Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Next lecture: Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Next lecture: Type-and-effect systems
Recursive Types

We could add list types \((\text{list}(\tau))\) and primitives \([\], ::, \text{match}\), but we want user-defined recursive types.

Intuition:

\[
\text{type intlist} = \text{Empty} \mid \text{Cons int} \times \text{intlist}
\]

Which is roughly:

\[
\text{type intlist} = \text{unit} + (\text{int} \times \text{intlist})
\]

- Seems like a named type is unavoidable
 - But that’s what we thought with let rec and we used fix

- Analogously to \(\textbf{fix } \lambda x. \ e\), we’ll introduce \(\mu \alpha . \tau\)
 - Each \(\alpha\) “stands for” entire \(\mu \alpha . \tau\)
Mighty μ

In τ, type variable α stands for $\mu\alpha.\tau$, bound by μ

Examples (of many possible encodings):
- int list (finite or infinite): $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
- int list (infinite “stream”): $\mu\alpha.\text{int} \times \alpha$
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type $\mu\alpha.\text{unit} \rightarrow (\text{int} \times \alpha)$
- int list list: $\mu\alpha.\text{unit} + ((\mu\beta.\text{unit} + (\text{int} \times \beta)) \times \alpha)$

Examples where type variables appear multiple times:
- int tree (data at nodes): $\mu\alpha.\text{unit} + (\text{int} \times \alpha \times \alpha)$
- int tree (data at leaves): $\mu\alpha.\text{int} + (\alpha \times \alpha)$
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:

▶ empty list = $A()$
 Has type: $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$

▶ cons = $\lambda x:\text{int}.\lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha))$. $B((x,y))$
 Has type: $\text{int} \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha))$

▶ head = $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha))$. match x with A. $A()$ | B. y. $B(y.1)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \times \alpha))$

▶ tail = $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha))$. match x with A. $A()$ | B. y. $B(y.2)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \times \alpha))$

But our typing rules allow none of this (yet)
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:

- empty list $= A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$

But our typing rules allow none of this (yet)
Using μ types

How do we build and use int lists $(\mu \alpha. \text{unit} + (\text{int} \times \alpha))$?

We would like:

- empty list $= A(())$
 Has type: $\mu \alpha. \text{unit} + (\text{int} \times \alpha)$
- cons $= \lambda x: \text{int}. \lambda y: (\mu \alpha. \text{unit} + (\text{int} \times \alpha)). B((x, y))$
 Has type:
 \[
 \text{int} \to (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \to (\mu \alpha. \text{unit} + (\text{int} \times \alpha))
 \]
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:

- **empty list** = $A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
- **cons** = $\lambda x: \text{int}. \lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). B((x, y))$
 Has type:
 \[\text{int} \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \]
- **head** =
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_- A(()) \mid B y. B(y.1)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\text{unit} + \text{int})$
Using μ types

How do we build and use int lists $(\mu \alpha. \text{unit} + (\text{int} \times \alpha))$?

We would like:

- **empty list** = $A(())$
 Has type: $\mu \alpha. \text{unit} + (\text{int} \times \alpha)$

- **cons** = $\lambda x: \text{int}. \lambda y:(\mu \alpha. \text{unit} + (\text{int} \times \alpha)). B((x, y))$
 Has type:
 \[
 \text{int} \rightarrow (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\mu \alpha. \text{unit} + (\text{int} \times \alpha))
 \]

- **head** =
 $\lambda x:(\mu \alpha. \text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. A(()) \mid B y. B(y.1)$
 Has type:
 \[
 (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \text{int})
 \]

- **tail** =
 $\lambda x:(\mu \alpha. \text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. A(()) \mid B y. B(y.2)$
 Has type:
 \[
 (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \mu \alpha. \text{unit} + (\text{int} \times \alpha))
 \]
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} * \alpha)$)?

We would like:

- **empty list** = $A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int} * \alpha)$

- **cons** = $\lambda x:\text{int}. \lambda y:(\mu\alpha.\text{unit} + (\text{int} * \alpha)). B((x, y))$
 Has type:
 \[
 \text{int} \rightarrow (\mu\alpha.\text{unit} + (\text{int} * \alpha)) \rightarrow (\mu\alpha.\text{unit} + (\text{int} * \alpha))
 \]

- **head** =
 \[
 \lambda x:(\mu\alpha.\text{unit} + (\text{int} * \alpha)). \text{match } x \text{ with } A_. A(()). | B y. B(y.1)
 \]
 Has type:
 \[
 (\mu\alpha.\text{unit} + (\text{int} * \alpha)) \rightarrow (\text{unit} + \text{int})
 \]

- **tail** =
 \[
 \lambda x:(\mu\alpha.\text{unit} + (\text{int} * \alpha)). \text{match } x \text{ with } A_. A(()). | B y. B(y.2)
 \]
 Has type:
 \[
 (\mu\alpha.\text{unit} + (\text{int} * \alpha)) \rightarrow (\text{unit} + \mu\alpha.\text{unit} + (\text{int} * \alpha))
 \]

But our typing rules allow none of this (yet)
Using μ types (continued)

