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Abstract
Providing deterministic execution significantly simplifies the de-
bugging, testing, replication, and deployment of multithreaded pro-
grams. Recent work has developed deterministic multiprocessor
architectures as well as compiler and runtime systems that en-
force determinism in current hardware. Such work has incidentally
imposed strong memory-ordering properties. Historically, mem-
ory ordering has been relaxed in favor of higher performance in
shared memory multiprocessors and, interestingly, determinism ex-
acerbates the cost of strong memory ordering. Consequently, we
argue that relaxed memory ordering is vital to achieving faster de-
terministic execution.

This paper introduces RCDC, a deterministic multiprocessor
architecture that takes advantage of relaxed memory orderings to
provide high-performance deterministic execution with low hard-
ware complexity. RCDC has two key innovations: a hybrid HW/SW
approach to enforcing determinism; and a new deterministic exe-
cution strategy that leverages data-race-free-based memory models
(e.g., the models for Java and C++) to improve performance and
scalability without sacrificing determinism, even in the presence of
races. In our hybrid HW/SW approach, the only hardware mecha-
nisms required are software-controlled store buffering and support
for precise instruction counting; we do not require speculation. A
runtime system uses these mechanisms to enforce determinism for
arbitrary programs.

We evaluate RCDC using PARSEC benchmarks and show that
relaxing memory ordering leads to performance and scalability
close to nondeterministic execution without requiring any form of
speculation. We also compare our new execution strategy to one
based on TSO (total-store-ordering) and show that some applica-
tions benefit significantly from the extra relaxation. We also eval-
uate a software-only implementation of our new deterministic exe-
cution strategy.

Categories and Subject Descriptors D.1.3 [Programming Lan-
guages]: Concurrent Programming—Parallel Programming; C.1.4
[Processor Architectures]: Parallel Architectures; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environments

General Terms Reliability, Design, Performance
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1. Introduction
Even if given the same exact input, a multithreaded program may
not produce the same output. Nondeterminism in current multi-
processor systems severely complicates debugging, testing, repli-
cation, and deployment of multithreaded programs. Once a bug is
found, it is hard to reproduce its behavior during debugging. When
a multithreaded program is tested, there are no guarantees that
it will behave the same way after deployment. Moreover, nonde-
terminism complicates fault-tolerant systems, since multithreaded
replicas may have divergent behavior.

Deterministic multiprocessing promises to eliminate nondeter-
minism in the execution of multithreaded programs, effectively
eliminating the problems described above. As such, determinism
provides a large step toward improved programmability of multi-
core systems.

Recent research has begun to explore ways to execute mul-
tithreaded programs deterministically. Kendo [26] is a software-
only approach that provides determinism for race-free programs,
but offers no guarantee for programs with data races. The essential
idea is to allow a thread to complete a synchronization operation
only when all other threads have completed more total instructions.
DMP [14] proposed two alternate strategies using novel hardware:
the first uses data-ownership tracking and periodic barriers to guar-
antee that all data movement between threads happens determin-
istically; the second uses support for transactional memory (TM)
to speculate that regions of execution do not have any inter-thread
communication, rolling-back and re-executing if inter-thread com-
munication does happen. Neither strategy assumes race freedom,
thus they both provide determinism for arbitrary programs. How-
ever, both strategies produce only sequentially consistent execu-
tions. This property likely affects performance and scalability of
the first strategy, and while the TM-based strategy has high per-
formance, it entails always-on speculation with resultant complex-
ity and energy costs. Subsequently, CoreDet [4] argued that this
TM-based approach is a poor fit for software TM, and thus needs
hardware support. CoreDet improved scalability by proposing a de-
terministic execution strategy and a software-only implementation
that uses deterministic store buffers to weaken the memory consis-
tency model from sequential consistency to total-store-order (TSO)
and consequently improves scalability without using speculation.
While CoreDet demonstrated reasonable scalability, the high cost
of software-based store buffers led to significant overheads.

Relaxing memory ordering has proven instrumental in improv-
ing performance and scalability in conventional nondeterministic
shared memory multiprocessor architectures [1, 17]. While specu-
lation alleviates some of the costs of strong ordering [11, 18, 32, 34]
in complex architectures, we still relax memory ordering to al-
low compiler optimizations and to simplify hardware. Interestingly,
strong memory ordering has a much higher cost in deterministic
multiprocessing than in nondeterministic multiprocessing. There-



fore we argue that, in deterministic multiprocessors, it is even more
important to give up strong memory ordering in favor of higher
performance and lower complexity.

This paper proposes RCDC, a relaxed consistency deterministic
multiprocessor computer system. RCDC improves prior work in
two ways:

• RCDC implements a new deterministic execution algorithm,
called DMP-HB (for “happens-before”), which relaxes memory
consistency even further than TSO while still supporting data-
race-free-based memory models (e.g., those of Java and C++).
This improves performance and scalability by requiring fewer
costly fences, which leads to less serialization. DMP-HB does
not employ speculation and does not sacrifice determinism in
the presence of races.

• RCDC uses a lower complexity hybrid hardware/software im-
plementation in which the hardware provides only two simple
mechanisms, software-controlled store buffering and instruc-
tion counting, leaving the rest of the implementation to soft-
ware. Implementing store buffering in hardware has the pleas-
ant side effect of reducing the effects of false sharing. RCDC
can be implemented on a commodity multiprocessor architec-
ture and does not interfere with software (e.g., the OS) that does
not choose to use it.

The rest of this paper is organized as follows. We first discuss
prior deterministic execution algorithms and how they relate to
memory ordering, and also explain our new algorithm for deter-
ministic execution (Section 2). We then provide an overview of
how RCDC works, highlighting the responsibilities of hardware
and software (Section 3). We follow with implementation details
of RCDC’s hardware components, protocols, and software runtime
system (Section 4). We then discuss system issues such as page
swapping and context switches (Section 5). We evaluate RCDC in
comparison with prior approaches and also include an evaluation of
a software-only implementation of DMP-HB (Section 6). We end
with related work and closing remarks (Sections 7 and 8).

2. Relaxed-Consistency Deterministic Execution
This section presents our new deterministic execution algorithm,
DMP-HB. For expository purposes, we first describe two re-
lated deterministic execution algorithms from prior work (DMP-
SERIAL [14] and DMP-TSO [4]1).

