
Leveraging Lock Contention to Improve OLTP Application
Performance

Cong Yan
University of Washington

congy@cs.washington.edu

Alvin Cheung
University of Washington

akcheung@cs.washington.edu

ABSTRACT
Locking is one of the predominant costs in transaction processing.
While much work has focused on designing efficient concurrency
control mechanisms, not much has been done on understanding
how transaction applications issue queries and leveraging appli-
cation semantics to improve application performance. This paper
presents QURO, a query-aware compiler that automatically reorders
queries in transaction code to improve performance. Observing that
certain queries within a transaction are more contentious than oth-
ers as they require locking the same tuples as other concurrently
executing transactions, QURO automatically changes the applica-
tion such that contentious queries are issued as late as possible. We
have evaluated QURO on various transaction benchmarks, and our
results show that QURO-generated implementations can increase
transaction throughput by up to 6.53×, while reduce transaction
latency by up to 85%.

1. INTRODUCTION
From ticket reservation systems, online shopping, to banking ap-

plications, we interact with online transaction processing(OLTP)
applications on a daily basis. These applications are often imple-
mented using database transactions, where each transaction con-
sists of multiple read and write queries to the database manage-
ment system (DBMS) that stores persistent data. One of the goals
of OLTP applications is to handle large number of concurrent trans-
actions simultaneously. However, since multiple transactions might
access the same tuple stored in the DBMS at the same time, some
form of concurrency control must be implemented to ensure that all
transactions get a consistent view of the persistent data.

Two-phase locking (2PL) [7, 8] is one of the most popular con-
currency control mechanisms implemented by many DBMSs. In
2PL, each data element (e.g., a tuple or a partition) stored in the
database is associated with a read and a write lock, and a transac-
tion is required to acquire the appropriate lock associated with the
given database element before operating on it. For example, while
multiple transactions can be holding the read lock on the same data
concurrently, only one transaction can hold the write lock. When
a transaction cannot acquire a lock, its pauses execution until the
lock is released. To avoid deadlocks, (strict) 2PL requires that a
transaction not request additional locks once it releases any lock.
Thus, as each transaction executes, it goes through an expanding
phase where locks are acquired and no lock is released, followed
by a shrinking phase where locks are released and no locks are ac-
quired.

Unfortunately, not all locks are created equal. While each trans-
action typically operates on different elements stored in the DBMS,
it is often the case that certain elements are more contentious than
others, i.e., they tend to be read from or written to by multiple

concurrent transactions. As an illustration, imagine an applica-
tion where all transactions need to update a single tuple (such as a
counter) among other operations. If each transaction starts by first
acquiring the write lock on the counter tuple before acquiring locks
on other data elements, then essentially all but one of the transac-
tions can make progress while the rest are blocked, even though
other transactions could have made further progress if they first ac-
quired locks on other data. As a result, each transaction takes a
longer time to execute, and the overall system throughput suffers.
This is exacerbated in main-memory databases. Since the transac-
tion no longer need to access the disk, most of transaction running
time is spent on executing queries, and the long lock waiting time
is likely to become the predominant performance bottleneck.

One way to avoid the above problem is to reorder the queries in
each transaction such that operations on the most contentious data
elements are performed last. Indeed, as our results show, doing so
can significantly improve application performance. Unfortunately,
reordering queries in transaction code raises various challenges:

∙ OLTP applications are typically written in a high-level pro-
gramming language such as C or Java, and compilers for
these languages treat queries as black-box library calls. As
such, they are unaware of the fact that these calls are exe-
cuting queries against the DBMS, let alone ordering them
during compilation based on the level of contention.

∙ DBMS only receives queries from the application as it exe-
cutes and does not understand how the queries are semanti-
cally connected. As such, it is very difficult for the DBMS to
reorder queries during application execution, since the appli-
cation will not issue the next query until the results from the
current one have been returned.

∙ Queries in a transaction are usually structured based on appli-
cation logic. Reordering them manually will make the code
difficult to understand. Furthermore, developers need to pre-
serve the data dependencies among different queries as they
reorder them, making the process tedious and error-prone.

In this paper we present QURO, a query-aware compiler that au-
tomatically reorders queries within transaction code based on lock
contention while preserving program semantics. To do so, QURO
first profiles the application to estimate the amount of contention
among queries. Given the profile, QURO then formulates the re-
ordering problem as an Integer Linear Programming (ILP) prob-
lem, and uses the solution to reorder the queries and produces an
application binary by compiling the reordered code using a stan-
dard compiler.

This paper makes the following contributions:

1

∙ We observe that the order of queries in transaction code can
drastically affect performance of OLTP applications, and that
current general-purpose compiler frameworks and DBMSs
do not take advantage of that aspect to improve application
performance.

∙ We formulate the query reordering problem using ILP, and
devise a number of optimizations to make the process scale
to real-world transaction code.

∙ We implemented a prototype of QURO and evaluated it us-
ing popular OLTP benchmarks. When evaluated on main-
memory DBMS implementations, our results show that the
QURO-generated transactions can improve throughput by up
to 6.53×, while reducing the average latency of individual
transactions by up to 85%.

The rest of this paper is organized as follows. We first illustrate
query reordering with an example and give an overview of QURO
in Section 2. Then we describe the preprocessing performed by
QURO in Section 3 followed by details of the reordering algorithm
in Section 4 and profiling in Section 5. We present our experiment
results using three OLTP benchmarks in Section 6, discuss related
work in Section 7, and then conclude.

2. OVERVIEW
In this section we discuss query reordering in transaction code

using an example and describe the architecture of QURO. To mo-
tivate, Listing 1 shows an excerpt from an open-source imple-
mentation [3] of the payment transaction from the TPC-C bench-
mark [21], which records a payment received from a customer. In
the excerpt, the code first finds the warehouse to be updated with
payment on line 1 and subsequently updates it on line 2. Similarly,
the district table is read and updated on lines 3 and 4. After that
the code updates the customer table. The customer can be selected
by customer id, or customer name. If the customer has good credit,
only the customer balance will be updated, otherwise the detail of
this transaction will be appended to the customer record. Finally it
inserts a tuple into the history table recording the change.

1 w_name = select(" warehouse ");
2 update(" warehouse ", w_name);
3 d_name = select(" district");
4 update(" district");
5 if (c_id == 0) {
6 c_id = select(" customer ", c_name);
7 }
8 c_credit = select(" customer ", c_id);
9 if (c_credit [0] == (’G’)) {

10 update(" customer", c_id , w_id);
11 } else {
12 c_id = "..." + w_id + c_id + "...";
13 update(" customer", c_id);
14 }
15 insert("history", w_name , d_name , ...);

Listing 1: Original code fragment from TPC-C payment
transaction. Hereselect("t", v) represents a selection query
on table t that uses the value of program value v as one of its
parameters, likewise for update and insert.

1 if (c_id == 0) {
2 c_id = select(" customer ", c_name);
3 }
4 c_credit = select(" customer ", c_id);
5 if (c_credit [0] == (’G’)) {
6 update(" customer", c_id , w_id);

select(W)
update(W)
select(D)
update(D)

select(C)

update(C)

insert(H)

--(T1)-- --(T2)--
Execution

time

Waiting for lock on
warehouse tuple

select(W)
update(W)
select(D)
update(D)

select(C)

update(C)

insert(H)

X(w)
S(d)
X(d)
S(c)

X(c)

X(h)

S(w)
X(w)
S(d)
X(d)
S(c)

X(c)

X(h)

S(w)

(a) execution of original payment

--(T1)-- --(T2)--

select(W)

update(W)

select(D)
update(D)

select(C)

update(C)

insert(H)
select(D)
update(D)

select(C)

update(C)

Waiting for lock

select(W)

update(W)

insert(H)

S(a): grab shared lock on a tuple a in table A
X(a): grab exclusive lock on a tuple a in table A
w/W: warehouse tuple/table d/D: district tuple/table
c/C: customer tuple/table h/H: history tuple/table

Execution
time

S(c)

X(c)

S(d)
X(d)
S(w)
X(h)

X(w)

S(c)

X(c)

S(d)
X(d)

S(w)
X(h)

X(w)

(b) execution of reordered payment

Figure 1: Comparison of execution between original and reordered
implementation of the payment transaction. The darker the color,
more likely the query is going to access contentious data.

7 }else{
8 c_id = "..." + w_id + c_id + "...";
9 update(" customer", c_data);

10 }
11 d_name = select(" district");
12 update(" district ");
13 w_name = select(" warehouse ");
14 insert("history", w_name , d_name , ...);
15 update(" warehouse ", w_name);

Listing 2: Reordered code fragment from Listing 1

As written, the implementation shown in Listing 1 performs poorly
due to high data contention. In a typical TPC-C setup, the ware-
house table contains the fewest tuples. Hence as the number of
concurrent transactions increases, the chance that multiple transac-
tions will update the same warehouse table tuple (on line 2 in List-
ing 1) also increases, and this will in turn increase lock contention
and the amount of time spent in executing each transaction. This is
illustrated pictorially in Figure 1a with two concurrent transactions
that try to update the same tuple in the warehouse table. When exe-
cuted under 2PL, each transaction attempts to acquire the exclusive
lock on the same warehouse tuple before trying to update it, and
will only release the lock when the transaction commits. In this
case T1 acquires the lock, blocking T2 until T1 commits. Thus the
total amount of time needed to process the two transactions is close
to the sum of these two transactions executed serially.

