
732 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

Competitive Learning With Floating-Gate Circuits
David Hsu, Miguel Figueroa, and Chris Diorio, Member, IEEE

Abstract—Competitive learning is a general technique for
training clustering and classification networks. We have developed
an 11-transistor silicon circuit, that we term an automaximizing
bump circuit, that uses silicon physics to naturally implement a
similarity computation, local adaptation, simultaneous adaptation
and computation and nonvolatile storage. This circuit is an ideal
building block for constructing competitive-learning networks.
We illustrate the adaptive nature of the automaximizing bump
in two ways. First, we demonstrate a silicon competitive-learning
circuit that clusters one-dimensional (1-D) data. We then illustrate
a general architecture based on the automaximizing bump circuit;
we show the effectiveness of this architecture, via software simu-
lation, on a general clustering task. We corroborate our analysis
with experimental data from circuits fabricated in a 0.35- m
CMOS process.

Index Terms—Analog very large scale integration (VLSI), com-
petitive learning.

I. INTRODUCTION

COMPETITIVE learning (Fig. 1) comprises a style of
neural learning algorithms that has proved useful for

training many classification and clustering networks [1]. In
a competitive-learning network, a neuron’s synaptic weight
vector typically represents a set of related data points. Upon re-
ceiving an input, each neuron adapts, decreasing the difference
between its weight vector and the input based on the following
rule:

(1)

where is the weight vector of theth neuron, is the learning
rate, is the activation of theth neuron, and is the
input vector (we follow the convention that variables denoted
in boldface correspond to vectors or matrices). The activation
depends on the similarity between a neuron’s synaptic weights
and the input and can be inhibited by other neurons; hence neu-
rons compete for input data. An example of is a hard
winner-take-all (WTA) [2], where if is the weight
vector most similar to the input, or zero otherwise.

Different kinds of inhibition lead to different learning rules.
A hard WTA leads to the basic competitive learning rule where
the most similar neuron updates its weight vector according to
the rule

(2)

Manuscript received July 31, 2000. This work was supported by the NSF
under Grants BES 9720353 and ECS 9733425 and by a Packard Foundation
Fellowship.

The authors are with the Department of Computer Science and Engineering,
University of Washington, Seattle, WA 98195-2350 USA (e-mail: hsud@
cs.washington.edu; miguel@cs.washington.edu; diorio@cs.washington.edu).

Publisher Item Identifier S 1045-9227(02)04434-X.

Fig. 1. A framework for competitive learning. Each neuron computes the
difference between the input vector and the values stored in its synapses.
Each synapse computes the distance between its input and a stored value.
The neuron aggregates its synaptic outputs and updates its synaptic weights
in an unsupervised fashion. The adaptation typically decreases the difference
between the neuron’s input and weight vector. Competition among neurons
ensures that only neurons that are close to the input adapt.

and the other neurons do not adapt. A soft WTA [3], [4] leads to
an online version of maximum likelihood competitive learning
[5]. Imposing topological constraints on the inhibition leads to
learning rules appropriate for self-organizing feature maps [6].
These learning routines can be used to train nearest neighbor
style classifiers [7], [8], adaptive vector quantizers, ART net-
works [1], mixtures of experts and radial basis functions [9].

The synapses in a competitive-learning network typically
follow a common adaptation dynamic, increasing the similarity
between the synaptic weight vector and the present input.
Consequently, a silicon synapse that exhibits this behavior can
be combined with external circuitry to implement many neural
learning algorithms.

Very large scale integration (VLSI) implementations of com-
petitive-learning synapses have been reported in the literature
[10]–[13]. These synapses typically use digital or capacitive
weight storage. Digital storage is expensive in terms of die area
and limits the precision of synaptic weight updates. Capacitive
storage requires a refresh scheme to prevent weight decay. In
addition, these implementations all require separate weight-up-
date and computation phases, adding complexity to the control
circuitry. More importantly, neural networks built with these
synapses do not typically adapt during normal operation. A no-
table exception is the analog synapse designed by Fusiet al.
[14], which integrates the capacitive refresh into the weight up-
date dynamics. However, their synapse does not perform com-
petitive learning.

1045-9227/02$17.00 © 2002 IEEE

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 733

Synapse transistors [15]–[18] address the problems raised
in the previous paragraph. These devices use a floating-gate
technology similar to that found in digital EEPROMs to pro-
vide nonvolatile analog storage and local adaptation in silicon.
The adaptation mechanisms do not significantly perturb the
operation of the device, thus enabling simultaneous adaptation
and computation. Despite these advantages, the adaptation
mechanisms provide dynamics that are difficult to translate
into existing neural-network learning rules. Thus, so far, this
technology has not been used to build competitive learning
networks in silicon.

To avoid the difficult task of mimicking existing competitive-
learning rules in silicon, we instead constructed a circuit that
naturally exhibited competitive learning dynamics and then de-
rived a learning rule directly from the physics of the component
synapse transistors. Our 11-transistor silicon circuit, termed an
automaximizing bump circuit, computes a similarity measure,
provides nonvolatile storage and local adaptation and performs
simultaneous adaptation and computation. As we show in this
paper, our circuit provides the functionality we desire in a com-
petitive-learning primitive.

By employing different feedback error signals to our bump
circuit, we can develop a large class of competitive-learning
networks in silicon. Consequently, we envision this circuit as a
fundamental building block for many large-scale clustering and
classification networks. As a first example, we have fabricated
a circuit that clusters one-dimensional (1-D) data.

We begin this paper by reviewing synapse transistors. In Sec-
tion III, we describe the automaximizing bump circuit. In Sec-
tion IV, we show data from a 1-D competitive learning network,
fabricated in a 0.35-m CMOS process, that learns to cluster
data drawn from a mixture of Gaussians. The network architec-
ture is readily scalable to-dimensional inputs. The later sec-
tions discuss issues related to this architecture and demonstrate,
via software simulation, that the competitive learning rule de-
rived from the bump synapses can perform effective clustering.
Finally we provide some discussion and conclusions.

