Types

Major new topic worthy of several lectures: Type systems

▶ Continue to use (CBV) Lambda Calculus as our core model
▶ But will soon enrich with other common primitives

This lecture:

▶ Motivation for type systems
▶ What a type system is designed to do and not do
 ▶ Definition of stuckness, soundness, completeness, etc.
▶ The Simply-Typed Lambda Calculus
 ▶ A basic and natural type system
 ▶ Starting point for more expressiveness later

Next lecture:

▶ Prove Simply-Typed Lambda Calculus is sound

Dan Grossman
CS152 Spring 2011, Lecture 9

Review: L-R CBV Lambda Calculus

\[
e ::= \lambda x. e \mid x \mid e \ e
\]

\[
v ::= \lambda x. e
\]

Implicit systematic renaming of bound variables

▶ \(\alpha\)-equivalence on expressions ("the same term")

\[
e \rightarrow e'
\]

\[
(\lambda x. e) v \rightarrow e[v/x]
\]

\[
e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2
\]

\[
v \rightarrow v e_2
\]

\[
e_1[e_2/x] = e_3
\]

\[
x[e/x] = e
\]

\[
y \neq x
\]

\[
y[e/x] = y
\]

\[
(\lambda y. e_1)[e/x] = e'_1
\]

Why types? (Part 1)

1. Catch "simple" mistakes early, even for untested code
 ▶ Example: "if" applied to "mkpair"
 ▶ Even if some too-clever programmer meant to do it
 ▶ Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., \(x v\))
 ▶ Ensure execution never gets to a "meaningless" state
 ▶ But "meaningless" depends on the semantics
 ▶ Each PL typically makes things type errors (again being conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
 ▶ Clients can’t break invariants
 ▶ Clients can’t assume an implementation
 ▶ Requires safety, meaning no "stuck" states that corrupt run-time (e.g., C/C++)
 ▶ Can enforce encapsulation without static types, but types are a particularly nice way
What is a type system?

Er, uh, you know it when you see it. Some clues:
- A decidable (?) judgment for classifying programs
 - E.g., \(e_1 + e_2 \) has type int if \(e_1, e_2 \) have type int (else no type)
- A sound (?) abstraction of computation
 - E.g., if \(e_1 + e_2 \) has type int, then evaluation produces an int (with caveats!)
- Fairly syntax directed

Possible topic for a later lecture
- Particularly fuzzy distinctions with abstract interpretation
- Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers
- Later lecture: Typed PLs are like proof systems for logics

Plan for 3ish weeks

- Simply typed \(\lambda \) calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations; midterm
- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Homework: Adding back mutation
Omitted: Type inference

Adding constants

Enrich the Lambda Calculus with integer constants:
- Not strictly necessary, but makes types seem more natural

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e \ e \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

No new operational-semantics rules since constants are values

We could add \(+\) and other primitives
- Then we would need new rules (e.g., 3 small-step for \(+\))
- Alternately, parameterize "programs" by primitives: \(\lambdaplus, \lambda times, \ldots \)
 - Like Pervasives in Caml
 - A great way to keep language definitions small

Stuck

Key issue: can a program "get stuck" (reach a "bad" state)?
- Definition: \(e \) is stuck if \(e \) is not a value and there is no \(e' \) such that \(e \rightarrow e' \)
- Definition: \(e \) can get stuck if there exists an \(e' \) such that \(e \rightarrow^* e' \) and \(e' \) is stuck
 - In a deterministic language, \(e \) "gets stuck"

Most people don’t appreciate that stuckness depends on the operational semantics
- Inherent given the definitions above

What’s stuck?

Given our language, what are the set of stuck expressions?
- Note: Explicitly defining the stuck states is unusual

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e \ e \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

\[
\begin{align*}
(\lambda x. e) v & \rightarrow e[v/x] \\
e_1 \ e_2 & \rightarrow e_1' \ e_2 \ e_2' \\
v \ e_2 & \rightarrow v \ e_2'
\end{align*}
\]

(Hint: The full set is recursively defined.)

\[
S ::= x \mid c \ v \mid S \ e \mid v \ S
\]

Note: Can have fewer stuck states if we add more rules
- Example: Javascript
- Example: \(c \ v \rightarrow v \)
- In unsafe languages, stuck states can set the computer on fire

Soundness and Completeness

A type system is a judgment for classifying programs
- “accepts” a program if some complete derivation gives it a type, else “rejects”

A sound type system never accepts a program that can get stuck
- No false negatives

A complete type system never rejects a program that can’t get stuck
- No false positives

It is typically undecidable whether a stuck state can be reachable
- Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete
- We’ll choose soundness, try to reduce false positives in practice
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \]

\[\vdash c : \text{int} \]

\[\vdash e_1 e_2 : \text{int} \]

1. NO: can get stuck, e.g., \((\lambda x. y)\ 3\)

2. NO: too restrictive, e.g., \((\lambda x. x)\ 3\) \((\lambda y. y)\)

3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y)\ 3\)

STLC Type System

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

\[\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \]

\[\Gamma \vdash e_2 : \tau_1 \rightarrow \tau_2 \]

\[\Gamma \vdash c : \text{int} \]

\[\Gamma \vdash x : \Gamma(x) \]

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

A closer look

Where did \(\tau_1\) come from?

- Our rule “inferred” or “guessed” it
- To be syntax directed, change \(\lambda x. e\) to \(\lambda x : \tau. e\) and use that \(\tau\)

Can think of “adding \(x\)” as shadowing or requiring \(x \not\in \text{Dom}({\Gamma})\)

- Systematic renaming (\(\alpha\)-conversion) ensures \(x \not\in \text{Dom}({\Gamma})\) is not a problem

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Is our type system too restrictive?

- That’s a matter of opinion
- But it does reject programs that don’t get stuck

Example: \((\lambda x. (x \ (\lambda y. y)) \ (x \ 3))\) \(\lambda z. z\)

- Does not get stuck: Evaluates to 3
- Does not type-check:
 - There is no \(\tau_1, \tau_2\) such that \(x : \tau_1 \vdash (x \ (\lambda y. y)) \ (x \ 3) : \tau_2\)
 because you have to pick one type for \(x\)

Always restrictive

Whether or not a program “gets stuck” is undecidable:

- If \(e\) has no constants or free variables, then \(e\) \((3 \ 4)\) or \(e\ x\)
 gets stuck if and only if \(e\) terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

- Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk

- Make “false positives” (rejecting safe programs) rare enough
 - Have compile-time resources for “fancy” type systems
- Make workarounds for false positives convenient enough
How does STLC measure up?

So far, STLC is sound:
- As language dictators, we decided $c \nu$ and undefined variables were “bad” meaning neither values nor reducible
- Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:
- In practice, just too often that it prevents safe and natural code reuse
- More fundamentally, it’s not even Turing-complete
 - Turns out all (well-typed) programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
 - That’s okay: We will add more constructs and typing rules

Type Soundness

We will take a syntactic (operational) approach to soundness/safety
- The popular way since the early 1990s

Theorem (Type Safety): If $\Gamma \vdash e : \tau$ then e diverges or $e \rightarrow^* v$ for an n and v such that $\Gamma \vdash v : \tau$
- That is, if $\Gamma \vdash e : \tau$, then e cannot get stuck

Proof: Next lecture