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Competitive Learning With Floating-Gate Circuits

David Hsu, Miguel Figueroa, and Chris Dioriblember, IEEE

Abstract—Competitive learning is a general technique for
training clustering and classification networks. We have developed
an 11-transistor silicon circuit, that we term an automaximizing
bump circuit, that uses silicon physics to naturally implement a
similarity computation, local adaptation, simultaneous adaptation
and computation and nonvolatile storage. This circuit is an ideal
building block for constructing competitive-learning networks.
We illustrate the adaptive nature of the automaximizing bump
in two ways. First, we demonstrate a silicon competitive-learning
circuit that clusters one-dimensional (1-D) data. We then illustrate
a general architecture based on the automaximizing bump circuit;
we show the effectiveness of this architecture, via software simu-
lation, on a general clustering task. We corroborate our analysis
with experimental data from circuits fabricated in a 0.35-um
CMOS process.

Index Terms—Analog very large scale integration (VLSI), com-
petitive learning.

Fig. 1. A framework for competitive learning. Each neuron computes the
difference between the input vector and the values stored in its synapses.

. . . ach synapse computes the distance between its input and a stored value.
OMPETITIVE leaming (Fig. 1) comprises a style OfEhe neuron aggregates its synaptic outputs and updates its synaptic weights

neural learning algorithms that has proved useful f@f an unsupervised fashion. The adaptation typically decreases the difference
training many classification and clustering networks [1]. Ihetween the neuron’s input and weight vector. Competition among neurons
a competitive-learning network, a neuron’s synaptic WeigﬁPsures that only neurons that are close to the input adapt.
vector typically represents a set of related data points. Upon re-
ceiving an input, each neuron adapts, decreasing the differengel the other neurons do not adapt. A soft WTA [3], [4] leads to
between its weight vector and the input based on the followirzgh online version of maximum likelihood competitive learning
rule: [5]. Imposing topological constraints on the inhibition leads to
learning rules appropriate for self-organizing feature maps [6].
Ap; = px o (Ni) X (x = ;) D) These learning routines can be used to train nearest neighbor
style classifiers [7], [8], adaptive vector quantizers, ART net-

rate, o(N;) is the activation of theith neuron, andk is the works [1], mixtures of experts and radial basis functions [9].

input vector (we follow the convention that variables denoted 'll'he Synapses 'g a cqmpgtmve-llea.rnlng nletwc;]rk t_y plllca!ly
in boldface correspond to vectors or matrices). The activati W owa cor:nmon a aptatmp hynam|c, mcrc(jaaimgt € simi .arlty
depends on the similarity between a neuron’s synaptic weig tween the synaptic weight vector and the present input.

and the input and can be inhibited by other neurons; hence ng'.&)_nsequently, a silicon synapse that exhibits this behavior can
rons compete for input data. An examplef;) is a hard be combined with external circuitry to implement many neural

winner-take-all (WTA) [2], where (N;) = 1if p, is the weight '€arning algorithms. _ _ _
vector most similar to the input, or zero otherwise. Very large scale integration (VLSI) implementations of com-
Different kinds of inhibition lead to different learning rules petitive-learning synapses have been reported in the literature

A hard WTA leads to the basic competitive learning rule whet[(%o.]_[lg’]‘ These synapses typ_mally use d|g|tal or capgcmve
weight storage. Digital storage is expensive in terms of die area

:Eg :E?eSt similar neuron updates its weight vector according etlcr)1d limits thg precision of synaptic weight update;. Capacitive
storage requires a refresh scheme to prevent weight decay. In

Ap=px(x—p ) addition, these implementations all require separate weight-up-

date and computation phases, adding complexity to the control

. . , circuitry. More importantly, neural networks built with these
Manuscript received July 31, 2000. This work was supported by the NSF

under Grants BES 9720353 and ECS 9733425 and by a Packard FoundangRaPses do not typically adapt during normal operation. A no-
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I. INTRODUCTION

whereyp, is the weight vector of thé&h neurony is the learning
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Synapse transistors [15]-[18] address the problems raisec p FET Synapse
in the previous paragraph. These devices use a floating-gat¢ a, vop view
technology similar to that found in digital EEPROMS to pro-  ¢ource

; . o polyz paly1 n*well n" well

vide nonvolatile analog storage and local adaptation in silicon. mef\a' control gate floating gate coctact
The adaptation mechanisms do not significantly perturb the 7
operation of the device, thus enabling simultaneous adaptatior
and computation. Despite these advantages, the adaptatio o
mechanisms provide dynamics that are difficult to translate
into existing neural-network learning rules. Thus, so far, this IR m -
technology has not been used to build competitive learning ; I u \
networks in silicon. c‘i)i;fﬁgi%rr(\:e lf;u%riglr? well tunneling junction:

To avoid the difficult task of mimicking existing competitive- gate oxide over n
learning rules in silicon, we instead constructed a circuit that p, gircuit Symbol source tunneling
naturally exhibited competitive learning dynamics and then de- junction
rived a learning rule directly from the physics of the component
synapse transistors. Our 11-transistor silicon circuit, termed an l
automaximizing bump circuit, computes a similarity measure, F}——‘ ’ﬂ’”tm' gate
provides nonvolatile storage and local adaptation and performs floating gate

simultaneous adaptation and computation. As we show in this
paper, our circuit provides the functionality we desire in a com-
petitive-learning primitive.

