
CS152: Programming Languages

Lecture 12 — The Curry-Howard Isomorphism

Dan Grossman
Spring 2011

Curry-Howard Isomorphism

What we did:

I Define a programming language

I Define a type system to rule out programs we don’t want

What logicians do:
I Define a logic (a way to state propositions)

I Example: Propositional logic p ::= b | p ∧ p | p ∨ p | p→ p

I Define a proof system (a way to prove propositions)

But it turns out we did that too!

Slogans:

I “Propositions are Types”

I “Proofs are Programs”

Dan Grossman CS152 Spring 2011, Lecture 12 2

A slight variant

Let’s take the explicitly typed simply-typed lambda-calculus with:

I Any number of base types b1, b2, . . .

I No constants (can add one or more if you want)

I Pairs

I Sums

e ::= x | λx. e | e e
| (e, e) | e.1 | e.2
| A(e) | B(e) | match e with Ax. e | Bx. e

τ ::= b | τ → τ | τ ∗ τ | τ + τ

Even without constants, plenty of terms type-check with Γ = · ...

Dan Grossman CS152 Spring 2011, Lecture 12 3

Example programs

λx:b17. x

has type

b17 → b17

Dan Grossman CS152 Spring 2011, Lecture 12 4

Example programs

λx:b1. λf :b1 → b2. f x

has type

b1 → (b1 → b2)→ b2

Dan Grossman CS152 Spring 2011, Lecture 12 5

Example programs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

has type

(b1 → b2 → b3)→ b2 → b1 → b3

Dan Grossman CS152 Spring 2011, Lecture 12 6

Example programs

λx:b1. (A(x),A(x))

has type

b1 → ((b1 + b7) ∗ (b1 + b4))

Dan Grossman CS152 Spring 2011, Lecture 12 7

Example programs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.
(match z with Ax. f x | Bx. g x)

has type

(b1 → b3)→ (b2 → b3)→ (b1 + b2)→ b3

Dan Grossman CS152 Spring 2011, Lecture 12 8

Example programs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

has type

(b1 ∗ b2)→ b3 → ((b3 ∗ b1) ∗ b2)

Dan Grossman CS152 Spring 2011, Lecture 12 9

Empty and Nonempty Types

Have seen several “nonempty” types (closed terms of that type):

b17 → b17

b1 → (b1 → b2)→ b2

(b1 → b2 → b3)→ b2 → b1 → b3

b1 → ((b1 + b7) ∗ (b1 + b4))

(b1 → b3)→ (b2 → b3)→ (b1 + b2)→ b3

(b1 ∗ b2)→ b3 → ((b3 ∗ b1) ∗ b2)

There are also lots of “empty” types (no closed term of that type):

b1 b1 → b2 b1 + (b1 → b2) b1 → (b2 → b1)→ b2

And “I” have a “secret” way of knowing whether a type will be
empty; let me show you propositional logic...

Dan Grossman CS152 Spring 2011, Lecture 12 10

Propositional Logic

With→ for implies, + for inclusive-or and ∗ for and:

p ::= b | p→ p | p ∗ p | p+ p
Γ ::= · | Γ, p

Γ ` p

Γ ` p1 Γ ` p2
Γ ` p1 ∗ p2

Γ ` p1 ∗ p2
Γ ` p1

Γ ` p1 ∗ p2
Γ ` p2

Γ ` p1
Γ ` p1 + p2

Γ ` p2
Γ ` p1 + p2

Γ ` p1 + p2 Γ, p1 ` p3 Γ, p2 ` p3
Γ ` p3

p ∈ Γ

Γ ` p
Γ, p1 ` p2

Γ ` p1 → p2

Γ ` p1 → p2 Γ ` p1
Γ ` p2

Dan Grossman CS152 Spring 2011, Lecture 12 11

Guess what!!!!

That’s exactly our type system, erasing terms and changing each τ to a p

Γ ` e : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2
Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Dan Grossman CS152 Spring 2011, Lecture 12 12

Curry-Howard Isomorphism

I Given a well-typed closed term, take the typing derivation,
erase the terms, and have a propositional-logic proof

I Given a propositional-logic proof, there exists a closed term
with that type

I A term that type-checks is a proof — it tells you exactly how
to derive the logic formula corresponding to its type

I Constructive (hold that thought) propositional logic and
simply-typed lambda-calculus with pairs and sums are the
same thing.

I Computation and logic are deeply connected
I λ is no more or less made up than implication

I Revisit our examples under the logical interpretation...

