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So far. . .

The difference between OOP and “records of functions with shared
private state” is dynamic-dispatch (a.k.a. late-binding) of self

(Informally) defined method-lookup to implement
dynamic-dispatch correctly: use run-time tags or code-pointers

Now: Subclassing vs. subtyping

Then fancy stuff: multiple-inheritance, interfaces, static
overloading, multiple dispatch

Next lecture: Bounded polymorphism and classless OOP
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Type-Safety in OOP

Should be clearer about what type-safety means. . .

I “Not getting stuck” has meant “don’t apply numbers”, “don’t
add functions”, “don’t read non-existent record fields”, etc.

I Pure OO has only method calls (and maybe field access)
I Stuck if method-lookup fails (no method matches)
I Stuck if method-lookup is ambiguous (no best match)

So far only failure is receiver has no method with right name/arity
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Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a class
and a type and if C extends D then C is a subtype of D

Therefore, if C overrides m, the type of m in C must be a subtype
of the type of m in D

Just like functions, method-subtyping is contravariant arguments
and covariant results

I If code knows it has a C, it can call methods with “more”
arguments and know there are “fewer” results
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Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as
an argument

But unlike other arguments, self is covariant!!

I Else overriding method couldn’t access new fields/methods

I Sound because self must be passed, not another value with
the supertype

This is the key reason encoding OO in a typed λ-calculus requires
ingenuity, fancy types, and/or run-time cost

I We won’t attempt it
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More subtyping

With single-inheritance and the class/type confusion, we don’t get
all the subtyping we want

I Example: Taking any object that has an m method from int

to int

Interfaces help somewhat, but class declarations must still say they
implement an interface

Object-types bring the flexibility of structural subtyping to OOP

With object-types, “subclassing implies subtyping”
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More subclassing

Breaking one direction of “subclassing = subtyping” allowed more
subtyping (so more code reuse)

Breaking the other direction (“subclassing does not imply
subtyping”) allows more inheritance (so more code reuse)

Simple idea: If C extends D and overrides a method in a way that
makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Bool compare(P1); ... }

class P2 extends P1 { ... Bool compare(P2); ... }

But this is not always correct...
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Subclass not a subtype

class P1 {

Int x;

Int get_x() { x }

Bool compare(P1 p) { self.get_x() == p.get_x() }

}

class P2 extends P1 {

Int y;

Int get_y() { y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&

self.get_y() == p.get_y() }

}

I As expected, P2≤P1 is unsound (assuming compare in P2 is
overriding unlike in Java or C++)
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Subclass not a subtype

I Can still inherit implementation (need not reimplement
get_x)

I We cannot always do this: what if get_x called
self.compare? Possible solutions:

I Re-typecheck get_x in subclass
I Use a “Really Fancy Type System”

I see little use in allowing subclassing that is not subtyping

But I see much use in understanding that typing is about interfaces
and inheritance is about code-sharing
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Where we are

Summary of last few slides: Separating types and classes expands
the language, but clarifies the concepts:

I Typing is about interfaces, subtyping about broader interfaces

I Inheritance (a.k.a. subclassing) is about code-sharing

Combining typing and inheritance restricts both

I Most OO languages purposely confuse subtyping (about
type-checking) and inheritance (about code-sharing), which is
reasonble in practice
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Multiple Inheritance

Why not allow class C extends C1,C2,...{...}

(and C≤C1 and C≤C2)?

What everyone agrees: C++ has it and Java doesn’t

All we’ll do: Understand some basic problems it introduces and
how interfaces get most of the benefits and some of the problems

Problem sources:

I Class hierarchy is a dag, not a tree (not true with interfaces)

I Subtype hierarchy is a dag, not a tree (true with interfaces)
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Diamond Issues

If C extends C1 and C2 and C1,C2 have a common superclass
D (perhaps transitively), our class hierarchy has a diamond

I If D has a field f , should C have one field f or two?

I If D has a method m, C1 and C2 will have a clash

I If subsumption is coercive (changing method-lookup), how we
subsume from C to D affects run-time behavior (incoherent)

Diamonds are common, largely because of types like Object with
methods like equals

Dan Grossman CS152 Spring 2011, Lecture 23 12



Multiple Inheritance, Method-Name Clash

If C extends C1 and C2, which both define a method m, what
does C mean?

Possibilities:

1. Reject declaration of C (Too restrictive with diamonds)

2. Require C to override m (Possibly with directed resends)

3. “Left-side” (C1) wins (Must decide if upcast to “right-side”
(C2) coerces to use C2’s m or not)

4. C gets both methods (Now upcasts definitely coercive and
with diamonds we lose coherence)

5. Other? (I’m just brainstorming based on sound principles)
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Implementation Issues

This isn’t an implementation course, but many semantic issues
regarding multiple inheritance have been heavily influenced by
clever implementations

I In particular, accessing members of self via compile-time
offsets...

I ... which won’t work with multiple inheritance unless upcasts
“adjust” the self pointer

That’s one reason C++ has different kinds of casts

Better to think semantically first (how should subsumption affect
the behavior of method-lookup) and implementation-wise second
(what can I optimize based on the class/type hierarchy)
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Digression: Casts

A “cast” can mean many things (cf. C++).

At the language level:

I upcast: no run-time effect until we get to static overloading

I downcast: run-time failure or no-effect

I conversion: key question is round-tripping

I “reinterpret bits”: not well-defined

At the implementation level:

I upcast: usually no run-time effect but see last slide

I downcast: usually only run-time effect is failure, but...