By employing different feedback error signals to our bumgg. 2. (a) Layout view of FET synapse. The synapse comprises a single
circuit, we can develop a large class of competitive-learnifdPSFET, with poly1 floating gate and poly2 control gate and an associated
networks in silicon. Consequently, we envision this circuit as'ae! tunneling implant. (b) Circuit symbol for pFET synapse.
fundamental building block for many large-scale clustering and , o ,
classification networks. As a first example, we have fabricatédrough gate oxide, to the tunneling implant. The magnitude of
a circuit that clusters one-dimensional (1-D) data. thg tunnellmg current d.epends on the voltage across the gate

We begin this paper by reviewing synapse transistors. In s@Xide, defined as the difference between the floating-gate and
tion I1l, we describe the automaximizing bump circuit. In Sedunneling-implant voltages. We approximate this gate current
tion 1V, we show data from a 1-D competitive learning networ )y
fabricated in a 0.32sm CMOS process, that learns to cluster I = L= Vi/(Veun—Vie) ©)

. . . tun t
data drawn from a mixture of Gaussians. The network architec-
ture is readily scalable te-dimensional inputs. The later secwhere I, is a pre-exponential constant ang depends on
tions discuss issues related to this architecture and demonstrakée thickness [17]. We substituté,, = Viuwo + 6Viua and
via software simulation, that the competitive learning rule dé4, = Vi,o + 6V%, into (3), whereV,uo and Vi, are quiescent
rived from the bump synapses can perform effective clusteringltage levels around which the (small-signal) tunneling and
Finally we provide some discussion and conclusions. floating-gate voltages vary. We represent these variations as
Viun andéVi,. We then approximate/(1 + z) =~ 1 — « for
smallz and solve [18]

drain

Il. SYNAPSE TRANSISTORS

A L . . _ (6Viun—6Vis )/ Vi
Because the properties of the automaximizing bump circuit Teun = Ttunoc™™ B (4)

depend on the storage and adaptation mechanisms of SYN&P§Erel, o is the tunneling current whei, ,, = 0andsVi, =
transistors, we begin by reviewing these mechanisms. Fig %ndVX is a constant defined by

illustrates the four-terminalpFET synapse transistor that
we use in the bump circuit. The synapse comprises a single
MOSFET, (with a poly2 control gate capacitively coupled
to a polyl floating gate) and an associatedvell tunneling . . .
implant. It uses floating-gate charge to represent a nonvolaffiid- 3 Shows tunneling data for the 0.3t process, including

analog memory and outputs a source current that varies wit{lt according to (4). N
both the stored charge and the control-gate input volta e HEI (impact-ionized hot-electron injection) adds electrons

The synapse transistor uses two mechanisms for adaptat the floating gate, decreasing its stored charge. The magni-

Fowler-Nordheim (FN) tunneling [19] increases the storetﬂi'd.e of the IHEI current varies with the transistor’s source cur-
charge; impact-ionized hot-electron injection (IHEI) [20]€Ntand channel-to-drain voltage() [18]; over a small drain-

decreases the charge. Because tunneling and IHEI can bott §Ji29€ range, we can model this dependence as [15]

active during normal transistor operation, the synapse enables Io: = a.eVedVa (6)
simultaneous adaptation and computation. o °

A voltage difference between the floating gate and the tumhere« andV,, are constants. In Fig. 4, we illustrate the injec-
neling implant causes electrons to tunnel from the floating gaten efficiency, defined as the injection current divided by the

_ (V;.unO - vag())2 )

V= ©)
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Fig. 4. Injection efficiency, defined ak,,; divided byI,, versus channel-to- - ‘ -
drain voltage, with a fit from (5). Our bump-circuit experiments (e.g., Figs. 7-9) Vinj
use channel-to-drain voltages ranging from 3.25 V to 3.75 V.
(b)

source current, along with a fit according to (5). If we operaﬂ?g- 5. ‘(a) BL&TP—E}ntibqu CircUitl mia r::orr‘nputes :%1 similiafrity me{;\sure
L . . . etweenV; and V;. I; or I, increase wherd; > Vs, or V, > V7,

the MOSFET in its subthreshold reginig., 'S. esser_]t'a"y con- respectively. (b) Automaximizing bump circuit. We replakh , M-, M5 and

stant across the channel and we can rewrite (6) in terms of thgwith synapse transistordZ, andM; share a common floating gate, as do

transistor’s source-to-drain voltage,; and its source current, Mz andMs. I.,;q computes a similarity measure betwagp, andVr,. where
Vie1 depends oV, and@, andVy,. depends o, and@-, respectively. A

I, [15] high voltage orV;,.,, causes electron tunneling from both floating gates. A low
LU, JV, Via)V- voltage onV;,; enables injection through thET current mirrors. The circuit
Iinj = ad ;77 e/ Y (7) adaptsR, andQ- to maximizel,q.

h is the th [ vol T/q(~ 25.7mV - .
where; is the thermal voltagT’/q (~ 25.7 mV atroom tem rrents. The two outside currenfs,andl,, are a measure of

perature). Equation (7) illustrates the dependence of the | e dissimilarity between the two inputs; the center current is a
current on the transistor’'s source-to-drain voltage and SOUlICG y betwee puts,
current meéasure of the similarity. The center currdnt, follows the

equation

lll. THE AUTOMAXIMIZING BumP CIRCUIT I I,
The automaximizing bump circuit is an adaptive version of i 1+ (%) cosh? ((T’Zt) (Vi — VQ))
the classic bump-antibump circuit [21]. The circuit uses synapse
transistors to implement the three necessary functions of a comferes is the ratio of the strength of the middle transistavs(
petitive-learning synapse: 1) storage of a weight valie®) andl,)tothe outer transistordf; andi,), « is the back-gate
computation of a similarity measure between the input and coefficient (approx 0.6- 0.8) andl, is the bias current sourced
and 3) adaptation that decreases the difference betwean by M. 1,4 is Symmetric with respect to the voltage difference
the present input. betweenV; andV, and approximates a Gaussian centered at
The bump-antibump circuit of Fig. 5(a) provides an idedl; — Vo, = 0.
starting point for our discussion. It comprises only five tran- Part (b) of Fig. 5 shows the automaximizing bump circuit that,
sistors and computes a similarity measure between two infioit convenience, we refer to adamp circuit We replaceil;,
voltages,V; and V;. The bump circuit generates three outpubdss, Mz and A, with synapse transistord4; and M3 share