II. SYNAPSE TRANSISTORS

Because the properties of the automaximizing bump circuit
depend on the storage and adaptation mechanisms of synapse
transistors, we begin by reviewing these mechanisms. Fig. 2
illustrates the four-terminalpFET synapse transistor that
we use in the bump circuit. The synapse comprises a single
MOSFET, (with a poly2 control gate capacitively coupled
to a poly1 floating gate) and an associated-well tunneling
implant. It uses floating-gate charge to represent a nonvolatile
analog memory and outputs a source current that varies with
both the stored charge and the control-gate input voltage.
The synapse transistor uses two mechanisms for adaptation:
Fowler-Nordheim (FN) tunneling [19] increases the stored
charge; impact-ionized hot-electron injection (IHEI) [20]
decreases the charge. Because tunneling and IHEI can both be
active during normal transistor operation, the synapse enables
simultaneous adaptation and computation.

A voltage difference between the floating gate and the tun-
neling implant causes electrons to tunnel from the floating gate,

Fig. 2. (a) Layout view of apFET synapse. The synapse comprises a single
MOSFET, with poly1 floating gate and poly2 control gate and an associated
n-well tunneling implant. (b) Circuit symbol for apFET synapse.

through gate oxide, to the tunneling implant. The magnitude of
the tunneling current depends on the voltage across the gate
oxide, defined as the difference between the floating-gate and
tunneling-implant voltages. We approximate this gate current
by

(3)

where is a pre-exponential constant and depends on
oxide thickness [17]. We substitute and

into (3), where and are quiescent
voltage levels around which the (small-signal) tunneling and
floating-gate voltages vary. We represent these variations as

and . We then approximate for
small and solve [18]

(4)

where is the tunneling current when and
and is a constant defined by

(5)

Fig. 3 shows tunneling data for the 0.35m process, including
a fit according to (4).

IHEI (impact-ionized hot-electron injection) adds electrons
to the floating gate, decreasing its stored charge. The magni-
tude of the IHEI current varies with the transistor’s source cur-
rent and channel-to-drain voltage () [18]; over a small drain-
voltage range, we can model this dependence as [15]

(6)

where and are constants. In Fig. 4, we illustrate the injec-
tion efficiency, defined as the injection current divided by the

734 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

Fig. 3. Tunneling currentI versus (V � V). Equation (3) fits the
experimental data over the range of oxide-current values that we use in the
automaximizing bump circuit.

Fig. 4. Injection efficiency, defined asI divided byI , versus channel-to-
drain voltage, with a fit from (5). Our bump-circuit experiments (e.g., Figs. 7–9)
use channel-to-drain voltages ranging from 3.25 V to 3.75 V.

source current, along with a fit according to (5). If we operate
the MOSFET in its subthreshold regime, is essentially con-
stant across the channel and we can rewrite (6) in terms of the
transistor’s source-to-drain voltage, and its source current,

[15]

(7)

where is the thermal voltage (25.7 mV at room tem-
perature). Equation (7) illustrates the dependence of the IHEI
current on the transistor’s source-to-drain voltage and source
current.

III. T HE AUTOMAXIMIZING BUMP CIRCUIT

The automaximizing bump circuit is an adaptive version of
the classic bump-antibump circuit [21]. The circuit uses synapse
transistors to implement the three necessary functions of a com-
petitive-learning synapse: 1) storage of a weight value; 2)
computation of a similarity measure between the input and;
and 3) adaptation that decreases the difference betweenand
the present input.

The bump-antibump circuit of Fig. 5(a) provides an ideal
starting point for our discussion. It comprises only five tran-
sistors and computes a similarity measure between two input
voltages, and . The bump circuit generates three output

(a)

(b)

Fig. 5. (a) Bump–antibump circuit.I computes a similarity measure
betweenV and V . I or I increase whenV � V or V � V ,
respectively. (b) Automaximizing bump circuit. We replaceM ,M , M and
M with synapse transistors.M andM share a common floating gate, as do
M andM . I computes a similarity measure betweenV andV where
V depends onV andQ andV depends onV andQ , respectively. A
high voltage onV causes electron tunneling from both floating gates. A low
voltage onV enables injection through thenFET current mirrors. The circuit
adaptsQ andQ to maximizeI .

currents. The two outside currents,and , are a measure of
the dissimilarity between the two inputs; the center current is a
measure of the similarity. The center current follows the
equation

(8)

where is the ratio of the strength of the middle transistors (
and) to the outer transistors (and), is the back-gate
coefficient (approx 0.6 0.8) and is the bias current sourced
by . is symmetric with respect to the voltage difference
between and and approximates a Gaussian centered at

.
Part (b) of Fig. 5 shows the automaximizing bump circuit that,

for convenience, we refer to as abump circuit. We replace ,
, and with synapse transistors. and share

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 735

a common floating gate and tunneling junction, as do and
. The charge stored on the bump circuit’s floating gates shift
’s peak away from . We interpret this shift as the

weight, , stored by the circuit and interpret as a similarity
measure between the differential input, and the weight

.
Alternately, we could use the antibump outputs as a distance

measure. and are large when or , re-
spectively. In addition to providing a (saturating) distance mea-
sure, the antibump outputs also provide the direction of the in-
equality. Unfortunately, the antibump outputs saturate and there-
fore only provide distance information for inputs close to the
stored weight. Although also saturates, does not.
Therefore, is a more informative similarity measure (for
more details see Section V). Furthermore, when computing dis-
tances between two objects, we are typically unconcerned with
direction, only with magnitude. Consequently, even though
does not provide direction information, this is not a concern. Di-
rection is important for computing weight updates and, as we
show in Section III-B2, we use the antibump outputs to perform
adaptation.