2.1 DMP-SERIAL

The simplest way to run a multithreaded program deterministically
is to serialize its execution in a deterministic way. For example, we
can schedule threads in a round-robin fashion so that execution is
serial. Each thread is scheduled for one finite logical time slice, or
quantum; a round consists of all threads executing one quantum
each. To ensure determinism it suffices to ensure that the length of
each quantum and the scheduling order are both deterministic.

2.2 DMP-TSO: Store Buffering
One way to recover parallelism is to isolate threads using store
buffers. In this approach, each round is divided into three modes, a
parallel mode, a commit mode, and a serial mode. During parallel
mode, all stores are buffered in a thread-local store buffer, giving
each thread a private view of shared memory. After parallel mode,
all threads enter a commit mode in which the local store buffers
are published to the global memory space. This commit happens

1 In [4], DMP-TSO was named DMP-B; this paper uses the name DMP-
TSO for improved contrast with DMP-HB.

deterministically. The effect is a serial commit order, but the imple-
mentation uses parallelism to avoid a sequential bottleneck. After
commit mode is a short serial mode in which threads execute in a
deterministic serial order and operate on shared memory directly.
Serial mode is used to execute atomic synchronization operations,
as described below.

Figure 1a illustrates one round of execution in DMP-TSO. Each
thread executes one quantum per round, where, as in DMP-SERIAL,
a quantum is some deterministic number of instructions. DMP-
TSO is deterministic due to four properties: (1) quantum lengths
are deterministic; (2) threads are isolated in parallel mode, prevent-
ing nondeterministic interference from other threads; (3) commit
mode ensures that writes to shared memory happen in a determin-
istic order; and (4) serial mode ensures that atomic synchroniza-
tion happens in a deterministic order. Note that the deterministic
guarantee offered by DMP-TSO does not depend on a race-free as-
sumption — data races are resolved deterministically as a result of
the isolation provided by parallel mode, combined with the deter-
ministic order on writes provided by commit mode.

Notice that execution under DMP-TSO is not sequentially con-
sistent; stores are not globally visible until commit mode, effec-
tively reordering them after loads in the same quantum. This reveals
the need for serial mode — without serial mode, synchronization
would not happen atomically. Further, it reveals the need to define
the semantics of a memory fence. In DMP-TSO, thread T ends its
parallel mode when it reaches a memory fence. This flushes T ’s
local store buffer, implementing the semantics of a full memory
fence. Because DMP-TSO does not distinguish between different
types of memory fences, it implements the total-store-order (TSO)
memory model.

DMP-TSO achieves high performance when serial mode is
empty and parallel mode is balanced, meaning that all quanta in
a round execute in the same amount of real time. Serial mode is
empty when synchronization is rare; prior work [4] has shown
how to use instruction counting to achieve balanced parallel modes
when serial mode is empty. When synchronization does happen, it
forces DMP-TSO into serial mode, whereby every synchronization
operation causes global coordination. Synchronization not only
causes serialization but also imbalance in parallel mode, which
results in additional lost parallelism due to excess waiting. When
synchronization is frequent, the effects of serialization and imbal-
ance dominate and performance suffers.

2.3 DMP-HB: Leveraging Data-Race-Free Memory Models
DMP-HB addresses the major weakness of DMP-TSO: syn-
chronization. Like DMP-TSO, DMP-HB uses deterministic store
buffers and divides execution into quantum rounds with paral-
lel modes and commit modes. However, DMP-HB introduces a
new approach to deterministic synchronization that improves on
DMP-TSO in two respects. First, DMP-HB implements a data-
race-free [1] (DRF) relaxed memory model based on the happens-
before relation between threads (hence “DMP-HB”). This model
requires fewer memory fences than TSO, which makes parallel
mode less likely to end early, thus increasing parallelism. However,
weakening consistency alone does not remove all impediments to
scalability, as DMP-TSO requires that synchronization execute in
a globally serialized fashion. To remove this further bottleneck,
DMP-HB eliminates the need for an explicit serial mode by using
the Kendo algorithm [26] to execute synchronization directly in
parallel mode, while still providing determinism even for programs
with races. Overall, these optimizations let DMP-HB execute with
less serialization and less imbalance than DMP-TSO, leading to
improved parallelism as illustrated in Figure 1b.

The key observation of DMP-HB is that language-level mem-
ory models have weaker consistency guarantees than TSO. Specif-
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Figure 1. Timeline of a quantum round in DMP-TSO and DMP-HB, showing the division of each round into parallel, serial, and commit
modes. DMP-HB improves DMP-TSO by allowing synchronization to happen in parallel mode, eliminating the need for serial mode.
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Figure 2. A comparison of execution under DMP-HB with execution under DMP-TSO, showing how DMP-HB extracts more
parallelism from programs with frequent synchronization.

ically, Java [22] and C++ [10] define consistency models based
on the data-race-free model [1]. From the programmer’s perspec-
tive, it does not matter that the execution layer (e.g., the hardware)
provides TSO when other layers of the system (e.g., the compiler)
guarantee only DRF. Further, the need to precisely control memory
visibility causes nondeterministic processor-local fences to become
global operations in deterministic systems like DMP-TSO, which
suggests that strong memory ordering has a much higher cost in
deterministic systems than in nondeterministic systems. Both these
observations imply that deterministic systems should relax consis-
tency as much as possible. As DRF-based models are specified by
high-level languages, they represent the limit to which memory or-
dering can be relaxed.

2.3.1 Synchronization in DMP-HB
As DMP-TSO is a deterministic version of a TSO consistency
model, DMP-HB is a deterministic version of a DRF consistency
model. DMP-HB differs from DMP-TSO in its approach to syn-
chronization. The rest of this section presents the basic ideas of
DMP-HB. We describe details of the DMP-HB synchronization al-
gorithm along with our synchronization library in Section 4.4.