®)
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a common floating gate and tunneling junction, asie and Because of the differential input encoding and weight defini-
M,. The charge stored on the bump circuit’s floating gates shifon, |Vi, — x| = |Vigt — Vige|. Therefore [ computes the
Iia's peak away from; = V. We interpret this shift as the similarity betweenV,,, and . Fig. 6 shows the bump circuit’s
weight, ., stored by the circuit and interprét,;q as a similarity I,,,;q output for three weight values, as a function of the differ-
measure between the differential input,— V, and the weight ential inputVi,. We see that different stored values change the
i location of the peak, but do not change the bump shape.
Alternately, we could use the antibump outputs as a distanceThe differential encoding oV, in terms ofV; andV; also
measurel; andi, are large wherV; > V5 orV, > Vi, re- leads to symmetric adaptation dynamics, because the values of
spectively. In addition to providing a (saturating) distance methe two floating-gate voltages only depend on the magnitude
sure, the antibump outputs also provide the direction of the iof Vi, — 1+ and not on the sign. Other encodings (e.g., setting
equality. Unfortunately, the antibump outputs saturate and thekg-= V;,, + V; and V. = V) do not have this property.
fore only provide distance information for inputs close to the _
stored weight. Althouglh,.,;q also saturatesog(l.m.q) does not. B. Adaptation
Therefore,l,,;q is a more informative similarity measure (for We now examine the bump circuit's adaptation. We start by
more details see Section V). Furthermore, when computing difefining AViy = |Vigt — Vigo|. BecauseA Vi, = |Vin — 41l
tances between two objects, we are typically unconcerned Wile magnitude ofiz;/dt is equivalent todAVy, /dt. We begin
direction, only with magnitude. Consequently, eventholigh by considering the effect of tunneling @V,
does not provide direction information, this is nota concern. Di- 1) The Tunneling Learning RuleTunneling decreases
rection is important for computing weight updates and, as wee difference betweefs,; and Vio. In practice, tunneling
show in Section 111-B2, we use the antibump outputs to perforiicreases the voltage of both floating gates, but, because
adaptation. tunneling increases exponentially the lower the floating-gate

The circuit isautomaximizingoecause tunneling and injec-voltage [see (4)], tunneling decreases the difference.
tion naturally tund,..;4’s peak to coincide with the presentinput - Assuming thafi/, s floating-gate voltage is lower thai,'’s,
(V1 — V2), decreasing the difference between the stored weight change im\Vz, due to electron tunneling is
and the input. We enable adaptation by activating both tunneling
and injection and disable adaptation by shutting off both mecha- dAVg - _ Tiunt — Toun (10)
nisms. A highV;,..(~ 10 V) causes tunneling and a |0 (~ dit G
0 V) causes injection. TheFET current mirrors§/s — g) and  wherel, 1 andl; ., are the tunneling currents &f; ands,
diodes (/10 — Mi1) control the amount of injection at eachrespectively. Equation (4) describes the tunneling current as a
synapse transistor (we defer details until Section 11I-B2). A lownction of the deviation of the floating gate voltage from a fixed
Viun(< 8 V) and highVi,;(> 2 V), deactivate adaptation. Weyoltage level. Consequently, we express variations in the bump
can achieve a wide range of adaptation rates by choosing apRiigcuit’s two floating-gate voltages @ = Vo — AV /2
priate values foV;., and V. and§Vige = 6Vo + AVig/2, wheredVy = (6Vigr + §Vig2)/2

By itself, the bump circuit does not implement competitivgs the small-signal variation in the common-mode voltage. We
learning. The circuits we construct around it, that select bumggbstitute (4) into (10) and solve
for adaptation, enable competitive behavior. Different selection

mechanisms can implement a wide variety of competitive Teunt =liungel®Vomn —0V0HaVis/2)/Vx (11)
learning rules; we show one such rule in Section IV. We Lo =Limoc Ve —0Vo—AVis/2)/Vy. (12)
conclude this section by describing the bump circuit in more
detalil. We substitute (11) and (12) into (10) and solve

dAV;, Vi 5Vo)/ Ve AV,
A. Stored Weight and Input Representation Tg = — eV —8V0)/Vx ginh <Wj> (13)

We now express the bump circuit’s weight as a function of its
- - wherely = 2liuno/Crs. dAVig/dt depends on three factors:
floating-gate charge. This charge has the same effectas aVOItaE:ontrollable learning ratéV,.. the difference between the

. . . . a
in series with the control gate, of valdg/C;,,, where@ is the . ) ! .
floating-gate charge an@y, is the control-gate to floc'zlting-gateInput and the stored weight Vz,; and the average floating-gate

coupling capacitance. We define the inpgy to the bump cir- Vogi%er’f‘g)'t v, tunnelin rrents are not well matched. even
cuit to be a differential signali, = V1 — V5. To ensure sym- for tW(?Sun: E;\Zﬂ,/,trlfjmsiesto?sc(:ln terzwez:n?e (?hi eConzeC Eer’n? ethe
metric adaptation, we constrain the common modgandV; ynap P- q Y

: . : two tunneling currents equalize at a slight offset frar, = 0.
to be a fixed voltagé’, (how this ensures symmetric adapta: . ) g .
tion will become clear shortly) and expreEs — Vi + Vin/2 a}tlr\gemngg()al the mismatch by adding an offset term to the sinh
andV, = Vo — Wi, /2. I,,;,0 computes the similarity between
the floating-gate voltageBi,: = Q1/Cin + Vin/2 + Vo and dAVig
Vigz = Q2/Cin — Vin/2 + Vb, whereQ, and(@, areM;’s and df
M,'s floating-gate charge. We define the circuit’'s weighas