The circuit isautomaximizingbecause tunneling and injec-
tion naturally tune ’s peak to coincide with the present input
(), decreasing the difference between the stored weight
and the input. We enable adaptation by activating both tunneling
and injection and disable adaptation by shutting off both mecha-
nisms. A high V causes tunneling and a low

V causes injection. ThenFET current mirrors () and
diodes () control the amount of injection at each
synapse transistor (we defer details until Section III-B2). A low

V and high V , deactivate adaptation. We
can achieve a wide range of adaptation rates by choosing appro-
priate values for and .

By itself, the bump circuit does not implement competitive
learning. The circuits we construct around it, that select bumps
for adaptation, enable competitive behavior. Different selection
mechanisms can implement a wide variety of competitive
learning rules; we show one such rule in Section IV. We
conclude this section by describing the bump circuit in more
detail.

A. Stored Weight and Input Representation

We now express the bump circuit’s weight as a function of its
floating-gate charge. This charge has the same effect as a voltage
in series with the control gate, of value , where is the
floating-gate charge and is the control-gate to floating-gate
coupling capacitance. We define the input to the bump cir-
cuit to be a differential signal . To ensure sym-
metric adaptation, we constrain the common mode ofand
to be a fixed voltage (how this ensures symmetric adapta-
tion will become clear shortly) and express
and . computes the similarity between
the floating-gate voltages and

, where and are ’s and
’s floating-gate charge. We define the circuit’s weightas

(9)

Because of the differential input encoding and weight defini-
tion, . Therefore, computes the
similarity between and . Fig. 6 shows the bump circuit’s

output for three weight values, as a function of the differ-
ential input . We see that different stored values change the
location of the peak, but do not change the bump shape.

The differential encoding of in terms of and also
leads to symmetric adaptation dynamics, because the values of
the two floating-gate voltages only depend on the magnitude
of and not on the sign. Other encodings (e.g., setting

and) do not have this property.

B. Adaptation

We now examine the bump circuit’s adaptation. We start by
defining . Because ,
the magnitude of is equivalent to . We begin
by considering the effect of tunneling on .

1) The Tunneling Learning Rule:Tunneling decreases
the difference between and . In practice, tunneling
increases the voltage of both floating gates, but, because
tunneling increases exponentially the lower the floating-gate
voltage [see (4)], tunneling decreases the difference.

Assuming that ’s floating-gate voltage is lower than ’s,
the change in due to electron tunneling is

(10)

where and are the tunneling currents at and ,
respectively. Equation (4) describes the tunneling current as a
function of the deviation of the floating gate voltage from a fixed
voltage level. Consequently, we express variations in the bump
circuit’s two floating-gate voltages as
and , where
is the small-signal variation in the common-mode voltage. We
substitute (4) into (10) and solve

(11)

(12)

We substitute (11) and (12) into (10) and solve

(13)

where . depends on three factors:
a controllable learning rate, ; the difference between the
input and the stored weight, ; and the average floating-gate
voltage, .

Unfortunately, tunneling currents are not well matched, even
for two synapse transistors on the same chip. Consequently, the
two tunneling currents equalize at a slight offset from .
We model the mismatch by adding an offset term to the sinh
from (13)

(14)

Fig. 7 shows measured versus due to tunneling,
including a fit from (14). In our experiments, the measured tun-
neling offset is about 18 mV.

736 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

Fig. 6. Experimental measurements ofI versusV for a single auto-
maximizing bump circuit, for three stored values labeled� , � and� . The
stored weight changes the location of the bump peak, but not the bump shape.

Fig. 7. Derivative of�V plotted versus�V due to electron tunneling. We
fit these data using (14). We measured the change in the location ofI ’s peak
due to a short tunneling pulse when the floating gates were�V apart. Different
values for�V merely change the magnitude of adaptation, not the general
shape. We followed the same measurement procedure for the experiments of
Figs. 8 and 9.

2) The Injection Learning Rule:IHEI decreases the differ-
ence between and . We bias the circuit so that only
and experience IHEI. From (7), we see that IHEI varies sub-
linearly with the transistor’s source current, but exponentially
with its source-to-drain voltage. Consequently, we decrease

by controlling the drain voltages of and .
We use cross-coupled current mirrors (and

) at the drains of and , to raise the drain
voltage of the floating-gate transistor that is sourcing a larger
current and to lower the drain voltage of the floating-gate
transistor that is sourcing a smaller current. The transistor with
the smaller source current experiences a largerand thus
exponentially more IHEI, causing its source current to rapidly
increase. Diodes () raise the drain voltage of
the transistor with the larger current yet further. The net effect
is that IHEI equalizes the source currents of the floating-gate
transistors and, likewise, their floating-gate voltages. Negative
feedback from the cross-coupled current mirrors is necessary
for the automaximizing behavior; circuits that do not incor-
porate such feedback exhibit runaway IHEI [18]. Appendix A
provides a small-signal stability analysis of this feedback.

To see this behavior more clearly, let us first examine the case
where the two floating-gate voltages are equal. Ifand are

equal, then the drain voltages of and will likewise be
equal. If we set low enough to cause injection, both tran-
sistors will inject at the same rate, because their source currents
and drain voltages will be the same. Therefore, injection does
not change . In addition, because transistors and
have the same gate voltage,will split evenly at the drain of

. The same is true for at the drain of .
Now consider the case where is lower than
. now tries to sink a current that is larger than . Con-

sequently, sink less than , causing ’s drain
voltage to fall and, in turn, decreasing the current thatsinks.
This further increases the amount of current that flows through

. The positive feedback process causesto sink all of
and and to sink all of . As a result, ’s drain voltage
drops to and ’s drain voltage rises to

. This process will exhibit hysteresis if the gain of either cur-
rent mirror exceeds unity (see Appendix A).