Consider mutex locks in a language with a DRF-like model,
such as Java or C++. In these languages, the visibility of stores is
guaranteed only along happens-before edges, which can arise from
program order between consecutive operations in a thread or from
synchronization operations across threads. When thread T acquires
lock L, this creates a happens-before edge E from the previous
releaser of L to T . The DRF model guarantees that from this point
forward, T will see stores that transitively happen-before its acquire
of L. Other stores need not be visible. Therefore, in DRF models, T
needs a memory fence after acquiring lock L only when happens-

before edge E is not redundant. When E is redundant, the fence
can be elided.

DMP-HB exploits two happens-before redundancies: (1) thread-
local edges, and (2) cross-quantum edges. First consider thread-
local redundancies: if T was the previous releaser of L, then lock L
has not been handed off to another thread, and we say that happens-
before edge E is local to thread T . A fence is not needed in this
case because edge E is redundant with program order. Prior work
has had this same insight but in the context of nondeterministic sys-
tems, and furthermore has shown that lock locality is very common
in Java programs [30, 33].

Cross-quantum redundancies are more interesting. They follow
from the observation that all quanta in round N are connected to all
quanta in round N+1 by implicit happens-before edges. These im-
plicit edges arise from the bulk-synchronous style of execution used
by DMP-HB, illustrated in Figure 1b. The important result is that an
explicit fence is not necessary when synchronization is separated
by a quantum boundary. Thus, by matching quantum length with
the frequency of synchronization, DMP-HB can eliminate many
unnecessary fences, increasing performance and scalability.

Figure 2b demonstrates both the above redundancies. An exam-
ple of a redundant cross-quantum edge is shown when thread T0
acquires lock B in quantum 2: this creates a happens-before edge
with the release of lock B by thread T1 in quantum 1. Because
this edge crosses a quantum boundary (i.e., it crosses a commit
mode), T0 does not need to execute an explicit fence when ac-
quiring lock B. In contrast, note that under DMP-TSO, T0 must
execute a fence, i.e., end its quantum, before acquiring lock B.

An example of a thread-local redundancy is also shown in
quantum 2, where T0 reacquires lock B. As T0’s updates are
automatically visible to itself, there is no need for a fence. The
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extra serialization necessary to enforce the stronger TSO memory
model is illustrated in Figure 2a.

Further, Figure 2b shows that DMP-HB does not require a serial
mode, in contrast to DMP-TSO, which executes all lock acquires
in serial mode. Even with the weaker DRF memory model, serializ-
ing all synchronization eliminates the ability to exploit thread-local
redundant fences. Recall that DMP-TSO uses a serial mode to guar-
antee both atomicity and a deterministic order of synchronization.
For correctness and determinism, DMP-HB must make these same
two guarantees. Our solution is to use the Kendo algorithm [26]
to impose a deterministic total order on all synchronization within
a single quantum round. This algorithm allows synchronization to
operate directly on the global memory space, bypassing the store
buffer so the operation happens atomically. We describe this algo-
rithm along with our synchronization library in Section 4.4.

2.3.2 Language Memory Models
Even though DRF does not specify the semantics of races, DMP-
HB’s deterministic guarantees hold even for programs with data
races. DMP-HB’s DRF memory model naturally matches the C++
memory model; however, the Java memory model specifies some
behavior for data races, e.g., to prevent “out-of-thin-air” values.
DMP-HB does not itself introduce any potential “out-of-thin-air”
values because it does not employ any form of speculation. A Java
compiler must (still) ensure that its optimizations do not violate the
Java memory model and also must ensure that proper synchroniza-
tion and fences are inserted. Therefore, compiling Java code for
DMP-HB’s memory model is no more complex than compiling for
a weak ordering system.

3. RCDC System Overview
RCDC provides an efficient implementation of DMP-HB through
a combination of hardware and software mechanisms, as summa-
rized in Figure 3. The four main components of RCDC are (1)
a precise instruction-count mechanism to divide each thread’s in-
struction stream into balanced quanta efficiently, (2) a store-buffer
mechanism that allows threads to execute in isolation from other
threads, (3) a deterministic commit mechanism that concludes each
quantum round, and (4) a custom synchronization library that im-
plements a pthreads interface while enforcing DMP-HB’s memory-
consistency model. These components are implemented as a com-
bination of hardware and software designed for maximal flexibility
and minimal hardware complexity.

Quantum formation is an ideal use case for hardware, as
counting instructions involves nearly zero overhead in hardware but
causes substantial slowdown in software. The hardware instruction-
counting mechanism simply counts instructions as they retire, trig-
gering a user-level QuantumReached trap when a pre-defined total
is reached. This trap is responsible for actually starting the commit
process that makes buffered data visible.

Our synchronization library requires the ability to disable and
enable instruction counting for the local processor, and also to
read the current instruction counts of remote processors. For
this purpose the instruction-count mechanism can be controlled
and queried via the StopInsnCount, StartInsnCount, and
ReadInsnCount instructions.

Deterministic quantum formation beyond simply counting in-
structions is also possible. Section 4.1 describes a more advanced
strategy that uses opcodes and store buffer hit/miss information to
construct quanta with better balance.

The store buffer mechanism is also a natural fit for hardware,
where processor-private caches can isolate an executing thread
from other threads in the system (like in hardware transactional
memory, but without an abort mechanism) with additional bits of
cache line state. We rely on simple compiler modifications or bi-

nary rewriting to replace existing store instructions with our new
BufferedStore instruction. With more sophisticated analysis, or-
dinary non-buffered store instructions can, without any loss of de-
terminism, replace buffered stores to locations that are provably
thread-private. This increases the effective capacity of the store
buffer without additional hardware resources.

The deterministic commit mechanism is triggered by software,
via a new Commit instruction. The actual commit process is imple-
mented in hardware, as described in Section 4.3. The commit pro-
cess is invoked by software in response to QuantumReached and
BufferFull traps, as well as to enforce the memory consistency
requirements of DMP-HB. Hardware triggers a BufferFull trap
immediately when a store buffer overflows. Note that our cache re-
placement policy, described in Section 4.2, is designed to ensure
that store buffer overflows happen deterministically.

Finally, our custom synchronization library acts as a drop-in
replacement for pthreads. It uses the instructions described above
to enforce DMP-HB’s consistency model. Because the decision of
when to commit is left to software, our synchronization library can
easily be modified to implement other consistency models, e.g.,
DMP-TSO.

