed debugging (PADD ’91). ACM, New York, NY, USA, 85–96.
https://doi.org/10.1145/122759.122767

[11] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J.
Boehm. 2012. IFRit: interference-free regions for dynamic data-race detection. In
Proceedings of the ACM international conference on Object oriented programming
systems languages and applications (OOPSLA ’12). ACM, New York, NY, USA,
467–484. https://doi.org/10.1145/2384616.2384650

[12] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a race and
transaction-aware java runtime. In Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implementation. 245–255. https:
//doi.org/10.1145/1273442.1250762

[13] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. Effective data-race detection for the kernel. In Proceedings of the 9th USENIX

conference on Operating systems design and implementation (OSDI’10). USENIX
Association, Berkeley, CA, USA, 1–16. http://dl.acm.org/citation.cfm?id=1924943.
1924954

[14] Colin Fidge. 1991. Logical time in distributed computing systems. IEEE Computer
24, 8 (Aug. 1991), 28–33. https://doi.org/10.1109/2.84874

[15] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation - PLDI ’09. Dublin, Ireland,
121. https://doi.org/10.1145/1542476.1542490

[16] Cormac Flanagan and Stephen N. Freund. 2013. RedCard: Redundant Check
Elimination for Dynamic Race Detectors. In Proceedings of the 27th European
Conference on Object-Oriented Programming (ECOOP’13). Springer-Verlag, Berlin,
Heidelberg, 255–280. https://doi.org/10.1007/978-3-642-39038-8_11

[17] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: a sound
and complete dynamic atomicity checker for multithreaded programs. In Pro-
ceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation - PLDI ’08. Tucson, AZ, USA, 293. https://doi.org/10.1145/
1375581.1375618

[18] FriedemannMattern. 1989. Virtual Time and Global States of Distributed Systems.
In Parallel and Distributed Algorithms.

[19] Joseph L. Greathouse, Zhiqiang Ma, Matthew I. Frank, Ramesh Peri, and Todd
Austin. 2011. Demand-driven Software Race Detection Using Hardware Per-
formance Counters. In Proceedings of the 38th Annual International Sympo-
sium on Computer Architecture (ISCA ’11). ACM, New York, NY, USA, 165–176.
https://doi.org/10.1145/2000064.2000084

[20] Jeff Huang and Arun K. Rajagopalan. 2016. Precise and Maximal Race Detection
from Incomplete Traces. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions.

[21] Ruirui Huang, E. Halberg, A. Ferraiuolo, and G.E. Suh. 2014. Low-overhead and
high coverage run-time race detection through selective meta-data management.
In 2014 IEEE 20th International Symposium on High Performance Computer Archi-
tecture (HPCA). 96–107. https://doi.org/10.1109/HPCA.2014.6835979 RaceSMM.

[22] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/359545.
359563

[23] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: detecting
atomicity violations via access interleaving invariants, Vol. 41. 37–48. https:
//doi.org/10.1145/1168918.1168864

[24] Brandon Lucia and Luis Ceze. 2009. Finding concurrency bugs with context-
aware communication graphs. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 42). New York, NY, USA,
553–563. https://doi.org/10.1145/1669112.1669181

[25] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. 2010.
Conflict exceptions: simplifying concurrent language semantics with precise
hardware exceptions for data-races. In Proceedings of the 37th annual international
symposium on Computer architecture - ISCA ’10. Saint-Malo, France, 210. https:
//doi.org/10.1145/1815961.1815987

[26] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-Aid:
Detecting and Surviving Atomicity Violations. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). Beijing, China,
277–288. https://doi.org/10.1109/ISCA.2008.4

[27] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI ’05). New York, NY, USA, 190–200. https://doi.org/10.
1145/1065010.1065034

[28] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory
model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT sysposium on Principles
of programming languages - POPL ’05. Long Beach, California, USA, 378–391.
https://doi.org/10.1145/1040305.1040336

[29] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace:
Effective Sampling for Lightweight Data-Race Detection. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation -
PLDI ’09. Dublin, Ireland, 134. https://doi.org/10.1145/1542476.1542491

[30] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and
Satish Narayanasamy. 2010. DRFX: a simple and efficient memory model for
concurrent programming languages. In Proceedings of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementation - PLDI ’10. Toronto,
Ontario, Canada, 351. https://doi.org/10.1145/1806596.1806636

[31] Hassan Salehe Matar, Ismail Kuru andSerdar TaÅ§Äśran, and Roman Demen-
tiev. 2014. Accelerating Precise Race Detection Using Commercially-Available
Hardware Transactional Memory Support. In Proceedings of the 5th Workshop on
Determinism and Correctness in Parallel Programming (WODET ’14).