VSV AV, —
= — TPV —=0%V0)/ Vi ginh <2ng¢> (14)
Fig. 7 shows measuret\ Vi, /dt versusA Vs, due to tunneling,
Qs — Q1 including a fit from (14). In our experiments, the measured tun-
- o, ©) neling offset is about 18 mV.
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equal, then the drain voltages &f; and M, will likewise be
equal. If we set’,; low enough to cause injection, both tran-
sistors will inject at the same rate, because their source currents
and drain voltages will be the same. Therefore, injection does
not changeAVs,. In addition, because transistalgs and Mg
have the same gate voltage,will split evenly at the drain of
M. The same is true fak, at the drain ofA/1g.
Now consider the case whelg,; is lower thanVie (11 >
I,). M; now tries to sink a current that is larger th&r2. Con-
) ) \ sequentlyMy — Mg sink less thar; /2, causingM,’s drain
-0.4 0.2 0 02 04 voltage to fall and, in turn, decreasing the current fifgtsinks.
Vin (V) This further increases the amount of current that flows through
) ) ) . M. The positive feedback process causésto sink all of I,
Fig. 6. Experimental measurements Bf;q versusV;, for a single auto- . | .
maximizing bump circuit, for three stored values labelad i:> andus. The andMy; andMe to sink all of 1. As aresult}’s drain voltage
stored weight changes the location of the bump peak, but not the bump shag¥ops toVi,; and; ’s drain voltage rises tdU, /  log(I; /Io)+
Vinj. This process will exhibit hysteresis if the gain of either cur-

107 rent mirror exceeds unity (see Appendix A).
The weight change for injection follows a similar form to that
100l of tunneling
2 dAV; Linso — i
g fg inj2 injl
E =-— . 15
? 10°° dt C; ( )
% The final IHEI weight update rule follows by substituting the

expressions fof;,;; and/iy; from (7) into (15). To determine
values for the drain voltages af; andM,, we assume that all
of I flows througha4;; and all ofI; flows throughM;. We de-
rive the update rule from a large-signal analysis in Appendix B.

10-10 L

-11 " L A M
10 0 0.1 0.2 0.3 0.4 0.5 . .
AV, (V) The final form is
. . . . dAvag 6V, TVin; 7Vin;
Fig. 7. Derivative oAV}, plotted versus\V;, due to electron tunneling. We = —Ijpe" " (c mid) (AVgg) — €7Dy (AVfg))

fit these data using (14). We measured the change in the locatign.gé peak (16)
due to a short tunneling pulse when the floating gates Wérg apart. Different 1-U, V.
values for6V, merely change the magnitude of adaptation, not the genettherel;, = (OJO ’) /Cin, ( =8/V,, 7 =-2/xkV, and

shape. We followed the same measurement procedure for the experlmentqs7 of —1/VA,. I, is the transistor's pre-exponential current. The

Figs. 8 and 9. .
two functions,®; and®-, are

2) The Injection Learning RulelHEI decreases the differ- @) (AV;,) =@ (AVfg)l_QUt/”V” e~ @AV (17)
ence betwee},; andVi. We bias the circuit so that onlj/; By (AVL) =0 (AV] )e“’AVfg
andM, experience IHEI. From (7), we see that IHEI varies sub- 2\ e e v
linearly with the transistor’s source current, but exponentially . (1 _ o RAV/ Ut) v (18)
with its source-to-drain voltage. Consequently, we decrease
AV, by controlling the drain voltages aff; andM.. whereo = (1 — U,/V,)"/2V w = k/2U; — k/2V, — 1]V,

We use cross-coupled current mirrorddd — M7 and and® is
Mg — My) at the drains ofd; and M, to raise the drain

voltage of the floating-gate transistor that is sourcing a larger d(AVy,) = ﬂ (19)
current and to lower the drain voltage of the floating-gate 2 cosh (”;‘t‘b)

transistor that is sourcing a smaller current. The transistor with
the smaller source current experiences a lafggrand thus Like tunneling,dAV,/dt due to IHEI depends on three fac-
exponentially more IHEI, causing its source current to rapidlprs: A controllable learning raté;,;; the difference between
increase. DiodesM(6, My — M;;) raise the drain voltage of the stored weight and the inpukVz,; andéV;.
the transistor with the larger current yet further. The net effect Fig. 8 shows experimental measuremeniédi’, / dt versus
is that IHEI equalizes the source currents of the floating-gatels, due to IHEI, along with a fit from (16). AaV4, increases,
transistors and, likewise, their floating-gate voltages. Negatitlee weight-update magnitude reaches its peak between 0.1 V
feedback from the cross-coupled current mirrors is necessand 0.2 V and then decreases afterwards. The increase in mag-
for the automaximizing behavior; circuits that do not incomitude between 0V and 0.14 V occurs because the difference
porate such feedback exhibit runaway IHEI [18]. Appendix Aetween the drain voltages 8#; and M, increases ag\ Vs,
provides a small-signal stability analysis of this feedback. increases. A\V;, > 0.14, the difference betweend;’s and

To see this behavior more clearly, let us first examine the ca&®’s drain voltages has reached its maximum value; therefore,
where the two floating-gate voltages are equal; landi, are further increasingAVi, only causes the source current for the
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Fig. 8. Derivative ofA V¢, plotted versus\V;, due to electron injection. We

fit these data using (16). Different values fdr, merely change the magnitude Fig. 9. Derivative of AVr, versusAVy,, due to electron injection and
of adaptation, not the shape. tunneling. We simultaneously puls&g,,, andVi,; on for short periods of time

and measured the resulting changeNig,. We fit these data to the learning
rule given in (20).
transistor with the lower floating gate voltage to increase and the
source current of the other transistor to decrease, decreasingtilly, the learning rule derives from the physics of the silicon.
magnitude of the IHEI weight update. Finally, we note that berhis allows for a compact and efficient VLSI implementation.
cause the bump circuit’s output is symmetric with respedi to
andly, the IHEI weight-update rule takes the same form whep. Layout Area and Power Consumption

Iy > L. Recently optimized bump-circuit layouts occup§ ;m x

a d:zx) tg':i)omnpk? S';edlc‘jﬁ]arr;:g rRel:ﬁC{ﬁCtg?a?n: ;[ruongeilr:ggbfjﬁjsecm pm in a 0.35:m process. We share thewell that the tun-
) ,p 1 by 9 . Y ge frc P Heling junctions occupy among multiple bump circuits, saving
cuit’s floating gates, respectively. In isolation, either mechanis

. . 7 . . out area (especially for large arrays).
will eventually dr|.ve the bum_p circuit out of its ugeful operating We operate our bump circuit with subthreshold currents in the
range. For effective adaptation, we need to activate both. Int

estingly, Figs. 7 and 8 show that tunneling acts more strongl nge of 10 nA to 100 nA. Consequently, the power consump-

