
Low-Level Detection of Language-Level Data Races with LARD

Benjamin P. Wood Luis Ceze Dan Grossman
University of Washington

{bpw,luisceze,djg}@cs.washington.edu

Abstract
Researchers have proposed always-on data-race exceptions
as a way to avoid the ill effects of data races, but slow per-
formance of accurate dynamic data-race detection remains
a barrier to the adoption of always-on data-race exceptions.
Proposals for accurate low-level (e.g., hardware) data-race
detection have the potential to reduce this performance bar-
rier. This paper explains why low-level data-race detectors
are wrong for programs written in high-level languages (e.g.,
Java): they miss true data races and report false data races
in these programs. To bring the benefits of low-level data-
race detection to high-level languages, we design low-level
abstractable race detection (LARD), an extension of the in-
terface between low-level data-race detectors and run-time
systems that enables accurate language-level data-race detec-
tion using low-level detection mechanisms. We implement
accurate LARD data-race exception support for Java, coupling
a modified Jikes RVM Java virtual machine and a simulated
hardware race detector. We evaluate our detector’s accuracy
against an accurate dynamic Java data-race detector and other
low-level race detectors without LARD, showing that naı̈ve ac-
curate low-level data-race detectors suffer from many missed
and false language-level races in practice, and that LARD
prevents this inaccuracy.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.4 [Software
Engineering]: Software/Program Verification—reliability;
C.1.4 [Processor Architectures]: Parallel Architectures;
D.3.4 [Programming Languages]: Processors—Run-time
environments.

Keywords data-race detection; data-race exceptions; dy-
namic analysis; run-time systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2541940.2541955

1. Introduction
A data race is a pair of accesses to the same memory location
by different threads where at least one access is a write and
no synchronization orders the two accesses. Data races in
shared-memory multithreaded programs notoriously result in
problematic and confusing bugs. Data races also play a part
in other multithreading errors such as atomicity violations or
determinism violations and permit violations of sequential
consistency due to reordering of memory operations by the
compiler and hardware.

Some researchers have proposed data-race exceptions to
mitigate the ill effects of data races by making every data
race explicit at run-time [1, 10, 13, 24, 28]: on the second
in a pair of accesses that race, raise an exception instead of
doing the access. Data races become obvious at run-time like
null pointer dereferences. Implementing accurate dynamic
data-race detection, reporting a data race if and only if a
true data race occurs, is challenging. Most techniques miss
true races, report false races, or incur heavy performance
overhead. We use accurate to mean sound and complete: an
accurate dynamic data-race detector misses no true data races
and reports no false data races in the execution it observes.

Recent proposals for low-level dynamic data-race de-
tection have full accuracy and improved performance.
RADISH [12] uses a mix of software and hardware sup-
port for data-race detection fast enough for many deploy-
ment situations. Aikido [34] uses hypervisor support and
page-protection to accelerate software analyses. These are
low-level data-race detectors: they analyze virtual memory
accesses in the instruction set architecture (ISA) and store
access history for virtual memory locations. Low-level imple-
mentation allows for (1) hardware acceleration and (2) reuse
of fast data-race detection mechanisms by many systems.

Naı̈vely, one might run an unmodified low-level dynamic
data-race detector “underneath” a high-level language im-
plementation like a Java virtual machine (JVM) to detect
language-level data races in the Java program. By language-
level data race, we mean a data race between accesses in the
high-level language memory abstraction. This paper focuses
on detecting these (and only these) data races.

We present the first full treatment of why an unmodified
low-level data-race detector does not work to detect language-
level data races. We then develop extensions to low-level

race detection and high-level language implementations to
remove all sources of missed races and false races. Finally, we
implement and evaluate a prototype hardware-based dynamic
data-race detector for Java, showing that our extensions
enable accurate data-race detection for high-level languages
using general low-level hardware support.

1.1 Low-Level Races 6= Language-Level Races
Neither low-level data races nor language-level data races
subsumes the other. Some low-level (e.g. x86) data races are
not language-level (e.g., Java) data races and some language-
level data races are not low-level data races. Thus a low-level
race detector reports false data races and misses true data
races for programs written in high-level languages.

