A Memory-Efficient Algorithm for Large-Scale Symmetric Tridiagonal Eigenvalue Problem on Multi-GPU Systems

Hyunsu Cho and Peter A. Yoon
Trinity College, Hartford, CT, USA
Symmetric Eigenvalue Problem

$$Ax = \lambda x$$

where A is symmetric

Many interesting applications require eigenvectors
Divide and Conquer

Yields **full spectrum** of eigenvalues and eigenvectors
Is numerically stable
Gives rise to **independent subproblems**
Often faster than $O(n^3)$ due to deflation
Divide and Conquer

Apply **orthogonal similarity transformation** to reduce A to tridiagonal form

$$Q^T A Q = A'$$

where

A' is symmetric tridiagonal
and Q is orthogonal

Existing work on single-node, multi-GPU:
MAGMA (UTK)
Divide and Conquer

- Solve subproblems
- Merge solutions
- Repair
Divide and Conquer
Merging solutions

Suppose

\[A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} + \begin{bmatrix} b_m \\ b_m \end{bmatrix} \]

where

\[A_1 = Q_1 D_1 Q_1^T \] (subproblem #1)
\[A_2 = Q_2 D_2 Q_2^T \] (subproblem #2)
Merging solutions

Then

\[A = QDQ^T + \begin{bmatrix} b_m & b_m \\ b_m & b_m \end{bmatrix} \]

where

\[Q = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} \]
Merging solutions

Then

\[A = Q D Q^T + \begin{bmatrix} b_m & b_m \\ b_m & b_m \end{bmatrix} \]

where

\[Q = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} \]

Rank-one modifier

\[H = b_m \begin{bmatrix} e_m \\ e_1 \end{bmatrix} \begin{bmatrix} e_m \\ e_1 \end{bmatrix}^T \]
Rank-one update

\[H = b_m \begin{bmatrix} \frac{e_m}{e_1} \\ e_1 \end{bmatrix} \begin{bmatrix} \frac{e_m}{e_1} \\ e_1 \end{bmatrix}^T \]

\[A = Q D Q^T + H = Q (D + b_m z z^T) Q^T \]

where

\[z = Q^T \begin{bmatrix} e_m \\ e_1 \end{bmatrix} = \begin{bmatrix} \text{last column of } Q_1^T \\ \text{first column of } Q_2^T \end{bmatrix} \]
Rank-one update

\[H = b_m \left[\frac{e_m}{e_1} \right] \left[\frac{e_m}{e_1} \right]^T \]

\[A = QDQ^T + H = Q(D + b_m z z^T)Q^T \]

where

\[z = Q^T \left[\frac{e_m}{e_1} \right] = \left[\begin{array}{c} \text{last column of } Q_1^T \\text{first column of } Q_2^T \end{array} \right] \]

Need eigen-decomposition of inner system
Decompose $D + b_m^T z z^T$

1. Sort entries in D; permute z likewise
2. Filter some entries in D and z via deflation (next slide)
Decompose $D + b_m z z^T$

1. Sort entries in D; permute z likewise
2. Filter some entries in D and z via deflation (next slide)
3. Compute all roots of the **secular equation** [1]

\[
1 + b_m \sum_{i=1}^{n} \frac{d_i^2}{z_i - \lambda} = 0,
\]

...giving the m eigenvalues.

4. Compute corresponding eigenvectors stably [2]

[1] Li 1994
Decompose $D + b_m zz^T$

1. Sort entries in D; permute z likewise
2. Filter some entries in D and z via deflation (next slide)
3. Compute all roots of the **secular equation** [1]

 $$1 + b_m \sum_{i=1}^{n} \frac{d_i^2}{z_i - \lambda} = 0,$$

 giving the m eigenvalues.

4. Compute corresponding eigenvectors stably [2]

5. Multiply each eigenvector by Q

Recall: $A = Q(D + b_m zz^T)Q^T$

[1] Li 1994
Deflation

Recall:

\[D = \begin{bmatrix} D_1 & \mid & D_2 \end{bmatrix} \]

Entries of \(D \) are eigenvalues of two subproblems
If two entries are nearly identical, we throw one away

Fewer columns when multiplying eigenvectors by \(Q \)
Same thing for small entries in \(z \)

Reduce work complexity to \(O(n^{2.3}) \)
GPU computing

General-purpose computation on GPUs
Bulk parallelism w/ many small threads
Cost effective; widely available
Mapping work to GPU

1. Sort entries in D; permute z likewise
2. Filter some entries in D and z via deflation
3. Compute all roots of the secular equation, giving the m eigenvalues.
4. Compute corresponding eigenvectors stably
5. Multiply each eigenvector by Q
 → Done in bulk via DGEMM

Parallel but not as work-intense
GPU memory

High-bandwidth dedicated memory
Separate from main memory
Limited in size
Memory requirement

Eigenvectors are dense → $O(n^2)$ storage

Intermediate workspace: eigenvectors of inner system

<table>
<thead>
<tr>
<th>Matrix dimension</th>
<th>Memory required</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>16384</td>
<td>5.8 GB</td>
</tr>
<tr>
<td>32768</td>
<td>23.4 GB</td>
</tr>
<tr>
<td>36000</td>
<td>28.2 GB</td>
</tr>
<tr>
<td>50000</td>
<td>54.4 GB</td>
</tr>
</tbody>
</table>
Our contribution

Overcome limitation in GPU memory while retaining adequate performance
Strategies

1. Use multiple GPUs
Strategies

2. Keep most of workspace in main memory (out-of-core approach)
Strategies

3. **Shape work** to fit GPU workspaces
Block matrix multiplication
Use a fine partition to fit submatrices into GPU memory

\[Q \times \text{Eigenvectors of } D + b_m z z^T = \text{Eigenvectors of } A \]
Hybrid computation

Allocate subproblems to both GPUs and CPUs
Model performance as a power function

Profiler fits parameters using least-squares

\[R^2 = 0.9566 \]
Hybrid computation

Solve many subproblems in parallel
Hybrid computation

Solve each subproblem by parts
Results

Scales to 50k * 50k matrix
With 4 GB of GPU memory

Per-GPU peak memory usage

Main memory: 64 GB
GPU memory: 5 GB per GPU
Results

Performance: vs. multicore CPU

CPU: dual Intel® Xeon® E5-2620
GPU: 4 Nvidia Tesla® K20c
Conclusion

Out-of-core approach overcomes memory limitation on the GPU

Hybrid computation with profiling delivers reasonable performance
Acknowledgment

Trinity College, Student Research Program
Nvidia Corporation, CUDA Teaching Center Program
Any questions?