4. Implementation
We now discuss implementation details for the major hardware and
software components described in Section 3.

4.1 Quantum Formation
For quantum formation, the hardware does instruction counting
and sets a trap after a software-defined quantum budget is ex-
hausted. This mechanism is initialized by system software when
a process is created. This code registers a user-level trap that is in-
voked whenever the quantum size is reached, establishes the size
of quanta, and executes the StartInsnCount instruction.

Thus far, we have discussed quantum formation in terms of
counting instructions. However, it is possible to provide better
quantum balance by giving instructions non-uniform weights, e.g.,
based on opcode. One useful optimization leverages the determinis-
tic contents of the store buffer. Memory accesses deterministically
either hit in the store buffer (i.e., hit to a written cache line) or
miss the store buffer (which means either hitting to a non-written
cache line or missing to the next-level cache or beyond). Knowing
whether the memory operation is a load or a store lets us, in many
cases, accurately assess the latency of that operation deterministi-
cally. Loads that miss the store buffer are often hits to a clean line,
so we assign them a low weight. But stores that miss in the store
buffer tend to be cache misses, and thus have high latency. Assign-
ing higher weights to such stores results in better quantum balance
since the weight assigned to each instruction better approximates
its actual latency. Finally, we add to the sum of instruction weights
as instructions retire, allowing access to hit/miss information, and
also avoiding any issues with wrong-path instructions.

4.2 Buffering
RCDC’s hardware provides support for buffering data, while soft-
ware (i.e., the compiler) controls what data is buffered via the
BufferedStore instruction. This section details how buffering
support is implemented as an extension to the cache hardware.

Cache-based data buffering imposes a few system requirements:
(1) buffered lines cannot be provided to remote requests; (2) the
commit protocol, which makes buffered data available to all pro-
cessors, needs to be deterministic; and (3) the system needs to sup-
port context switches. RCDC provides this functionality on top of
a conventional directory-based MOESI cache coherence protocol
and implements buffering in private caches, while still naturally
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Figure 3. RCDC system overview, showing the division of responsibility between hardware and software. The shaded boxes show
RCDC’s additions.

supporting higher-level shared caches. For simplicity of explana-
tion, we consider only a single private L1 cache per processor in
the discussion below.
Cache Extensions for Store Buffering Each L1 cache line is
extended with a write-mask, which has as many bits as bytes in the
cache line. When a BufferedStore is executed, the corresponding
write-mask bits are set. Consequently, lines with non-null write-
masks contain buffered data.

To ensure that store buffer capacity is exhausted deterministi-
cally, we modify the cache eviction policy to always preferentially
evict unwritten cache lines from a set. This ensures determinism
while maximizing the amount of progress a processor can make be-
fore running out of store buffer capacity. When all lines of a cache
set are buffered and an eviction needs to happen, RCDC triggers a
BufferFull trap and the runtime system ends the quantum.

Non-buffered stores to cache lines in the non-buffered state pro-
ceed normally, following the conventional MOESI protocol. Non-
buffered stores to cache lines in the buffered state are treated like
BufferedStores. Note that buffering data from a non-buffered
store is valid with respect to the instruction semantics as it is always
correct to buffer private data — it just will not bring any benefit. If
a non-buffered store necessarily cannot be buffered because of pro-
gram semantics, then software needs to guarantee that this does not
happen (e.g., using careful memory layout).
Coherence Operations We augment the transitions in a conven-
tional MOESI protocol to handle our new BufferedStore instruc-
tion. This requires three changes to a conventional MOESI proto-
col. First, if an L1 cache receives a request for a line whose write-
mask is non-null, the request is nacked. The requester then goes to
a shared higher-level cache (or memory) to fulfill its request. This
is necessary to guarantee that buffered data is never provided to re-
mote requests. Second, a line must be in the Shared state before it
can be written by a BufferedStore instruction. Finally, our com-
mit protocol (Section 4.3) moves lines to the Owned state after they
have been published. As a consequence of these last two changes,
moving a line to the Shared state to satisfy a BufferedStore may
require a write-back operation (e.g., because that line may have
been buffered in the previous round).

Interestingly, isolating each thread’s updates into separate store
buffers also yields a solution to false sharing, by allowing threads
to perform updates to the same cache line within a quantum round
without any serialization via the coherence protocol. The line be-
comes temporarily incoherent, but the updates are merged deter-
ministically at the end of the round. If threads’ updates are in con-
flict (i.e., two threads update the same bytes), there is a data race in
the user program — data-race free programs can never observe this
relaxation of coherence.
Context Switches The kernel can context switch away from and
back to a thread at any time, even during parallel mode, as long as

it invokes the SaveBufferedLines and RestoreBufferedLines
instructions to save and restore a thread’s current store buffer.

These instructions make use of a per-thread, in-memory data
structure called the Buffered Data Table (BDT), which contains
the saved store buffer contents for a given thread. A BDT has a
row for each cache line in a processor’s store buffer, with one
column for the line’s data, another for the line’s write-mask, and
a third for a “next” pointer whose use is described below. A row
in the BDT is considered valid if its write-mask is non-null. The
SaveBufferedLines instruction simply flushes all buffered lines
from the cache to the BDT. As it does so, it clears the write-
masks of all buffered lines in the L1 cache and transitions them
to the Invalid state, making them available for the next thread to
be switched in. The RestoreBufferedLines instruction iterates
over all buffered lines in a given BDT, restoring them into the L1
cache. After a line is restored from the BDT to the L1 cache, its
write-mask is cleared in the BDT to signify that the line is no longer
saved in-memory.

These two instructions additionally maintain a separate, per-
process table called the Buffered Address Map (BAM). The BAM
is a table of pointers mapping each line address to a linked list
of BDT entries storing the in-memory versions of that line. The
pointer in each BDT entry points to the next thread’s BDT entry in
the list. Each BDT entry represents the saved state of one buffered
version of the given cache line. By walking the list, the BAM table
can be used to enumerate all in-memory versions of a buffered
line. BAMs are used during the commit process as described in
the following section.

We highlight that these instructions can be expensive, not only
on their own, but also because of the extra work they impose on the
commit process. In Section 5 we describe a few kernel scheduling
optimizations that make these instructions infrequent.