L '3¥n is typically less than a microwatt.
for larger values oA Vz,, whereas injection shows the opposite ypically

behavior. The two mechanisms complement each other to p
vide effective adaptation over a large rangedf, . ] )
Combining (14) and (16), we obtain the general bump circuit fmia varies with the common mode voltage}, (recall
weight-update rule 6Vo = (6Vig1 + 6Vie2)/2). Parasitic capacitive coupling from
Viun and Vi,; to the floating gates alters the common-mode
voltage, thereby altering,,;,. A few simple circuit techniques
—LpeVeun/ Vi g=0Va Vi ginh <M) can reduce this problem. Increasing the length of the bias
2Vy transistor, cascoding the bias transistor, or increasing the sizes
— ;e (e7Vi Dy (AVy) — Vi @y (AVy)) . (20) of the floating-gate capacitors increases the common-mode
rejection. The first two solutions do not appreciably increase
The data and fit in Fig. 9 illustrates this learning rule. Whethe layout area. Finally, Harrisat al. have described compen-
AV is small, adaptation is primarily driven by injection,satory circuits for canceling parasitic coupling to the floating
whereas tunneling dominates for larger valuesAdf;,. The gates [22]. We can adapt these techniques to the bump circuit.
dip in adaptation rate aroundV;, = 0.2 V occurs because, Variations inéVy during adaptation also affect the circuit’'s
as injection decreases, the contribution of tunneling has rearning dynamics, because alterigd; alters the relative
yet increased enough to compensate. We can change ¢batribution of injection and tunneling in the bump circuit’s
learning dynamics by modifying the sizes of transistor sizes l&farning rule (20). Our circuit compensatesawtozeroingiVy
My — My, the topology of thedFET current mirrors and the over time [23]. Indeed, notice that a highy strengthens injec-
magnitudes oVi,; and Vi yn. tion and weakens tunneling, lowerirdy. Conversely, a low
The weight-update rule in (20) is unlike any learning rule that;, strengthens tunneling and weakens injection, raiéiig
we have found in the literature. Nevertheless, it exhibits severalTheoretically,6V, can reach a state in which both the injec-
desirable properties. First, itincreases the similarity between tien and tunneling currents are small, leading to slow adapta-
bump circuit’s weight and the present input. Second, the weidhdn. This state can occur when the common-mode voltage is so
update is symmetric with respect to the difference between thigh that there is little tunneling and the difference betwEgn
weight and the present input. Third, the update rule decompos@sl;: is so large that there is little injection. However, this only
into a product of 1) a weight-independent update rate; 2) updakecurs if the bump circuit only adapts to inputs that are very dis-
rates set by controllable terminal voltagég,{ andV;,.,); 3) an tant from it. The likelihood of this occurrence is very small in
autozeroing common-mode voltag®4); and 4) rates depen- classification and clustering problems because the bump circuit
dent on the difference between the weight and the inalig{).  typically adapts to a distribution of inputs.

£~ common-Mode Rejection

dAVi
dt
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Fig. 10. A CLC, comprising two bump circuits, a WTA and feedback circuitry
that derive locali,; andV;.., signals from the WTA output.

IV. COMPETITIVE LEARNING CIRCUIT

Fig. 10 shows a 1-D competitive learning circuit (CLC) that
clusters 1-D data. The CLC comprises multiple bump circuits
with a common input. Each bump circuit computes the sim-
ilarity between the input and its weight; a WTA [13] selects
the bump circuit that produces the largest output. On-chip feed-
back circuitry transforms the WTA's outputs int@,, andViy;
signals for each bump circuit, causing the closest bump circuit
to adapt to the input and inhibiting other bump circuits from
adapting.

The feedback circuitry that converts the WTA output into
Viun and Viy; signals is quite simple—it comprises three in-.

V,

low

comp

(b)

(a) Circuit that generaté$,; from the WTA output. (b) Circuit that

e e . Fig. 11.
verters and a modified transconductance amplifier. The |nverttgjg%e,am;t o from the circuit in part (a).

shown in Fig. 11(a) take the WTA output’(;.) and generate
Vinj = Viow WhenVi, is high, orViy = Vi, whenVi, is low.

AlAdAdAs

These voltages activate or deactivate injection, respectively. We | R
used three inverters to increase the overall gain in the cifyit. [ /,,+"= P '*"+++‘-|+=+*' i aatie s
sets the first inverter’'s threshold. In our experiments, we used 0.8t I' true means ]
Vew =0V andVy; =2 V. R circuit output o

The modified transconductance amplifier in Fig. 11(b) takes 5 0.6f | +
as inputViuuin, the voltage generated by the second inverterin ¥ 5°'twari;‘$’gﬁ(‘ - .
the Vi,; generator and sets.,, equal toVi,y, When Vi IS 2

>

higher thanV;.,, and four diode drops beloW,,1, otherwise.
The voltage swing oV, activates or deactivates tunneling.
Because the drain voltages 6f; and M- are the tunneling
voltage ¢ 10 V), we make these devices high-voltageETS
by using an-well for the drain. For a layout, see [22]. Together,
the two circuits in Fig. 11 simultaneously activate or deactivate
injection and tunneling.

We fabricated 2-bump and 8-bump versions of the CLC. AFg. 12. Comparison between the competitive learning circuit and an

; ; ; : uivalent software neural network that used a standard competitive learning
though both circuits are functional, for ease of testing we hareu e. The input data were drawn from a mixture of two Gaussians, with 80%

performed most of our experiments on the 2-bump version. dfthe data drawn from the higher Gaussian. We plot the means learned by the
Fig. 12, we show competitive |eaming in the 2-bump CLC. Wercuit and the software simulation, compared to the true means of the two

applied a single input drawn from a mixture of 2 Gaussians. Tffgussians.

