Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:
- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- “Pseudo-denotational” semantics

Now:
- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

Packet Filters

Almost everything I know about packet filters:
- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:
1. Don’t corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?

Language-based approaches

1. Interpret a language.
 - clean operational semantics, + portable, - may be slow (+
 - filter-specific optimizations), - unusual interface
2. Translate a language into C/assembly.
 - clean denotational semantics, + employ existing optimizers,
 - upfront cost, - unusual interface
3. Require a conservative subset of C/assembly.
 - normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
(almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs,
but models more interesting things

What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)
 - Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
 - Is “runs within 10ms of each other” important?

- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL and CS152, equivalence usually means total I/O equivalence

Program Example: Strength Reduction

Motivation: Strength reduction
 - A common compiler optimization due to architecture issues

Theorem: $H; e * 2 \downarrow c$ if and only if $H; e + e \downarrow c$

Proof sketch:

- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need
- Hmm, doesn’t use induction. That’s because this theorem isn’t very useful...

Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e * 2$, then $H; e' \downarrow c'$ if and only if $H; e'' \downarrow c'$ where e'' is e' with $e * 2$ replaced with $e + e$

First some useful metanotation:

$C ::= [\cdot] | C + e | e + C | C * e | e * C$

$C[e]$ is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

$H; C[e * 2] \downarrow c'$ if and only if $H; C[e + e] \downarrow c'$

Proof sketch: By induction on structure (“syntax height”) of C

- The base case ($C = [\cdot]$) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if $H; s_1; (s_2; s_3) \rightarrow^n H'; \text{skip}$ then there exist H'' and n' such that $H; (s_1; s_2; s_3) \rightarrow^n H''; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

(b) If for all n there exist H' and s' such that $H; s_1; (s_2; s_3) \rightarrow^n H'; s'$, then for all n there exist H'' and s'' such that $H; (s_1; s_2; s_3) \rightarrow^n H''; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply large-step:

\[
\begin{array}{ccc}
\text{CONST} & \text{VAR} & \text{ADD} \\
H : e & \Downarrow & c & H : e \Downarrow \downarrow \downarrow H(x) & c_1 & c_2 & H : e \Downarrow \downarrow \downarrow \downarrow c_1 + c_2 \\
\end{array}
\]

IMP w/o multiply small-step:

\[
\begin{array}{ccc}
\text{SVAR} & \text{SADD} & \text{SLEFT} \\
H : e & \rightarrow & \Downarrow \downarrow \downarrow H(x) & e_1 & c_2 & c_1 + c_2 & \Downarrow \downarrow \downarrow \downarrow H(e_1) c_2 + c_2 \\
\end{array}
\]

Theorem: Semantics are equivalent: \(H : e \Downarrow c \) if and only if \(H \vdash e \Downarrow^* c \)

Proof: We prove the two directions separately...

Part 1, continued

First assume \(H : e \Downarrow c \) and show \(\exists n. H; e \Downarrow^n c \)

Lemma (prove it!): If \(H ; e \Downarrow^n e' \), then \(H ; e_1 \Downarrow e \Downarrow e_1 + e' \) and \(H \Downarrow e_2 \Downarrow e'_2 \).

Given the lemma, prove by induction on derivation of \(H : e \Downarrow c \)

\[
\begin{array}{ccc}
\text{ADD} & \text{VAR} & \text{SADD} & \text{SLEFT} \\
H : e \Downarrow c & H : e_1 \Downarrow c_1 & H : e_2 \Downarrow c_2 & H : e_1 + e_2 \Downarrow c_1 + c_2 \\
\end{array}
\]

Proof by induction on \(n \)

Inductive case uses \(H \Downarrow e \Downarrow x \) and \(e \Downarrow^* \).

Proof, part 2

Now assume \(\exists n. H; e \Downarrow^n c \) and show \(H ; e \Downarrow c \).

Proof by induction on \(n \):

1. \(n = 0 \): \(e \Downarrow c \) and \(\text{const} \) lets us derive \(H : e \Downarrow c \)
2. \(n > 0 \): (Clever: break into first step and remaining ones)
 \(\exists e'. H ; e \Downarrow e' \) and \(H ; e' \Downarrow^{n-1} c \).
 By induction \(H ; e' \Downarrow c \).
 So this lemma suffices: If \(H ; e \Downarrow e' \) and \(H ; e' \Downarrow c \), then \(H ; e \Downarrow c \).

Prove the lemma by induction on derivation of \(H ; e \Downarrow e' \):

\[
\begin{array}{ccc}
\text{SVAR} & \text{SADD} & \text{SLEFT} \\
\Downarrow & \Downarrow & \Downarrow \\
\end{array}
\]

\text{SRIGHT:} ...

Part 2, key lemma

Lemma: If \(H ; e \Downarrow e' \) and \(H ; e' \Downarrow c \), then \(H ; e \Downarrow c \).

Prove the lemma by induction on derivation of \(H ; e \Downarrow e' \):

1. \(\text{SVAR} \): Derivation with \(\text{svar} \) implies \(e \) is some \(x \) and \(e \Downarrow e(x) \).
2. \(\Downarrow \): Derivation with \(\text{sadd} \) implies \(e \) is some \(c_1 + c_2 \) and \(e' \Downarrow e' \).
3. \(\text{SLEFT} \): Derivation with \(\text{sleft} \) implies \(e \) is some \(c_1 + c_2 \) and \(e \Downarrow e_1 + e_2 \).
4. \(\text{SRIGHT} \): Derivation with \(\text{sright} \) implies \(e \) is some \(c_1 + c_2 \) and \(e \Downarrow e_1 + e_2 \).

The cool part, redux

Step through the \(\text{sleft} \) case more visually:

By assumption, we must have derivations that look like this:

\[
\begin{array}{ccc}
H ; e_1 \Downarrow e_1' & H ; e_2 \Downarrow c_2 & H ; e_1 + e_2 \Downarrow e_1' + e_2 + c_2 \\
\end{array}
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H ; e_1 \Downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\begin{array}{ccc}
H ; e_1 \Downarrow c_1 & H ; e_2 \Downarrow c_2 & H ; e_1 + e_2 \Downarrow c_1 + c_2 \\
\end{array}
\]
A nice payoff

Theorem: The small-step semantics is deterministic:

if \(H; e \rightarrow^* c_1 \) and \(H; e \rightarrow^* c_2 \), then \(c_1 = c_2 \)

Not obvious (see `sleft` and `sright`), nor do I know a direct proof

- Given \(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)\) there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics can’t be equivalent

Conclusions

- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:

Replace `while` rule with

\[
\begin{align*}
H; e \downarrow c & \quad c \leq 0 \\
H; \text{while } e \text{ } \text{do } H & \rightarrow H; \text{skip} \\
H; e \downarrow c & \quad c > 0 \\
H; \text{while } e \text{ } \text{do } H & \rightarrow H; s; \text{while } e \text{ } \text{do } H
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace `assign` and `var` rules with

\[
\begin{align*}
H; x := e & \rightarrow H; x \mapsto e; \text{skip} \\
H; H(x) \downarrow c & \rightarrow H; x \downarrow c
\end{align*}
\]

\textit{NOT} equivalent to our original language