The weight change for injection follows a similar form to that
of tunneling

(15)

The final IHEI weight update rule follows by substituting the
expressions for and from (7) into (15). To determine
values for the drain voltages of and , we assume that all
of flows through and all of flows through . We de-
rive the update rule from a large-signal analysis in Appendix B.
The final form is

(16)
where , , and

. is the transistor’s pre-exponential current. The
two functions, and , are

(17)

(18)

where ,
and is

(19)

Like tunneling, due to IHEI depends on three fac-
tors: A controllable learning rate, ; the difference between
the stored weight and the input, ; and .

Fig. 8 shows experimental measurements of versus
due to IHEI, along with a fit from (16). As increases,

the weight-update magnitude reaches its peak between 0.1 V
and 0.2 V and then decreases afterwards. The increase in mag-
nitude between 0 V and 0.14 V occurs because the difference
between the drain voltages of and increases as
increases. At , the difference between ’s and

’s drain voltages has reached its maximum value; therefore,
further increasing only causes the source current for the

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 737

Fig. 8. Derivative of�V plotted versus�V due to electron injection. We
fit these data using (16). Different values for�V merely change the magnitude
of adaptation, not the shape.

transistor with the lower floating gate voltage to increase and the
source current of the other transistor to decrease, decreasing the
magnitude of the IHEI weight update. Finally, we note that be-
cause the bump circuit’s output is symmetric with respect to
and , the IHEI weight-update rule takes the same form when

.
3) Composite Learning Rule:Injection and tunneling cause

adaptation by adding and removing charge from the bump cir-
cuit’s floating gates, respectively. In isolation, either mechanism
will eventually drive the bump circuit out of its useful operating
range. For effective adaptation, we need to activate both. Inter-
estingly, Figs. 7 and 8 show that tunneling acts more strongly
for larger values of , whereas injection shows the opposite
behavior. The two mechanisms complement each other to pro-
vide effective adaptation over a large range of .

Combining (14) and (16), we obtain the general bump circuit
weight-update rule

(20)

The data and fit in Fig. 9 illustrates this learning rule. When
is small, adaptation is primarily driven by injection,

whereas tunneling dominates for larger values of . The
dip in adaptation rate around V occurs because,
as injection decreases, the contribution of tunneling has not
yet increased enough to compensate. We can change the
learning dynamics by modifying the sizes of transistor sizes of

, the topology of thenFET current mirrors and the
magnitudes of and .

The weight-update rule in (20) is unlike any learning rule that
we have found in the literature. Nevertheless, it exhibits several
desirable properties. First, it increases the similarity between the
bump circuit’s weight and the present input. Second, the weight
update is symmetric with respect to the difference between the
weight and the present input. Third, the update rule decomposes
into a product of 1) a weight-independent update rate; 2) update
rates set by controllable terminal voltages (and); 3) an
autozeroing common-mode voltage (); and 4) rates depen-
dent on the difference between the weight and the input ().

Fig. 9. Derivative of�V versus�V , due to electron injection and
tunneling. We simultaneously pulsedV andV on for short periods of time
and measured the resulting change in�V . We fit these data to the learning
rule given in (20).

Finally, the learning rule derives from the physics of the silicon.
This allows for a compact and efficient VLSI implementation.

C. Layout Area and Power Consumption

Recently optimized bump-circuit layouts occupy m
m in a 0.35 m process. We share the-well that the tun-

neling junctions occupy among multiple bump circuits, saving
layout area (especially for large arrays).

We operate our bump circuit with subthreshold currents in the
range of 10 nA to 100 nA. Consequently, the power consump-
tion is typically less than a microwatt.

D. Common-Mode Rejection

varies with the common mode voltage, (recall
. Parasitic capacitive coupling from

and to the floating gates alters the common-mode
voltage, thereby altering . A few simple circuit techniques
can reduce this problem. Increasing the length of the bias
transistor, cascoding the bias transistor, or increasing the sizes
of the floating-gate capacitors increases the common-mode
rejection. The first two solutions do not appreciably increase
the layout area. Finally, Harrisonet al.have described compen-
satory circuits for canceling parasitic coupling to the floating
gates [22]. We can adapt these techniques to the bump circuit.

Variations in during adaptation also affect the circuit’s
learning dynamics, because altering alters the relative
contribution of injection and tunneling in the bump circuit’s
learning rule (20). Our circuit compensates byautozeroing
over time [23]. Indeed, notice that a high strengthens injec-
tion and weakens tunneling, lowering . Conversely, a low

strengthens tunneling and weakens injection, raising.
Theoretically, can reach a state in which both the injec-

tion and tunneling currents are small, leading to slow adapta-
tion. This state can occur when the common-mode voltage is so
high that there is little tunneling and the difference between
and is so large that there is little injection. However, this only
occurs if the bump circuit only adapts to inputs that are very dis-
tant from it. The likelihood of this occurrence is very small in
classification and clustering problems because the bump circuit
typically adapts to a distribution of inputs.

738 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

Fig. 10. A CLC, comprising two bump circuits, a WTA and feedback circuitry
that derive localV andV signals from the WTA output.

IV. COMPETITIVE LEARNING CIRCUIT

Fig. 10 shows a 1-D competitive learning circuit (CLC) that
clusters 1-D data. The CLC comprises multiple bump circuits
with a common input. Each bump circuit computes the sim-
ilarity between the input and its weight; a WTA [13] selects
the bump circuit that produces the largest output. On-chip feed-
back circuitry transforms the WTA’s outputs into and
signals for each bump circuit, causing the closest bump circuit
to adapt to the input and inhibiting other bump circuits from
adapting.