However, there is another way to implement the same transac-
tion, as shown in Listing 2. Rather than updating the warehouse
(i.e., the most contentious) table first, this implementation updates
the customer’s balance first, then updates the district and warehouse
tables afterwards. This implementation has the same semantics as
that shown in Listing 1, but with very different performance char-
acteristics, as shown in Figure 1b. By performing the updates on
warehouse table at a later time (line 15), transaction T1 delays ac-
quiring the exclusive lock on the warehouse tuple, allowing T2 to
proceed with operations on other (less contentious) tuples concur-
rently with T1. Comparing the two implementations, reordering
increases transaction concurrency, and reduces the total amount of
time needed to execute the two transactions.

While reordering the implementation shown in Listing 1 to List-
ing 2 seems trivial, doing so for general transaction code is not
an easy task. In particular, we need to ensure that the reordered
code does not violate the semantics of the original code in terms
of data dependencies. For instance, the query executed on line 15

2

Loop/conditional block
breaking

original transaction code

constraints
on query units

query/statement order

Final binary

reordered code

reorder unitsconflict indices

order constraints

DB application
profiler

Reaching definition
Preprocessing

ILP formulation

Optimization

Code generation

Query reordering

Code generation

:Steps only needed for optimization

:External tools

:QURO components

ExternaI ILP solver

General compiler

database schema

Figure 2: Architecture and workflow of QURO

in Listing 1 can only be executed after the queries on lines 1 and
3, because it uses w_name and d_name, which are results of those
two queries. Besides such data dependencies on program variables
(as w_name and d_name mentioned above), there may also be de-
pendencies on database tuples. For example, the query on line 3
reads a database tuple which the query on line 4 later updates, so
the two queries have a data dependency on that tuple. While such
dependencies can be inferred manually, doing so for longer and
more complex transactions puts excessive burden on developers.
Unfortunately, typical compilers do not perform such aggressive
transformations, as they treat queries as external function calls.

QURO is designed to optimize transaction code by reordering
query statements according to the lock contention each query in-
curs. To use QURO, the developer first demarcates each transaction
function with BEGIN_TRANSACTION and END_TRANSACTION.1 Our
current prototype is built on Clang and accepts transaction code
written in C/C++, and QURO assumes that the transactions use stan-
dard APIs to issue queries to the DBMS (e.g., ODBC).

The architecture of QURO is shown in Figure 2. After parsing the
input code, QURO first generates an instrumented version to profile
the running time of each query and gathers information about query
contention. QURO deploys the instrumented version using the same
settings as the original application and runs it for a user-specified
amount of time. After profiling, QURO assigns a contention index
to each query to be used in subsequent reordering steps. QURO
also collects information about database schema, which is used to
generate order constraints.2

After profiling, QURO performs a number of preprocessing steps
on the input code. First, it performs reaching definition analysis
for each transaction function. Reaching definition analysis is used
to infer data dependencies among different program variables. Af-
ter that, QURO performs loop fission and breaks compound state-
ments (e.g., conditionals with multiple statements in their bodies)
into smaller statements that we refer to as reorder units. This is to
expose more reordering opportunities, to be discussed in Section 3.

QURO next uses the results from profiling and preprocessing to
discover order constraints on queries before reordering. Data de-
pendencies among program variables or database tuples may in-
duce order constraints. QURO first uses the results from reach-

1QURO currently assumes that each transaction is implemented within a
single function and leave inter-procedural analysis as future work.
2 QURO assumes the database schema doesn’t change when transactions
are running.

ing definition analysis during preprocessing to construct order con-
straints based on program variables. QURO then analyzes the queries
with the database schemas to infer order constraints among database
tuples, e.g., if two queries may update the same tuple in the same
table, the order of these queries cannot be changed. Reordering
is then formulated as an ILP problem based on the ordering con-
straints, and solving the program returns the optimal way to im-
plement the transaction subject to the data dependencies given the
contention indices. While a simple implementation is to encode
each reorder unit as a variable in the ILP, solving the ILP might
take a substantial amount of time, especially for transactions with
many lines of code. In Section 4.4 we propose an optimization to
make this tractable and more efficient. After receiving the order
of queries from ILP solver, QURO restructures the program, and
uses a general-purpose compiler to produce the final binary of the
application.

In the next sections we discuss each step involved in the reorder-
ing process in detail.

3. PREPROCESSING
Before statement reordering, QURO parses the input transaction

code into an abstract syntax tree (AST) and performs two prepro-
cessing tasks: breaking the input code into small units to be re-
ordered, and analyzing the data dependencies among program vari-
ables. In this section we describe the details of these two steps.

3.1 Breaking Loop and Conditional Statements
The purpose of the first task is to enable more queries to be re-

ordered. For loop and conditional statements, it is hard to change
the ordering of statements within each block, as each such state-
ment can be nested within others. Disregarding the bodies inside
loop and conditional statements and treating the entire statement as
one unit limits the number of possible ways that the code can be re-
ordered. In fact, as we will demonstrate in Section 6, breaking loop
and conditional statements is essential to improve the performance
for many transaction benchmarks.

For loop statements, QURO applies loop fission, a well-studied
code transformation technique [22], to split an individual loop nest
into multiple ones. The basic idea is to split a loop with two state-
ments S1 and S2 in its body into two individual loops with the same
loop bounds if:

1. There is no loop carry dependency. If S1 defines a value that
will be used by S2 in later iterations, then S1 and S2 have to
reside in the same loop.

2. There is no data dependency between the two statements to
be split. If S1 defines a value that is used by S2 in the same
iteration, and S1 will rewrite that value in some later itera-
tion, then S1 and S2 cannot be split.

3. The statements do not affect the loop condition. If S1 writes
some value that affects the loop condition, then all the state-
ments within the loop cannot be split into separate loops.

We apply the fission algorithm discussed in prior work [23] and
handle nested loops by checking the fission condition iteratively.

Listing 3 and 4 show an example of a loop before and after loop
fission. Line 2 defines var1 at every iteration, but since line 3 uses
var1, so lines 2 and 3 have to reside in the same loop. One the
other hand, line 4 defines var2[i] at iteration i, and line 5 uses
var2[i]. Since line 4 does not redefine var2[i] in other iterations,
lines 4 and 5 can be split. Notice in the example that there are no
dependencies between lines 2 and 3 (when considered in tandem),

3

line 4, and line 5. Since none of these statements affect the loop
condition, they can be safely split into individual loops.

1 for(i=0; i<n; i++){
2 var1 = select("table1");
3 update("table1", var1 +1);
4 var2[i] = select("table2");
5 update("table2", var2[i]+1);
6 }

Listing 3: Loop fission example

1 for(i=0; i<n; i++){
2 var1 = select("table1");
3 update("table1", var1 +1);
4 }
5 for(i=0; i<n; i++){
6 var2[i] = select("table2");
7 }
8 for(i=0; i<n; i++){
9 update("table2", var2[i]+1);

10 }

Listing 4: Loop code after fission

Similarly, conditional statements under a single condition can also
be split. In general, conditional statements S1 and S2 under the
same Boolean condition can be split into multiple ones with the
same condition if:

1. Neither statement affects the condition.

2. The condition does not have any side effects, for example,
changing the value of a program variable that is used by any
other statements in the program.

As an illustration, breaking the conditional block will transform
line 9 to line 14 from Listing 1 into Listing 5.

if(c_credit [0] == (’G’)) {
update(" customer ", c_id , w_id);

}
if (!(c_credit [0] == (’G’)){

c_id = "..." + w_id + c_id + "...";
}
if (!(c_credit [0] == (’G’)){

update(" customer ", c_id);
}

Listing 5: Example of breaking conditional statements

3.2 Analyzing Reaching Definitions
After breaking loop and conditional statements, QURO analyzes

the data dependencies among statements by computing reaching
definitions. Formally speaking, a definition of a program vari-
able v by program statement S1 reaches a subsequent (in terms
of control flow) statement S2 if there is a program path from S1

to S2 without any intervening definition of v. We compute reach-
ing definitions for each program statement using a standard data-
flow algorithm [19]. The process is straightforward for most types
of program statements. For function calls, however, we distin-
guish between those that are database calls (e.g., those that issue
queries), for which we precisely model the def-use relationships
among the function parameters and return value, and other func-
tions, for which we conservatively assume that all parameters with
pointer types or parameters that are passed by reference are both
defined and used by the function.

4. REORDERING STATEMENTS
The preprocessing step normalizes the input code into individual

statements that can be rearranged. We call each such statement,
including an assignment, a function call statement, or a loop/con-
ditional block that cannot be further decomposed using methods as
described in Section 3.1, a reorder unit. In this section we discuss
how we formulate the statement reordering problem by making use
of the information collected during preprocessing.

4.1 Generating Order Constraints
As discussed in Section 2, the goal of reordering is to change the

structure of the transaction code such that the database queries are
issued in an increasing order of lock contention. However, doing
so is not always possible because of data dependencies among the
issued queries. For instance, the result of one query might be used
as a parameter in another query, or the result of one query might be
passed to another query via a non-query statement. Furthermore,
two queries might update the same tuple, or a query might update
a field that is a foreign key to a table involved in another query. In
all such cases the two queries cannot be reordered even though one
query might be more contentious than the other.

Formally, we need to preserve the data dependencies 1) among
the program variables, and 2) among the database tuples, when re-
structuring queries in transaction code.3 The reaching definition
analysis from preprocessing infers the first type of data dependency,
while analyzing the queries using database schema information in-
fers the second type. These data dependencies set constraints on
the order of reorder units. In the following we discuss how these
constraints are derived.

Dependencies among program variables:

1. Read-after-write (RAW): Reorder unit Ui uses a variable that
is defined by another unit Uj . Formal constraint: Reorder
unit Ui should appear before Uj in the restructured code.