https://doi.org/10.1145/1119479.1119480
https://doi.org/10.1145/1839676.1839697
https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1145/2814270.2814292
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1806596.1806626
http://dl.acm.org/citation.cfm?id=2337159.2337182
https://doi.org/10.1145/122759.122767
https://doi.org/10.1145/2384616.2384650
https://doi.org/10.1145/1273442.1250762
https://doi.org/10.1145/1273442.1250762
http://dl.acm.org/citation.cfm?id=1924943.1924954
http://dl.acm.org/citation.cfm?id=1924943.1924954
https://doi.org/10.1109/2.84874
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1007/978-3-642-39038-8_11
https://doi.org/10.1145/1375581.1375618
https://doi.org/10.1145/1375581.1375618
https://doi.org/10.1145/2000064.2000084
https://doi.org/10.1109/HPCA.2014.6835979
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1168918.1168864
https://doi.org/10.1145/1168918.1168864
https://doi.org/10.1145/1669112.1669181
https://doi.org/10.1145/1815961.1815987
https://doi.org/10.1145/1815961.1815987
https://doi.org/10.1109/ISCA.2008.4
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1806596.1806636

PARSNIP: Performant Architecture for Race Safety with No Impact on Precision MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[32] Milos Prvulovic. 2006. CORD: Cost-effective (and nearly overhead-free) Order-
Recording and Data race detection. In Proceedings of the 2006 IEEE 12th Interna-
tional Symposium on High Performance Computer Architecture.

[33] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: Log-based transactional memory. In Proceedings of the 2006
IEEE 12th International Symposium on High Performance Computer Architecture.
254–265.

[34] Abdullah Muzahid, Norimasa Otsuki, and Josep Torrellas. 2010. AtomTracker: A
Comprehensive Approach to Atomic Region Inference and Violation Detection.
In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’43). IEEE Computer Society, Washington, DC, USA,
287–297. https://doi.org/10.1109/MICRO.2010.32

[35] Abdullah Muzahid, Shanxiang Qi, and Josep Torrellas. 2012. Vulcan: Hardware
Support for Detecting Sequential Consistency Violations Dynamically. In Pro-
ceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-45). IEEE Computer Society, Washington, DC, USA, 363–375.
https://doi.org/10.1109/MICRO.2012.41

[36] Abdullah Muzahid, Dario SuÃąrez, Shanxiang Qi, and Josep Torrellas. 2009.
SigRace: Signature-Based Data Race Detection. In Proceedings of the 36th annual
international symposium on Computer architecture (ISCA ’09). ACM, New York,
NY, USA, 337–348. https://doi.org/10.1145/1555754.1555797

[37] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection
for Java. In Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation (PLDI ’06). ACM, New York, NY, USA, 308–
319. https://doi.org/10.1145/1133981.1134018

[38] Adrian Nistor, Darko Marinov, and Josep Torrellas. 2009. Light64: lightweight
hardware support for data race detection during systematic testing of parallel
programs. In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 42). ACM, New York, NY, USA, 541–552. https:
//doi.org/10.1145/1669112.1669180

[39] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: Efficient
Deterministic Multithreading in Software. In Proceeding of the 14th international
conference on Architectural support for programming languages and operating
systems - ASPLOS ’09. Washington, DC, USA, 97. https://doi.org/10.1145/1508244.
1508256

[40] Eli Pozniansky and Assaf Schuster. 2003. Efficient on-the-fly data race detection
in multithreaded C++ programs. In Proceedings of the ninth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming (PPoPP ’03). ACM, New
York, NY, USA, 179–190. https://doi.org/10.1145/781498.781529

[41] Milos Prvulovic and Josep Torrellas. 2003. ReEnact: using thread-level speculation
mechanisms to debug data races in multithreaded codes. In Proceedings of the
30th annual international symposium on Computer architecture (ISCA ’03). ACM,
New York, NY, USA, 110–121. https://doi.org/10.1145/859618.859632

[42] S. Qi, A. A. Muzahid, W. Ahn, and J. Torrellas. 2014. Dynamically detecting and
tolerating IF-Condition Data Races. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 120–131. https://doi.org/10.
1109/HPCA.2014.6835923

[43] Shanxiang Qi, Norimasa Otsuki, Lois Orosa Nogueira, Abdullah Muzahid, and
Josep Torrellas. 2012. Pacman: Tolerating Asymmetric Data Races with Unin-
trusive Hardware. In Proceedings of the 2012 IEEE 18th International Symposium
on High-Performance Computer Architecture (HPCA ’12). IEEE Computer Society,
Washington, DC, USA, 1–12. https://doi.org/10.1109/HPCA.2012.6169039

[44] Xuehai Qian, Josep Torrellas, Benjamin Sahelices, and Depei Qian. 2013. Volition:
Scalable and Precise Sequential Consistency Violation Detection. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 535–
548. https://doi.org/10.1145/2451116.2451174

[45] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475–486. https://doi.org/10.1145/2485922.2485963

[46] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: a dynamic data race detector for multithreaded programs.