For empty list = $A(\langle \rangle)$, one typing rule applies:

$$\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2$$

$$\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2$$

So we could show

$$\Delta; \Gamma \vdash A(\langle \rangle) : \text{unit} + (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))$$

(since $FTV(\text{int} \ast \mu\alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta$)
Using μ types (continued)

For empty list $= A(())$, one typing rule applies:

$$
\frac{\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash A(e) : \tau_1 \oplus \tau_2}
$$

So we could show

$$\Delta; \Gamma \vdash A(()) : \text{unit} \oplus (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))$$

(since $FTV(\text{int} \ast \mu\alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu\alpha.\text{unit} + (\text{int} \ast \alpha)$
Using μ types (continued)

For empty list $= \mathbf{A}((\))$, one typing rule applies:

$$
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2 \\
\frac{}{\Delta; \Gamma \vdash \mathbf{A}(e) : \tau_1 + \tau_2}
$$

So we could show

$$
\Delta; \Gamma \vdash \mathbf{A}((\)) : \text{unit} + (\text{int} \times (\mu \alpha. \text{unit} + (\text{int} \times \alpha)))
$$

(since $\text{FTV}(\text{int} \times \mu \alpha. \text{unit} + (\text{int} \times \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha. \text{unit} + (\text{int} \times \alpha)$

Notice: $\text{unit} + (\text{int} \times (\mu \alpha. \text{unit} + (\text{int} \times \alpha)))$ is

$$(\text{unit} + (\text{int} \times \alpha))[(\mu \alpha. \text{unit} + (\text{int} \times \alpha))/\alpha]$$
Using μ types (continued)

For empty list $= A((()))$, one typing rule applies:

$$
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2
\
\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2
$$

So we could show

$$
\Delta; \Gamma \vdash A((())) : \text{unit} + (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))
$$

(since $FTV(\text{int} \ast \mu\alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu\alpha.\text{unit} + (\text{int} \ast \alpha)$

Notice: $\text{unit} + (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))$ is

$(\text{unit} + (\text{int} \ast \alpha))[(\mu\alpha.\text{unit} + (\text{int} \ast \alpha))/\alpha]$

The key: Subsumption — recursive types are equal to their “unrolling”
Return of subtyping

Can use *subsumption* and these subtyping rules:

\[
\begin{align*}
\text{ROLL} & \quad \tau\left[\left(\mu\alpha.\tau\right)/\alpha\right] \leq \mu\alpha.\tau \\
\text{UNROLL} & \quad \mu\alpha.\tau \leq \tau\left[\left(\mu\alpha.\tau\right)/\alpha\right]
\end{align*}
\]

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want: Constructors use roll, destructors use unroll

Notice how little we did: One new form of type \((\mu\alpha.\tau)\) and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)
Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged
- Termination: changed!
 - $(\lambda x:\mu \alpha.\alpha \to \alpha. x x)(\lambda x:\mu \alpha.\alpha \to \alpha. x x)$
 - In fact, we’re now Turing-complete without fix (actually, can type-check every closed λ term)
- Safety: still safe, but Canonical Forms harder
- Inference: Shockingly efficient for “STLC plus μ” (A great contribution of PL theory with applications in OO and XML-processing languages)
Syntax-directed μ types

Recursive types via subsumption “seems magical”

Instead, we can make programmers tell the type-checker where/how to roll and unroll

“Iso-recursive” types: remove subtyping and add expressions:

$$
\begin{align*}
\tau & ::= \ldots | \mu \alpha.\tau \\
\varepsilon & ::= \ldots | \text{roll}_{\mu \alpha.\tau} \varepsilon \mid \text{unroll} \varepsilon \\
\nu & ::= \ldots | \text{roll}_{\mu \alpha.\tau} \nu
\end{align*}
$$

$$
\begin{align*}
\frac{e \to e'}{\text{roll}_{\mu \alpha.\tau} e \to \text{roll}_{\mu \alpha.\tau} e'} & \quad \frac{e \to e'}{\text{unroll} e \to \text{unroll} e'} \\
& \quad \frac{}{\text{unroll} (\text{roll}_{\mu \alpha.\tau} \nu) \to \nu}
\end{align*}
$$

$$
\begin{align*}
\Delta; \Gamma \vdash e : \tau[(\mu \alpha.\tau)/\alpha] & \quad \Delta; \Gamma \vdash e : \mu \alpha.\tau \\
\Delta; \Gamma \vdash \text{roll}_{\mu \alpha.\tau} e : \mu \alpha.\tau & \quad \Delta; \Gamma \vdash \text{unroll} e : \tau[(\mu \alpha.\tau)/\alpha]
\end{align*}
$$
Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

 Anything is decidable if you make the code producer give the implementation enough “hints” about the “proof”
ML datatypes revealed

How is $\mu \alpha. \tau$ related to
type $t = \text{Foo of int} \mid \text{Bar of int * t}$

Constructor use is a “sum-injection” followed by an implicit roll

- So $\text{Foo } e$ is really $\text{roll}_t \text{Foo}(e)$
- That is, $\text{Foo } e$ has type t (the rolled type)

A pattern-match has an implicit unroll

- So match e with... is really match $\text{unroll } e$ with...

This “trick” works because different recursive types use different tags – so the type-checker knows which type to roll to