2. Write-after-read (WAR): Uj uses a variable that is later up-
dated by another unit Uk. Formal constraint: If both Ui and
Uk define the same variable v, and Uj uses v defined by Ui,
then Uk cannot appear between Ui and Uj . If no such Ui
exists, as in the case of v being a function parameter that is
used by Uj , then Uk should appear after Uj in the restruc-
tured code.

3. Write-after-write (WAW): v is a global variable or a function
parameter that is passed by reference, and both Ui and Ul
define v, with Ul being the last definition in the body of the
function. Formal constraint: Ui should appear before Ul in
the restructured code. If v is a global variable, we assume
that program locks are in place to prevent race conditions.

We use the code shown in Listing 1 to illustrate the three kinds
of dependency discussed above. For instance, the insertion into the
history table on line 15 uses variable w_name defined on line 1 and
d_name defined on line 3. Thus, there is a RAW dependency be-
tween line 15 along with line 1 and line 3. Hence, a valid reorder-
ing should always place line 15 after lines 1 and 3. Meanwhile,
the update on customer table on line 8 uses variable c_id, which
is possibly defined on line 6 or is passed in from earlier code. Fur-
thermore, line 12 redefines this variable. Thus, there is a WAR
dependency between line 12 and line 8, meaning that in a valid
ordering line 12 should not appear between line 6 and line 8.

Dependencies among database tuples:
3 QURO currently does not model exception flow. As such, the reordered
program might have executed different number of statements when an ex-
ception is encountered as compared to the original program.

4

1. Operations on the same table: queries Qi and Qj operate
on the same table, and at least one of the queries performs a
write (i.e., update, insert, or delete).

2. View: query Qi operates on table Ti which is a view of table
Tj , and query Qj operates on Tj . At least one of the queries
performs a write.

3. Foreign-key constraints: Qi performs an insert/delete on ta-
ble Ti, or change in the key field Ci of Ti. Qj operates on
column Cj in table Tj , where Cj is a foreign key to Ti which
includes a column that column Ci in Ti references.

4. Triggers: Qi performs an insert or a delete on table Ti, which
triggers a set of pre-defined operations that alter Tj . Query
Qj operates on table Tj .
Formal constraint: In all of the above cases, the order of
Qi and Qj after reordering should remain the same as in the
original program.

For the code example in Listing 1, the queries on line 1 and line 2
operate on the same table, so they cannot be reordered or else the
query on line 1 will read the wrong value.

To discover the dependencies among database tuples, QURO an-
alyzes each database query from the application to find out which
tables and columns are involved in each query. Then QURO utilizes
the database schema obtained during preprocessing to discover the
dependencies listed above.

4.2 Formulating the ILP Problem
QURO formulates the reordering problem as an instance of ILP.

As mentioned in Section 2, QURO first profiles the application to
determine how contentious the queries are among the different con-
current transactions. Profiling gives a conflict index c to each query:
the larger the value, the more likely that the query will have data
conflict with other transactions. The conflict index for non-query
statements is set to zero. Under this setting, the goal of reorder-
ing is to rearrange the query statements in ascending conflict index,
subject to the order constraints described above.

Concretely, assume that there are n reorder units, U1 to Un, in a
transaction, with conflict indices c1 to cn, respectively. We assign
a positive integer variable pi to represent the final position of each
of the n reorder units. The order constraints derived from data
dependencies can be expressed as the following constraints in the
ILP problem:

∙ pi ≤ n; i ∈ [1; n], such that each unit is assigned a valid
position.

∙ pi ̸= pj ; i ̸= j , such that each unit has a unique position.
∙ pi < p j , if there is a RAW dependency between Ui and Uj .
∙ (pk < p i) | (pk > p j), if there is a WAR dependency between

Uj , Uk and Ui, where Ui redefines a variable that Uj uses.
∙ pk > p j ; k ̸= j , if there is a WAR dependency between Uj

and Uk, and and there is no intervening variable redefinition.
∙ pl > p i; i ̸= l , if there is a WAW dependency between Ul and

Ui, and Ul is the last definition of a global variable or a return value
in the transaction.

∙ pi < p j ; i < j , if Ui contains query Qi, query Qj is in reorder
unit Uj , and the order of Qi and Qj needs to be preserved due to
data dependencies among database tuples referenced by Qi and Qj .

Given these, the objective of the ILP problem is to maximize:
nX

i=1

pi * ci

Solving the program will give us the value of p1 ; : : : pn, which
indicates the position of each reorder unit in the final order. For
big ci, pi will have high value without violating the constraints,
indicating that the corresponding statement will appear late in the
transaction.

As an example, the code shown in Listing 1 generates the follow-
ing constraints. Here we assume that there are no view, trigger or
foreign-key relationships between any two tables used in the trans-
action:

pi ≤ 11; i ∈ {1; 2; 3; 4; 6; 8; 10; 11; 13; 14; 16}
pi ̸= pj ; i ̸= j

p1 < p 15 ; RAW on variable w_name
p3 < p 15 ; RAW on variable d_name
...
(p12 < p 6) | (p12 > p 8); WAR on variable c_id
(p12 < p 6) | (p12 > p 10); WAR on variable c_id
...
p1 < p 2 ; Query order constraint, as both query
Q1(in U1) and Q2(in U2) operate on the warehouse table
p3 < p 4 ; Query order constraint, as both query
Q3(in U3) and Q4(in U4) operate on the district table

With the conflict indices for query-related units as shown in Ta-
ble 1, QURO will give an reordering of the units shown in Listing 2.

Table 1: conflict index for each reorder units in Listing 1

unit 1 2 3 4 6 8 10 13 15

c 500 510 100 110 50 50 60 60 10

4.3 Removing Unnecessary Dependencies
Solving ILP problems is NP-hard in general. In the following

sections we describe two optimizations to reduce the number of
constraints and variables in the ILP problem, and we evaluate these
techniques in Section 6.9.

First, we describe a technique to reduce the number of ILP con-
straints. Consider the example shown in Listing 6.

1 v = select("table1");
2 update("table2", v);
3 v = select("table3", v);

Listing 6: Code example to illustrate renaming

1 v = select("table1");
2 v_r = v;
3 v_r = select("table3", v_r);
4 update("table2", v);

Listing 7: Code example after renaming
If the update on line 2 is more contentious than the query on line 3,

then QURO’s reordering algorithm would place line 3 before line 2.
However, RAW and WAR lead to the following constraints:

p1 < p 2 ; p1 < p 3 ; (RAW)
(p3 < p 1) ∨ (p3 > p 2); (WAR)

meaning that reordering will violate data dependency. However,
we can remove the WAR dependency with variable renaming by
creating a new variable v_r, assigning v to it before v is used, and
replacing subsequent uses of v to be v_r. This allows us to restruc-
ture the code to that shown in Listing 7.

In general, WAR and WAW are name dependencies (in contrast
to data dependencies, as in the case of RAW) that can be removed
by renaming. Doing so reduces the number of ILP constraints, and

5

1 v=select("table1");
2 if(cond)
3 v=select("table2");
4 update("table3", v);

1 v=select("table1");
2 v_r2=v;
3 if(cond){
4 v_r1=select("table2");
5 v_r2=v_r1;
6 }
7 update("table3", v_r2);

Listing 8: Renaming example
with multiple reaching definitions

Listing 9: Example
after renaming

makes more queries able to be reordered. As shown in the example
above. However, if the variable v involved in a WAR or WAW de-
pendency satisfies any of the following conditions, then removing
WAR and WAW will be more complicated:

∙ v is not of a primitive type (e.g., a pointer or class object).
Since renaming requires cloning the original variable, it might be
impossible to do so for non-primitive types as they might contain
private fields. Besides, cloning objects can slow down the program.
Thus, we do not rename non-primitive variables and simply encode
any WAW and WAR dependencies involving these variables in the
ILP.

∙ v is both used and defined in the same reorder unit. If the same
variable is both defined and used in the same reorder unit, such as
f(v) where v is passed by reference, then replacing v with v_r in
the statement will pass an uninitialized value to the call. To handle
this issue, the value of v should be first copied to v_r before the call.
This is done by inserting an assign statement before the statement
containing the variable to be renamed: v_r = v; f(v_r).

∙ Multiple definitions reach the same use of v. In this case, if any
of the definitions is renamed, then all other definitions will need to
be renamed as well. We use the example in Listing 8 to illustrate.
The definitions of v on lines 1 and 3 both reach the update on line 4.
If v needs to be renamed on line 3 due to data dependency violation
(not shown in the code), then we create a new variable v_r2 to hold
the two definitions so that both v_r1 and v reach the use at the
update query, as shown in Listing 9.

4.4 Shrinking Problem Size
Transactions that implement complex program logic can contain

many statements, which generate many reordering units and vari-
ables in the ILP problem. This can cause the ILP solver to run for
a long time. In this section we describe an optimization to reduce
the number of variables required in formulating the ILP problem.

