CS152: Programming Languages

Lecture 3 — Operational Semantics

Dan Grossman
Spring 2011
Where we are

- Done: Caml basics, “IMP” syntax, structural induction
- Now: Operational semantics for our little “IMP” language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ } s \text{ } s \mid \text{while } e \text{ } s \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 & \quad (c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 & \quad (x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow
Outline

- Semantics for expressions
 1. Informal idea; the need for *heaps*
 2. Definition of heaps
 3. The evaluation *judgment* (a relation form)
 4. The evaluation *inference rules* (the relation definition)
 5. Using inference rules
 - *Derivation trees* as interpreters
 - Or as *proofs* about expressions
 6. *Metatheory*: Proofs about the semantics

- Then semantics for statements
 - ...

Dan Grossman
CS152 Spring 2011, Lecture 3
Informal idea

Given e, what c does it evaluate to?

$$1 + 2 \quad \text{and} \quad x + 2$$
Informal idea

Given e, what c does it evaluate to?

$$1 + 2 \quad x + 2$$

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

- Could use partial functions, but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)
Heaps

\[H ::= \cdot \mid H, x \mapsto c \]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an H”
The judgment

We will write: \(H ; e \downarrow c \)

to mean, “\(e \) evaluates to \(c \) under heap \(H \)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \downarrow c \) to follow PL convention and to distinguish it from other relations

We can write: \(., x \mapsto 3 ; x + y \downarrow 3 \), which will turn out to be \(true \)
(this triple will be in the relation we define)

Or: \(., x \mapsto 3 ; x + y \downarrow 6 \), which will turn out to be \(false \)
(this triple will not be in the relation we define)
Inference rules

\[
\begin{align*}
\text{CONST} & \quad H \vdash c \downharpoonright c \\
\text{VAR} & \quad H \vdash x \downharpoonright H(x) \\
\text{ADD} & \quad H \vdash e_1 \downharpoonright c_1 \quad H \vdash e_2 \downharpoonright c_2 \\
& \quad H \vdash e_1 + e_2 \downharpoonright c_1 + c_2 \\
\text{MULT} & \quad H \vdash e_1 \downharpoonright c_1 \quad H \vdash e_2 \downharpoonright c_2 \\
& \quad H \vdash e_1 \ast e_2 \downharpoonright c_1 \ast c_2
\end{align*}
\]

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a schema you “Instantiate consistently”
 ▶ So rules “work” “for all” H, c, e_1, etc.
 ▶ But “each” e_1 has to be the “same” expression
Instantiating rules

Example instantiation:

\[\cdot, y \mapsto 4 \ ; \ 3 + y \Downarrow 7 \]
\[\cdot, y \mapsto 4 \ ; \ 5 \Downarrow 5 \]
\[\cdot, y \mapsto 4 \ ; \ (3 + y) + 5 \Downarrow 12 \]

Instantiates:

\[
\text{ADD} \quad H ; e_1 \Downarrow c_1 \quad H ; e_2 \Downarrow c_2
\]
\[H ; e_1 + e_2 \Downarrow c_1 + c_2 \]

with

\[H = \cdot, y \mapsto 4 \]
\[e_1 = (3 + y) \]
\[c_1 = 7 \]
\[e_2 = 5 \]
\[c_2 = 5 \]
Derivations

A *(complete)* derivation is a tree of instantiations with *axioms* at the leaves

Example:

\[
\begin{align*}
\cdot, y \mapsto 4 ; 3 & \Downarrow 3 \\
\cdot, y \mapsto 4 ; y & \Downarrow 4 \\
\cdot, y \mapsto 4 ; 3 + y & \Downarrow 7 \\
\cdot, y \mapsto 4 ; (3 + y) + 5 & \Downarrow 12 \\
\end{align*}
\]

By definition, \(H ; e \Downarrow c \) if there exists a derivation with \(H ; e \Downarrow c \) at the root
So what relation do our inference rules define?

- Start with empty relation (no triples) R_0

- Let R_i be R_{i-1} union all $H ; e \downarrow c$ such that we can instantiate some inference rule to have conclusion $H ; e \downarrow c$ and all hypotheses in R_{i-1}
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$

- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules
What are these things?

We can view the inference rules as defining an *interpreter*

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - *Syntax-directed* means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a *proof system*

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions
Some theorems

- Progress: For all H and e, there exists a c such that $H ; e \Downarrow c$.

- Determinacy: For all H and e, there is at most one c such that $H ; e \Downarrow c$.

We rigged it that way... what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e.
On to statements

A statement doesn’t produce a constant.
On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

▶ If it terminates
On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

▶ If it terminates

We could define $H_1 ; s \downarrow H_2$

▶ Would be a partial function from H_1 and s to H_2

▶ Works fine; could be a homework problem
On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

▶ If it terminates

We could define $H_1 \ ; \ s \downarrow H_2$

▶ Would be a partial function from H_1 and s to H_2

▶ Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$H_1 \ ; \ s_1 \rightarrow H_2 \ ; \ s_2$
Statement semantics

\[H_1 ; s_1 \rightarrow H_2 ; s_2 \]

ASSIGN

\[
\begin{align*}
H ; e \downarrow c \\
\hline
H ; x := e \rightarrow H, x \mapsto c ; \text{skip}
\end{align*}
\]

SEQ1

\[
\begin{align*}
H ; \text{skip} ; s \rightarrow H ; s
\end{align*}
\]

SEQ2

\[
\begin{align*}
H ; s_1 \rightarrow H' ; s'_1 \\
H ; s_1 ; s_2 \rightarrow H' ; s'_1 ; s_2
\end{align*}
\]

IF1

\[
\begin{align*}
H ; e \downarrow c & \quad c > 0 \\
\hline
H ; \text{if } e \ s_1 \ s_2 \rightarrow H ; s_1
\end{align*}
\]

IF2

\[
\begin{align*}
H ; e \downarrow c & \quad c \leq 0 \\
\hline
H ; \text{if } e \ s_1 \ s_2 \rightarrow H ; s_2
\end{align*}
\]
Statement semantics cont’d

What about \textbf{while} \ e \ s \ (do \ s \ and \ loop \ if \ e > 0)?
Statement semantics cont’d

What about \textbf{while} e s (do s and loop if $e > 0$)?

\[
\text{WHILE}
\]

\[
H \ ; \ \text{while} \ e \ s \ \rightarrow \ H \ ; \ \text{if} \ e \ (s; \ \text{while} \ e \ s) \ \text{skip}
\]

Many other equivalent definitions possible
Program semantics

Defined \(H ; s \rightarrow H' ; s' \), but what does “s” mean/do?

Our machine iterates: \(H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots \),

with each step justified by a complete derivation using our single-step statement semantics

Let \(H_1 ; s_1 \rightarrow^n H_2 ; s_2 \) mean “becomes after n steps”

Let \(H_1 ; s_1 \rightarrow^* H_2 ; s_2 \) mean “becomes after 0 or more steps”

Pick a special “answer” variable \(\text{ans} \)

The program \(s \) produces \(c \) if \(\cdot ; s \rightarrow^* H ; \text{skip} \) and \(H(\text{ans}) = c \)

Does every \(s \) produce a \(c \)?
Example program execution

\[
x := 3; (y := 1; \textbf{while } x \ (y := y \ast x; x := x - 1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x - 1) \).
Example program execution

\[
x := 3; (y := 1; \textbf{while } x \ (y := y \ast x; x := x-1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x-1) \).

\[
\cdot; \ x := 3; \ y := 1; \textbf{while } x \ s
\]
Example program execution

\[x := 3; (y := 1; \textbf{while} x (y := y \times x; x := x-1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x-1) \).

\[
\cdot; x := 3; y := 1; \textbf{while} x \ s
\]

\[
\rightarrow \cdot, x \mapsto 3; \ \textbf{skip}; y := 1; \textbf{while} x \ s
\]
Example program execution

\[x := 3; \ (y := 1; \ \textbf{while} \ x \ (y := y \times x; \ x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; \ x := x - 1) \).