4.3 Committing Buffered Data
In DMP-HB, the transition to commit mode is controlled by soft-
ware, which uses the Commit instruction to initiate the actual com-
mit process in hardware. The RCDC software runtime executes
the following pseudocode for each thread when it reaches its quan-
tum boundary, e.g., when its quantum budget has been exhausted:

1 end_quantum() {
2 global_barrier()
3 Commit
4 global_barrier()
5 }

The first barrier represents the transition from parallel mode to
commit mode; the Commit instruction represents commit mode;
and the second barrier represents the transition back to parallel
mode to start the next quantum (see Figure 1b). The first barrier
ensures that all threads are ready to commit, while the second
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Figure 5. RCDC commit process when an application thread is switched out.

barrier ensures that all threads have finished publishing the contents
of their store buffers.

The goal of the commit process is to merge buffered data deter-
ministically and publish it globally. If a line has no buffered data
in any cache, commit has no effect on that line. When a line has
buffered data in one or more caches, the commit process determin-
istically merges all buffered data and then publishes this data to the
rest of the system by moving the merged line to the Owned state.

A processor executes the commit instruction by iterating over all
lines in its cache that have buffered data, i.e., those lines with non-
null write-masks. For each of those lines, the processor executes
the commit protocol. The commit protocol coordinates with the
directory and with other processors, collects all buffered versions
of a line, and then deterministically merges them. Once the commit
protocol has been executed for all of the processor’s buffered lines,
the Commit instruction retires. At this point, the processor’s entire
store buffer has been globally published.

The commit protocol needs to handle two cases: committing
when all buffered versions of a line are in-cache; and committing
when at least one buffered version of a line is out-of-cache (i.e.,
because the thread was context-switched out). We describe both
cases in detail below.
In-cache Commit (all threads running) The processor issues a
commit message for the given line to the directory; the directory
replies with an acknowledgment for commit and a list of sharers
for that line. The processor sends a commit message to each sharer.
Upon receipt of a commit message, each sharer returns a reply

indicating if it has the line, and if so, it includes the write-mask
and the data for the requested line, as well as its deterministic order
id; it then clears its write-mask and moves the line to Invalid state.
When the committing processor receives a reply, it merges the other
processor’s data into its own line. Once the processor has collected
replies from all sharers, it clears the line’s write-mask and moves
the line to the Owned state, making the line visible to all processors.

The merge algorithm takes lines from two processors, P0 and
P1, and computes the result of P0’s writes happening before P1,
where P0 has the smaller order id. This algorithm is straightforward
and has been described by prior work [4].

Note that if the directory nacks the request for commit of a given
line, this implies that some other processor has already started the
commit for that line; the requester then waits until it receives a
commit request for the line from another processor. Also note that
while the commit process can actually happen in any order, the final
state is guaranteed to be deterministic because the merge process
is deterministic. Moreover, when the sharers list includes only the
committing processor, no merge is necessary; the processor simply
clears the line’s write-mask and moves the line to the Owned state.
Example. Figure 4 illustrates how RCDC deals with multiple
caches trying to commit to the same line A. Processors P0, P1,
and P2 all have buffered copies of line A. First, P0 and P2 send
concurrent commit requests for line A to the directory (1a, 2a).
P0’s message arrives first, and the directory responds to P0 with
an acknowledgment message (1b), including the list of sharers,
allowing P0 to proceed with committing line A. Since commit has
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1 sync acquire(o: SyncObject) {
2 if (o.quantum < curr_quantum ||
3 o.releaser == self) {
4 return // fence not necessary
5 }
6 end_quantum()
7 }
8
9 deterministic lock(l: Lock) {

10 StopInsnCount
11 while (true) {
12 wait_for_turn()
13 if (CAS(l.locked, 0, 1))) {
14 sync acquire(l)
15 StartInsnCount
16 return
17 }
18 end_quantum()
19 }
20 }

21 sync release(o: SyncObject) {
22 o.quantum = curr_quantum
23 o.releaser = self
24 }
25
26
27
28
29 deterministic unlock(l: Lock) {
30 StopInsnCount
31 wait_for_turn()
32 sync release(l)
33 l.locked = 0
34 StartInsnCount
35 }

Figure 6. Deterministic Locking for DMP-HB

started for line A, the directory responds to P2 with a negative
acknowledgment (2b) and P2 waits for a commit request (which
it is bound to get since it is guaranteed that another processor
is committing A). P0 continues by sending commit messages to
all sharers of A (3a, 3b). P1 and P2 respond with a message
containing their data, write mask, and deterministic order (4a, 4b)
and then invalidate their copy of the line. Upon receiving the acks,
P0 deterministically merges the data with its own (5) and notifies
the directory that line A has been committed (6).
Out-of-cache Commit (at least one thread is switched out) We
now describe the more general case where at least one sharer
has been switched out. RCDC supports this case with a simple
extension to the directory: each directory entry, in addition to the
sharers, also includes a single bit called the in-memory bit, which
indicates if the line has data in an in-memory Buffered Data Table.
This in-memory bit is set by the SaveBufferedLines instruction.

When a committing processor issues a commit message for a
line to the directory, the directory replies with an acknowledgment
and a list of sharers as before, and the processor communicates
with the sharers as before. However, the directory also replies with
the state of the in-memory bit. If the in-memory bit is set, the
committing processor walks rows in Buffered Data Tables via the
Buffered Address Map table to enumerate all in-memory versions
of the line being committed. The processor merges these versions
into its own line using the same algorithm as before, and then
sends a commit-complete message to the directory. At this point
the directory can clear the in-memory bit.