Since our goal is to reorder database query related reorder units,
we could formulate the ILP problem by removing all variables as-
sociated with non-query related reorder units from the original for-
mulation. This does not work, however, as dropping such variables
will mistakenly remove data dependencies among query related re-
order units as well. For example, suppose query Q3 contained in U3

uses as parameter the value that is computed by a reorder unit U2

containing no query, and U2 uses a value that is returned by query
Q1 in U1 . Dropping non-query related variables in the ILP (in this
case p2 that is associated with U2) will also remove the constraint
between p1 and p3 , and that will lead to an incorrect order. The
order will be correct, however, if we append extra constraints to the
ILP problem(in this case p1 < p 3) to make up for the removal of
the non-query related variables. To do so, we take the original set of
ILP constraints and compute transitively the relationship between
all pairs of query related reorder units. First, we define an auxiliary
Boolean variable xij for i < j , where i; j ∈ [1; n], to indicate that
pi < p j . Then, we rewrite each type of constraints in the original
ILP into Boolean clauses using the auxiliary Boolean variables as
follows:

∙ pi < p j ⇒ xij = true

∙ (pk < p i) | (pk > p j) ⇒

(
(xkj → xki) = true; if k < i

(xik → xjk) = true; if k > j
∙ pk > p j ⇔ xjk = true
∙ pl > p i ⇔ xil = true
After that, we combine all rewritten constraints as a conjunction

E . Clauses in E can include either a single literal, such as xij , or
two literals, as in xkl → xmn:

E = xij ∧ ::: ∧ (xkl → xmn) ∧ :::

Note that any ordering that satisfies all the constraints from the
original ILP will set the values of the corresponding auxiliary Boolean
variables such that E evaluates to true.

We now use the existing clauses in E to infer new clauses by
applying the following inference rules:

∙ (xij → xkl) ∧ (xkl → xuv) ⇒ xij → xuv
∙ xij ∧ xjk ⇒ xik
∙ xij ∧ (xij → xkl) ⇒ xkl
∙ (xij ∧ xjk) ⇒ xik
∙ ((xij ∧xkl) → xuv)∧ (xuv → xmn) ⇒ (xij ∧xkl) → xmn
∙ ((xij ∧xkl) → xuv)∧ (xmn → xij) ⇒ (xmn ∧xkl) → xuv
Applying each inference rule generates a new clause, and the

process continues until no new clauses can be generated. All clauses
are then collected into a conjunction E ′ with the form:

E ′ = xij ∧ ::: ∧ (xkl → xmn) ∧ ::: ∧ ((xuv ∧ xwx) → xyz) ∧ :::

which encodes all the dependencies across each pair of reorder
units.

After this process, we convert all clauses in E ′ back into our ILP
constraints. As we go through each clause in E ′, we only select
those clauses with literals about query related reorder units, i.e.,
{xij : Ui and Uj contain queries}, and convert them back into ILP
constraints with the following rules:

∙ xij = true ⇒ pi < p j
∙ (xij → xkl) ⇒ (pi < p j) ∨ (pk > p l)
∙ ((xij ∧ xkl) → xuv) ⇒ (pi > p j) ∨ (pk > p l) ∨ (pu < p v)
The ILP constraints will now only involve query related units,

and solving these constraints will give us the optimal ordering.
We now prove that the iterative inference process described above

converges in polynomial time n, where n is the number of re-
order units. To see why, notice that each application of inference
rules introduces a new clause of the form xij , xij → xkl, or
xij ∧ xkl → xuv . If no new clause is generated, the process
terminates. Since the number of Boolean literals xij is bounded
by �(n2), the number of possible clauses is also polynomial in n.
Thus, it will take a polynomial number of inference rule applica-
tions. Since searching all existing clauses for rule application is
done in polynomial time as well, the induction process described
above will converge in polynomial time with respect to the number
of variables in the original ILP problem.

Given a solution to the optimized ILP, there always exists an
ordering of all reorder units such that all constraints are satisfied.
We prove this by contradiction. If no such ordering exist, substi-
tuting the value of xij (where Ui and Uj include queries) back to
the Boolean expression E will always falsify E , or generate val-
ues of literals that cannot form a valid order, for instance, xik =
true; x kj = true and xij = false means that Ui is before Uk,
Uk is before Uj but Uj is before Ui, which results in a contradic-
tion. In the following we will show that non of the situations above
will happen.

∙ Assignment to literals falsifies E . If the assignment to lit-
erals falsifies E , there must exist i; j; k; l ∈ [1; n] such that
xij and xij → xkl are clauses in E , xij = true and xkl =

6

false . Based on which units among Ui; Uj ; Uk; Ul are units
including queries, we enumerate cases as listed below and
prove that in any case the above situation always results in a
contradiction:

1. Ui; Uj ; Uk; Ul are all units including queries. In this
case, if xij = true and xij → xkl, the constraint
xij → xkl will appear as a constraint in the ILP, and the
ILP solver will not give a result in which xkl = false .

2. Ui; Uj include queries while Uk; Ul do not. In this
case, if xij = true , xij → xkl and xkl = false , there
must exist query units Uk′ ; Ul′ such that the result of
ILP makes xk′l′ = false , and

xkl → xk1l1 ; xk1l1 → xk2l2 ; :::; x kp lp → xk′l′

should appear as clauses in E . Only in this case xkl
will evaluate to false. However, since xij → xkl, the
induction rules will generate xij → xk′l′ to be a con-
straint in the ILP. If xij = true , then xk′l′ = true ,
and xkl = false will result in a contradiction.

3. Uk; Ul include queries, while Ui; Uj do not. Like the
case above, there should exist query units Ui′ and Uj′

such that the result of ILP makes xi′j′ = true , and

xi′j′ → xi1j1 ; x i1j1 → xi2j2 ; :::; x ip jp → xij

should appear as clauses in E . Similarly, the induction
process will generate xi′j′ → xkl as an ILP constraint.
If xij = true , then xi′j′ = true , and xkl = false
will result in a contradiction.

4. None of Ui; Uj ; Uk; Ul includes queries. In this case,
there should be some query units Ui′ ; Uj′ ; Uk′ ; Ul′ such
that

xkl → xk1l1 ; xk1l1 → xk2l2 ; :::; x kp lp → xk′l′

and xi′j′ → xi1j1 ; x i1j1 → xi2j2 ; :::; x iq jq → xij

appear as clauses in E , and the result of ILP makes
xi′j′ = true and xk′l′ = false . Similar to the analy-
sis in 2 and 3, by applying the induction rules, xi′j′ →
xk′l′ will be a constraint in the ILP, which contradicts
to xij = true; x kl = false .

5. Ui; Uj include queries and only one of Uk; Ul includes
query. Analysis is similar to case 2.

6. Uk; Ul include queries and only one of Ui; Uj includes
query. Analysis is similar to case 3.

7. Only one of Ui; Uj ; Uk; Ul includes query and the other
three not. Analysis is similar to case 4.

∙ Assignment generates ordering requirements resulting in
a contradiction. Even if the assignment makes E = true ,
the ordering may also be invalid when it makes the conver-
sion from xij back to the order of Ui; Uj impossible: there
must exist k where i < k < j and the ILP generates a re-
sult in which xik = true , xkj = true and xij = false .
Similar to the previous analysis, we prove by enumerating
cases based on which reorder unit may contain query. If non

of Ui; Uj ; Uk includes queries, there must exist some query
units Ui′ ; Uj′ ; Uk′ (i ′ < j ′ < k ′) and

xi′k′ → xi1k1 ; x i1k1 → xi2k2 :::; x ip kp → xik

and xk′j′ → xk1j1 ; xk1j1 → xk2j2 ; :::; x kq jq → xkj

and xij → xi1j1 ; x i1j1 → xi2j2 :::; x ir jr → xi′j′

appear as clauses in E , while in the ordering that ILP solver
generates xi′k′ = true , xk′j′ = true and xi′j′ = false .
However, since (xik ∧ xkj) → xij is also a clause in E ,
the induction process will produce ILP constraints (xi′k′ ∧
xk′j′) → xi′j′ , and this contradicts to the ILP result that
set xi′k′ = true , xk′j′ = true and xi′j′ = false . If Ui
includes a query, set i ′ = i and perform similar analysis as
above, likewise when Uj or Uk includes query.
Thus we have proved that there always exists an ordering of
all reorder units such that all constraints are satisfied.

4.5 Restructuring Transaction Code
After QURO receives the ordering of queries from the ILP solver,

it restructures the input code accordingly. If we rely on the ILP
solver to find the order of all reorder units (as discussed in Sec-
tion 4.2), then generating the final code would be easy. However,
if we apply the optimization discussed in Section 4.4 to only solve
for query related reorder units, then we need to determine the or-
dering of all non-query related reorder units as well. We discuss
the restructuring process in this section.

The basic idea of restructuring code is to iterate through each
query according to its new order as given by the solver, try to place
other reorder units that have data dependencies on the query being
processed, and roll back upon violating any order constraint. As
listed in Algorithm 1, we start with an empty list U_list , which is
used to store the list of reordered units. We insert a unit U from
the set Us of all reordered units into the list when all other units
producing values that U uses are already in the list. To do so, we
define two functions: Defs(Ui) and Uses(Ui). Defs returns the
set of reorder units that defines variables used by unit Ui, and Uses
returns the set of reorder units that uses values defined by Ui. The
values to be returned are computed during preprocessing as dis-
cussed in Section 3.2. For each query Qi, we first insert all units
in Defs(Qi) into U_list (line 2 to line 8), followed by Qi itself
(line 9), and Uses(Qi) (line 10 to line 16). For every reorder unit
U that is inserted into U_list , we check if U violates any data de-
pendency constraints using the function CheckValid. Checking is
done by scanning the clauses in E ′ as discussed in Section 4.4 to
see if the current ordering of units would make E ′ evaluate to false.
If so, the current order violates some data dependency constraint
encoded in the ILP problem, and the algorithm attempts to resolve
the WAR or WAW violation using variable renaming as described
in Section 4.3. If the variable cannot be renamed, then the algo-
rithm backtracks to reprocess all reorder units starting from the first
reorder unit that falsifies E ′. For each query Qi, we keep a reject
list (Rej [Qi]) to record all reorderings that have been attempted
but failed and led to a rollback. The process continues until a satis-
fying reordering is found, and Section 4.4 showed that there always
exists a valid order.