Consider a Java program running on a JVM on a multicore
processor with data-race detection that analyzes all memory
loads and stores for races. The Java abstraction of execution,
with field accesses and lock operations, is fundamentally dif-
ferent from the low-level abstraction of instructions accessing
virtual memory, as analyzed by the race detector. Two broad
features of the translation cause false and missed language-
level data races for low-level race detectors.

First, low-level executions contain instructions not derived
from equivalent – or any – operations of the language-
level execution. Memory accesses and synchronization in
implicit JVM services like garbage collection are not derived
from explicit operations of a Java program. Some low-level
memory accesses implement language-level synchronization
operations.

Second, language-level semantics of low-level resources
change during execution. The allocator or garbage collector
reuses memory or moves objects in memory. By analyzing
accesses to a single virtual memory location reused by the
JVM to store distinct Java objects, a race detector can report
false races. By analyzing distinct virtual memory locations
when a single Java object has moved, the detector can
miss true races. If a threading implementation multiplexes
language-level threads on low-level threads, two operations
of the same low-level thread do not necessarily belong to the
same language-level thread, and vice versa, leading to false
or missed races subject to thread placement.

1.2 Low-Level Detection of Language-Level Races
This paper’s main contribution is low-level abstractable race
detection (LARD), an extended low-level race detector inter-
face that lets run-time systems and compilers communicate
a language-level view of execution in sufficient detail. The
extensions are minimal: they let run-time systems and com-
pilers (1) mark language-level memory accesses and synchro-
nization operations explicitly for analysis, leaving system
operations unanalyzed, (2) report changes in the language-
level/low-level memory mapping due to memory reuse and
movement, and (3) report language-level thread identity. The
low-level race detector then analyzes only the memory ac-
cesses and synchronization operations of the language-level

program and updates its state according to changes in memory
allocation to reflect the language-level memory abstraction.

LARD allows data-race detectors for high-level languages
to harness the performance and generality of low-level detec-
tion mechanisms while maintaining accuracy. The focus of
this paper is a simple execution stack consisting of a language
run-time running on hardware, but the design may generalize
to a range of dual-level execution environments, including
operating systems, hypervisors, and interpreters.

To the best of our knowledge, this paper presents the
first design for virtualizing data-race detection. Earlier ex-
clusively low-level or language-level data-race detectors
(e.g., [12, 16, 44]) have support for marking custom syn-
chronization routines to avoid false races on these accesses
and track their synchronization effects. Low-level detection
of language-level data races requires similar support, but may
also need to distinguish the semantics of such operations
based on context.

Some C race detectors (e.g., [40, 44]) treat allocation
specially to help reduce false races and some JVM race
detectors work around object movement to avoid missed
races (e.g., [11, 37]), but these previous efforts have focused
mainly on ad hoc reduction of imprecision in fundamentally
imprecise data-race detection algorithms implemented at a
single level of abstraction. In this paper, we characterize
the effects of the language-level/low-level translation on race
detection in depth and develop a unified approach to eliminate
all missed and all false races, achieving accurate language-
level data-race detection in high-level programs using low-
level race detectors.

1.3 LARD Implementation and Evaluation
To evaluate the feasibility of low-level abstractable race detec-
tion, we implemented an accurate data-race detector for Java
using LARD. Our implementation includes two independent
systems, communicating only via LARDx86, an extension of
the x86 ISA with flags to mark memory access instructions ex-
plicitly to be checked for races and instructions to report syn-
chronization, memory reuse, movement, and thread identity.
We simulated an accurate, low-level, mostly-hardware, dy-
namic data-race detector based on RADISH [12], and extended
to support LARDx86. We modified Jikes RVM [2] to emit
race-checked accesses for application code and unchecked
accesses for JVM code, report synchronization events in appli-
cation code, and report memory reuse and movement events
in the JVM. Our results show that our extensions are neces-
sary and sufficient to avoid false and missed races in practice.

1.4 Contributions and Outline
We discuss background on data races, data-race exceptions,
and data-race detection in §2. Our main contributions follow:

• We explain why low-level race detectors are incorrect for
high-level programs (§3), synthesizing disparate issues
encountered in prior contexts [11, 37, 40, 46].

• We design low-level abstractable race detection (LARD), a
simple interface for low-level race detectors and language
implementations that enables accurate language-level data-
race detection using a low-level data-race detector, and
compare our approach to some prior systems (§3).

• We implement our approach for Java, coupling a simulated
hardware-supported ISA-level dynamic data-race detector
and a modified Jikes RVM through a version of the x86
ISA extended with LARD primitives (§4).

• We evaluate our implementation’s accuracy, comparing
against FastTrack [16], a naı̈ve low-level data-race detec-
tor similar to RADISH [12], and various partial implemen-
tations of LARD, finding that, in practice, naı̈ve ISA-level
race detectors suffer from false and missed races for Java
programs, but LARD does not (§5).

Finally, we discuss more related work (§6) and conclude (§7).

2. Background
2.1 Data Races and Data-Race Exceptions
A data race is defined formally as a pair of concurrent,
conflicting memory accesses [32]. Two accesses conflict
if they are executed by different threads and at least one
access is a write. Operations are concurrent if they are not
ordered by the happens-before relation [22], a partial order
over operations, composed of program order, the order of
operations within each thread, and synchronization order,
the ordering between synchronization operations in different
threads (e.g., lock acquire and release or thread fork and join).

In the presence of memory access reorderings by the
compiler or hardware, data races may let programs observe
states of memory that correspond to no simple sequential
interleaving of threads, violating sequential consistency. The
Java [26] and C/C++ [7] memory models both guarantee
sequential consistency given data-race freedom, but if a data
race occurs, a much weaker – or undefined – semantics
applies [1, 6]. Even if sequential consistency is preserved [24,
28], data races play a part in other concurrency errors such
as atomicity violations or determinism violations.

Data-Race Exceptions Some researchers have proposed
data-race exceptions (DREs) to mitigate the ill effects of data
races by making every data race explicit at run-time [1, 10,
13]. A memory model with accurate DREs is stronger than
the Java and C/C++ memory models, guaranteeing data-race
freedom or an exception on each memory access. Data-race
freedom still guarantees sequential consistency, and data-
race-free programs never generate DREs. DREs ensure an
execution forbids a data race before any ill effects can occur.

2.2 Dynamic Data-Race Detection
An accurate dynamic data-race detector misses no true data
races and reports no false data races in the execution it ob-
serves. Races possible in other executions are irrelevant. We

consider dynamic data-race detection with respect to the ex-
ecution semantics and memory abstractions of the source
language. A language-level data-race detector analyzes exe-
cution at the same level of abstraction provided by the source
language. We typically mean a race detector for a language
like Java, analyzing field accesses, etc. A low-level data-race
detector analyzes execution at a machine abstraction below
that of the source language. We typically mean hardware
analyzing virtual memory accesses at the ISA level, but the
same principles apply to a binary-instrumenting software
implementation, for example.

The literature is flush with methods for dynamically de-
tecting or avoiding data races; each is limited by accuracy
or performance and designed for a specific programming
language or execution abstraction. Some dynamic analyses
allow false races or missed races in exchange for speed. De-
tection of data races that violate sequential consistency is
fast [24, 28, 41], but does not detect all data races, which
remain important. Atomicity violation detection, determin-
ism enforcement, and other analyses often rely on accurate
data-race detection [18] or assume data-race freedom [33].
Accurate software dynamic data-race detectors such as Fast-
Track [16, 17] and Goldilocks [13] miss no races and report
no false races, but are too slow for always-on deployment,
even after elimination of provably redundant checks [17].