CLC clearly adapts to the Gaussians—each bump selects and

adapts to the mean of one of the two Gaussians. bump circuit’'s weight-update rule exhibits the same function-
For comparison, we also show in Fig. 12 the results of a sofility as the basic competitive-learning rule, but with different

ware neural network in which the most similar neuron updateslaptation dynamics.

its value using the standard competitive learning rule from (2) The bump circuits’ weights exhibit a consistent offset from

where we set the learning rateo 0.01. We apply the same datahe values learned by the neural network. We believe the cause

to the simulation that we send to the chip. The data show that ke turn-on delay in the well-tunneling junctions—electron tun-

7000 3000 3600 4000

number of training examples
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neling does not actually occur until several secoaflsr we NPULS X coveesre X
raise the tunneling voltage. We have observed a similar effect
previously (see [17]: the section on bowl-shaped tunneling junc-  bump
tions), although not in the tunneling junction that we show in cireuts
Fig. 2 (@t in n~ well). If the latency between the two synapses
in a bump circuit differs, the weight may drift away from the
input; only when both tunneling junctions finally turn on does
the weight adapt toward the input. The tunneling latency may
also explain why one bump circuit adapts so quickly to one of
the true means, while the other bump circuit exhibits slower I inhibitory circuit I
adaptation. Each bump circuit, because of the latency, may be
strongly biased toward adaptation in one direction. We have de-
veloped an alternative tunneling junction that tunnels gver Ej f‘zﬁgsi‘:;k
rather than oven™; in experiments on isolated tunneling junc- | ...
tions, the revised design does not exhibit a turn-on delay. We are
currently incorporating the revised design in future versions of
the automaximizing bump circuit. Fig. 13. Generalized competitive learning architecture.

Although both the software neural network and the CLC drift
about the true Gaussian centers, the CLC shows fluctuations v T T v T 7
of greater magnitude. We believe the reason is that the CLCs
learning rate is greater than the software neural network’s N/
learning rate Unfortunately, because the CLC operates com- [ /7 .
pletely asynchronously, it is hard to quantify the learning rate
that the circuit uses.

Our competitive learning architecture can be scaled to
n-dimensional inputs and any number of neurons. Each neuron
requires one bump circuit per synapse. Most important, each
neuron requires only one feedback block, because all the
synapses receive the sam@,, and Vi,;. We illustrate the
approach in Fig. 13. Each bump circuit corresponds to a g 0T o2 03 04 o0& 06
synapse of a neuron; the WTA from Fig. 10 is an example of AV

an inhibitory circuit; and the circuits of Fig. 11 are examples _ ,
of feedback circuits. Fig. 14. Comparison of the bump distance measure to Manhattan and squared

distance. Distances are scaled to facilitate a comparison.

(Vlum'vinh) (Vtuni'vinji)

distance

-log I ;(AV)

V. NEURON DESIGN
bump bump

Because a bump circuit computes a similarity measure, the circuit circuit
method we should use to combine bump outputs is not obvious.
The bump circuit output is a current; since addition of currents l | l l -~

I1 2 1 2

is particularly easy to implement in analog VLSI, we might sur-
mise that addition is the correct way to combine bump outputs.
In fact, in at least one previous hardware neural network, with Subthreshold
synapses that compute a similarity measure, the neurons add l:floaﬁng gate
these similarity measures [24]. However, the way we combine ——‘ MOSFET
bump similarities implicitly defines a distance measure. If we
want to approximate some natural distance measures like Man- i
hattan distance or squared distande our network, then we -

will show that multiplication provides a more sensible way tclg_ 15 Cireuit th iolies th oo b euits. Each diod
H Fs e 1g. . ircuit that multiplies the output of two bump circuits. Eac loae

Combl_n_e bump Slmllantle_s' . . . transforms its input currenf{ or I5) into a voltage that is logarithmic with the

Intuitively, the bump circuit’s similarity measure approxicurrent. ThenFET on the right is a floating-gate transistor with two control

mates the probability that an inputwas generated by a 1-D gates; one for each diode voltage. If the floating gaf&T is biased in its

- 2 ; : 2 subthreshold regime, its output current will be proportional to the product of
GaussianN (i, o) (with mgan/:L'and variancer ), Wherep e bump-circuit currents.
corresponds to the bump circuit’s stored weight

1 \2 o A Gaussian is an exponential function of the squared Eu-
prob(z) = < 2) e~ (@) /207 (21) clidean distance between inputand meary:.. Consequently,
2o multiplying a set of Gaussian similarities is equivalent to adding
IFor two vectorsc andy, the Manhattan distance &;|x; — 4;| and the th€ corresponding Euclidean distances. Conversely, adding
squared distance B, (x; — y;)2. Gaussian similarities does not correspond to any sensible
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Fig. 16. Comparison of the standard competitive learning ril bump-learning ruled) and optimal solution<) for learning the means of a mixture of
Gaussians where each Gaussian had a diagonal covariance matrix and the standard deviation of each dimension was (a) 0.1V, (b) 0.2 V, (c) 08V, and (d) 0.

operation on Euclidean distance. Consequently, we believe thiaating-gate MOSFET to multiply the currents from two bump
the correct way to combine similarities that have a Gaussiaincuits. We capacitively couple a floating gate to diode volt-

shape is through multiplication. ages derived from the bump-circuit currents. The MOSFET con-
We expresd,,,iq as a negative exponential of a distance funaiected to this floating-gate implements a translinear multiply
tion (similar to a Gaussian), by rewriting (8) as follows: [25]. This approach requires an extra diode and capacitor for
. each bump.
Imid = Ibe_r(AL ) (22)
whereAV = Vi, — u. T is given by VI. PERFORMANCE OF THEBUMP LEARNING RULE

4 KAV We performed computer simulations to investigate the per-
2 . . .
I'(AV) = log <1 + <§> cosh < o )) . (23) formance the bump learning rule on an unsupervised clustering
t

task. We compared two versions of a standard competitive

Fig. 14 compares this function with Manhattan distance amehrning network. The first used the competitive learning rule
squared distancé. looks like squared distance when the inpudf (2), with the learning rate set to 0.005. The second was a sim-
and bump weight are similar and like Manhattan distance whatated version of the competitive architecture in Fig. 13, with
the two values are dissimilar. In contrast, there is no obvioggnapses that both computed a bump similarity and adapted
way to extract a distance function from the addition of bumg@ccording to the bump learning rule of (20) and neurons that
similarities. multiplied their synaptic outputs. We parameterized the bump