5. PROFILING
As mentioned in Section 2, QURO profiles the transaction code

by running an instrumented version of the application to estimate
the amount of lock contention for each query. There has been prior
work that studies how to estimate locking contention. Johnson et
al. [15] use Sun’s profiling tools to calculate time breakdown of

7

Algorithm 1 Algorithm For Restructuring Transaction Code
1: for Qi ∈ Q_list do
2: for Uj ∈ Us and Uj =∈ U_list and Uj =∈ Rej [Qi] and

Defs(Uj)∈ U_list and Qi ∈ Uses(Uj) do
3: if CheckValid(Uj) then
4: U_list .insert (Uj);
5: else
6: break;
7: end if
8: end for
9: U_list .insert (Qi);

10: for Uk ∈ Us and Uk =∈ U_list and Uk =∈ Rej [Qi] and
Defs(Uk)∈ U_list and Qi ∈ Defs(Uk) do

11: if CheckValid(Uk) then
12: U_list .insert (Uk);
13: else
14: break;
15: end if
16: end for
17: end for
18:
19: function CheckValid(Ui)
20: ... // check all clauses in E ′ (details not shown)
21: if E ′ evaluates to true then
22: return 1;
23: else
24: if Variable v in Ui can be renamed then
25: Rename v in Ui and Uses(Ui);
26: else
27: temp = clear U_list to the failing point Uf ;
28: reinsert temp into U_list ;
29: for query units Qf ∈ temp do
30: Rej [Qf].insert(Uf);
31: end for
32: end if
33: end if
34: end function

database transactions, analyzing the time spent on useful work and
lock waiting to identify contention level in the lock manager. Sync-
char [20] runs a representative sample workload to calculate the
conflict density and infer lock contention. QURO can use such
techniques, but chose a simpler method which examines the run-
ning time of each query and computes its standard deviation. In
our current prototype, most of the transaction time is spent on lock
waiting. If the query accesses contentious data, then the lock wait-
ing time will vary greatly from one execution to another. Hence the
larger the deviation, the greater the possibility of data conflict.

To collect query running time, QURO adds instrumentation code
before and after each query, and computes the standard deviation
after profiling is completed. In the current prototype, we assume
that the profiler runs with the same machine settings as the actual
deployment of the application.

6. EVALUATION
We have implemented a prototype of QURO using Clang [2] to

process transaction code written in C/C++, and gurobi [5] as the
external ILP solver. In this section we report our experiment results
under different settings where we compare the performance of the
original implementation and the one generated by QURO.

We first study the performance of transaction code generated by
QURO by isolating the effects of disk operations (e.g., fetching and
writing committed data back to the disk), which can dominate the
amount of time spent in processing each transaction. To do so, we
disabled flushing data to the disk at commit time. The machine
we use has memory large enough to hold the entire data set of any
application used in the evaluation. All of the following experiments
were performed on MySQL 5.5 server hosted on a machine with
128 2.8GHz processors and 1056GB memory.

6.1 Benchmarks
We used the following OLTP applications for our experiments:

1. The TPC-C benchmark. We used an open source implemen-
tation [3] of the benchmark as input source code, and per-
formed experiments by running each type of transactions in-
dividually and different mixes of transactions.

2. The trade related transactions from the TPC-E benchmark.
The TPC-E benchmark models a financial brokerage house
using three components: customers, brokerage house, and
stock exchange. We used an open source implementation [4]
as the input. The transactions we evaluated includes trade
update, order, result and status transactions.

3. Transaction from the bidding benchmark. We use an open
source implementation of this benchmark [1]. This bench-
mark simulates the activity of users placing bids on items.
There is only one type of transaction in this benchmark: it
reads the current bid, updates the user and bidding item in-
formation accordingly, and inserts a record into the bidding
history table.

We ran the applications for 20 minutes in the profiling phase to
collect the running time of queries. In each experiment, we omitted
the first 5 minutes to allow threads to start and fill up the buffer
pool, and the measured the throughput for 15 minute. We ran each
application for 3 times and report the average throughput. We also
omitted the thinking time on the customer side, and we assume
that there are enough users issuing transactions to keep the system
saturated.

6.2 Varying Data Contention
In the first experiment, we compared the performance of the orig-

inal code and the reordered code generated by QURO by varying
contention rates while fixing the number of concurrently running
database threads to 32. Varying data contention is done by chang-
ing the data set size a transaction accesses. For the TPC-C bench-
mark, we change the data size by adjusting the number of ware-
houses, from 1 to 32. With 1 warehouse, every transaction either
reads or writes the same warehouse tuple. With 32 warehouses,
concurrent transactions are likely to access different warehouses as
they have little data contention. For the TPC-E benchmark, we ad-
just the number of trades each transaction accesses. As the trade
update transaction is designed to emulate the process of making
minor corrections to a set of trades, changing the number of trades
changes the amount of data the transaction accesses. We varied the
number of trades from 1K to the size of entire trade table, 576K.
When the number of trades being updated is small, multiple con-
current transactions will likely modify the same trade tuple. In
contrast, when transactions randomly access any trade tuple in the
trade table, they will likely modify different trades and have little
data contention. We did not evaluate the other transactions since
no contentious data is accessed in these transactions, so varying

8

1 2 4 8 16 32
number of warehouses

0

5000

10000

15000

20000

25000

30000

35000
tr

an
sa

ct
io

ns
/s

ec

6.53x

6.11x

3.52x 2.01x

1.35x
1.23x

QURO
original

(a) TPC-C payment transaction

1 2 4 8 16 32
number of warehouses

0

2000

4000

6000

8000

10000

tr
a
n
sa

ct
io

n
s/

se
c

2.23x

1.67x 1.34x 1.19x
1.11x

1.15x

QURO
original

(b) TPC-C new order transaction

1 2 4 8 16 32
number of warehouses

0

2000

4000

6000

8000

10000

12000

14000

16000

tr
a
n
sa

ct
io

n
s/

se
c

4.13x
2.55x

1.90x
1.28x

1.06x 1.08x

QURO
original

(c) TPC-C mix of payment and new order

1 2 4 8 16 32
number of warehouses

0

2000

4000

6000

8000

10000

tr
a
n
sa

ct
io

n
s/

se
c

1.74x
1.18x

1.05x

1.02x
1.04x

1.02x

QURO
original

(d) TPC-C mix of all transactions

1K 4K 16K 64K 256K >512K
number of trades

0

1000

2000

3000

4000

tr
a
n
sa

ct
io

n
s/

se
c

4.35x

3.35x

1.79x 1.36x
1.15x 1.14x

QURO
original

(e) TPC-E trade update transaction

2 4 8 16 32 64
number of bidding items

0

10000

20000

30000

40000

50000

60000

tr
an

sa
ct

io
ns

/s
ec

3.80x 2.30x

1.47x
1.23x 1.15x

1.02x

QURO
original

(f) Bidding transaction

Figure 3: Performance comparison: varying data contention

data size won’t significantly change the locking situation, and per-
formance will not be much affected by locking. For the bidding
benchmark, we adjusted the number of bidding items. The bidder
giving a higher bidding price will change the current price on that
bid item. We set the percentage of bidder giving higher bidding
price to be 75%, which means that 75% of the transactions will
write the item tuple.

Figure 3a shows the results of TPC-C running only the payment
transaction (an excerpt is shown in Listing 1). Reordered imple-
mentation generated by QURO achieves up to 6.53× speedup as
compared to the original implementation. Figure 3b shows the
results of TPC-C benchmark running only new order transactions.
In this transaction, the flexibility of reordering is restricted by the
many data dependencies among program variables. Despite this
limitation, QURO still achieves up to 2.23× speedup as a result of
reordering. Figure 3c shows the results of the TPC-C benchmark
comprising 50% new order and 50% payment transactions. Under
high data contention, the speedup of reordering is 4.13×. Figure 3d
shows the results of TPC-C with standard mix of five types of trans-
actions according to the specification. Increasing the types of trans-
actions makes more data contentious, as some tables are only read
by one type of transaction, hence there are no data contentions on
those tables when only that type of transactions are executed. But
with transaction mixes, there might be other transaction types that
would write to the same table, thus causing contentions. However,
with a mix of five types of transactions, reordering still increases
the overall throughput by up to 1.74×.

For TPC-E, Figure 3e shows the results of trade update transac-
tion. This benchmark has a while loop that on average runs for 20
iterations. There are multiple read queries within each iteration, but
only one update query. QURO discovered the optimal reordering by
breaking the loop and putting all the write operations from different

iterations towards the end of the transaction, resulting in a speedup
of up to 4.35× as compared to the original implementation. Even
when there is little data contention, reordering still outperforms the
original implementation by 1.14×.

Finally, Figure 3f shows the results of the bidding benchmark.
The bidding transaction is short and contains only five queries. In
the reordered implementation, the bidding item is read as late as
possible, followed by the item update being the last operation in
the transaction. This resulted in a speedup of up to 3.80×.

The results show that as the data size decreases, the contention
rate increases, which in return increases the chance of improving
performance by reordering.

6.3 Varying Number of Database Threads
In the next set of experiments, we ran the benchmarks on the

same data, but varied the number of database threads from 1 to
128. With the same database size, running more threads increases
the amount of contention. We would like to study how the Quro-
generated implementations behave as the number of threads in-
creases.