I conversion: same as at language level

I “reinterpret bits”: no effect (by definition)
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Least Supertypes

Consider if e1 then e2 else e3 (or in C++/Java, e1 ? e2 : e3)

I We know e2 and e3 must have the same type

With subtyping, they just need a common supertype

I Should pick the least (most-specific) type

I Single inheritance: the closest common ancestor in the
class-hierarchy tree

I Multiple inheritance: there may be no least common supertype

Example: C1 extends D1, D2 and C2 extends D1, D2

Solutions: Reject (i.e., programmer must insert explicit casts to
pick a common supertype)
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Multiple Inheritance Summary

I Method clashes (what does inheriting m mean)

I Diamond issues (coherence issues, shared (?) fields)

I Implementation issues (slower method-lookup)

I Least supertypes (may be ambiguous)

Complicated constructs lead to difficult language design

I Doesn’t necessarily mean they are bad ideas

Now discuss interfaces and see how (and how not) multiple
interfaces are simpler than multiple inheritance...
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Interfaces

An interface is just a (named) (object) type. Example:

interface I { Int get_x(); Bool compare(I); }

A class can implement an interface. Example:

class C implements I {

Int x;

Int get_x() {x}

Bool compare(I i) {...} // note argument type

}

If C implements I, then C ≤ I

Requiring explicit “implements” hinders extensibility, but simplifies
type-checking (a little)

Basically, C implements I if C could extend a class with all
abstract methods from I
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Interfaces, continued

Subinterfaces (interface J extends I { ...}) work exactly as
subtyping suggests they should

An unnecessary addition to a language with abstract classes and
multiple inheritance, but what about single inheritance and
multiple interfaces:

class C extends D implements I1,I2,...,In

I Method clashes (no problem, inherit from D)

I Diamond issues (no problem, no implementation diamond)

I Implementation issues (still a “problem”, different object of
type I will have different layouts)

I Least supertypes (still a problem, this is a typing issue)
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Using Interfaces

Although it requires more keystrokes and makes efficient
implementation harder, it may make sense (be more extensible) to:

I Use interface types for all fields and variables

I Don’t use constructors directly: For class C implementing I,
write:

I makeI(...) { new C(...) }

This is related to “factory patterns”; constructors are behind a
level of indirection

It is using named object-types instead of class-based types

Dan Grossman CS152 Spring 2011, Lecture 23 20



Static Overloading

So far, we have assumed every method had a different name

I Same name implied overriding and required a subtype

Many OO languages allow the same name for methods with
different argument types:

A f(B x) { ... }

C f(D x, E y) { ... }

F f(G x, H z) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on e1: method-lookup a
function of the class of the object e1 evaluates to (at run-time)

We now have static overloading: Method-lookup is also a function
of the types of e2,...,en (at compile-time)
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Static Overloading Continued

Because of subtyping, multiple methods can match!

“Best-match” can be roughly “Subsume fewest arguments. For a
tie, allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):

I A f(B) vs. C f(B) (usually rejected)

I A f(I) vs. A f(J) for f(e) where e has type T , T ≤ I,
T ≤ J and I,J are incomparable (We saw this before)

I A f(B,C) vs. A f(C,B) for f(e1,e2) where B ≤ C, and
e1 and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to
give a best match (e.g., “left-argument precedence”)
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Multiple Dispatch

Static overloading saves keystrokes from shorter method-names

I We know the compile-time types of arguments at each
call-site, so we could call methods with different names

Multiple (dynamic) dispatch (a.k.a. multimethods) is much more
interesting: Method-lookup a function of the run-time types of
arguments

It’s a natural generalization: the “receiver” argument is no longer
treated differently!

So e1.m(e2,...,en) is just sugar for m(e1,e2,...,en)

I It wasn’t before, e.g., when e1 is self and may be a subtype
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Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, A y) { x.f == y.f }

Bool compare(B x, B y) { x.f == y.f && x.g == y.g }

Bool f(A x, A y, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second
method if both arguments are subtypes of B, else first method)

With power comes danger. Tricky question: Can we add “&&
compare(x,z)” to body of f and have an equivalent function?

I With static overloading?

I With multiple dispatch?
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Pragmatics

Not clear where multimethods should be defined

I No longer “belong to a class” because receiver isn’t special

Multimethods are “more OO” because dynamic dispatch is the
essence of OO

Multimethods are “less OO” because without a distinguished
receiver the analogy to physical objects is reduced

Nice paper in OOPSLA08: “Multiple Dispatch in Practice”
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Revenge of Ambiguity

The “no best match” issues with static overloading exist with
multimethods and ambiguities arise at run-time

It’s undecidable if “no best match” will happen:

// B <= C

A f(B,C) {...}

A f(C,B) {...}

unit g(C a, C b) { f(a,b); /* may be ambiguous */ }

Possible solutions:

I Raise exception when no best match

I Define “best match” such that it always exists

I A conservative type system to reject programs that might
have a “no best match” error when run
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Summary so far

Sketched several advanced issues in class-based OOP:

I multiple inheritance — thorny semantics

I interfaces — less thorny, but no least supertypes

I static overloading — reuse method names, get ambiguities

I multimethods — generalizes late-binding, ambiguities at
run-time

But there’s still no good way to define a container type such as
homogeneous lists

I Add back in parametric polymorphism
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