
Introduction

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAA

Art of Multiprocessor Programming 2

Moore’s Law

Clock speed

flattening

sharply

Transistor

count still

rising

Moore’s Law (in practice)

Art of Multiprocessor Programming 3

Art of Multiprocessor Programming 4

Nearly Extinct: the Uniprocesor

memory

cpu

Art of Multiprocessor Programming 5

Endangered:

The Shared Memory Multiprocessor

(SMP)

cache

Bus Bus

shared memory

cache cache

Art of Multiprocessor Programming 6

The New Boss:

The Multicore Processor

(CMP)

cache

Bus Bus

shared memory

cache cache
All on the

same chip

Sun

T2000

Niagara

7

Why do we care?

• We want as much as possible to execute

concurrently (in parallel)

• A larger sequential part implies reduced

performance

• Amdahl’s law: this relation is not linear…

Art of Multiprocessor Programming

Art of Multiprocessor Programming 8

Amdahl’s Law

Speedup=
1-thread execution time

n-thread execution time

Art of Multiprocessor Programming 9

Amdahl’s Law

Speedup=
1

1 ¡ p + p
n

1

1 ¡ p + p
n

Art of Multiprocessor Programming 10

Amdahl’s Law

Speedup=

Parallel

fraction

1

1 ¡ p + p
n

Art of Multiprocessor Programming 11

Amdahl’s Law

Speedup=

Parallel

fraction

Number of

threads

1

1 ¡ p + p
n

Art of Multiprocessor Programming 12

Amdahl’s Law

Speedup=

Parallel

fraction

Sequential

fraction

Number of

threads

Bad synchronization ruins everything

Amdahl’s Law in Practice

14

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

15

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

10

6.0
6.01

1

Speedup = 2.17=

Art of Multiprocessor Programming

16

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

17

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

10

8.0
8.01

1

Speedup = 3.57=

Art of Multiprocessor Programming

18

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

Art of Multiprocessor Programming 19

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

10

9.0
9.01

1

Speedup = 5.26=

20

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

Art of Multiprocessor Programming 21

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

10

99.0
99.01

1

Speedup = 9.17=

Art of Multiprocessor

Programming

23

Concurrent Objects

• What is a concurrent object?

– How do we describe one?

– How do we implement one?

– How do we tell if we’re right?

Art of Multiprocessor

Programming

24

Sequential Objects

• Each object has a state

– Usually given by a set of fields

– Queue example: sequence of items

• Each object has a set of methods

– Only way to manipulate state

– Queue example: enq and deq methods

Art of Multiprocessor

Programming

25

Sequential Specifications

• If (precondition)

– the object is in such-and-such a state

– before you call the method,

• Then (postcondition)

– the method will return a particular value

– or throw a particular exception.

• and (postcondition, con’t)

– the object will be in some other state

– when the method returns,

Art of Multiprocessor

Programming

26

Pre and PostConditions for

Dequeue

• Precondition:

– Queue is non-empty

• Postcondition:

– Returns first item in queue

• Postcondition:

– Removes first item in queue

Art of Multiprocessor

Programming

27

Pre and PostConditions for

Dequeue

• Precondition:

– Queue is empty

• Postcondition:

– Throws Empty exception

• Postcondition:

– Queue state unchanged

Art of Multiprocessor

Programming

28

Sequential Specifications

• Interactions among methods captured by side-

effects on object state

– State meaningful between method calls

• Documentation size linear in number of methods

– Each method described in isolation

• Can add new methods

– Without changing descriptions of old methods

Art of Multiprocessor

Programming

29

What About Concurrent

Specifications ?

• Methods?

• Documentation?

• Adding new methods?

Art of Multiprocessor

Programming

30

Methods Take Time

time time

Art of Multiprocessor

Programming

31

Methods Take Time

time

invocation

12:00

q.enq(...)

time

Art of Multiprocessor

Programming

32

Methods Take Time

time

Method call

invocation

12:00

time

q.enq(...)

Art of Multiprocessor

Programming

33

Methods Take Time

time

Method call

invocation

12:00

time

q.enq(...)

Art of Multiprocessor

Programming

34

Methods Take Time

time

Method call

invocation

12:00

time

void

response

12:01

q.enq(...)

Art of Multiprocessor

Programming

35

time

Concurrent Methods Take

Overlapping Time

time

Art of Multiprocessor

Programming

36

time

Concurrent Methods Take

Overlapping Time

time

Method call

Art of Multiprocessor

Programming

37

time

Concurrent Methods Take

Overlapping Time

time

Method call

Method call

Art of Multiprocessor

Programming

38

time

Concurrent Methods Take

Overlapping Time

time

Method call Method call

Method call

Art of Multiprocessor

Programming

39

Linearizability

• Each method should

– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential”
behavior is correct

• Any such concurrent object is

– Linearizable™

Art of Multiprocessor

Programming

40

Example

time time

Art of Multiprocessor

Programming

41

Example

time

q.enq(x)

time

Art of Multiprocessor

Programming

42

Example

time

q.enq(x)

q.enq(y)

time

Art of Multiprocessor

Programming

43

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor

Programming

44

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Art of Multiprocessor

Programming

45

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Art of Multiprocessor Programming 46

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the
work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The
Art of Multiprocessor Programming” (but not in any
way that suggests that the authors endorse you or
your use of the work).

– Share Alike. If you alter, transform, or build
upon this work, you may distribute the resulting
work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to
others the license terms of this work. The best way
to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get
permission from the copyright holder.

• Nothing in this license impairs or restricts the
author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