Figure 4a-d shows the results of running transactions from TPC-
C. In this experiment we fixed the number of warehouse to be 4.
For the payment transaction, QURO speeds up the application by
up to 3.52×. For the new order transaction, the amount of speedup
due to reordering increases as thread number increases, reaching
the maximum of 1.57× when using 64 threads. Stock level and or-
der status transactions are read-only transactions. In these transac-
tions, no query needs to wait on lock when running standalone, and
QURO-generated implementation has the same performance as the
original implementation. We did not analyze the delivery transac-
tion in TPC-C, since this transaction performs both read and write
on a very small set of data. When it is running standalone, most

9

1 2 4 8 16 32 64 128
number of threads

0

5000

10000

15000

20000

25000

tr
a
n
sa

ct
io

n
s/

se
c

1.05x
1.09x

1.29x

2.06x

3.09x
3.52x

2.49x

2.10x

QURO

original

(a) TPC-C payment transaction

1 2 4 8 16 32 64 128
number of threads

0

2000

4000

6000

8000

10000

12000

14000

tr
an

sa
ct

io
ns

/s
ec

1.05x1.05x
1.04x

1.13x

1.22x

1.34x

1.57x

1.39x

QURO

original

(b) TPC-C new order transaction

1 2 4 8 16 32 64 128
number of threads

0

2000

4000

6000

8000

10000

12000

14000

16000

tr
a
n
sa

ct
io

n
s/

se
c

1.06x
1.05x

1.08x

1.14x

1.31x

1.90x

1.26x1.35x

QURO

original

(c) TPC-C mix of payment and new order

1 2 4 8 16 32 64 128
number of threads

0

2000

4000

6000

8000

10000

12000

14000

16000

tr
a
n
sa

ct
io

n
s/

se
c

1.00x

1.00x

1.00x

1.00x
1.01x1.00x1.02x

1.00x

QURO

original

(d) TPC-C stock level transaction

1 2 4 8 16 32 64 128
number of threads

0

10000

20000

30000

40000

50000

tr
a
n
sa

ct
io

n
s/

se
c

0.98x
1.06x

1.12x

1.00x

1.01x
0.99x1.00x

1.03x

QURO

original

(e) TPC-C order status transaction

1 2 4 8 16 32 64 128
number of threads

0

1000

2000

3000

4000

5000

6000

7000

tr
a
n
sa

ct
io

n
s/

se
c

1.06x
1.09x

1.04x

1.08x

1.15x

1.12x
1.08x1.18x

QURO

original

(f) TPC-C mix of all transactions

Figure 4: Performance comparison: varying number of threads for TPC-C benchmark

transactions will abort.
Figure 5d shows the results of the TPC-E trade update transac-

tion, where we fixed the number of trades to be 4K. The throughput
of original implementation falls greatly as the number of threads
exceeds 16, while the reordered implementation only decreases
slightly, and still speeds up the application by up to 3.35×.

Unlike TPC-C new order and payment transactions which have
significantly contentious queries, queries in trade order and trade
result transaction access data with small contention. For trade or-
der transaction, 19 out of 21 queries are read queries, and the re-
maining 3 write queries are insert operations. These write queries
are executed after all the read queries in the transaction in the orig-
inal implementation. QURO only changes the order of the last three
insert operations, which does not greatly affect the overall perfor-
mance. Figure 5a shows that QURO-generated implementation has
nearly the same performance as the original implementation. In
the best case QURO improves the application throughput by 1.05×,
and in worst case decreases throughput by only 2%. Since the input
of trade result transaction is dependent on the trade order transac-
tion, we only evaluated a mix of these two types of transactions.
Figure 5b shows that reordering increases the throughput by up to
1.57×. For the trade status transaction which is a read-only trans-
action, QURO-generated implementation has the same performance
as the original one as shown in Figure 5c.

Finally, Figure 5e shows the results of the bidding transaction.
We fixed the number of bidding items to be 4. As shown in the
figure, reordering increases application throughput by up to 2.30×.

We also compared how each benchmark scales as the number of
threads increases by evaluating self-relative speedup. The baseline

for both implementations is the throughput of single-thread exe-
cution with the original implementation, and Figure 6 shows how
throughput changes as the number of threads increases. As shown
in the figure, the reordered implementation has larger self-relative
speedup than the original implementation as the number of threads
exceeds 8. When running on 32 threads on the payment transaction,
QURO-generated implementation has 12.4× self-relative speedup
while 3.8× for the original. By reordering queries, QURO allows
applications to scale up to a larger number of concurrent database
connections as compared to the original implementation.

6.4 Analyzing Performance Gain
We did another set of experiments to gain insights on the sources

of performance gain due to reordering.

Query execution time. We profiled the amount of time spent in
executing each query. We show the results for the TPC-C payment
transaction in Table 2. The table lists the aggregate time breakdown
of 10K transactions, with 32 database threads running transactions
on a single warehouse. In this case reordering sped up the bench-
mark by 6.53×, as shown in Figure 3a.

The single-thread result in the third column indicates the running
time of queries without locking overhead as each transaction is ex-
ecuted serially. By comparing the values to the single-thread query
time on each row, we can infer amount of time spent in waiting for
locks of that query in both implementations.

For the original implementation, the results show that most of the
execution time was spent on query 2. As shown in Listing 1, this
query performs an update on a tuple in the warehouse table, and

10

1 2 4 8 16 32 64 128
number of threads

0

2000

4000

6000

8000

tr
an

sa
ct

io
ns

/s
ec

0.99x

0.98x

0.99x

1.00x

1.00x1.02x1.03x

1.05x

QURO

original

(a) TPC-E trade order transaction

1 2 4 8 16 32 64 128
number of threads

0

500

1000

1500

2000

2500

3000

3500

4000

tr
an

sa
ct

io
ns

/s
ec

1.09x

1.27x1.37x
1.51x1.47x

1.10x

1.13x

1.20x

QURO

original

(b) TPC-E mix of trade order and trade result trans-
action

1 2 4 8 16 32 64 128
number of threads

0

200

400

600

800

1000

1200

1400

tr
an

sa
ct

io
ns

/s
ec

0.98x

1.01x

0.99x

1.00x1.09x

1.00x

1.00x

1.18x

QURO

original

(c) TPC-E trade status transaction

1 2 4 8 16 32 64 128
number of threads

0

500

1000

1500

2000

2500

3000

3500

4000

tr
a
n
sa

ct
io

n
s/

se
c

1.02x
1.24x

1.36x

1.63x

2.74x

3.35x

3.51x

2.93x

QURO

original

(d) TPC-E trade update transaction

1 2 4 8 16 32 64 128
number of threads

0

10000

20000

30000

40000

50000

60000

tr
a
n
sa

ct
io

n
s/

se
c

1.21x
1.16x

1.26x

1.38x

1.80x

2.30x

1.86x

1.87x

QURO

original

(e) Bidding transaction

Figure 5: Performance comparison: varying number of threads

original reordered single-thread ratio

query 1 0.97 1.09 0.72 1.12
query 2 210.27 6.06 0.73 0.03
query 3 0.97 1.12 0.68 1.15
query 4 0.80 17.18 0.62 21.48
query 5 1.38 1.59 0.70 1.15
query 6 1.86 1.31 0.98 0.70
query 7 1.09 1.52 0.81 1.39
query 8 1.16 1.60 0.17 1.38
query 9 0.79 0.96 0.70 1.22

total_latency 219.29 32.43 6.11 0.15

Table 2: Query running time of the payment transaction, where ra-
tio=reordered/original. The reordered implementation reduces la-
tency by 85%.

every transaction updates the same tuple. By reordering, the run-
ning time of this query is significantly shortened: the query time in
the original implementation is reduced by 97%. However, the exe-
cution time for all other queries increases after reordering. This is
due to the increased chances of other queries getting blocked during
lock acquisition. In the original implementation, the query access-
ing the most contentious data effectively serializes all transactions
as each thread needs to acquire the most contentious lock in the be-
ginning. As a result, the execution time of all subsequent queries is
nearly the same as the time running on a single thread (i.e., without
locking overhead). But reordering makes these queries run con-

original reordered single-thread ratio

query 1 0.73 0.76 1.91 1.04
query 2 89.77 16.16 0.93 0.18
query 3 0.92 1.01 1.02 1.09
query 4 0.81 0.88 0.76 1.09
query 5 0.63 0.69 0.71 1.08
query 6 0.74 0.97 0.78 1.30
query 7 0.66 0.76 0.62 1.16
query 8 0.69 0.80 0.78 1.15
query 9 0.79 1.06 0.69 1.34

query 10 0.67 0.82 0.62 1.23
total_latency 114.99 46.66 27.01 0.41

Table 3: Query running time of the new order transaction. The
reordered implementation reduces latency by 59%.

currently as they need to compete for locks, and this increases the
running time.

We also profiled the new order transaction. In this transaction,
the opportunities for reordering is limited by the data dependencies
among queries. In particular, query 2 reads a tuple from the district
table and reserves it for update later in the transaction. This query
is most contentious one. However, query 2 cannot be reordered to
the bottom of transaction since there are many other queries that
depend on the result of this query. This limits the amount of query
time reduction, as shown in Table 3.

