
CS152, Spring 2011, Assignment 5
Due: Thursday 14 April 2011, 10:00AM

Last updated: March 30

See also the associated code on the course website.

1. (Continuation-Passing Style) In this problem you will reimplement the large-step, environment-based
interpreter and the type-checker from homework 3. Your reimplementations should always use a
constant amount of stack space regardless of how big a program they evaluate or type-check. To do
so, use the idiom of continuation passing. Note that you are manually using continuation-passing style
to implement the interpreter and type-checker; you are not applying a CPS transformation to the
program being type-checked and evaluated.

• In the provided code, complete the definition of interpret, which should have type
exp -> (exp * heap) option where the result Some (v,h) carries the final value and heap and
the result None indicates a run-time error occurred. Two cases of the tail-recursive helper function
are provided to you. This helper function should never raise an exception: it should return None

or invoke the continuation it is passed. Hints:

– There is no reason to use the Some constructor in this helper function.

– It is probably easiest to copy parts of your solution to homework 3 and then modify them.

• In the provided code, complete the definition of typecheck, which should have type exp -> typ option

where the result Some typ carries the type of the entire program and None indicates a type-error
was found. You need to define a helper function that, like the helper function in part (a), takes
a function as an extra argument that serves as a continuation.

2. (System F and parametricity)

(a) Give 4 values v in System F such that:

• ·; · ` v : ∀α.(α ∗ α)→ (α ∗ α)

• Each v is not equivalent to the other three (i.e., given the same arguments it may have a
different behavior).

For one of your 4 values, give a full typing derivation.

(b) Give 6 values v in Caml such that:

• v is a closed term of type ’a * ’a -> ’a * ’a or a more general type. For example,
’a * ’b -> ’a * ’b is more general than ’a * ’a -> ’a * ’a because there is a type
substitution that produces the latter from the former (namely ’a for ’b).

• Each v is not totally equivalent to the other five.

• None perform input or output.

(c) Consider System F extended with lets, mutable references, booleans, and conditionals all with
their usual semantics and typing:

e ::= c | x | λx:τ . .e | e e | Λα. e | e [τ ] | let x = e in e | ref e |!e | e := e | if e then e else e | true | false

Unsurprisingly, if v is a closed value1 of type ∀α.(α→ bool→ bool), then v [τ ] x y and v [τ ] z y
always produce the same result in an environment where x and y are bound to values of appropriate
types. Surprisingly, there exists closed values v of type ∀α.((ref α) → (ref bool) → bool) such
that in some environment, v [τ ] x y evaluates to true but v [τ ] z y evaluates to false. Write down

1Recall a closed value has no free variables (and no heap labels).
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one such v and explain how to call v (i.e., what x, y, and z should be bound to) to get this
surprising behavior. Hints: This is tricky. Exploit aliasing. You can try out your solution in ML
(you do not need any System F features not found in ML), but do not use any ML features like
pointer-equality. Meta-hint: Feel free to ask for more hints.

3. (Strong Interfaces) This problem investigates several ways to enforce how clients use an interface. The
file stlc.ml provides a typechecker and interpreter for a simply-typed lambda-calculus. We intend to
use stlc.mli to enforce that the interpreter is never called with a program that does not typecheck. In
other words, no client should be able to call interpret such that it raises RunTimeError. We will call
an approach “safe” if it achieves this goal.

In parts (a)–(d), you will implement 4 different safe approaches, none of which require more than 2–3
lines of code in stlc.ml. (Do not change stlc.mli.) Files stlc2.mli and stlc2.ml are for part (e).

(a) Implement interpret1 such that it typechecks its argument, raises TypeError if it does not
typecheck, and calls interpret if it does typecheck. This is safe, but requires typechecking a
program every time we run it.

(b) Implement typecheck2 and interpret2 such that typecheck2 raises TypeError if its argument
does not typecheck, otherwise it adds its argument to some mutable state holding a collection
of expressions that typecheck. Then interpret2 should call interpret only if its argument is
pointer-equal (Caml’s == operator) to an expression in the mutable state typecheck2 adds to.
This is safe, but requires state and can waste memory.

(c) Implement typecheck3 to raise TypeError if its argument does not typecheck, else return a thunk
that when called interprets the program that typechecked. This is safe.

(d) Implement typecheck4 to raise TypeError if its argument does not typecheck, else return its
argument. Implement interpret4 to behave just like interpret. This is safe; look at stlc.mli
to see why!

(e) Copy your solutions into stlc2.ml. Use diff to see that stlc2.ml and stlc2.mli have one
small but important change: part of the abstract syntax is mutable.

For each of the four approaches above, decide if they are safe for stlc2. If an approach is not safe,
put code in adversary.ml that will cause Stlc2.RunTimeError to be raised. (See adversary.ml

for details about where to put this code.)

4. (Recursive types) In this problem, we show that a typed lambda-calculus with recursive types and
explicit roll and unroll coercions is as powerful as the untyped lambda-calculus. We give this language
the following syntax, operational semantics, and typing rules (where for the sake of part (c) we allow
evaluation of the right side of an application even if the left side is not yet a value):

τ ::= α | τ → τ | µα.τ
e ::= x | λx:τ . e | e e | rollµα.τ e | unroll e
v ::= λx:τ . e | rollµα.τ v

e→ e′

e e2 → e′ e2

e→ e′

e1 e→ e1 e
′

e→ e′

rollµα.τ e→ rollµα.τ e
′

e→ e′

unroll e→ unroll e′

(λx. e) v → e[v/x] unroll (rollµα.τ v)→ v

∆; Γ ` x : Γ(x)

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ ` e1 : τ2 → τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ ` e : τ [(µα.τ)/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]
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(a) Define a translation from the pure, untyped, call-by-value lambda-calculus to the language above.
Naturally, your translation should preserve meaning (see part (c)) and produce well-typed terms
(see part (b)). Use trans(e) to mean the result of translating e. You just need to write down how
to translate variables, functions (notice the target language has explicit argument types), and
applications. The translation must insert roll and unroll coercions exactly where needed. The key
trick is to make sure every subexpression of trans(e) has type µα.α→ α.

(b) Prove this theorem, which implies that if e has no free variables, then trans(e) type-checks: If
Γ(x) = µα.α→ α for all x ∈ FV (trans(e)), then ·; Γ ` trans(e) : µα.α→ α. (If the theorem is
false, go back to part (a) and fix your translation.)

(c) Prove this theorem, which, along with determinism of the target language (not proven, but true),
implies that trans(e) preserves meaning: If e→ e′ then trans(e)→2 trans(e′) (notice the 2!). (If
the theorem is false, go back to part (a) and fix your translation.) Note: A correct proof will
require you to state and prove an appropriate lemma about substitution.

(d) Explain briefly why the theorem in part(c) is false if we replace
e→ e′

e1 e→ e1 e
′ with

e→ e′

v e→ v e′
.

5. Challenge Problem: In class, you saw ML-style type inference (i.e., let-polymorphism) for a small
language including constants, functions, applications, and let-bindings. Extend this language with
pairs, booleans, and conditionals and implement type inference for this language in ML. (That is, define
abstract syntax for expressions and types and write a Caml function that takes an expression that has
no type annotations and produces different abstract syntax where every expression is “decorated” with
its type.) For an additional challenge, extend the language with “let rec” following ML’s restriction
that any recursive call of a polymorphic function must instantiate each α with exactly α.
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