Finally, we consider the qualitative behavior of adding bumigarning rule with values from the fit in Fig. 9. Both networks
similarities versus multiplying bump similarities. Becaugg, performed hard competitive learning—only the neuron most
has a Gaussian-like shape, it only provides an informatigémilar to the input adapted.
distance measure for inputs close to the weightHowever, We drew our input from a 16-dimensional input space with
log(1,,:0) provides an informative distance measure for arthe data generated uniformly from a mixture of 16 Gaussians
distance between the input apd (i.e., for each data point, we randomly selected one Gaussian

Fig. 15illustrates one way to implement a multiplying neuroand generated the data point from its probability distribution
for our competitive-learning architecture. We use a subthreshdlohction). For each Gaussian, we drew its mean’s components
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Fig. 17. To measure the effect of outliers on the bump circuit's performance,

we altered the bump learning rule so that when— ;| exceeded a certain _. . . .
threshold, the magnitude of the bump adaptation did not increase. The restlfs 18- Effect of tunneling mismatch on the bump learning rule for three

show that for values df: — ¢| < 1, outliers did not degrade the bump circuit’sm'sma_mh values. We generatgd the training 'c_lnd teft data from a mixture of
performance. Gaussians where each Gaussian has a covariarit8°af. The results show

that tunneling mismatch has a negligible effect on the bump learning rule’s
performance.
randomly from the interval [0 V, 1 V]. Each Gaussian had a
diagonal covariance matrix. We initialized the weight vectors 2.6
for each network to the same starting point. Upon presenting
each data point, we updated each network based oniits respective  , 4 i

. @
learning rule. +++.|.+++++++++-
We tested the two networks by evaluating the average coding + ++

error for each test instance, on test data drawn from the same 522 [ &+ 1
set of Gau_s&ans as the training data. The cpdmg error is the additive neurons +
squared distance between each test data point and the closest 2 } o multiplicative neurons o
Gaussian mean. Fig. 15 shows the results averaged over ten oo
trials, for Gaussians where the standard deviation of each di- 1.8} °°o i
mension was 0.1 V (a), 0.2 V (b), 0.3 V (c), and 0.4 V (d). ° °°oo
We also illustrate the coding error that the optimal mixture of 16 . . - Q000 ¢
Gaussians would produce. The data show that for mixtures of ~o 2000 4000 6000 8000
Gaussians with reasonable standard deviation Fig. 16(a)—(c), # franing examples
the b”mp . pgrformance compares f.avorably with the baﬂ%. 19. Performance of a competitive learning network with bump circuit
competitive learning rule of (2). In the first three cases, botjnapses using muitiplicative or additive neurons.
networks approach the error achieved by the correct mixture

but asymptote before reaching the best solution. We believe tha& q . t sh the effect of t i .
with a smaller learning rate or a slowly decaying learning rate, ur second experiment shows the efiect ot tunneling mis-

both learning rules can achieve the optimal solution. match on the generalization performance of the bump-learning
Because the bump circuit's learning rule is exponential witfi!e- We used the same methodology from the experiment of

respect to{ — 1), outliers can have a large effect on the learnin ig. 16 to compare bump learning with tunneling mismatches

dynamics. In our simulations, outliers did not become a proble® 0 MV: 20 mV, and 40 mV (recall that the intrinsic tunneling
set in Fig. 7 was 18 mV). Fig. 18 shows the results for data

until the standard deviation became larger than 0.3 V. Fig. 16@3

shows that the bump rule fails to converge if the standard degfnerated from Gaussians with a standard deviation of 0.3 V.
ation exceeds 0.4 V. The results show that the bump rule is virtually unaffected by

To test the sensitivity of the bump rule to outliers, we pefUnneling offsets.

formed further tests on data drawn from Gaussians with stan-Our third experiment compared the performance of two
dard deviation 0.4 V. We altered the rule so thatif— ;| ex- Competitive learning architectures, one using multiplicative
ceeded a preset threshold, the magnitude of the weight upd2g&rons and the other using additive neurons. Again, we used
did not increase. We used the same learning rate for these &e same methodology in this experiment as in the previous
periments as for the experiments in Fig. 16(a)—(c). We testédo. We tested the networks on data drawn from Gaussians
different thresholds using the same experimental procedurevéth standard deviation of 0.3 V. The results in Fig. 19 show
in Fig. 16. We report these results in Fig. 17. The data show ttihat, as predicted in Section V, competitive-learning rules that
outliers that are within 1.0 V of the bump circuit's weight daise bump synapses perform better with multiplicative neurons
not degrade the bump learning rule. Therefore, if we restrict tHgan with additive neurons.

input datato a 1.0 V interval, the exponential dynamics of bump These experiments demonstrate that the bump circuit's
adaptation do not degrade learning performance. learning rule is well suited for performing competitive learning

.
g
i
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in silicon. In addition, the asymmetry due to tunneling mis- _| _|

match does not greatly affect the performance of the learning Cyg Cy

rule. A g,0! S -g;9l
VII. CONCLUSION L =

We have demonstrated an 11-transistor circuit primitive that

incorporates a similarity function, nonvolatile storage and local v,
adaptation; we can use this circuit in analog VLSI implemen-  r, 9V, N3 gy,
r, a1
r r
L s