2.3 Benefits of Low-Level Race Detection
Advances in accurate dynamic data-race detection have used
low-level support to improve performance and accelerate
checking in common cases where no data-sharing occurs.
Mechanisms include page protections and hypervisor support
in Aikido [34] or cache coherence tricks and specialized
hardware in RADISH [12]. These systems exploit the fact that
memory accesses can be tracked efficiently with hardware
or hypervisor support and are much more frequent than
synchronization operations. Implementing the critical core
of race detection logic once in a general, reusable, low-level
mechanism is appealing. Although a low-level mechanism
alone is insufficient for language-level race detection, it can
reduce the complexity of high-performance race detection in
a language implementation. Our implementation (§4) shows
that the engineering required is feasible for a system as
complex as a JVM. For unmanaged targets like C programs,
it is simpler.

2.4 Vector-Clock Race Detectors
This paper considers data-race detectors derived from a
canonical algorithm using vector clocks [14, 29] to track
the happens-before order induced by synchronization and
determine if pairs of conflicting memory accesses are con-
current. Vector clocks track the most recent operation in each
thread that happens before a given event. A vector clock for
each thread represents all operations that happen before that
thread’s next operation. A vector clock for each lock repre-
sents all operations that happen before that lock’s last release.

Operation Prevents Translation Issue
(un)tracked access false races program vs. system
(un)tracked sync. missed races program vs. system
clear history false races memory reuse
move history missed races memory movement
set thread identity false and missed races thread scheduling

Table 1. The LARD interface.

Thread and lock vector clocks are updated on synchronization.
An access history for each shared memory location records
the last write to the location by any thread and the last read
from the location by each thread. When a thread accesses a
location, it compares the access history with its own vector
clock to check if earlier conflicting accesses happen before
or race with its current access, then records its own access
in the history. Writes must be totally ordered with respect
to conflicting reads and writes, but reads are allowed to ex-
ecute concurrently with other reads. We refer the reader to
Appendix A for more detail.

3. Low-Level Abstractable Race Detection
Low-level abstractable race detection (LARD) extends the
interface and functionality of low-level data-race detectors
to abstract (i.e., virtualize) data-race detection to high-level
execution environments. The key idea is to preserve relevant
information from language-level operations in the low-level
execution. LARD requires cooperation from the high-level
language implementation and the low-level race detector to
implement two types of extensions: (1) distinguish between
source operations and run-time system operations; and (2)
maintain the mutable mappings from language-level memory
to low-level memory and from language-level threads to low-
level threads.

We explain LARD by examining the five fundamental
operations where relevant differences arise between language-
level and low-level views of execution: memory access
(§3.1), synchronization (§3.2), memory allocation (§3.3),
memory movement (§3.4), and thread mapping (§3.5). For
each operation, we show how information lost in translation
can cause missed or false data races. Then we extend the low-
level race detector interface to retain sufficient language-level
information. Table 1 summarizes the five interface extensions.
Finally, we argue that LARD’s five extensions are sufficient
to virtualize general low-level data-race detection for use by
language implementations (§3.6).

We focus on Java programs executed by a modern JVM on
hardware that detects ISA-level data races, although we be-
lieve that these five issues arise in any setting where data-race
detection is implemented at a significantly different abstrac-
tion level than the source program. Others have previously
identified or mitigated some of these issues. (We discuss
related work inline and in §6.) However, we believe our re-
search is the first to consider the full set of techniques needed
to virtualize data-race detection.

3.1 Memory Access
JVM execution contains both memory accesses compiled
from explicit field and array accesses in Java programs and
accesses in the JVM itself. Observing the latter may cause
the detector to report data races involving at least one JVM
access. These are false Java data races because they involve
access outside the Java program and its execution abstraction.

RULE 1. The race detector should check only accesses ex-
plicit in the source program for races.

Examples The implementation of locks, for example, is
necessarily lock-free, using memory reads and writes plus
hardware synchronization primitives like fences and atomic
compare-and-swap. These memory operations may race, but
are chosen carefully with respect to the hardware memory
model to ensure correct behavior regardless. The need to
ignore these synchronization races is well-understood.

Consider JVM accesses to the Java heap. A concurrent
mark-sweep garbage collector, for example, traverses the
heap while Java threads continue to mutate it, compensating
in a safe, algorithm-specific way, for the races that are bound
to result. Figure 1 shows an example: A GC thread reads o.x
(stored in memory at address 0x8c+4) at A during a concurrent
heap traversal. A low-level race detector will report a race
with this read on Thread 1’s later write at B.

