Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

$$s ::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \text{ s } \mid \text{while } e \text{ s}$$

$$e ::= c \mid x \mid e + e \mid e * e$$

$$(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})$$

$$(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})$$

▶ Blue is metanotation: ::= for “can be a” and | for “or”

▶ Metavariables represent “anything in the syntax class”

▶ By abstract syntax, we mean that this defines a set of trees
 ▶ Node has some label for “which alternative”
 ▶ Children are more abstract syntax (subtrees) from the appropriate syntax class

Examples

$$s ::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \text{ s } \mid \text{while } e \text{ s}$$

$$e ::= c \mid x \mid e + e \mid e * e$$

If (Var("x"), Skip, Seq(Assign("y", Const 42), Assign("x", Var "y")))

Seq(If(Var("x"), Skip, Assign("y", Const 42)), Assign("x", Var "y"))

Very similar to trees built with ML datatypes
 ▶ ML needs “extra nodes” for, e.g., “e can be a c”
 ▶ Also pretending ML’s int is an integer

Comparison to ML

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if x skip $y := 42$; $x := y$

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation
 ▶ Trees are our “truth” with strings as a “convenient notation”

if x skip ($y := 42$; $x := y$) versus (if x skip $y := 42$) ; $x := y$
Last word on concrete syntax

Converting a string into a tree is parsing.

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design:

- Always trivial if you require enough parentheses or keywords
- Extreme case: LISP, 1960s; Scheme, 1970s
- Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e &::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.

Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e &::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees.

The apparent self-reference is not a problem, provided the definition uses well-founded induction.

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on \(i \), for all \(e \in E_i \), \(e \) has \(\geq 1 \) constant or variable.

- Base: \(i = 0 \) implies \(E_i = \emptyset \)
- Inductive: \(i > 0 \). Consider arbitrary \(e \in E_i \) by cases:
 - \(e \in E_{i-1} \)...
 - \(e = c \)...
 - \(e = x \)...
 - \(e = e_1 + e_2 \) where \(e_1, e_2 \in E_{i-1} \)...
 - \(e = e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)...
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) e. Cases:

- c ...
- x ...
- e₁ + e₂ ...
- e₁ * e₂ ...

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL.