CS152: Programming Languages

Lecture 3 — Operational Semantics

Dan Grossman
Spring 2011

Where we are

» Done: Caml basics, "IMP" syntax, structural induction

» Now: Operational semantics for our little “IMP” language

» Most of what you need for Homework 1

» (But Problem 4 requires proofs over semantics)

Dan Grossman CS152 Spring 2011, Lecture 3

Review

IMP’s abstract syntax is defined inductively:

s = skip|x:=e|s;s|ifess|whilees
e u= c|:n|e—|—e|e*e

(c € {. -1,0,1,2,...})

(x € {Xl,Xz,...,yl,yz,...,21,22,...,...})

We haven't yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Dan Grossman CS152 Spring 2011, Lecture 3

Outline

» Semantics for expressions
1. Informal idea; the need for heaps
2. Definition of heaps
3. The evaluation judgment (a relation form)
4. The evaluation inference rules (the relation definition)

5. Using inference rules
» Derivation trees as interpreters
» Or as proofs about expressions

6. Metatheory: Proofs about the semantics

» Then semantics for statements

> ..

Dan Grossman CS152 Spring 2011, Lecture 3

Informal idea

Given e, what ¢ does it evaluate to?

142 x4+ 2

Dan Grossman CS152 Spring 2011, Lecture 3

Informal idea

Given e, what ¢ does it evaluate to?

142 x4+ 2

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

» Could use partial functions, but then 3 H and e for which
there is no ¢

We'll define a relation over triples of H, e, and ¢

» Will turn out to be function if we view H and e as inputs and
¢ as output

» With our metalanguage, easier to define a relation and then
prove it is a function (if, in fact, it is)

Dan Grossman CS152 Spring 2011, Lecture 3

Heaps
H:=.-|H,x—c

A lookup-function for heaps:
c if H=H',xz—c
H(zx)=(¢ H(z) if H=H',y—~c andy # =z
0 if H=-

» Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

> For expression evaluation, “we are given an H"

Dan Grossman CS152 Spring 2011, Lecture 3

The judgment

We wil write:

to mean, “e evaluates to ¢ under heap H”
It is just a relation on triples of the form (H, e, c)

We just made up metasyntax H ; e | ¢ to follow PL convention
and to distinguish it from other relations

We can write: ., +— 3 ; + y | 3, which will turn out to be
true

(this triple will be in the relation we define)

Or: .,x — 3 ; x4+ y { 6, which will turn out to be false
(this triple will not be in the relation we define)

Dan Grossman CS152 Spring 2011, Lecture 3

Inference rules

CONST VAR
H;clec H ;x| H(x)
ADD MULT
Hjel | Hij;exlca Hijerl e H ez | co
H ;e +ezx | ci1+ca H ;e; xez | ci*xca

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you “instantiate consistently”

» So rules “work” “for all” H, ¢, ey, etc.

» But “each” e; has to be the “same” expression

Dan Grossman CS152 Spring 2011, Lecture 3

Instantiating rules

Example instantiation:

wy—433+y47 y—4:5545
wy—=4;B84+y)+5112

Instantiates:
ADD

Hje | c H ez co
H ;e +ez | citea

with
H=-.y—14
e1=(3+y)
01:7
62:5
62:5

Dan Grossman CS152 Spring 2011, Lecture 3

Derivations

A (complete) derivation is a tree of instantiations with axioms at
the leaves

Example:

y—4334 3 Hwy—4sy 44
wy—4353+y 7 »y—4354 5
sy—45 (3+y) +5 4 12

By definition, H ; e |} c if there exists a derivation with
H ; e | c at the root

Dan Grossman CS152 Spring 2011, Lecture 3 10

Back to relations

So what relation do our inference rules define?

» Start with empty relation (no triples) Rg

» Let R; be R;_1 union all H ; e | ¢ such that we can
instantiate some inference rule to have conclusion H ; e |} ¢
and all hypotheses in R;_1

» So R; is all triples at the bottom of height-j complete
derivations for j < 2

» R is the relation we defined
» All triples at the bottom of complete derivations

For the math folks: R is the smallest relation closed under the
inference rules

Dan Grossman CS152 Spring 2011, Lecture 3

11

What are these things?

We can view the inference rules as defining an interpreter
» Complete derivation shows recursive calls to the “evaluate

expression” function

» Recursive calls from conclusion to hypotheses
» Syntax-directed means the interpreter need not “search”

» See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

» Complete derivation proves facts from other facts starting
with axioms

» Facts established from hypotheses to conclusions

Dan Grossman CS152 Spring 2011, Lecture 3

12

Some theorems

» Progress: For all H and e, there exists a ¢ such that
H;elc

> Determinacy: For all H and e, there is at most one ¢ such
that H ; e | c.

We rigged it that way...
what would division, undefined-variables, or gettime () do?

Proofs are by induction on the the structure (i.e., height) of the
expression e.

Dan Grossman CS152 Spring 2011, Lecture 3

13

On to statements

A statement doesn’t produce a constant.

Dan Grossman CS152 Spring 2011, Lecture 3

14

On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

» If it terminates

Dan Grossman CS152 Spring 2011, Lecture 3

14

On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

» If it terminates

We could define Hy ; s || Ho
» Would be a partial function from Hy and s to H

» Works fine; could be a homework problem

Dan Grossman CS152 Spring 2011, Lecture 3

14

On to statements
A statement doesn't produce a constant.

It produces a new, possibly-different heap.