Note that commit still proceeds correctly even if the only thread
that has a given line buffered is switched out, since that thread will
invoke the Commit instruction when it is eventually switched in.
(The barrier on line 4 of end quantum ensures this.) Also, note
that the directory serves as a serialization point for the cache line
operations performed by the Commit, SaveBufferedLines, and
RestoreBufferedLines instructions; this prevents races between
the commit process and context switches, making it safe for the
kernel to switch out a thread at any time without sacrificing deter-
minism (note especially that a thread can be safely switched out
between lines 2 and 3 of end quantum).
Example. Figure 5 illustrates how RCDC commits line A when
a thread that has buffered line A has been switched out. P0, P1,

and P2 all had buffered copies of line A. The thread on P2 is ready
for commit but was switched out just before the commit process
starts. The buffered data is saved in P2’s Buffered Data Table in
memory, and the in-memory bit set in the directory. P0 sends a
commit message (1a) to the directory for line A. The directory
replies with an acknowledgment (1b), including the list of sharers
and the in-memory bit. P0 then sends a commit message for line
A to P1 (2a), which replies with an acknowledgment (2b) before
invalidating the copy of the line. At the same time, P0 accesses the
Buffered Address Map to enumerate the list of in-memory lines,
and notices that P2’s BDT contains a copy of line A (3a). P2’s saved
line is found and returned to P0 (3b), and then removed from the
Buffered Data Table. Next, P0 merges both received versions of
line A with its own version (4) and clears the write mask. Finally,
P0 notifies the directory that the commit for line A is complete (5),
and the directory resets line A’s in-memory bit.

4.4 Synchronization Library
Our synchronization library is implemented using two basic build-
ing blocks: conditional memory fences and deterministic serial-
ization. Conditional memory fences enforce DMP-HB’s memory
model. A mechanism for deterministic serialization based on the
Kendo algorithm [26] is used to execute synchronization during
parallel mode of DMP-HB.

Figure 6 shows our implementation of deterministic mutex
locks. The sync acquire and sync release functions repre-
sent conditional memory fences, while wait for turn represents
deterministic serialization. Other synchronization objects such as
barriers, condition variables, and even lock-free data structures can
be built from these same building blocks. For brevity we describe
only a lock implementation in this paper.
Conditional Memory Fences We use the functions sync acquire
and sync release to implement deterministic lock and unlock
just as traditional nondeterministic implementations of lock and
unlock use acquire and release fences [17]. The key difference is
the conditional on lines 2-3 of sync acquire: when this condi-
tional is true, the release-to-acquire happens-before edge is redun-
dant and a fence can be elided. When this conditional is false, a
fence is necessary: end quantum is invoked, which executes the
Commit instruction. This conditional implements the observation
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noted earlier in Section 2.3.1: a fence is not necessary when the
happens-before edge is local to a thread (line 3) or crosses a quan-
tum boundary (line 2). Note also that when lines 2-5 are removed,
sync acquire is a full fence, and so the remaining algorithm im-
plements a consistency model equivalent to TSO.
Deterministic Serialization We use the Kendo algorithm [26]
to serialize synchronization deterministically. The basic idea is as
follows: before performing synchronization, thread T must wait
for its turn, meaning it must wait until it has the global mini-
mum instruction count (where ties are broken by thread ID). While
waiting for its turn, T must disable instruction counting by invok-
ing StopInsnCount; this ensures deterministic instruction count-
ing since T may have to wait a nondeterministic amount of time
before its turn arrives. After synchronization is complete, T in-
vokes StartInsnCount. The wait for turn function can be
implemented by polling other threads’ instruction counts via the
ReadInsnCount instruction.2

Note that lines 13-14 and lines 32-33 execute atomically:
wait for turn designates the beginning of an atomic region that
is ended by StartInsnCount.3 It is within these regions that the
lock object is updated. For these updates to appear atomically, they
must apply directly to the global memory space; i.e., all reads and
updates of lock objects must bypass the store buffer. To ensure that
lock objects are never buffered, lock objects can never exist on
the same cache line as ordinary data; this introduces a partition of
shared memory into lock objects and ordinary data.

5. System Issues
Support for nondeterministic execution The use of store buffers
is a software choice. Therefore, programs can choose to execute
nondeterministically. Kernel code, for example, would not need to
be executed deterministically.

One caveat is that our eviction policy risks monopolizing the
cache. Recall that buffered lines are pinned in the cache; if a
cache set fills with buffered lines, it cannot be reused until the
store buffer has committed. This can accidentally prevent important
systems code (e.g., context switch code) from running. We have
two solutions. The first is to reserve a small victim buffer for non-
buffered cache lines; and the second is to reserve just N − 1 lines
of a set for buffered data, where the cache uses N -way sets.
Processes In RCDC, each process is by default its own determin-
ism domain; in other words, threads within a process behave de-
terministically with respect to each other. Deterministic processes
can run alongside nondeterministic processes. Moreover, if multi-
ple processes share memory pages, the processes can be aggregated
into a single determinism domain, much like the deterministic pro-
cess group abstraction in dOS [5]. As long as different determinism
domains do not share memory pages, the boundary of determinism
domains can be defined completely by software without any extra
hardware support.
Context Switches To maintain determinism, RCDC requires that
a thread’s current instruction count and the contents of its store
buffer be saved and restored across context switches. To reduce the
amount of state that must be saved and restored, the OS kernel can
be modified in two ways, described below.

First, the kernel can be modified to context switch away from
a deterministic thread only at a quantum boundary, i.e., just after

2 Alternatively, we could implement wait for turn via interprocessor
interrupts rather than polling.
3 Atomicity for the lock release is necessary to guarantee that concurrent
releases of the same lock (e.g., due to programmer error) still result in a
deterministic outcome.

line 4 of end quantum (Section 4.3). This eliminates the need to
save and restore the contents of store buffers, since store buffers
are always empty at a quantum boundary.

Additionally, if there are N CPUs but more than N threads in
a given determinism domain, the kernel can schedule threads in
groups of N per quanta, much like gang scheduling [27]. This con-
siderably reduces the need to save and restore the contents of store
buffers. It also can improve quantum balance, by eliminating the
underutilization that occurs when N+1 threads must be scheduled
per round, yet there are only N processors available.
Paging It is important to make sure that none of the pages that
have buffered data are paged out. The simplest way to provide
this guarantee is to restrict paging so it happens only at the end
of commit mode. In addition, the runtime system can provide the
kernel with a list of pages that are provably unshared; these can be
paged out at any time.
Memory Errors As discussed in Section 4.4, librcdc’s lock
objects must be partitioned from ordinary data. If this partition is
broken by some memory operation, e.g., due to a memory error in
a type unsafe language like C++, then that memory operation is a
potential source of nondeterminism. For example, an errant read
that happens to address a lock object will return a nondeterministic
value, since that read can race with some other thread performing a
lock acquire.
Store Buffer Parameters and Determinism The parameters of
the store buffer (i.e., the cache geometry) can affect quantum
boundaries because buffer overflows cause a quantum to end. Thus,
RCDC cannot guarantee the same deterministic execution will arise
on two machines with different cache/store buffer configurations.
One can address this potential issue by restricting store buffer usage
such that its effective size is the same across different machines.
The number of threads a program uses, and the parameters used
to build quanta (e.g., size) are also implicit inputs that must be
replicated to ensure repeatability.