The feedback circuitry that converts the WTA output into
and signals is quite simple—it comprises three in-

verters and a modified transconductance amplifier. The inverters
shown in Fig. 11(a) take the WTA output () and generate

when is high, or when is low.
These voltages activate or deactivate injection, respectively. We
used three inverters to increase the overall gain in the circuit.
sets the first inverter’s threshold. In our experiments, we used

V and V.
The modified transconductance amplifier in Fig. 11(b) takes

as input , the voltage generated by the second inverter in
the generator and sets equal to when is
higher than and four diode drops below otherwise.
The voltage swing on activates or deactivates tunneling.
Because the drain voltages of and are the tunneling
voltage (10 V), we make these devices high-voltagenFETS
by using a -well for the drain. For a layout, see [22]. Together,
the two circuits in Fig. 11 simultaneously activate or deactivate
injection and tunneling.

We fabricated 2-bump and 8-bump versions of the CLC. Al-
though both circuits are functional, for ease of testing we have
performed most of our experiments on the 2-bump version. In
Fig. 12, we show competitive learning in the 2-bump CLC. We
applied a single input drawn from a mixture of 2 Gaussians. The
CLC clearly adapts to the Gaussians—each bump selects and
adapts to the mean of one of the two Gaussians.

For comparison, we also show in Fig. 12 the results of a soft-
ware neural network in which the most similar neuron updates
its value using the standard competitive learning rule from (2)
where we set the learning rateto 0.01. We apply the same data
to the simulation that we send to the chip. The data show that the

(a)

(b)

Fig. 11. (a) Circuit that generatesV from the WTA output. (b) Circuit that
generatesV from the circuit in part (a).

Fig. 12. Comparison between the competitive learning circuit and an
equivalent software neural network that used a standard competitive learning
rule. The input data were drawn from a mixture of two Gaussians, with 80%
of the data drawn from the higher Gaussian. We plot the means learned by the
circuit and the software simulation, compared to the true means of the two
Gaussians.

bump circuit’s weight-update rule exhibits the same function-
ality as the basic competitive-learning rule, but with different
adaptation dynamics.

The bump circuits’ weights exhibit a consistent offset from
the values learned by the neural network. We believe the cause
is a turn-on delay in the well-tunneling junctions—electron tun-

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 739

neling does not actually occur until several secondsafter we
raise the tunneling voltage. We have observed a similar effect
previously (see [17]: the section on bowl-shaped tunneling junc-
tions), although not in the tunneling junction that we show in
Fig. 2 (in well). If the latency between the two synapses
in a bump circuit differs, the weight may drift away from the
input; only when both tunneling junctions finally turn on does
the weight adapt toward the input. The tunneling latency may
also explain why one bump circuit adapts so quickly to one of
the true means, while the other bump circuit exhibits slower
adaptation. Each bump circuit, because of the latency, may be
strongly biased toward adaptation in one direction. We have de-
veloped an alternative tunneling junction that tunnels over
rather than over ; in experiments on isolated tunneling junc-
tions, the revised design does not exhibit a turn-on delay. We are
currently incorporating the revised design in future versions of
the automaximizing bump circuit.

Although both the software neural network and the CLC drift
about the true Gaussian centers, the CLC shows fluctuations
of greater magnitude. We believe the reason is that the CLCs
learning rate is greater than the software neural network’s
learning rate Unfortunately, because the CLC operates com-
pletely asynchronously, it is hard to quantify the learning rate
that the circuit uses.

Our competitive learning architecture can be scaled to
-dimensional inputs and any number of neurons. Each neuron

requires one bump circuit per synapse. Most important, each
neuron requires only one feedback block, because all the
synapses receive the same and . We illustrate the
approach in Fig. 13. Each bump circuit corresponds to a
synapse of a neuron; the WTA from Fig. 10 is an example of
an inhibitory circuit; and the circuits of Fig. 11 are examples
of feedback circuits.

V. NEURON DESIGN

Because a bump circuit computes a similarity measure, the
method we should use to combine bump outputs is not obvious.
The bump circuit output is a current; since addition of currents
is particularly easy to implement in analog VLSI, we might sur-
mise that addition is the correct way to combine bump outputs.
In fact, in at least one previous hardware neural network, with
synapses that compute a similarity measure, the neurons add
these similarity measures [24]. However, the way we combine
bump similarities implicitly defines a distance measure. If we
want to approximate some natural distance measures like Man-
hattan distance or squared distance1 in our network, then we
will show that multiplication provides a more sensible way to
combine bump similarities.

Intuitively, the bump circuit’s similarity measure approxi-
mates the probability that an inputwas generated by a 1-D
Gaussian (with mean and variance), where
corresponds to the bump circuit’s stored weight

(21)

1For two vectorsx andy, the Manhattan distance is� jx � y j and the
squared distance is� (x � y) .

Fig. 13. Generalized competitive learning architecture.

Fig. 14. Comparison of the bump distance measure to Manhattan and squared
distance. Distances are scaled to facilitate a comparison.

Fig. 15. Circuit that multiplies the output of two bump circuits. Each diode
transforms its input current (I or I) into a voltage that is logarithmic with the
current. ThenFET on the right is a floating-gate transistor with two control
gates; one for each diode voltage. If the floating gatenFET is biased in its
subthreshold regime, its output current will be proportional to the product of
the two bump-circuit currents.

A Gaussian is an exponential function of the squared Eu-
clidean distance between inputand mean . Consequently,
multiplying a set of Gaussian similarities is equivalent to adding
the corresponding Euclidean distances. Conversely, adding
Gaussian similarities does not correspond to any sensible

740 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

(a) (b)

(c) (d)

Fig. 16. Comparison of the standard competitive learning rule (+), bump-learning rule (o) and optimal solution (�) for learning the means of a mixture of
Gaussians where each Gaussian had a diagonal covariance matrix and the standard deviation of each dimension was (a) 0.1 V, (b) 0.2 V, (c) 0.3 V, and (d) 0.4 V.

operation on Euclidean distance. Consequently, we believe that
the correct way to combine similarities that have a Gaussian
shape is through multiplication.