ACM Transactions on Computer Systems 15, 4 (Nov. 1997), 391–411. https://doi.
org/10.1145/265924.265927

[47] Cedomir Segulja and Tarek S. Abdelrahman. 2015. Clean: A Race Detector with
Cleaner Semantics. In Proceedings of the 42Nd Annual International Symposium
on Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 401–413. https:
//doi.org/10.1145/2749469.2750395

[48] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind
Kulkarni. 2015. Hybrid Static–Dynamic Analysis for Statically Bounded Region
Serializability. In Proceedings of the Twentieth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS ’15).
ACM, New York, NY, USA, 561–575. https://doi.org/10.1145/2694344.2694379

[49] Aritra Sengupta, Man Cao, Michael D. Bond, and Milind Kulkarni. 2017. Legato:
End-to-end Bounded Region Serializability Using Commodity Hardware Trans-
actional Memory. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization (CGO ’17). IEEE Press, Piscataway, NJ, USA, 1–13.
http://dl.acm.org/citation.cfm?id=3049832.3049834

[50] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the Workshop on Binary Instru-
mentation and Applications (WBIA ’09). ACM, New York, NY, USA, 62–71.
https://doi.org/10.1145/1791194.1791203

[51] Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and
Madan Musuvathi. 2011. Efficient Processor Support for DRFx, a Memory Model
With Exceptions. In Proceedings of the sixteenth international conference on Archi-
tectural support for programming languages and operating systems (ASPLOS ’11).
New York, NY, USA, 53–66. https://doi.org/10.1145/1950365.1950375

[52] Young Wn Song and Yann-Hang Lee. 2014. Efficient Data Race Detection for
C/C++ Programs Using Dynamic Granularity. In Parallel and Distributed Process-
ing Symposium, 2014 IEEE 28th International. 679–688. https://doi.org/10.1109/
IPDPS.2014.76

[53] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P.
Jouppi. [n. d.]. CACTI 5.1. Technical Report HPL-2008-20. Hewlett-Packard Labs.
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

[54] David Wentzlaff, Nathan Beckmann, Jason Miller, and Anant Agarwal. 2010. Core
Count vs Cache Size for Manycore Architectures in the Cloud. Technical Report
MIT-CSAIL-TR-2010-008. MIT. http://hdl.handle.net/1721.1/51733

[55] Benjamin Wester, David Devecsery, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. 2013. Parallelizing Data Race Detection. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems.

[56] James Wilcox, Parker Finch, Cormac Flanagan, and Stephen N. Freund. 2015.
Array Shadow State Compression for Precise Dynamic Race Detection. In Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’15).

[57] Benjamin P. Wood, Luis Ceze, and Dan Grossman. 2014. Low-level Detection of
Language-level Data Races with LARD. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 671–686. https://doi.org/10.
1145/2541940.2541955

[58] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: efficient detection of
data race conditions via adaptive tracking. In Proceedings of the twentieth ACM
symposium on Operating systems principles (SOSP ’05). ACM, New York, NY, USA,
221–234. https://doi.org/10.1145/1095810.1095832

[59] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2016. TxRace: Efficient Data
Race Detection Using Commodity Hardware Transactional Memory. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). ACM, New York,
NY, USA, 159–173. https://doi.org/10.1145/2872362.2872384

[60] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. 2007. HARD: Hardware-
Assisted Lockset-based Race Detection. In Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture (HPCA ’07).
Washington, DC, USA, 121–132. https://doi.org/10.1109/HPCA.2007.346191

https://doi.org/10.1109/MICRO.2010.32
https://doi.org/10.1109/MICRO.2012.41
https://doi.org/10.1145/1555754.1555797
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1669112.1669180
https://doi.org/10.1145/1669112.1669180
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/781498.781529
https://doi.org/10.1145/859618.859632
https://doi.org/10.1109/HPCA.2014.6835923
https://doi.org/10.1109/HPCA.2014.6835923
https://doi.org/10.1109/HPCA.2012.6169039
https://doi.org/10.1145/2451116.2451174
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/2749469.2750395
https://doi.org/10.1145/2749469.2750395
https://doi.org/10.1145/2694344.2694379
http://dl.acm.org/citation.cfm?id=3049832.3049834
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1950365.1950375
https://doi.org/10.1109/IPDPS.2014.76
https://doi.org/10.1109/IPDPS.2014.76
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
http://hdl.handle.net/1721.1/51733
https://doi.org/10.1145/2541940.2541955
https://doi.org/10.1145/2541940.2541955
https://doi.org/10.1145/1095810.1095832
https://doi.org/10.1145/2872362.2872384
https://doi.org/10.1109/HPCA.2007.346191

	Abstract
	1 Introduction
	2 Data Race Detection Overview
	3 The Parsnip System
	3.1 Simplified Parsnip
	3.2 Access History Organization
	3.3 ParsnipLine Format
	3.4 ParsnipRef Format
	3.5 ParsnipTables
	3.6 Parsnip Hardware Support
	3.7 Parsnip Access Checks
	3.8 System-Level Considerations and ISA
	3.9 Parsnip Example Trace

	4 Optimizations
	4.1 Buffering Evictions of Access History to Software
	4.2 Access History Prefetching and Prediction
	4.3 ParsnipTable and ParsnipLine Management

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance
	5.3 Scalability
	5.4 Effectiveness of Optimizations
	5.5 Architectural Characterization
	5.6 Hardware Overheads

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

