
CS152: Programming Languages

Lecture 15 — Parametric Polymorphism

Dan Grossman
Spring 2011

Goal

Understand what this interface means and why it matters:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

From two perspectives:

1. Library: Implement code to this partial specification

2. Client: Use code written to this partial specification

Dan Grossman CS152 Spring 2011, Lecture 15 2

What The Client Likes

1. Library is reusable. Can make:
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons : ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 Vector)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I E.g., with built-in lists: If foo has type ’a list -> int, then

foo [1;2;3] and foo [(5,4);(7,2);(9,2)] are totally
equivalent!
(Never true with downcasts)

I In theory, means less (re-)integration testing
I Proof is beyond this course, but not much

Dan Grossman CS152 Spring 2011, Lecture 15 3

What the Library Likes

1. Reusability — For same reasons client likes it

2. Abstraction of mylist from clients
I Clients must “behave the same” for all equivalent

implementations, even if “hidden definition” of ’a mylist

changes
I Clients typechecked knowing only there exists a type

constructor mylist
I Unlike Java, C++, R5RS Scheme, no way to downcast a t

mylist to, e.g., a pair

Dan Grossman CS152 Spring 2011, Lecture 15 4

Start simpler

The interface has a lot going on:

1. Element types held abstract from library

2. List type (constructor) held abstract from client

3. Reuse of type variables “makes connections” among
expressions of abstract types

4. Lists need some form of recursive type

This lecture considers just (1) and (3)

I First using a formal language with explicit type abstraction

I Then mention differences from ML

Note: Much more interesting than “not getting stuck”

Dan Grossman CS152 Spring 2011, Lecture 15 5

Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

New things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Dan Grossman CS152 Spring 2011, Lecture 15 6

Informal semantics

1. Λα. e: A value that when used runs e (with some τ for α)
I To type-check e, know α is one type, but not which type

2. e[τ]: Evaluate e to some Λα. e′ and then run e′

I With τ for α, but the choice of τ is irrelevant at run-time
I τ used for type-checking and proof of Preservation

3. Types can use type variables α, β, etc., but only if they’re in
scope (just like term variables)

I Type-checking will be ∆; Γ ` e : τ using ∆ to know what
type variables are in scope in e

I In universal type ∀α.τ , can also use α in τ

Dan Grossman CS152 Spring 2011, Lecture 15 7

Operational semantics

Small-step, CBV, left-to-right operational semantics:

I Note: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Dan Grossman CS152 Spring 2011, Lecture 15 8

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Dan Grossman CS152 Spring 2011, Lecture 15 9

Type System, part 1

Mostly just need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Next slide

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but trust me, allowing free type variables is a
pernicious source of language/compiler bugs

Dan Grossman CS152 Spring 2011, Lecture 15 10

Type System, part 2

Old (with one technical change to prevent free type variables):

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

New:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1
∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CS152 Spring 2011, Lecture 15 11

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

(The typing derivation is rather tall and painful, but just a
syntax-directed derivation by instantiating the typing rules)

Dan Grossman CS152 Spring 2011, Lecture 15 12

The Whole Language, Called System F

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e→ e′

e e2 → e′ e2

e→ e′

v e→ v e′
e→ e′

e[τ]→ e′[τ]

(λx:τ . e) v → e[v/x] (Λα. e)[τ]→ e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ `e : ∀α.τ1 ∆`τ2
∆; Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CS152 Spring 2011, Lecture 15 13

Examples

An overly simple polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)
I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one; in System F you can

Dan Grossman CS152 Spring 2011, Lecture 15 14

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(impossible in ML)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Cannot be made more polymorphic

Dan Grossman CS152 Spring 2011, Lecture 15 15

What next?

Having defined System F...

I Metatheory (what properties does it have)

I What (else) is it good for

I How/why ML is more restrictive and implicit

Dan Grossman CS152 Spring 2011, Lecture 15 16

Metatheory

I Safety: Language is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Surprising — we saw id [τ] id

I Parametricity, a.k.a. theorems for free
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α), then e is

equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I Erasure: Types do not affect run-time behavior

Note: Mutation “breaks everything”

I depth subtyping: hw4, termination: hw3, parametricity: hw5

Dan Grossman CS152 Spring 2011, Lecture 15 17

Security from safety?

Example: A process e should not access files it did not open
(fopen can check permissions)

Require an untrusted process e to type-check as follows:
·; · ` e : ∀α.{fopen : string→ α, fread : α→ int} → unit.

This type ensures that a process won’t “forge a file handle” and
pass it to fread

So fread doesn’t need to check (faster), file handles don’t need to
be encrypted (safer), etc.

Dan Grossman CS152 Spring 2011, Lecture 15 18

Moral of Example

In simply-typed lambda-calculus, type safety just means not
getting stuck

With type abstraction, it enables secure interfaces!

Suppose we (the system library) implement file-handles as ints.
Then we instantiate α with int, but untrusted code cannot tell

Memory safety is a necessary but insufficient condition for
language-based enforcement of strong abstractions

Dan Grossman CS152 Spring 2011, Lecture 15 19

Are types used at run-time?

We said polymorphism was about “many types for same term”,
but for clarity and easy checking, we changed:

I The syntax via Λα. e and e [τ]

I The operational semantics via type substitution

I The type system via ∆

Claim: The operational semantics did not “really” change; types
need not exist at run-time

More formally: Erasing all types from System F produces an
equivalent program in the untyped lambda calculus

Strengthened induction hypothesis: If e→ e1 in System F and
erase(e)→ e2 in untyped lambda-calculus, then
e2 = erase(e1)

“Erasure and evaluation commute”
Dan Grossman CS152 Spring 2011, Lecture 15 20

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Dan Grossman CS152 Spring 2011, Lecture 15 21

Connection to reality

System F has been one of the most important theoretical PL
models since the 1970s and inspires languages like ML.

But you have seen ML polymorphism and it looks different. In
fact, it is an implicitly typed restriction of System F.

These two qualifications ((1) implicit, (2) restriction) are deeply
related.

Dan Grossman CS152 Spring 2011, Lecture 15 22

Restrictions

I All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ
has no ∀. (Prenex-quantification; no first-class
polymorphism.)

I Only let (rec) variables (e.g., x in let x = e1 in e2) can
have polymorphic types. So n = 0 for function arguments,
pattern variables, etc. (Let-bound polymorphism)

I So cannot (always) desugar let to λ in ML

I In let rec f x = e1 in e2, the variable f can have type
∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

I Let variables can be polymorphic only if e1 is a “syntactic
value”

I a variable, constant, function definition, ...
I Called the “value restriction” (relaxed partially in OCaml)

Dan Grossman CS152 Spring 2011, Lecture 15 23

Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification — guest lecture coming soon

Dan Grossman CS152 Spring 2011, Lecture 15 24

Recovering lost ground?

Extensions to the ML type system to be closer to System F:

I Usually require some type annotations

I Are judged by:

I Soundness: Do programs still not get stuck?

I Conservatism: Do all (or most) old ML programs still
type-check?

I Power: Does it accept many more useful programs?

I Convenience: Are many new types still inferred?

Dan Grossman CS152 Spring 2011, Lecture 15 25