We express as a negative exponential of a distance func-
tion (similar to a Gaussian), by rewriting (8) as follows:

(22)

where . is given by

(23)

Fig. 14 compares this function with Manhattan distance and
squared distance. looks like squared distance when the input
and bump weight are similar and like Manhattan distance when
the two values are dissimilar. In contrast, there is no obvious
way to extract a distance function from the addition of bump
similarities.

Finally, we consider the qualitative behavior of adding bump
similarities versus multiplying bump similarities. Because
has a Gaussian-like shape, it only provides an informative
distance measure for inputs close to the weight. However,

provides an informative distance measure for any
distance between the input and.

Fig. 15 illustrates one way to implement a multiplying neuron
for our competitive-learning architecture. We use a subthreshold

floating-gate MOSFET to multiply the currents from two bump
circuits. We capacitively couple a floating gate to diode volt-
ages derived from the bump-circuit currents. The MOSFET con-
nected to this floating-gate implements a translinear multiply
[25]. This approach requires an extra diode and capacitor for
each bump.

VI. PERFORMANCE OF THEBUMP LEARNING RULE

We performed computer simulations to investigate the per-
formance the bump learning rule on an unsupervised clustering
task. We compared two versions of a standard competitive
learning network. The first used the competitive learning rule
of (2), with the learning rate set to 0.005. The second was a sim-
ulated version of the competitive architecture in Fig. 13, with
synapses that both computed a bump similarity and adapted
according to the bump learning rule of (20) and neurons that
multiplied their synaptic outputs. We parameterized the bump
learning rule with values from the fit in Fig. 9. Both networks
performed hard competitive learning—only the neuron most
similar to the input adapted.

We drew our input from a 16-dimensional input space with
the data generated uniformly from a mixture of 16 Gaussians
(i.e., for each data point, we randomly selected one Gaussian
and generated the data point from its probability distribution
function). For each Gaussian, we drew its mean’s components

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 741

Fig. 17. To measure the effect of outliers on the bump circuit’s performance,
we altered the bump learning rule so that whenjx � �j exceeded a certain
threshold, the magnitude of the bump adaptation did not increase. The results
show that for values ofjx��j < 1, outliers did not degrade the bump circuit’s
performance.

randomly from the interval [0 V, 1 V]. Each Gaussian had a
diagonal covariance matrix. We initialized the weight vectors
for each network to the same starting point. Upon presenting
each data point, we updated each network based on its respective
learning rule.

We tested the two networks by evaluating the average coding
error for each test instance, on test data drawn from the same
set of Gaussians as the training data. The coding error is the
squared distance between each test data point and the closest
Gaussian mean. Fig. 15 shows the results averaged over ten
trials, for Gaussians where the standard deviation of each di-
mension was 0.1 V (a), 0.2 V (b), 0.3 V (c), and 0.4 V (d).
We also illustrate the coding error that the optimal mixture of
Gaussians would produce. The data show that for mixtures of
Gaussians with reasonable standard deviation Fig. 16(a)–(c),
the bump rule’s performance compares favorably with the basic
competitive learning rule of (2). In the first three cases, both
networks approach the error achieved by the correct mixture
but asymptote before reaching the best solution. We believe that
with a smaller learning rate or a slowly decaying learning rate,
both learning rules can achieve the optimal solution.

Because the bump circuit’s learning rule is exponential with
respect to (), outliers can have a large effect on the learning
dynamics. In our simulations, outliers did not become a problem
until the standard deviation became larger than 0.3 V. Fig. 16(d)
shows that the bump rule fails to converge if the standard devi-
ation exceeds 0.4 V.

To test the sensitivity of the bump rule to outliers, we per-
formed further tests on data drawn from Gaussians with stan-
dard deviation 0.4 V. We altered the rule so that if ex-
ceeded a preset threshold, the magnitude of the weight update
did not increase. We used the same learning rate for these ex-
periments as for the experiments in Fig. 16(a)–(c). We tested
different thresholds using the same experimental procedure as
in Fig. 16. We report these results in Fig. 17. The data show that
outliers that are within 1.0 V of the bump circuit’s weight do
not degrade the bump learning rule. Therefore, if we restrict the
input data to a 1.0 V interval, the exponential dynamics of bump
adaptation do not degrade learning performance.

Fig. 18. Effect of tunneling mismatch on the bump learning rule for three
mismatch values. We generated the training and test data from a mixture of
Gaussians where each Gaussian has a covariance of0:3 I . The results show
that tunneling mismatch has a negligible effect on the bump learning rule’s
performance.

Fig. 19. Performance of a competitive learning network with bump circuit
synapses using multiplicative or additive neurons.

Our second experiment shows the effect of tunneling mis-
match on the generalization performance of the bump learning
rule. We used the same methodology from the experiment of
Fig. 16 to compare bump learning with tunneling mismatches
of 0 mV, 20 mV, and 40 mV (recall that the intrinsic tunneling
offset in Fig. 7 was 18 mV). Fig. 18 shows the results for data
generated from Gaussians with a standard deviation of 0.3 V.
The results show that the bump rule is virtually unaffected by
tunneling offsets.

Our third experiment compared the performance of two
competitive learning architectures, one using multiplicative
neurons and the other using additive neurons. Again, we used
the same methodology in this experiment as in the previous
two. We tested the networks on data drawn from Gaussians
with standard deviation of 0.3 V. The results in Fig. 19 show
that, as predicted in Section V, competitive-learning rules that
use bump synapses perform better with multiplicative neurons
than with additive neurons.

These experiments demonstrate that the bump circuit’s
learning rule is well suited for performing competitive learning

742 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

in silicon. In addition, the asymmetry due to tunneling mis-
match does not greatly affect the performance of the learning
rule.