\[
\cdot; \ x := 3; \ y := 1; \ \textbf{while} \ x \ s
\]

\[
\rightarrow \cdot, x \mapsto 3; \ \textbf{skip}; \ y := 1; \ \textbf{while} \ x \ s
\]

\[
\rightarrow \cdot, x \mapsto 3; \ y := 1; \ \textbf{while} \ x \ s
\]
Example program execution

\[
x := 3; (y := 1; \textbf{while} \ x \ (y := y \times x; x := x - 1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\[
\begin{align*}
\cdot; x := 3; y := 1; \textbf{while} \ x \ s \\
\rightarrow \quad \cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while} \ x \ s \\
\rightarrow \quad \cdot, x \mapsto 3; y := 1; \textbf{while} \ x \ s \\
\rightarrow^2 \quad \cdot, x \mapsto 3, y \mapsto 1; \textbf{while} \ x \ s
\end{align*}
\]
Example program execution

\[x := 3; (y := 1; \textbf{while } x \ (y := y \ast x; \ x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x - 1) \).

\[
\cdot; x := 3; y := 1; \textbf{while } x \ s
\]

\[\rightarrow \ \cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x \ s \]

\[\rightarrow \ \cdot, x \mapsto 3; y := 1; \textbf{while } x \ s \]

\[\rightarrow^2 \ \cdot, x \mapsto 3, y \mapsto 1; \textbf{while } x \ s \]

\[\rightarrow \ \cdot, x \mapsto 3, y \mapsto 1; \textbf{if } x \ (s; \textbf{while } x \ s) \ \textbf{skip} \]
Example program execution

\[x := 3; (y := 1; \textbf{while} \ x \ (y := y \times x; x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\[
\begin{align*}
&\vdash \; x := 3; y := 1; \textbf{while} \ x \ s \\
\rightarrow &\quad \vdash, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while} \ x \ s \\
\rightarrow &\quad \vdash, x \mapsto 3; y := 1; \textbf{while} \ x \ s \\
\rightarrow^2 &\quad \vdash, x \mapsto 3, y \mapsto 1; \textbf{while} \ x \ s \\
\rightarrow &\quad \vdash, x \mapsto 3, y \mapsto 1; \textbf{if} \ x \ (s; \textbf{while} \ x \ s) \ \textbf{skip} \\
\rightarrow &\quad \vdash, x \mapsto 3, y \mapsto 1; y := y \times x; x := x - 1; \textbf{while} \ x \ s
\end{align*}
\]
Continued...

\[\rightarrow^2 \bullet, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \textbf{while} \ x \ s \]
$\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; \text{while } x \ s$

$\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \text{while } x \ s$
Continued...

\[\begin{align*}
\rightarrow^2 & \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ x := x - 1; \textbf{while } x \ s \\
\rightarrow^2 & \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while } x \ s \\
\rightarrow & \quad \ldots, y \mapsto 3, x \mapsto 2; \textbf{if } x \ (s; \textbf{while } x \ s) \textbf{ skip}
\end{align*}\]
\[\rightarrow^2 \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \quad x := x - 1; \quad \textbf{while} \quad x \ s \]

\[\rightarrow^2 \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \quad \textbf{while} \quad x \ s \]

\[\rightarrow \quad \ldots, y \mapsto 3, x \mapsto 2; \quad \textbf{if} \quad x \ (s; \ \textbf{while} \quad x \ s) \ \textbf{skip} \]

\[\ldots \]
Continued...

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \textbf{while} \ x \ s \]

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while} \ x \ s \]

\[\rightarrow \ldots, y \mapsto 3, x \mapsto 2; \textbf{if} \ x (s; \textbf{while} \ x \ s) \textbf{skip} \]

\[\ldots \]

\[\rightarrow \ldots, y \mapsto 6, x \mapsto 0; \textbf{skip} \]
Where we are

Defined \(H; e \Downarrow c \) and \(H; s \rightarrow H'; s' \) and extended the latter to give \(s \) a meaning

- The way we did expressions is “large-step operational semantics”
- The way we did statements is “small-step operational semantics”
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[\cdot ; s \rightarrow^n H ; \text{skip} \]
cannot be derived.

Example: \textbf{while 1 skip}
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding \(0 \).

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[
\cdot \; s \xrightarrow{\;}^n H \; ; \text{skip}
\]
cannot be derived.

Example: \textbf{while 1 skip}

By induction on \(n \), but requires a \textit{stronger induction hypothesis}.
More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and $H \; s \rightarrow^* H' \; s'$, then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $H;(s_1; s_2)$ terminates.