Type Safety for STLC with Constants
CS152, Spring 2011

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
\begin{align*}
e &::= c | \lambda x. e | x | e e \\
v &::= c | \lambda x. e \\
\tau &::= \text{int} | \tau \rightarrow \tau \\
\Gamma &::= \cdot | \Gamma, x: \tau
\end{align*}
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
\begin{align*}
e \rightarrow e' &
\end{align*}
\]

\[
\begin{array}{ccc}
\text{E-Apply} & \text{E-App1} & \text{E-App2} \\
(\lambda x. e) v \rightarrow e[v/x] & e_1 \rightarrow e'_1 & e_2 \rightarrow e'_2 \\
& e_1 e_2 \rightarrow e'_1 e_2 & v e_2 \rightarrow v e'_2
\end{array}
\]

Typing Rules (a.k.a. Static Semantics)

\[
\begin{align*}
\Gamma \vdash e : \tau
\end{align*}
\]

\[
\begin{array}{ccc}
\text{T-Const} & \text{T-Var} & \text{T-Fun} & \text{T-Fun} \\
\Gamma \vdash c : \text{int} & \Gamma \vdash x : \Gamma(x) & \Gamma, x : \tau_1 \vdash e : \tau_2 & \Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \\
& & \Gamma, x \notin \text{Dom}(\Gamma) & \\
& & \Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 & \Gamma \vdash e_2 : \tau_2 \\
& & \Gamma \vdash e_1 e_2 : \tau_1
\end{array}
\]
Type Soundness

Theorem (Type Soundness). If $\cdot \vdash e : \tau$ and $e \rightarrow^* e'$, then either e' is a value or there exists an e'' such that $e' \rightarrow e''$.

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

1. If τ is int, then v is a constant, i.e., some c.
2. If τ is $\tau_1 \rightarrow \tau_2$, then v is a lambda, i.e., $\lambda x. e$ for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

1. If τ is int, then the only rule which lets us give a value this type is T-Const.
2. If τ is $\tau_1 \rightarrow \tau_2$, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-Var Impossible, as Γ is \cdot.

T-Fun e is $\lambda x. e'$, which is a value, so we are done.

T-App e is $e_1 \ e_2$.

By inversion, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\cdot \vdash e_2 : \tau_2$.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and the induction hypothesis ensures $e_1 \rightarrow e'_1$ for some e'_1. Therefore, by E-App1, $e_1 \ e_2 \rightarrow e'_1 \ e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau_2$ and our induction hypothesis ensures $e_2 \rightarrow e'_2$ for some e'_2. Therefore, by E-App2, $e_1 \ e_2 \rightarrow e_1 \ e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and the Canonical Forms Lemma ensures e_1 is some $\lambda x. e'$. And $(\lambda x. e') \ e_2 \rightarrow e'[e_2/x]$ by E-Apply, so $e_1 \ e_2$ can take a step.
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where \(\Gamma \) is \(\cdot \), but proving the Substitution Lemma itself requires the stronger induction hypothesis using any \(\Gamma \).

Lemma (Substitution). If \(\Gamma, x: \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e'[e/\tau] : \tau \).

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If \(\Gamma \vdash e : \tau \) and \(x \notin \text{Dom}(\Gamma) \), then \(\Gamma, x: \tau' \vdash e : \tau \).

Lemma (Exchange). If \(\Gamma, x: \tau_1, y: \tau_2 \vdash e : \tau \) and \(y \neq x \), then \(\Gamma, y: \tau_2, x: \tau_1 \vdash e : \tau \).

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of \(\Gamma, x: \tau' \vdash e : \tau \). There are four cases. In all cases, we know \(\Gamma \vdash e' : \tau' \) by assumption.

\textbf{T-Const} \(e \) is \(c \), so \(e[\tau'/\tau] \) is \(c \). By T-Const, \(\Gamma \vdash c : \text{int} \).

\textbf{T-Var} \(e \) is \(y \) and \(\Gamma, x: \tau' \vdash y : \tau \).

If \(y \neq x \), then \(y[e'/\tau] \) is \(y \). By inversion on the typing rule, we know that \((\Gamma, x: \tau')(y) = \tau \). Since \(y \neq x \), we know that \(\Gamma(y) = \tau \). So by T-Var, \(\Gamma \vdash y : \tau \).

If \(y = x \), then \(y[e'/\tau] \) is \(e' \). \(\Gamma, x: \tau' \vdash x : \tau \), so by inversion, \((\Gamma, x: \tau')(x) = \tau \), so \(\tau = \tau' \). We know \(\Gamma \vdash e' : \tau' \), which is exactly what we need.

\textbf{T-App} \(e \) is \(e_1 e_2 \), so \(e[e'/\tau] \) is \((e_1[e'/\tau]) (e_2[e'/\tau]) \).

We know \(\Gamma, x: \tau' \vdash e_1 e_2 : \tau_1 \), so, by inversion on the typing rule, we know \(\Gamma, x: \tau' \vdash e_1 : \tau_2 \rightarrow \tau_1 \) and \(\Gamma, x: \tau' \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

Therefore, by induction, \(\Gamma \vdash e_1[e'/\tau] : \tau_2 \rightarrow \tau_1 \) and \(\Gamma \vdash e_2[e'/\tau] : \tau_2 \).

Given these, T-App lets us derive \(\Gamma \vdash (e_1[e'/\tau]) (e_2[e'/\tau]) : \tau_1 \).

So by the definition of substitution \(\Gamma \vdash (e_1 e_2)[e'/\tau] : \tau_1 \).

\textbf{T-Fun} \(e \) is \(\lambda y. e_b \), so \(e[e'/\tau] \) is \(\lambda y. (e_b[e'/\tau]) \).

We can \(\alpha \)-convert \(\lambda y. e_b \) to ensure \(y \notin \text{Dom}(\Gamma) \) and \(y \neq x \).

We know \(\Gamma, x: \tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2 \), so, by inversion on the typing rule, we know \(\Gamma, x: \tau', y: \tau_1 \vdash e_b : \tau_2 \).

By Exchange, we know that \(\Gamma, y: \tau_1, x: \tau' \vdash e_b : \tau_2 \).

By Weakening, we know that \(\Gamma, y: \tau_1 \vdash e' : \tau' \).
We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash e_b[e'/x] : \tau_2$.

Given this, T-Fun lets us derive $\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2$.

So by the definition of substitution, $\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2$.

\[\square \]

Theorem (Preservation). If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-Const e is c. This case is impossible, as there is no e' such that $c \rightarrow e'$.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is $\lambda x. e_b$. This case is impossible, as there is no e' such that $\lambda x. e_b \rightarrow e'$.

T-App e is $e_1 e_2$, so $\cdot \vdash e_1, e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2.

There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

E-App1 Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$.

By $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, $e_1 \rightarrow e'_1$, and induction, $\cdot \vdash e'_1 : \tau_2 \rightarrow \tau$.

Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e'_1 e_2 : \tau$.

E-App2 Then $e' = e_1 e'_2$ and $e_2 \rightarrow e'_2$.

By $\cdot \vdash e_2 : \tau_2$, $e_2 \rightarrow e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$.

Using this and $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, T-App lets us derive $\cdot \vdash e_1 e'_2 : \tau$.

E-AppY Then e_1 is $\lambda x. e_b$ for some x and e_b, and $e' = e_b[e'_2/x]$.

By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, we have $\cdot, x: \tau_2 \vdash e_b : \tau$.

This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e'_2/x] : \tau$.

\[\square \]