6. Results
The goals of our evaluation are to understand the effects of memory
ordering relaxation on deterministic execution and to understand
how RCDC’s mechanisms behave dynamically. To these ends, we
evaluate RCDC in two basic ways: (1) a hardware simulator of the
actual mechanisms described in the paper; and (2) a software-only
implementation of DMP-HB using a compiler and runtime system.

We built a hardware simulation infrastructure using the Intel
Pin [21] binary instrumentation tool. The model focuses on the first
order effects and includes RCDC’s major components, including
store buffering in private caches, quantum formation, committing,
and consistency models for both DMP-TSO and DMP-HB. For the
memory system, private 8-way 32KB L1 and private 8-way 256KB
L2 caches for each core, with a 16-way 8MB shared L3. All caches
have 64B lines. Instructions take 1 cycle to execute, and it takes an
additional 1, 10, 35 and 120 cycles to access the L1, L2, L3 and
main memory, respectively. We modeled 2, 4, 8 and 16 processor
systems. With the exception of Figure 10, all workloads are run
with a target quantum size of 50,000 instructions, except for ferret
(25k), fluidanimate (1k) and streamcluster (1k). We determined
these parameters by finding the best performance of our workloads,
at 16 processors, for each quantum size in the range shown in
Figure 10. Quantum commit costs 100 cycles. Error bars indicate
the 95% confidence interval for the mean of 10 runs.

Our hardware simulations use version 2.1 of the PARSEC [7]
benchmark suite. We used the simsmall input set for each work-
load. Due to excessive memory usage, we were not able to run the
freqmine, raytrace and facesim workloads. Due to a lack of support
for reader-writer locks and lock-free synchronization in our run-
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Figure 7. Performance of RCDC normalized to NONDET for 2, 4, 8 and 16 processors.

time system, we were not able to run the bodytrack and canneal
workloads, respectively.

Our software-only implementation was built on top of the
publicly-available CoreDet [4] compiler and runtime system in-
frastructure. The source code for our simulator, modifications to
CoreDet, and experimental data are available from
http://sampa.cs.washington.edu.

6.1 Performance and Scalability
We start with a performance comparison of RCDC and the non-
deterministic baseline (NONDET), as measured using our hardware
simulator. Figure 7 plots performance of DMP-HB for 2, 4, 8, and
16 processors normalized to NONDET with the same number of
processors. Most applications suffer little performance degradation,
but the overheads are still just over 60% in the worst case with 16
threads. Broadly, the performance costs in RCDC come from im-
balance (periodic barriers at the end of parallel mode), extra stalls
due to costly fences in synchronization operations, and the cost of
committing buffered data. We characterize these costs more pre-
cisely below. Overall, RCDC provides fully deterministic execution
for a modest runtime cost for many of our workloads.

From Figure 7 we can also see how RCDC’s performance scales
with additional cores. In a minority of cases (e.g., ferret), RCDC
does not scale as well as NONDET. Most of the time, however,
RCDC scales just as well as NONDET does, as evidenced by a
consistent slowdown despite increasing core counts. Sometimes
(e.g., vips) RCDC even closes the performance gap at higher core
counts because the underlying benchmark does not scale well even
with NONDET. Some of RCDC’s overheads, like reduced cache
capacity due to store buffering, can take advantage of additional
parallel resources even when the underlying application cannot.

We also implemented a version of DMP-TSO on top of RCDC
to assess the benefit of the extra memory reordering relaxation of-
fered by DMP-HB. Figure 8 compares the performance of RCDC-
DMP-HB and RCDC-DMP-TSO, normalized to NONDET with
the same number of processors. We include only the benchmarks
ferret, fluidanimate, and vips; other benchmarks have less fre-
quent synchronization, so the performance of DMP-HB and DMP-
TSO is essentially identical. For these three benchmarks, DMP-
HB yields markedly better performance compared to DMP-TSO,
which comes from the fact that DMP-HB is able to elide many
costly fences (i.e., quantum boundaries) that DMP-TSO cannot
elide. Figure 9 further justifies these results.

6.2 Characterization
To better understand RCDC’s behavior, Figure 9 breaks down the
reasons for quantum boundaries. The three reasons a quantum can
end are: instruction count, which is simply when a quantum has
reached its maximum size; store buffer overflows, when the store
buffer overflows and the thread cannot continue until its buffered
data is committed; and fences, when a synchronization operation
needs a memory fence to ensure the consistency model is upheld.
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Figure 9. Reasons why quanta end for DMP-HB and DMP-TSO
implemented in RCDC, for 16 processors.

Note that DMP-HB has many fewer commits due to fences (the
top segment of each bar) than DMP-TSO. This quantifies the effect
discussed in Section 2.3 (Figure 2), which is the essence of why
DMP-HB offers significantly better performance than DMP-TSO.

Store buffer overflows are a frequent source of quantum imbal-
ance for several workloads. While DMP-HB is effective at reduc-
ing the number of fences, some of the premature quantum ends that
would have been a fence with DMP-TSO are then replaced with
store buffer overflows, which still result in quantum imbalance.

6.3 Sensitivity to Quantum Size
We end our RCDC evaluation with a characterization of how max-
imum quantum size affects performance. Figure 10 shows perfor-
mance of ferret on a 16-processor RCDC system. The relationship
between performance and quantum size can be highly non-linear:
for ferret, larger quanta help smooth the effects of frequent quan-
tum rounds, but beyond 25k instructions the extra imbalance of
large quanta hurts performance. This effect was noticeable with
both DMP-HB and DMP-TSO.
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Figure 10. Performance of ferret with 16 processors using differ-
ent quantum sizes.

