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See also the associated code on the course website.

1. (References and Subtyping) Consider a simply-typed lambda-calculus including mutation (as defined
in homework 3), records, and subtyping (as defined in lecture 13). In other words, it has mutable
references and immutable records, plus all the subtyping rules considered in lecture. This “combined
language” has no subtyping rule for reference types yet (see below).

(a) Write an inference rule allowing covariant subtyping for reference types. Show this rule is unsound.
To show a rule is unsound, assume the language without the rule is sound (which it is). Then
give an example program, show that the program typechecks using the rule, and that evaluating
the program can get stuck.

(b) Write an inference rule allowing contravariant subtyping for reference types. Show this rule is
unsound.

(c) Write an inference rule allowing invariant subtyping for reference types. Invariant subtyping
means it must be covariant and contravariant. This rule is sound, but you do not have to show it.
However, show that this rule is not admissable (i.e., it allows programs to typecheck that could
not typecheck before). Keep in mind our language already has reflexive subtyping, so we can
already derive τ ≤ τ for all τ .

2. (Sums and Subtyping) Consider a typed λ-calculus with a more flexible version of sum types than we
considered in class:

• There are an infinite number of constructors, not just A and B. Let C range over constructors.
So an example expression is C7 (λx. x).

• A single sum type +{C1:τ1, . . . , Cn:τn} can list any finite number of constructors and the types
of the values they carry. So one example type would be +{C3:int, C7:int → int, C2:int}. Like
in Caml, the order of constructors in a type is not signficiant. Unlike in Caml, we are using
structural typing and different types can use the same constructors (with possibly different types
they carry).

• As you should expect, a match expression can have any finite number of branches, with a different
constructor for each branch. Informally (it can be formalized), a match expression has type τ if
(1) the matched expression has type +{C1:τ1, . . . , Cn:τn}, (2) for each Ci in the type there is a
branch of the form Ci xi → ei where ei has type τ assuming xi has type τi.

• The typing rule for constructor expressions can just be:

Γ ` e : τ

Γ ` C e : +{C τ}

If that seems odd, read on.

Come up with three sound and generally useful subtyping rules for these sum types and justify infor-
mally why each rule is sound. Write the rules formally.

Hint: We have three sound and generally useful subtyping rules for record types. Some of your rules
might be very similar to those and others might be analogous but crucially different.

Note: We already have rules like reflexivity and transitivity. Your rules should specifically deal with
the new sum types.
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3. (Implementing Subtyping) You have been provided an interpreter and typechecker for the language
in homework 3, extended with tuples, explicit subsumption, and named types. The example program
factorial uses these new features, but it will not typecheck until you implement subtype checking.
Language details:

• A program now begins with zero or more “type aliases” of the form type s = τ where type is a
keyword, s is an identifier, and τ is a type. A type alias makes s a legal type. As for subtyping,
s ≤ τ and τ ≤ s. You may assume without checking that a program’s type aliases have no cyclic
references (see challenge problem 3(b)) and each alias defines a different type name.

• The typechecker does not allow implicit subsumption. However, if e has type τ and τ ≤ τ ′, then
the explicit subsumption (e : τ ′) has type τ ′. If τ is not a subtype of τ ′, then (e : τ ′) should
not typecheck.

• Tuple types are written t1 * t2 ... * tn. There is no syntax for tuple types with fewer than
2 components even though the interpreter and typechecker support them.

• Similarly, tuple expressions are written (e1, e2, ..., en).

• To get a field of a tuple, use e.i where i is an integer and the fields are numbered left-to-right
starting with 1.

All you need to do is implement the subtype function in main.ml to support the following:

• A named type (i.e., type alias) is a subtype of what it aliases and vice-versa.

• Int is a subtype of Int.

• Reference types are invariant as in problem 1(d).

• Tuple types have width and depth subtyping.

• Function types have their usual contravariant argument and covariant result subtyping.

Note: Feel free to use functions from the List library to make your solution more concise. Pattern-
matching on pairs of types is also very useful.

Challenge Problems:

(a) Change typecheck to support implicit subsumption between type aliases and their definitions
(but still require explicit subsumption for all other subtyping).

(b) Extend your subtype-checker to be sound and always terminate even if the type aliases have
cycles in their definitions (e.g., the definition of s1 uses s2 and vice-versa; one-type cycles are also
a problem). Explain what subtyping you do and do not support in the presence of cycles.

4. (Types for Continuations) Recall how we added first-class continuations to the lambda-calculus with
evaluation-context semantics:

e ::= . . . | letcc x. e | throw e e | cont E
v ::= . . . | cont E
E ::= . . . | throw E e | throw v E

E[letcc x. e]→ E[(λx. e)(cont E)]

E[throw (cont E′) v]→ E′[v]

Extend the simply-typed lambda-calculus with typing rules for these new constructs. Your rules should
be sound and not unreasonably restrictive. Assume we extend the type system with types of the form
τ cont. The type τ cont should describe expressions that evaluate to cont E for some E such that E[v]
is well-typed for any v with type τ . (We don’t care what type E[v] has as long as it has some type.)

Hint: These three rules are enough given the right hypotheses:

???

Γ ` letcc x. e : τ

???

Γ ` throw e1 e2 : τ

???

Γ ` cont E : τ cont
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5. (Machines and Continuations) You are given an untyped lambda-calculus and part of a low-level
abstract machine. The machine uses explicit evaluation contexts and environments, much like the last
and most efficient interpreter in lecture 14 (interp closure). The definition of syntax and contexts
(problem5/ast.ml) is somewhat different to support more easily the fact that, unlike in lecture, we
have several types of values.

(a) Complete the definition of Main.interp to support pairs, conditionals, and first-class continua-
tions. You must maintain tail-recursion. Note the kinds of contexts you need are already defined
for you in ast.ml, along with comments about their purpose. You can do continuations last; the
provided testing program (adder) doesn’t use them.

(b) Change Main.allow halt such that:

• It takes an expression e and returns an expression e′.

• e can have free occurrences of the variable halt and call it as a function taking one argument,
i.e., halt e′′.

• If e evaluates to v without ever calling halt, then e′ evaluates to (true, v).

• If e evaluates after some number of steps to E[halt v], then e′ evaluates to (false, v).

• e′ contains e as a subexpression – that is, do not examine e, just wrap it with some outer
code.

Sample solution is 3 lines. Advice: Work out your solution on paper first. Put e in a function
that takes halt as an argument. Pass this function a function that contains a throw.

6. Challenge Problem: Extend the CPS transformation from lecture 14 to include the translation for
pairs and sums as introduced in lecture 11.
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