Dan Grossman CS152 Spring 2011, Lecture 12 13

Example programs

λx:b17. x

is a proof that

b17 → b17

Dan Grossman CS152 Spring 2011, Lecture 12 14

Example programs

λx:b1. λf :b1 → b2. f x

is a proof that

b1 → (b1 → b2)→ b2

Dan Grossman CS152 Spring 2011, Lecture 12 15

Example programs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

is a proof that

(b1 → b2 → b3)→ b2 → b1 → b3

Dan Grossman CS152 Spring 2011, Lecture 12 16

Example programs

λx:b1. (A(x),A(x))

is a proof that

b1 → ((b1 + b7) ∗ (b1 + b4))

Dan Grossman CS152 Spring 2011, Lecture 12 17

Example programs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.
(match z with Ax. f x | Bx. g x)

is a proof that

(b1 → b3)→ (b2 → b3)→ (b1 + b2)→ b3

Dan Grossman CS152 Spring 2011, Lecture 12 18

Example programs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

is a proof that

(b1 ∗ b2)→ b3 → ((b3 ∗ b1) ∗ b2)

Dan Grossman CS152 Spring 2011, Lecture 12 19

Why care?

Because:

I This is just fascinating (glad I’m not a dog)

I Don’t think of logic and computing as distinct fields

I Thinking “the other way” can help you know what’s
possible/impossible

I Can form the basis for automated theorem provers

I Type systems should not be ad hoc piles of rules!

So, every typed λ-calculus is a proof system for some logic...

Is STLC with pairs and sums a complete proof system for
propositional logic? Almost...

Dan Grossman CS152 Spring 2011, Lecture 12 20

Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

Γ ` p1 + (p1 → p2)

(Think “p+¬p” – also equivalent to double-negation ¬¬p→ p)

STLC has no proof for this; no closed expression has this type

Logics without this rule are called constructive. They’re useful
because proofs “know how the world is” and “are executable” and
“produce examples”

Can still “branch on possibilities” by making the excluded middle
an explicit assumption:

((p1 + (p1 → p2)) ∗ (p1 → p3) ∗ ((p1 → p2)→ p3))→ p3

Dan Grossman CS152 Spring 2011, Lecture 12 21

Example classical proof

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If
it is not a weekday, traffic is light and I can drive. Since it is a
weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know day it is, this proof does
not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be”

You can’t prove the theorem above, but you can prove, “If I know
whether it is a weekday or not, then I can get to campus by 10AM”

Dan Grossman CS152 Spring 2011, Lecture 12 22

Example classical proof

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If
it is not a weekday, traffic is light and I can drive. Since it is a
weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know day it is, this proof does
not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be”

You can’t prove the theorem above, but you can prove, “If I know
whether it is a weekday or not, then I can get to campus by 10AM”

Dan Grossman CS152 Spring 2011, Lecture 12 22

Example classical proof

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If
it is not a weekday, traffic is light and I can drive. Since it is a
weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know day it is, this proof does
not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be”

You can’t prove the theorem above, but you can prove, “If I know
whether it is a weekday or not, then I can get to campus by 10AM”

Dan Grossman CS152 Spring 2011, Lecture 12 22

Example classical proof

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If
it is not a weekday, traffic is light and I can drive. Since it is a
weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know day it is, this proof does
not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be”

You can’t prove the theorem above, but you can prove, “If I know
whether it is a weekday or not, then I can get to campus by 10AM”

Dan Grossman CS152 Spring 2011, Lecture 12 22

Example classical proof

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If
it is not a weekday, traffic is light and I can drive. Since it is a
weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know day it is, this proof does
not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be”

You can’t prove the theorem above, but you can prove, “If I know
whether it is a weekday or not, then I can get to campus by 10AM”

Dan Grossman CS152 Spring 2011, Lecture 12 22

Fix

A “non-terminating proof” is no proof at all

Remember the typing rule for fix:

Γ ` e : τ → τ

Γ ` fix e : τ

That let’s us prove anything! Example: fix λx:b3. x has type b3

So the “logic” is inconsistent (and therefore worthless)

Related: In ML, a value of type ’a never terminates normally
(raises an exception, infinite loop, etc.)

let rec f x = f x

let z = f 0

Dan Grossman CS152 Spring 2011, Lecture 12 23

Last word on Curry-Howard

It’s not just STLC and constructive propositional logic

Every logic has a correspondng typed λ calculus (and no consistent
logic has something as “powerful” as fix).

I Example: When we add universal types (“generics”) in a few
lectures, that corresponds to adding universal quantification

If you remember one thing: the typing rule for function application
is modus ponens

Dan Grossman CS152 Spring 2011, Lecture 12 24

