Introduction

[HE AR

MULTIPROCESSOR
PROGRAMMING

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Moore’'s Law

1000000
K Transistor
count still
100000 . .
rising
10000 1
Clock speed
flattening
1000
sharply
100
10
1 = » Clock Speed (MHz) |
5 A = Transistors [000)
(1| [] I l
1971 1375 13739 1923 1987 1991 19395 193939 2003 2007

Art of Multiprocessor Programming 2

Art of Multiprocessor Programming 3

Nearly Extinct: the Uniprocesor

Art of Multiprocessor Programming

Endangered:
The Shared Memory Multiprocessor
(SMP)

g ERN

| | | cache |

==

Art of Multiprocessor Programming 3}

The New Boss:
The Multicore Processor

(CI\/IP)
All on the Sun
same chip 12000
Niagara

Art of Multiprocessor Programming

Why do we care?

* We want as much as possible to execute
concurrently (in parallel)

» A larger sequential part implies reduced
performance

« Amdahl’s law: this relation is not linear...

Art of Multiprocessor Programming 7

Amdahl’'s Law

1-thread execution time

Speedup=

n-thread execution time

Art of Multiprocessor Programming

Amdahl’'s Law

1

Speedup= ———— T
Li p+ 5

Amdahl’'s Law

Parallel
1 fraction

Li p+;

Speedup=

Art of Multiprocessor Programming 10

Amdahl’'s Law

Parallel
1 fraction

Speedup=

Number of
threads

Art of Multiprocessor Programming 11

Amdahl’'s Law

Sequential

fraction Parallel

1 fraction

Speedup=

Number of
threads

Art of Multiprocessor Programming 12

o
AN
=
o
| -
<
5
-
>
7
e
©
m

Example

* Ten processors
* 60% concurrent, 40% sequential
 How close to 10-fold speedup?

Art of Multiprocessor Programming

14

Example

* Ten processors
* 60% concurrent, 40% sequential
 How close to 10-fold speedup?

1
Speedup = 2.17= 06

1-06+-——
6 + 10

Art of Multiprocessor Programming

_:’9;;;—;5,

15

Example

* Ten processors
* 80% concurrent, 20% sequential
 How close to 10-fold speedup?

Art of Multiprocessor Programming

16

Example

* Ten processors
* 80% concurrent, 20% sequential
 How close to 10-fold speedup?

1

Speedup = 3.57=
P P 1—0.8+?'O8

Art of Multiprocessor Programming

_:’9;;;—;5,

17

Example

* Ten processors
* 90% concurrent, 10% sequential
 How close to 10-fold speedup?

Art of Multiprocessor Programming

18

Example

* Ten processors
* 90% concurrent, 10% sequential
 How close to 10-fold speedup?

1
Speedup = 5.26= 0.9

1-09+ -2
9+ 10

Art of Multiprocessor Programming

_:’9;;;—;5,

19

Example

* Ten processors
* 99% concurrent, 01% sequential
 How close to 10-fold speedup?

Art of Multiprocessor Programming

20

Example

* Ten processors
* 99% concurrent, 01% sequential
 How close to 10-fold speedup?

1

Speedup =9.17=
1-099+ 277

10

Art of Multiprocessor Programming

_:’9;;;—;5,

21

Concurrent Objects

* What Is a concurrent object?

OW C
OW C

OW C

0 we describe one?
o we implement one?
o we tell if we’re right?

Art of Multiprocessor
Programming

23

Seqguential Objects

« Each object has a state

— Usually given by a set of fields

— Queue example: sequence of items
* Each object has a set of methods

— Only way to manipulate state
— Queue example: enq and deq methods

Art of Multiprocessor
Programming

24

Sequential Specifications

* If (precondition)
— the object Is In such-and-such a state
— before you call the method,
* Then (postcondition)
— the method will return a particular value
— or throw a particular exception.
« and (postcondition, con’t)
— the object will be in some other state
— when the method returns,

Art of Multiprocessor
Programming

25

Pre and PostConditions for
Dequeue

* Precondition:
— Queue IS non-empty
* Postcondition:
— Returns first item in queue

* Postcondition:
— Removes first item in queue

Art of Multiprocessor
Programming

26

Pre and PostConditions for
Dequeue

* Precondition:
— Queue Is empty
* Postcondition:
— Throws Empty exception

* Postcondition:
— Queue state unchanged

Art of Multiprocessor
Programming

27

Seqguential Specifications

 Interactions among methods captured by side-
effects on object state
— State meaningful between method calls
 Documentation size linear in number of methods
— Each method described in isolation

« Can add new methods
— Without changing descriptions of old methods

Art of Multiprocessor 28
Programming

m

What About Concurrent
Specifications ?

e Methods?
« Documentation?
* Adding new methods?

Art of Multiprocessor
Programming

29

Methods Take Time

Art of Multiprocessor
Programming

30

Methods Take Time

[invocaﬂon
12:00
ele| |

Qo,

|

-

Art of Multiprocessor 31
Programming

Methods Take Time

[invocaﬂon
12:00
ele| |

|

Qo,

Method call

-

Art of Multiprocessor 32
Programming

R "r
g
-)

Methods Take Time

[invocaﬂon
12:00

q.enq(@

* Method call

“

Art of Multiprocessor
Programming

Methods Take Time

[lnvocanon response

12:00 12:01
‘MG\

Q

Art of Multiprocessor
Programming

Concurrent Methods Take
Overlapping Time

le|e]o)]

Art of Multiprocessor
Programming

35

Concurrent Methods Take
Overlapping Time

le|e]o)]

Method call

Art of Multiprocessor
Programming

36

Concurrent Methods Take
Overlapping Time

le|e]o)]

Method call

75>

Method call

Art of Multiprocessor
Programming

37

Concurrent Methods Take
Overlapping Time

le|e]o)]

=22 52+

v

Method call / Method call
= KA

I Method call
V)

time

Art of Multiprocessor
Programming

38

Linearizabillity

« Each method should
— “take effect”

— Instantaneously
— Between invocation and response events

* Object is correct if this “sequential”
behavior Is correct

* Any such concurrent object is
— Linearizable™

Art of Multiprocessor
Programming

39

Example

le|e]o)]

Art of Multiprocessor
Programming

40

Example

le|e]o)]

Art of Multiprocessor 41
Programming

Example

le|e]o)]

Art of Multiprocessor
Programming

42

Art of Multiprocessor
Programming

43

Art of Multiprocessor
Programming

44

Art of Multiprocessor 45
Programming

SOME RIGHTS RESERVED

?his work Is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

e You are free:

— to Share — to copy, distribute and transmit the
work

— to Remix — to adapt the work
e Under the following conditions:

— Attribution. You must attribute the work to “The
Art of Multiprocessor Programming” (but not in any
way that suggests that the authors endorse you or
your use of the work).

— Share Alike. If you alter, transform, or build
upon this work, you may distribute the resulting

work only under the same, similar or a compatible
license.

e For any reuse or distribution, you must make clear to
others the license terms of this work. The best way
to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

e Any of the above conditions can be waived 1f you get
permission from the copyright holder.

othing in this license impalrs or restricts the
uthor's moral ragbftMultiprocessor Programming 46

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