VII. CONCLUSION

We have demonstrated an 11-transistor circuit primitive that
incorporates a similarity function, nonvolatile storage and local
adaptation; we can use this circuit in analog VLSI implemen-
tations of competitive learning. This circuit leverages synapse
transistors to afford nonvolatile storage and to perform simul-
taneous adaptation and computation. The circuit’s learning rule
originates from the physics of the synapse transistors; conse-
quently, it is unlike any rule that we know of in the literature.
Even so, the learning rule provides the correct dynamics for
competitive learning and exhibits symmetric adaptation. More
importantly, software simulations show that the learning rule is
as effective as the traditional competitive learning rule for clus-
tering data drawn from a mixture of Gaussians.

To test our circuit primitive, we used it in a competitive
learning circuit that clustered 1-D data. The circuit learned to
discriminate data drawn from a mixture of Gaussians, providing
evidence that this learning rule, while natural to the physics of
our devices, is also useful in a learning context. This circuit is
readily extensible to -dimensional inputs and any number of
neurons. We intend to use this circuit primitive and variations
of the competitive learning architecture as building blocks for
silicon chips that perform clustering and classification tasks.

APPENDIX I

The sizing of current-mirror transistors determines
whether injection increases or decreases the similarity between
the floating-gate voltages of transistors and in Fig. 5. We
performed a small-signal analysis of injection in and , to
determine sizing constraints on that ensure injection
will increase the similarity. Fig. 20 shows a small-signal model.
We study the change in injection due to a small increasein

’s source current (and the symmetric decreasein ’s
source current). The values for the circuit elements in Fig. 20
are

(24)

(25)

(26)

(27)

(28)

where is the equilibrium current in diodes and , is
the current-mirror gain, is the Early voltage and and
are the drain voltages of floating-gate transistors and ,

Fig. 20. Small signal model for injection in the bump circuit (transistorsM �

M ,M �M in Fig. 5). Resistorsr model the diode connectednFETS.g
andr model the current mirrors (M �M). The top level circuits model the
IHEI dynamics of (7). We study the perturbation of the small signal model by
an increase of�I in current on transistorM and a decrease of�I on transistor
M .

respectively. By inspection, and the small-signal in-
jection in and is also equal in magnitude and opposite
in sign (i.e.,). To show that in-
jection is stable, we must show that a positivein causes
a decrease in ’s injection. Stability requires

(29)

where is given by

(30)

Substituting (24)–(29) into (30) and solving, we obtain the
current-mirror gain that ensures stability

(31)

If we substitute realistic values for and , the right-hand
side of (32) is less than 0.1, ensuring that injection is stable for
reasonable early voltages (V).

Cross-coupled current mirrors can exhibit hys-
teresis if the current-mirror gain is too high. To see why this
can occur, consider the following scenario: Suppose the cur-
rent-mirror gain is much greater than unity and, initially,is
greater than . Diodes and will sink and mirror
will sink . In fact, can sink of current and, therefore, if

, the mirror exhibits hysteresis. Hysteresis will not occur
if because, in this case, if is greater than , diodes

will sink part of , providing stabilizing feedback to
the mirrors. A small signal analysis confirms that the circuit is
stable and will not exhibit hysteresis if the mirror gain satisfies

(32)

HSU et al.: COMPETITIVE LEARNING WITH FLOATING-GATE CIRCUITS 743

APPENDIX II

We use a large-signal analysis to derive the bump circuit’s
IHEI weight-update rule. To begin, assume that sources
more current than (the analysis is symmetric for
sourcing more current than). due to IHEI derives
from the difference between the injection currents in transistors

and [see (11)]. We obtain the injection currents by
substituting (7) into (15) and solving for the 1) source currents;
2) source voltages; and 3) drain voltages of and .

A. Source Current

To derive for and , recall that transistors and
form a differential pair on that fraction of that is not part

of . and in terms of are

(33)

(34)

where is

(35)

B. Source Voltage

and share their source node, so is the same for
both. We can calculate by equating (33) and (34) with the
equivalent subthreshold expressions for a transistor’s source
current in terms of its source and gate voltages. We solve for

, [see (7)]

(36)

C. Drain Voltage

We solve for the drain voltages of and separately. We
make the approximation that all of flows through and

and all of flows through . Therefore, to solve for
and (the drain voltages of and , respectively),

we equate (33) and (34) with the equivalent subthreshold ex-
pressions for annFETs source current in terms of its gate and
source voltages. The current in and are

(37)

We solve for by equating (33) and (37)

(38)

We solve for using the following relationship:

(39)

We substitute into (39)

(40)

Solving for from (40) we obtain

(41)

Substituting (36), (38) and (41) into (7), we obtain

(42)

(43)

where ,)
and . Substituting (38) and (39) into (15), we obtain
(16)–(18)

(44)
where , and

. The two functions, and are

(45)

(46)

This result is the bump circuit’s weight-update rule (due to in-
jection) shown in (16).

ACKNOWLEDGMENT

The authors would like to thank J. Nichols for help with
layout and A. Doan, K. Partridge, M. Richardson, P. Tressel,
A. Schon, and E. Vee for their suggestions and constructive
criticism. Finally, the authors thank J. Dugger for initial
discussions that led to this research.

REFERENCES

[1] M. A. Arbib, The Handbook of Brain Theory and Neural Networks, M.
A. Arbib, Ed. Cambridge, MA: MIT Press, 1995.

[2] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-
take-all networks ofO(n) complexity,” inAdvances in Neural Informa-
tion Processing Systems. San Mateo, CA: Morgan Kauffman, 1989,
vol. 1, pp. 703–711.

[3] I. M. Elfadel and J. L. Wyatt Jr., “The softmax nonlinearity: Derivation
using statistical mechanics and useful properties as a multiterminal
analog circuit element,” inAdvances in Neural Information Processing
Systems. San Mateo, CA: Morgan Kaufmann, 1994, vol. 6, pp.
882–887.