11

0 20 40 60 80 100 120
number of database threads

2

4

6

8

10

12

14

16
S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(a) TPC-C payment

0 20 40 60 80 100 120
number of database threads

5

10

15

20

25

30

35

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(b) TPC-C new order

0 20 40 60 80 100 120
number of database threads

5

10

15

20

25

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(c) TPC-C mix

0 20 40 60 80 100 120
number of database threads

2

4

6

8

10

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(d) TPC-C all txns

0 20 40 60 80 100 120
number of database threads

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(e) TPC-E trade order

0 20 40 60 80 100 120
number of database threads

1

2

3

4

5

6
S

pe
ed

up
 v

s.
 s

in
gl

e-
th

re
ad

QURO

original

(f) TPC-E trade mix

0 20 40 60 80 100 120
number of database threads

5

10

15

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

-t
h
re

a
d

QURO

original

(g) TPC-E tradeupdate

0 20 40 60 80 100 120
number of database threads

2

4

6

8

10

12

14

16

S
pe

ed
up

 v
s.

 s
in

gl
e-

th
re

ad

QURO

original

(h) Bidding

Figure 6: Self-relative speedup comparison

#of trades original reordered ratio speedup

1K 53.89% 39.12% 0.73 4.35x
4K 20.08% 1.78% 0.09 3.35x

16K 2.39% 0.35% 0.15 1.79x
64K 0.55% 0.08% 0.15 1.36x

256K 0.14% 0.02% 0.14 1.15x
>512K 0.00% 0.00% 1.00 1.14x

Table 4: Abort rate comparison of the trade update transaction,
where ratio=reordered/original. With 4K trades, reordering can re-
duce the abort rate by up to 91%.

The above analysis indicates a trade-off with reordering. Re-
ordering decreases the time spent on lock waiting on conflicting
queries, but increases the time spent on less-conflicting queries. In
most cases, the decrease in lock waiting time for contentious data
usually outweighs the increase in lock waiting time for queries that
access non-contentious data, and reordering reduces query latency
despite some queries now takes slightly longer time to execute.

Abort rate. For the TPC-E trade update transaction, reordering
improves performance by reducing abort rate. On average one trade
update transaction randomly samples 20 trades and modifies the
trade tuples selected. When the number of trades is small, concur-
rent transactions are likely to access the same set of trades, but in a
different order, which causes deadlock. Reducing the locking time
not only makes transaction faster, but also reduces the abort rate as
shown in Table 4.

Figure 7 shows how reordering reduces abort rate. In the trade
update transaction, only one query modifies the trade table in ev-
ery loop, while there are other queries performing read on other
tables that are not being modified. Assuming transaction T1 starts
first, there is a time window within which if T2 starts, then T1

Execution
time

-(T1)-

:A transaction
:Query on contentious data
: Deadlock window.

Original QURO-generated

-(T2)- -(T1)- -(T2)-

Figure 7: Execution of trade update transactions T1 and T2 before
and after reordering. Deadlock window is the time range where if
T2 starts within the range, it is likely to deadlock with T1.

and T2 will likely deadlock each other. We refer this time range
as the deadlock window, as shown in Figure 7. After reordering,
the deadlock window is shortened, so there is less chance that the
transaction would abort, and thus throughput increases.

6.5 Worst­Case Implementations
To further validate our observation that the order of queries af-

fects transaction performance, we manually implement a “worst-
case” implementation where the most contentious queries are is-
sued first within each transaction. We then compared the perfor-
mance of those implementations against the original and QURO
generated implementations. The result for the TPC-C payment
transaction is shown in Figure 8a with the throughput ratio of the
best and worst case implementation labeled. As expected, the im-
plementation with the most contentious queries executed as early
as possible shows the worst performance as the number of threads
increases. In contrast to Figure 4a, reordering obtained even larger
speedups when compared to the worst-case implementation, with
up to 4.10× improvement when 32 threads are used. The results

12

1 2 4 8 16 32 64 128

number of threads

0

5000

10000

15000

20000

25000
tr

a
n
sa

ct
io

n
s/

se
c

0.99x
1.11x

1.44x

2.34x

3.57x
4.10x

2.61x

2.24x

original

worst order

QURO

(a) TPC-C payment

1 2 4 8 16 32 64 128

number of threads

0

1000

2000

3000

4000

5000

6000

tr
a
n
sa

ct
io

n
s/

se
c

1.26x

1.41x

1.58x

2.76x

4.18x

3.93x
3.32x 2.08x

original

worst order

QURO

(b) TPC-C standard mix

Figure 8: TPC-C worst-case ordering comparison

for the TPC-C standard benchmark are shown in Figure 8b, where
QURO-generated implementation can have up to 4.18× improve-
ment in performance comparing to a “worst-case” implementation.

This experiment shows that the order of queries can have great
impact on performance. For TPC-C payment transaction, an imple-
mentation with a bad ordering of queries can decrease performance
by up to 14%. For standard mix of all TPC-C transactions, the
decrease can be up to 62%.

While QURO relies on profiling to estimate the lock contention,
if the workload changes, transactions need to be re-profiled and re-
ordered accordingly. We leave dynamic profiling and regenerating
transaction code as future work.

6.6 Disk­based DBMS

16M 32M 64M 128M 1G
bufferpool size

0

5000

10000

15000

20000

25000

tr
a
n
sa

ct
io

n
s/

se
c

1.12x

2.49x

3.15x

3.92x

3.52x

QURO

original

(a) TPC-C payment

32M 64M 128M 256M 1G
bufferpool size

0

1000

2000

3000

4000

5000

6000

7000

8000

tr
an

sa
ct

io
ns

/s
ec

0.95x
1.18x

1.07x

1.20x

1.34xQURO

original

(b) TPC-C neworder

Figure 9: Performance comparison: varying buffer pool size

Next we consider the performance of QURO-generated code for
disk-based DBMSs. We measured application performance while
changing the amount of time spent on disk operations during trans-
action execution. This is done by varying buffer pool sizes. When
the buffer pool is smaller than the database size, dirty data needs
to be flushed to disk, making disk operations a significant portion
of transaction execution time. Figure 9 shows the performance
comparison of the TPC-C transactions. When the buffer pool is
small, disk operations dominate the transaction processing time,
thus the performance gained by reordering becomes trivial. In-
creasing buffer pool size decreases the time spent on disk, and as
expected that increases throughput as a result of reordering. This
experiment shows that even when the database is not completely
in-memory, reordering can still improve application throughput.

6.7 Performance Comparison with Other Con­
currency Control Schemes

We also run experiments to test the performance of 2PL reordered
implementation of TPC-C transactions against other concurrency
control schemes like optimistic concurrency control (OCC) and
multi-version concurrency control (MVCC). In this experiment, we
use the main memory DBMS provided by Yu et al. [24], which
supports different schemes including several variants of 2PL, OCC
and MVCC. Since this DBMS doesn’t use standard query inter-
face, we manually ordered the transaction according to the order
generated by QURO (the same order as in previous experiments).
We evaluated the throughput of the TPC-C payment, new order,
and a mix of these two transactions with original and reordered
implementation under two versions of 2PL: 2PL with deadlock de-
tection (DL_DETECT) and 2PL with non-waiting deadlock pre-
vention (NO_WAIT), as well as the original implementation under
OCC and MVCC. We set the number of warehouses to be 4 and
varied the number of threads from 1 to 64, to test how different
schemes scale.

Figure 10a-c show the results of this experiment. Shaded bars
show the throughput of reordered implementation while other bars
show the original implementation under different concurrency con-
trol schemes. As the number of threads increases, data contention
increases, and the performance gain of reordered transaction under
2PL comparing to the original transaction under OCC and MVCC
becomes larger. As shown in Figure 10c, for a mix of payment and
new order transaction with 16 threads, reordered under 2PL with
deadlock detection(DL_DETECT) outperforms OCC by 3.04×, and
MVCC by 2.74×.

Figure 11 explains why reordered transaction under 2PL out-
performs original transaction under OCC and MVCC. Assume two
transactions T1 and T2 both read and write on a contentious tuple,
and T1 starts first. Under each concurrency control scheme, there
are time ranges within which if T2 starts, then it will end up being
aborted. We refer this time range as abort window. Since OCC only
writes to database at validation phase, any read on the contentious
tuple before the validation phase will cause T2 to abort. Figure 11
shows that the original implementation under 2PL and OCC has
much longer abort window than MVCC and reordered implemen-
tation under 2PL. Since MVCC requires complicated version man-
agement and the concurrency control overhead is larger than 2PL,
reordered 2PL has higher throughput than MVCC.

13

1 2 4 8 16 32
number�"��%�#���$

�

������

������

������

������

�������

�������

�������

�������

%
#�

!$
��%

�"
!$

�$
��

�

��

"#���!����������
�

"#���!�������	
�

#�"#��#����������
�

#�"#��#�������	
�

(a) TPC-C payment transaction

1 2 4 8 16 32
number of threads

0

50000

100000

150000

200000

250000

300000

350000

400000

tr
a

n
sa

ct
io

n
s/

se
c

OCC

MVCC

original DL_DETECT

original NO_WAIT

reordered DL_DETECT

reordered NO_WAIT

(b) TPC-C new order transaction

� � �
 �� ��
#("��%�$��'�%���&

�

������

������

������

������

������

������

	�����

'%
�#

&
��'

 $
#&

�&
��

���

����

$% � #�!�
��
�����

$% � #�!��������

%�$%��%���
��
�����

%�$%��%����������

(c) TPC-C mix of payment and new order

Figure 10: Performance comparison of TPCC transactions
among original implementation under OCC, MVCC, 2PL-
DL_DETECT, 2PL-NO_WAIT, and reordered implementation un-
der 2PL-DL_DETECT, 2PL-NO_WAIT

6.8 Performance Comparison with Stored Pro­
cedures

In the previous experiments, we ran our database server and
client program on the same machine to minimize the effect of net-
work round trips as a result of issuing queries. In this experiment
we added another open source implementation that uses stored pro-
cedures [3]. Using stored procedures, the client issues a single
query to invoke the stored procedure that implements the entire
transaction. As a result, the amount of network communication
between the client and the database is minimized.

Figure 12a-d show the results of TPC-C transaction in this ex-
periment. When there is little data contention, the stored procedure

implementation outperforms the others due to shorter round trip
time. However, as the amount of data contention increases, the
time spent on locking far exceeds the time spent on the network
communication. For the payment transaction, the reordered imple-
mentation has higher performance improvement (3.52×) over the
original, as compared to the improvement of the stored procedure
implementation (1.41×).