tations of competitive learning. This circuit leverages synapse
transistors to afford nonvolatile storage and to perform simul-
taneous adaptation and computation. The circuit’s learning rule
originates from the physics of the synapse transistors; conse-
quenty, it is unlike _any rule that,we know of in the “tera_tureFig. 20. Small signal model for injection in the bump circuit (transisfdrs—
Even so, the learning rule provides the correct dynamics fof,, 17, — M1, in Fig. 5). Resistors, model the diode connecteFETS. g,
competitive learning and exhibits symmetric adaptation. Mor’@lglrij model thefC(l;f)rew mitrrgfs\t(rfi - -/1fs)thf]e togiﬁvel Circnuit_s mfleel éh?b
. . . . ynamics o . We study the perturbation of the small signal model by
mportan}ly, software S_Ir_nU|atlonS Sh‘?‘{v that the_ learning rl'”eL increase of in current on transistak/; and a decrease 6f on transistor
as effective as the traditional competitive learning rule for clugs,.
tering data drawn from a mixture of Gaussians.
To test our circuit primitive, we used it in a competitive . . . . .
. S o {espectlvely. By inspection;; = —wv» and the small-signal in-
learning circuit that clustered 1-D data. The circuit learned 10 . . . ; . .
L . ; . .I%ectmn in M, and A, is also equal in magnitude and opposite
discriminate data drawn from a mixture of Gaussians, providing . . .
: . . ) . |r§?S|gn (i.e..g2v1 + g361 = —gove + g36I). To show that in-
evidence that this learning rule, while natural to the physics of _.% . I
. ) . ) R *ectlon is stable, we must show that a positfein M; causes
our devices, is also useful in a learning context. This circuit 1S T o )
. . . . . P decrease ifd/;’s injection. Stability requires
readily extensible ta-dimensional inputs and any number o

neurons. We intend to use this circuit primitive and variations

of the competitive learning architecture as building blocks for —g2v1 > 9301 (29)
silicon chips that perform clustering and classification tasks. L
wherew; is given by
APPENDIX | &1
o ) ) ) v = A (30)
The sizing of current-mirror transistoids — M1, determines (72 +5 - 91)

whether injection increases or decreases the similarity betwee
the floating-gate voltages of transistdis and/, in Fig. 5. We
performed a small-signal analysis of injectioifi andM5, to

réubstituting (24)—(29) into (30) and solving, we obtain the
current-mirror gain that ensures stability

determine sizing constraints @dg — M1, that ensure injection Vig | #Ving L

will increase the similarity. Fig. 20 shows a small-signal model. av, T ar, T -2

We study the change in injection due to a small incredsia > — Vi AV (31)

M;’s source current (and the symmetric decre@bén M>'s 1—&—2 — vt

source current). The values for the circuit elements in Fig. 20

are If we substitute realistic values fdri,; and, the right-hand

side of (32) is less than 0.1, ensuring that injection is stable for

1 (24) reasonable early voltageg, (> 1 V).

" :Io (i + L) Cross-coupled current mirrotels — A7; can exhibit hys-
- v ' Ve teresis if the current-mirror gain is too high. To see why this
Py =— (25) can occur, consider the following scenario: Suppose the cur-

3]0/«5 rent-mirror gain is much greater than unity and, initially,is
g1 = 5T (26) greater thad,. DiodesMg andM7; will sink I; and mirrorM-
' LUy Vins will sink I,. In fact, A7 can sinka; of current and, therefore, if
gr =— (1 + )lo) Q7 «> 1, the mirror exhibits hysteresis. Hysteresis will not occur
Vin; if &« < 1 because, in this case,#f is greater tham/,, diodes
1-— f—* Mg — Mo will sink part of I, providing stabilizing feedback to
g3 = N (28)  the mirrors. A small signal analysis confirms that the circuit is

Ui/ Vin;
((1+a)lo) stable and will not exhibit hysteresis if the mirror gain satisfies

wherely is the equilibrium current in diode®/s and My, « is

K 1
the current-mirror gainy. is the Early voltage and; andwvs o< O T (32)
are the drain voltages of floating-gate transistbfs and Mo, T %
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APPENDIX Il Solving fore=Y<2/V+ from (40) we obtain

We use a large-signal analysis to derive the bump circuit’s
IHEI weight-update rule. To begin, assume thidt sources
more current thanM, (the analysis is symmetric fof/,
sourcing more current thall,). dA Vg, /dt due to IHEI derives
from the difference between the ir_ljection c_urre_znts in transistoEljl —a é—Ut/VA, ) (Avfg)l—%’t/ma, @ AVig 56Vo o —2Vinj [V,
M; and M, [see (11)]. We obtain the injection currents by

v R N L TAC T
o Vaz/Vy — (1 _ C—mm/m) LemVini/Va(41)

Substituting (36), (38) and (41) into (7), we obtain

substituting (7) into (15) and solving for the 1) source currents; UV - (42)
2) source voltages; and 3) drain voltages\of and AL. Tinjz =ady 77 (AVgg) €77 e

o o NSUSYS
A. Source Current X (1 - Cimhg/bt) ¢ i/ Vs (43)

To derivel, for M; and M,, recall that transistord/; and \wheres = (1- Ut/Vw)"‘/?U% w = k)2U, — k)2V,, — 1/V,)
M, form a differential pair on that fraction d@f that is not part and¢ = « / V.. Substituting (38) and (39) into (15), we obtain

of Inia. 1 andl in terms of AV, are (16)—(18)
I, =@ (AVy,) <2 Vin/2U (33) _‘dﬁ"fg = Ljpes? (M (AVE,) — "Dy (AVE))
Iy =Io® (AVyy) "2Vl (34) ! (44)
wherel,, = v/ Ca, x = —2/kV, andy =
where®(AVy,) is 70 (a 0 /Cin: X /rV K

—1/V,,. The two functions®, and®, are

Iy — Inia —oU, KV —wAV
@ (AVy) = AT (85) @y (AVy) =B (AVg,) 2/ eV (45)
1p2cos T, o s e \—U VS
D2 (V) =@ (AVy) e 7AVe (1 — ¢ naVe/) .
(46)

B. Source Voltage

M, and M, share their source node, 30 is the same for This result is the bump circuit's weight-update rule (due to in-
both. We can calculat¥, by equating (33) and (34) with thel€ction) shown in (16).
equivalent subthreshold expressions for a transistor’'s source

current in terms of its source and gate voltages. We solve for ACKNOWLEDGMENT
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. Ue/Ve bV /Y. layout and A. Doan, K. Partridge, M. Richardson, P. Tressel,
VIV = @ (AVy) T T etV (36) A. Schon, and E. Vee for their suggestions and constructive
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) discussions that led to this research.
C. Drain Voltage
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