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Moore’s Law 

Clock speed 

flattening 

sharply 

Transistor 

count still 

rising 



Moore’s Law (in practice) 
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Nearly Extinct: the Uniprocesor 

memory 

cpu 
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Endangered:  

The Shared Memory Multiprocessor 

(SMP) 

cache 

Bus Bus 

shared memory 

cache cache 
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The New Boss:  

The Multicore Processor 

(CMP)  

cache 

Bus Bus 

shared memory 

cache cache 
All on the  

same chip 

Sun 

T2000 

Niagara 
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Why do we care? 

• We want as much as possible to execute 

concurrently (in parallel) 

• A larger sequential part implies reduced 

performance   

• Amdahl’s law: this relation is not linear… 
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Amdahl’s Law 

Speedup= 
1-thread execution time 

n-thread execution time 
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Amdahl’s Law 

Speedup= 
1

1 ¡ p + p
n
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Amdahl’s Law 

Speedup= 

Parallel 

fraction 
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1 ¡ p + p
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Amdahl’s Law 

Speedup= 

Parallel 

fraction 

Number of 

threads 
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Amdahl’s Law 

Speedup= 

Parallel 

fraction 

Sequential 

fraction 

Number of 

threads 



Bad synchronization ruins everything 

Amdahl’s Law in Practice 
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Example 

• Ten processors 

• 60% concurrent, 40% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 60% concurrent, 40% sequential 

• How close to 10-fold speedup? 

10

6.0
6.01

1


Speedup = 2.17= 
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Example 

• Ten processors 

• 80% concurrent, 20% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 80% concurrent, 20% sequential 

• How close to 10-fold speedup? 

10

8.0
8.01

1


Speedup = 3.57= 
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Example 

• Ten processors 

• 90% concurrent, 10% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 90% concurrent, 10% sequential 

• How close to 10-fold speedup? 

10

9.0
9.01

1


Speedup = 5.26= 
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Example 

• Ten processors 

• 99% concurrent, 01% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 99% concurrent, 01% sequential 

• How close to 10-fold speedup? 

10

99.0
99.01

1


Speedup = 9.17= 
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Concurrent Objects 

• What is a concurrent object? 

– How do we describe one? 

– How do we implement one? 

– How do we tell if we’re right? 
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Sequential Objects 

• Each object has a state 

– Usually given by a set of fields 

– Queue example: sequence of items 

• Each object has a set of methods 

– Only way to manipulate state 

– Queue example: enq and deq methods 
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Sequential Specifications 

• If (precondition)  

– the object is in such-and-such a state 

– before you call the method, 

• Then (postcondition) 

– the method will return a particular value 

– or throw a particular exception. 

• and (postcondition, con’t) 

– the object will be in some other state 

– when the method returns,  
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Pre and PostConditions for 

Dequeue 

• Precondition: 

– Queue is non-empty 

• Postcondition: 

– Returns first item in queue 

• Postcondition: 

– Removes first item in queue 
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Pre and PostConditions for 

Dequeue 

• Precondition: 

– Queue is empty 

• Postcondition: 

– Throws Empty exception 

• Postcondition: 

– Queue state unchanged 
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Sequential Specifications 

• Interactions among methods captured by side-

effects on object state 

– State meaningful between method calls 

• Documentation size linear in number of methods 

– Each method described in isolation 

• Can add new methods 

– Without changing descriptions of old methods 
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What About Concurrent 

Specifications ? 

• Methods?  

• Documentation? 

• Adding new methods?  
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Methods Take Time 

time time 
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Methods Take Time 

time 

invocation 

12:00 

q.enq(...) 

time 
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Methods Take Time 

time 

Method call 

invocation 

12:00 

time 

q.enq(...) 
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Methods Take Time 

time 

Method call 

invocation 

12:00 

time 

q.enq(...) 
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Methods Take Time 

time 

Method call 

invocation 

12:00 

time 

void 

response 

12:01 

q.enq(...) 
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time 

Concurrent Methods Take 

Overlapping Time 

time 
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time 

Concurrent Methods Take 

Overlapping Time 

time 

Method call 
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time 

Concurrent Methods Take 

Overlapping Time 

time 

Method call 

Method call 
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time 

Concurrent Methods Take 

Overlapping Time 

time 

Method call Method call 

Method call 
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Linearizability 

• Each method should 

– “take effect” 

– Instantaneously 

– Between invocation and response events 

• Object is correct if this “sequential” 
behavior is correct 

• Any such concurrent object is 

– Linearizable™ 
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Example 

time time 
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Example 

time 

q.enq(x) 

time 
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Example 

time 

q.enq(x) 

q.enq(y) 

time 
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Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the 
work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The 
Art of Multiprocessor Programming” (but not in any 
way that suggests that the authors endorse you or 
your use of the work).  

– Share Alike. If you alter, transform, or build 
upon this work, you may distribute the resulting 
work only under the same, similar or a compatible 
license.  

• For any reuse or distribution, you must make clear to 
others the license terms of this work. The best way 
to do this is with a link to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get 
permission from the copyright holder.  

• Nothing in this license impairs or restricts the 
author's moral rights.  
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