6.4 Compiler-Runtime Implementation
In addition to the above hardware simulation, we implemented
DMP-HB in CoreDet [4]. This implementation required changes
only to CoreDet’s synchronization library, not to the compiler nor
other parts of the runtime. We evaluated our CoreDet implemen-
tation using the PARSEC and SPLASH2 benchmark suites, and
include a comparison of the performance of DMP-HB with the
performance of DMP-TSO. For this evaluation, we enabled all of
CoreDet’s compiler optimizations.

Figure 11 summarizes this evaluation. The performance of
DMP-HB is largely the same as that of DMP-TSO, with two ex-
ceptions: fluidanimate and fmm. Both these benchmarks have a
relatively high frequency of synchronization. DMP-HB’s improved
handling of synchronization allows it to increase performance by
about 20%: from 5x to 4x overhead for fluidanimate and from 4.5x
to 3.5x overhead for fmm. This shows that the benefits of relaxed
consistency determinism are not limited to hardware.
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Figure 11. Performance of CoreDet implementations of DMP-HB
and DMP-TSO normalized to NONDET for 2, 4, and 8 threads.

7. Related Work
We discussed the most related recent work on deterministic exe-
cution [4, 14, 26] in Section 1. DMP [14] is a mostly-hardware
approach that yields only sequentially consistent executions. Core-
Det [4] follows with a software-only implementation that lever-
ages relaxed memory ordering in a TSO fashion. Calvin [19], done
concurrently with our work, is a pure-hardware implementation of
DMP-TSO. The dOS [5] operating system provides deterministic
execution for unmodified binaries by tracking memory ownership
via page tables. Kendo [26] is a synchronization library that pro-
vides deterministic guarantees for data-race-free programs written
using pthreads. Note that while RCDC also leverages data-race-
free models for performance, it does not sacrifice determinism in
the presence of races, which we believe is instrumental in reaping
the full benefits of deterministic execution. Grace [6] is a runtime
system that provides deterministic execution for C/C++ fork-join
parallel programs, executing each thread in a fork region atomi-

cally and committing them deterministically. Grace’s implementa-
tion uses page-based software transactional memory techniques.

There is a significant body of work on deterministic parallel pro-
gramming languages. Stream-based programming languages, such
as StreamIt [31], offer deterministic behavior because communica-
tion happens only via explicitly defined channels (streams). Simi-
larly, SHIM [16] is a parallel language that supports explicit com-
munication only via deterministic message passing. NESL [8] and
Data Parallel Haskell [12] are examples of data-parallel functional
languages that expose sequential semantics to programmers and
yield deterministic programs. Another notable class of determin-
istic languages are implicitly parallel languages, such as Jade [29].
In this model, programmers write programs in a sequential, imper-
ative language and then augment the code with information about
how data is accessed. The system then extracts parallelism without
violating the original sequential program semantics. More recently,
Bocchinno et al., developed Deterministic Parallel Java (DPJ) [9],
which is a set of extensions to Java that enable programmers to
write deterministic programs via a type and effect system. Determi-
nator [3] proposes a deterministic consistency model that is defined
only for programs that are written according to a specialized pro-
gramming model. Determinator’s implementation is a microkernel
that provides deterministic execution using page-based isolation.
While deterministic languages are a long-term solution to the prob-
lem, the existing options are typically domain-specific and are not
widely used: the vast majority of parallel and concurrent programs
written today still use mainstream languages like C, C++, and Java.

A widely explored approach to dealing with nondeterminism is
recording and replaying interprocessor interaction via shared mem-
ory. A notable example is FDR [35, 36], which records shared ac-
cesses that lead to communication between processors and per-
forms transitive reduction [25] to reduce log size. More recent
work [20, 23, 24] exploited coarse regions of execution to achieve
shorter log sizes; other recent work also explored recording par-
tial information during execution and performing search during
replay [2, 28]. Tern [13] extends this idea by memoizing partial
schedules during testing and steering execution toward these tested
paths on future, untested inputs. In contrast to record and replay
systems, deterministic execution provides repeatable behavior by
default without having to log the shared-memory interactions be-
tween processors.

Relaxing memory ordering is a recurring theme in research
on shared memory multiprocessors (e.g., weak-ordering [1] and
release-consistency [17]). The key motivation for relaxing memory
ordering is to allow the system (i.e., the hardware and compiler)
to reorder memory operations and consequently enable important
performance optimizations. To allow the programmer to control
when ordering is required for correctness, relaxed memory models
provide fence operations which are typically high-latency opera-
tions. For that reason, prior work has explored ways to reduce the
cost of fences. A notable example is conditional memory ordering
(CMO) [33]. CMO delays the effect of fences until a synchroniza-
tion operation actually leads to a happens-before relationship be-
tween processors. This is an effective optimization because locks
typically exhibit locality. CMO’s implementation uses conditional
memory fences that are equivalent to RCDC’s sync acquire and
sync release.

One of the indirect benefits of RCDC is decreasing the cost
of false sharing; when multiple quanta within a round write to
the same cache line, they do not need to repeatedly re-acquire
exclusive ownership of the line since writes are buffered. Delayed
consistency [15] leads to a similar effect but does not provide any
deterministic guarantees.
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8. Conclusions
We have presented RCDC, a new deterministic multiprocessing ar-
chitecture that leverages memory ordering relaxation to improve
performance. We propose a new deterministic execution algorithm
that combines deterministic synchronization with weak memory
ordering to improve performance by reducing unnecessary stalls
when enforcing determinism for arbitrary multithreaded programs.
We also propose a hybrid hardware/software design that requires
the hardware to provide only software-controlled store buffering
and precise instruction counting, thereby reducing hardware com-
plexity. Our results show that RCDC is competitive with non-
deterministic multiprocessors, in terms of both absolute perfor-
mance and scalability, without employing speculation. Moreover,
our HW/SW approach allows precise control of when determinism
should be enforced, providing flexibility to system software.

We believe this work is an important step toward realistic sys-
tems for the deterministic execution of arbitrary programs. Relaxed
memory ordering aids performance by avoiding global barriers for
synchronization operations while our HW/SW approach provides
simplicity and flexibility.
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