[4] S.-C. Liu, “A winner-take-all circuit with controllable soft max
property,” in Advances in Neural Information Processing Systems, S.
A. Solla, T. K. Leen, and K. R. Muller, Eds. Cambridge, MA: MIT
Press, 2000, vol. 12, pp. 717–723.

[5] S. J. Nowlan, “Maximum likelihood competitive learning,” inAdvances
in Neural Information Processing Systems. San Mateo, CA: Morgan
Kauffman, 1990, vol. 2, pp. 574–582.

[6] T. Kohonen,Self Organizing Feature Maps, 2nd ed. Berlin, Germany:
Springer-Verlag, 1997.

[7] R. O. Duda and P. E. Hart,Pattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

[8] R. Coleet al., Survey of the State of the Art in Human Language Tech-
nology, R. Coleet al., Eds. Cambridge, U.K.: Cambridge Univ. Press,
1998.

[9] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Clarendon, 1995.

744 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

[10] H. C. Card, D. K. McNeill, and C. R. Schneider, “Analog VLSI cir-
cuits for competitive learning networks,”Analog Integrated Circuits and
Signal Processing, vol. 15, pp. 291–314, 1998.

[11] J. Lubkin and G. Cauwenberghs, “A learning parallel analog-to-digital
vector quantizer,”IEEE J. Circuits, Syst., Comput., vol. 8, pp. 604–614,
1998.

[12] D. Macq, M. Verleysen, P. Jespers, and J. D. Legat, “Analog implemen-
tation of a Kohonen map with on-chip learning,”IEEE Trans. Neural
Networks, vol. 4, pp. 456–461, May 1993.

[13] Y. He and U. Cilingiroglu, “A charge-based on-chip adaptation Kohonen
neural network,”IEEE Trans. Neural Networks, vol. 4, pp. 462–469,
May 1993.

[14] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-
driven synaptic plasticity: Theory, simulation, VLSI implementation,”
Neural Comput., 2000.

[15] C. Diorio, “A p-Channel MOS synapse transistor with self-convergent
memory writes,”IEEE Trans. Electron Devices, vol. 47, 2000.

[16] C. Diorio, P. Hasler, B. A. Minch, and C. Mead, “A complementary
pair of four-terminal silicon synapses,”Analog Integrated Circuits and
Signal Processing, vol. 13, no. 1/2, pp. 153–166, 1997.

[17] C. Diorio, “Neurally Inspired Silicon Learning: From Synapse Transis-
tors to Learning Arrays,” Ph.D. dissertation, California Inst. Technol.,
Pasadena, 1997.

[18] P. Hasler, “Foundations of Learning in Analog VLSI,” Ph.D. disserta-
tion, California Inst. Technol., Pasadena, 1997.

[19] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into ther-
mally grown SiO ,” J. Appl. Phys., vol. 40, no. 1, pp. 278–283, 1969.

[20] E. Takeda, C. Yang, and A. Miura-Hamada,Hot Carrier Effects in MOS
Devices. San Diego, CA: Academic, 1995.

[21] T. Delbruck, “Bump Circuits for Computing Similarity and Dissimilarity
of Analog Voltages,” California Inst. Technol., Pasadena, CNS Memo
26, 1993.

[22] R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, and S. P. Deweerth,
“A CMOS programmable analog memory-cell array using floating-gate
circuits,” IEEE Trans. Circuits. Syst. II, vol. 48, pp. 4–11, 2001.

[23] P. Hasler, B. A. Minch, and C. Diorio, “An autozeroing floating-gate
amplifier,” IEEE Trans. Circuits Syst. II, vol. 48, pp. 65–73, 2001.

[24] J. Anderson, J. C. Platt, and D. B. Kirk, “An analog VLSI chip for ra-
dial basis functions,” inAdvances in Neural Information Processing Sys-
tems. San Mateo, CA: Morgan Kaufmann, 1995, vol. 7, pp. 765–772.

[25] B. A. Minch, C. Diorio, P. Hasler, and C. A. Mead, “Translinear circuits
using subthreshold floating-gate MOS transistors,”Analog Integrated
Circuits and Signal Processing, vol. 9, pp. 167–179, 1996.

David Hsu received the B.S. degree from the University of California, Berkeley,
in 1996 and the M.S. degree in computer science from the University of Wash-
ington, Seattle, in 2001. He is currently pursuing the Ph.D. degree at the same
university.

His research includes VLSI design, machine learning and neural networks.

Miguel Figueroa received the B.S. degree, a professional degree, and the M.S.
degree in electrical engineering from the University of Concepcion, Chile, in
1988, 1991, and 1997, respectively. He received the M.S. degree in computer
science from the University of Washington, Seattle, in 1999 and is currently
pursuing the Ph.D. degree at the same university.

His research interests include VLSI design, neurobiology-inspired computa-
tion, and reconfigurable architectures.

Chris Diorio (M’88) received the B.A. degree in physics from Occidental Col-
lege, Los Angeles, CA, in 1983 and the M.S. and Ph.D. degrees in electrical
engineering from the California Institute of Technology, Pasadena, in 1984 and
1997, respectively.

He is an Associate Professor of Computer Science and Engineering at the
University of Washington. His research includes the interface of computing and
biology and involves both building electronic circuits that mimic the computa-
tional and organizational principles used by nerve tissue and implanting elec-
tronic circuits into nerve tissue.

Dr. Diorio received a University of Washington Distinguished Teaching
Award in 2001, an ONR Young Investigator Award in 2001, an Alfred P. Sloan
Foundation Research Fellowship in 2000, a Presidential Early Career Award in
Science and Engineering (PECASE) in 1999, a Packard Foundation Fellowship
in 1998, an NSF CAREER Award in 1998 and the Electron Devices Society’s
Paul Rappaport Award in 1996. He has worked as a Senior Staff Engineer at
TRW, Inc., as a Senior Staff Scientist at American Systems Corporation and as
a Technical Consultant at The Analytic Sciences Corporation.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