» If it terminates

We could define Hy ; s || Ho
» Would be a partial function from Hy and s to H

» Works fine; could be a homework problem

Instead we'll define a “small-step” semantics and then “iterate” to
“run the program”

Hy;sy — Hj; s2

Dan Grossman CS152 Spring 2011, Lecture 3 14

Statement semantics

|Hi;s1 — Hy ;s

ASSIGN
H;elc
H;x:=e— H,x+— c;skip

1 SEQ2
SEQ H;sl—>H';s'1

4 4
H ; 51582 — H' 5 57582

H ; skip;s — H 5 s

IF1 IF2

H;elc c>0 H;;el c c<0

H;ifesy s~ H; sy H ;ifesy sy~ H; so

Dan Grossman CS152 Spring 2011, Lecture 3

15

Statement semantics cont'd

What about while e s (do s and loop if e > 0)?

Dan Grossman CS152 Spring 2011, Lecture 3

16

Statement semantics cont'd

What about while e s (do s and loop if e > 0)?

WHILE

H ; while e s — H ; if e (s;while e s) skip

Many other equivalent definitions possible

Dan Grossman CS152 Spring 2011, Lecture 3

16

Program semantics

Defined H 5 s — H’ ; s’, but what does “s” mean/do?
Our machine iterates: Hy381—Ho382—H3g;83. ..,
with each step justified by a complete derivation using our
single-step statement semantics
Let Hy ; s1 —™ Hs ; s mean “becomes after n steps”
Let Hy ; s1 —™ Hs ; s2 mean “becomes after 0 or more steps”
Pick a special "answer” variable ans

The program s produces c if - 5 s —* H ; skip and H(ans) = ¢

Does every s produce a c?

Dan Grossman CS152 Spring 2011, Lecture 3 17

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

Dan Grossman CS152 Spring 2011, Lecture 3

18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

s x:=3;y:= 1;whilex s

Dan Grossman CS152 Spring 2011, Lecture 3

18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

s x:=3;y:= 1;whilex s

— +,x +— 3; skip; y := 1; while x s

Dan Grossman CS152 Spring 2011, Lecture 3

18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

«;x:= 33y := 1;while x s
— +,x +— 3; skip; y := 1; while x s

— o, x+— 3;y:= 1l;whilex s

Dan Grossman CS152 Spring 2011, Lecture 3

18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

«;x:= 33y := 1;while x s
— +,x +— 3; skip; y := 1; while x s
— o, x+— 3;y:= 1l;whilex s

—2 x> 3,y 1;whilex s

Dan Grossman CS152 Spring 2011, Lecture 3 18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

«;x:= 33y := 1;while x s
— -, x — 3; skip; y := 1;while x s
— 4 x+— 35y := 1;whilex s
—2 x> 3,y 1;whilex s

— o x+— 3,y — 1; if x (s;while x s) skip

Dan Grossman CS152 Spring 2011, Lecture 3 18

Example program execution

x:= 3;(y := L;while x (y := y * x3x := x—1))

Let's write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y * x;x := x—1).

«;x:= 33y := 1;while x s
— +,x +— 3; skip; y := 1; while x s
— o, x+— 3;y:= 1l;whilex s
—2 x> 3,y 1;whilex s
— o x+— 3,y — 1;if x (s; while x s) skip

— x> 3y 1Liy:=y*xx;x:=x— 1l;whilex s

Dan Grossman CS152 Spring 2011, Lecture 3 18

Continued...

2

Dan Grossman

x> 3,y— 1,y — 3; x:=x—1;while x s

CS152 Spring 2011, Lecture 3

19

Continued...

2

2

Dan Grossman

x> 3,y— 1,y — 3; x:=x—1;while x s

x> 3,y — 1,y — 3,x — 2; while x s

CS152 Spring 2011, Lecture 3

19

Continued...
_>2
_>2

—

Dan Grossman

x> 3,y— 1,y — 3; x:=x—1;while x s
x> 3,y — 1,y — 3,x — 2; while x s

cevyy > 3,x — 25 if x (s; while x s) skip

CS152 Spring 2011, Lecture 3

19

Continued...
_>2
_>2

—

Dan Grossman

x> 3,y— 1,y — 3; x:=x—1;while x s
x> 3,y — 1,y — 3,x — 2; while x s

cevyy > 3,x — 25 if x (s; while x s) skip

CS152 Spring 2011, Lecture 3

19

Continued...

Dan Grossman

x> 3,y— 1,y — 3; x:=x—1;while x s
x> 3,y — 1,y — 3,x — 2; while x s

cevyy > 3,x — 25 if x (s; while x s) skip

cee, ¥y — 6,x — 05 skip

CS152 Spring 2011, Lecture 3

19

Where we are

Defined H ;e | cand H ; s — H’ ; s’ and extended the latter
to give s a meaning

» The way we did expressions is “large-step operational
semantics”

» The way we did statements is “small-step operational
semantics”

» So now you have seen both

Definition by interpretation: program means what an interpreter
(written in a metalanguage) says it means

» Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence
» But we defined IMP to have no errors

» And expressions never diverge

Dan Grossman CS152 Spring 2011, Lecture 3

Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

Dan Grossman CS152 Spring 2011, Lecture 3

21

Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n,
-3y 8 —™ H ; skip cannot be derived.

Example: while 1 skip

Dan Grossman CS152 Spring 2011, Lecture 3

21

Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n,
-3y 8 —™ H ; skip cannot be derived.

Example: while 1 skip

By induction on m, but requires a stronger induction hypothesis.

Dan Grossman CS152 Spring 2011, Lecture 3

21

More General Proofs

We can prove properties of executing all programs (satisfying
another property)

Example: If H and s have no negative constants and
H ;s —* H' ; s’, then H’ and s’ have no negative constants.

Example: If for all H, we know s; and sg terminate, then for all
H, we know H;(s1; s2) terminates.

Dan Grossman CS152 Spring 2011, Lecture 3

22