6.9 ILP Optimization
In the final experiment, we quantified the optimization presented

in Section 4.4 in reducing the amount of ILP solving time. For the
experiment, we chose two transactions: new order transaction with
40 statements and 9 queries, and trade order transaction with 189
statements and 21 queries. After preprocessing, the two transac-
tions were split into 27 and 121 reordering units respectively. We
used QURO to formulate each transaction into an ILP problem, us-
ing both the simple formulation discussed in Section 4.2 and the
optimized formulation as discussed in Section 4.4. We then used
two popular open source ILP solvers, lpsolve [6] and gurobi [5], to
solve the generated programs with a timeout of 2 hours. The al-
gorithm for restructuring the transaction code is described in Sec-
tion 4.5, which is only needed when optimization is used, runs for
1 second in both cases.

Transaction 1 Transaction 2

statements 40 189
queries 7 25

variables 27 121
constraints 266 3595

constraints post-opt 6 64
lpsolve gurobi lpsolve gurobi

Original solving time >2hrs 1s >2hrs >2hrs
Optimized solving time 1s 1s >2hrs 1s

Table 5: ILP experiment results. The number of variables equals
to the number of reordering units. Together with the number of
constraints, these two numbers indicate the ILP problem size.

The results are shown in Figure 5. Under the original problem
formulation where each reorder unit is represented by a variable in
the ILP, both solvers did not finish before timeout for transaction
2. In contrast, the optimized formulation reduces the number of
variables by 79% and the number of constraints by 98%. The prob-
lem also solves much faster, and hence allowing QURO to process
larger transaction code inputs.

7. RELATED WORK
Besides lock-based methods, various concurrency control mech-

anisms have been proposed, such as optimistic concurrency con-
trol(OCC) [18] and multi-version concurrency control(MVCC) [7].
Yu et al. [24] studied the performance and scalability of different
concurrency control scheme for main-memory DBMS.

There has been work done on improving the efficiency of locking-
based concurrency control schemes. Shore-MT [16] applies 2PL
and provides many system-level optimization to achieve high scal-
ability on multi-core machines. Jung et al. [17] implemented a lock
manager in MySQL and improves scalability by enabling lock allo-
cation and deallocation in bulk. Horikawa [14] adapted a latch-free
data structure in PostgreSQL and implemented a latch-free lock
manager. However, none of these systems examine how queries
are issued by the application. QURO improves the performance by
changing the database application, and our work can also leverage
other locking implementations as well such as the ones described.

14

-(T1)- -(T2)- -(T1)- -(T2)-

:A transaction
:Write operation on contentious data
: Read operation on contentious data
: OCC Validation phase
: Abort window

OCC

-(T1)- -(T2)-

2PL original

2PL reordered

-(T1)- -(T2)-

MVCC

Execution
time

Figure 11: Execution of transaction T1 and T2 under different concurrency control schemes. Abort window is the time range where if T2
starts within the range, it is likely to abort because of data conflict with T1.

1 2 4 8 16 32 64 128

number of threads

0

5000

10000

15000

20000

25000

tr
a
n
sa

ct
io

n
s/

se
c

1.28x
1.37x

1.33x
1.31x

1.57x
1.41x

1.41x

1.57x

1.05x
1.09x

1.29x

2.06x

3.09x
3.52x

2.49x

2.10x

original

worst order

QURO

(a) TPC-C payment transaction

1 2 4 8 16 32 64 128

number of threads

0

2000

4000

6000

8000

10000

12000

tr
an

sa
ct

io
ns

/s
ec

1.05x
1.05x

1.04x

1.13x

1.22x

1.34x

1.57x

1.39x

1.38x
1.32x

1.30x

1.22x

1.30x

1.17x 0.95x

1.01x

original

stored procedure

QURO

(b) TPC-C new order transaction

1 2 4 8 16 32 64 128

number of threads

0

2000

4000

6000

8000

10000

12000

14000

tr
a
n
sa

ct
io

n
s/

se
c

1.06x
1.05x

1.08x

1.14x

1.31x

1.90x

1.26x
1.35x

1.29x
1.33x

1.27x

1.18x

1.23x
1.12x 1.02x

0.99x

original

stored procedure

QURO

(c) TPC-C mix of payment and new order

1 2 4 8 16 32 64 128

number of threads

0

1000

2000

3000

4000

5000

6000

tr
an

sa
ct

io
ns

/s
ec

1.06x

1.09x

1.04x

1.08x

1.15x

1.12x
1.08x 1.18x

1.15x

1.30x

1.14x

1.03x

1.11x

1.07x
1.02x

0.93x

original

stored procedure

QURO

(d) TPC-C mix of all transactions

Figure 12: Stored procedure performance, varying number of threads

There has also been work done in looking into improving database
performance from the database application’s perspective. DBridge
[9, 13] is a program analysis and transformation tool that optimize
database application performance by query rewriting. Sloth [11]
and Pyxis [10] are tools that use program analysis to reduce the
network communication between the application and DBMS.

Finally, there is also work done in using database application se-
mantics to design concurrency control protocol. Faleiro et al. [12]

show that lazy transaction processing improves cache locality and
achieves better load balancing. They used contention footprint to
help decide which query to delay execution and reduce data con-
tention. However, this technique only applies to deterministic DBMSs
and requires knowing all the queries to be executed before trans-
action starts. Our work combines the knowledge of concurrency
control with program analysis of database applications and is ap-
plicable to a wider range of DBMSs.

15

8. CONCLUSION
In this paper, we presented QURO, a new tool for compiling

transaction code. QURO improves performance of OLTP applica-
tions by leveraging information about query contention to automat-
ically reorder transaction code. QURO formulates the reordering
problem as an ILP problem, and uses different optimization tech-
niques to effectively reduce the solving time required. Our experi-
ments show that QURO can find orderings that can reduce latency
up to 85% along with an up to 6.53× improvement in throughput
as compared to open source implementations.

9. ACKNOWLEDGMENT
The authors are grateful for the support of NSF Grant IIS-1546083.

10. REFERENCES
[1] The bidding benchmark from silo.

https://github.com/stephentu/silo.git.
[2] Clang. http://clang.llvm.org.
[3] dbt2 benchmark tool. http://osdldbt.sourceforge.net/#dbt2.
[4] dbt5 benchmark tool. http://osdldbt.sourceforge.net/#dbt5.
[5] Gurobi optimization. http://www.gurobi.com.
[6] lpsolve. http://sourceforge.net/projects/lpsolve.
[7] P. A. Bernstein and N. Goodman. Concurrency control in distributed

database systems. In ACM Comput. Surv., volume 13, pages
185–221, June 1981.

[8] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of
serializability in database concurrency control. In IEEE Trans. Softw.
Eng., volume 5, pages 203–216, May 1979.

[9] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan.
DBridge: A program rewrite tool for set-oriented query execution. In
Data Engineering (ICDE), 2011 IEEE 27th International Conference
on, pages 1284–1287, 2011.

[10] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic
partitioning of database applications. In Proceedings of the VLDB
Endowment, volume 5, pages 1471–1482, 2012.

[11] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being lazy is a
virtue (when issuing database queries). In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data,
pages 931–942, 2014.

[12] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation of
transactions in database systems. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, pages
15–26, 2014.

[13] R. Guravannavar and S. Sudarshan. Rewriting procedures for batched
bindings. In Proceedings of the VLDB Endowment, volume 1, pages
1107–1123, Aug. 2008.

[14] T. Horikawa. Latch-free data structures for DBMS: Design,
implementation, and evaluation. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages
409–420, 2013.

[15] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP scalability
using speculative lock inheritance. In Proceedings of the VLDB
Endowment, volume 2, pages 479–489, Aug. 2009.

[16] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: A scalable storage manager for the multicore era. In
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, 2009.

[17] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A
scalable lock manager for multicores. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data,
pages 73–84, 2013.

[18] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. In ACM Trans. Database Syst., 1981.

[19] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks:
A unified model. In Acta Inf., pages 121–163, 1990.

[20] D. Porter and E. Witchel. Understanding transactional memory
performance. In Proceedings of the 2010 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 97–108, March 2010.

[21] Transaction Processing Performance Council. TPC-C Benchmark
Revision 5.11. Technical report, 2010.

[22] M. J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[23] L. T. Yang and M. Guo. High-performance computing: paradigm
and infrastructure, volume 44. John Wiley & Sons, 2005.

[24] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring
into the abyss: An evaluation of concurrency control with one
thousand cores. In Proceedings of the VLDB Endowment, volume 8,
pages 209–220, Nov. 2014.

16

https://github.com/stephentu/silo.git
http://clang.llvm.org
http://osdldbt.sourceforge.net/#dbt2
http://osdldbt.sourceforge.net/#dbt5
http://www.gurobi.com
http://sourceforge.net/projects/lpsolve

	Introduction
	overview
	Preprocessing
	Breaking Loop and Conditional Statements
	Analyzing Reaching Definitions

	Reordering Statements
	Generating Order Constraints
	Formulating the ILP Problem
	Removing Unnecessary Dependencies
	Shrinking Problem Size
	Restructuring Transaction Code

	Profiling
	Evaluation
	Benchmarks
	Varying Data Contention
	Varying Number of Database Threads
	Analyzing Performance Gain
	Worst-Case Implementations
	Disk-based DBMS
	Performance Comparison with Other Concurrency Control Schemes
	Performance Comparison with Stored Procedures
	ILP Optimization

	Related Work
	Conclusion
	Acknowledgment