Since data-race detector access histories typically store
only the last write by any thread and last read by each thread,
a false data race can overwrite history necessary in the future
to detect a true data race with a previous program access.

Extension It is natural to distinguish source-program and
run-time system accesses with explicit tracked and untracked
access instructions. Both have the conventional functionality
of memory accesses. The low-level race detector analyzes
tracked accesses only.

3.2 Synchronization
Witnessing implicit JVM synchronization where no Java
synchronization exists can cause the race detector to miss true
data races in the Java program: the racing accesses appear
well-ordered to the low-level race detector. A race detector
that observes all synchronization never misses a data race
that may cause a sequential consistency violation, because
it only misses races due to extra synchronization, but it can
miss other problematic data races.

RULE 2. The race detector should analyze only synchroniza-
tion explicit in the source program.

Example Consider the upper left example in Figure 1,
which shows views of the same multithreaded execution at
the Java, JVM implementation, and low-level race detector
levels of abstraction. In the Java view, Threads 1 and 2
both increment the n field of the same object at C and D,
respectively. Neither thread synchronizes, so the accesses
race. A low-level race detector misses this data race if a

Thread 1 Thread 2

Ti
m

e

this.n++

this.n++

Thread 1 Thread 2
0x8c.n++

0x8c.n++

wait for world

stop the world
pause
for GC

resume
after GC

GC...
resume world

Java View JVM View

C

D

C

D

Thread 1 Thread 2
inc [0x8c]

inc [0x8c]

sync in

...
sync out

sync in

...
sync out

Race Detector View

C

D

§3.2: missed data race due to JVM synchronization

Thread 1

o.x = y

Thread 1 GC Thread

0x8c.x = y

ref = 0x8c.x
if ref != null...

concurrent
heap traversal...

Java View JVM View

B B

A

Thread 1 Thread 2
Race Detector View

[0x8c+4] = r1 B

r4 = [0x8c+4]
test r4...

A

§3.1: false data race with JVM memory access

Thread 1 Thread 2

Ti
m

e

ref.x = this
ref = new R()

ref.x = this
ref = new R()

Thread 1 Thread 2

0xd4.x = 0xf8
allocate 0xd4

GC: collect 0xd4

0xd4.x = 0xa0
allocate 0xd4

Java View JVM View

E E

FF

Thread 1 Thread 2

[0xd4] = 0xf8

[0xd4] = 0xa0

Race Detector View

E

F

§3.3: false data race due to memory reuse

Thread 1 Thread 2

this.n++

this.n++

Java View
Thread 1 Thread 2

inc [0x8c]

inc [0xbc]

GC: move object
at 0x8c to 0xbc

Race Detector View

G

H

G

H

JVM View
Thread 1 Thread 2

0x8c.n++

0xbc.n++

G

H

§3.4: missed data race due to object movement

Ti
m

e

Ti
m

e

Figure 1. A naı̈ve low-level data-race detector reports false data races and misses true data races in Java programs. Solid arrows
are happens-before edges observed by the race detector. Each example contains three views of the same execution.

stop-the-world garbage collection occurs between the two
accesses. If the race detector witnesses the global barrier
synchronization, accesses C and D appear well-ordered. This
Java data race is not a low-level data race in this execution,
due to this JVM synchronization, but it could be in another
execution depending on the timing of garbage collection.

Extension Accurate ISA-level dynamic data-race detectors
such as RADISH [12] provide primitives for synchronization
libraries to report happens-before effects of synchronization
to the race detector. This approach is easily adaptable for
LARD: synchronization reports should be issued only for
synchronization operations explicit in the source program.

3.3 Memory Allocation
Without knowledge that a low-level memory location has
been reused to store a new, distinct language-level memory
object, a low-level race detector may report false races be-
tween accesses to the new and old language-level occupants.

RULE 3. The race detector should clear access histories of
low-level memory locations atomically with collection or
freeing of their language-level occupants.

Example Consider the example in the lower left of Figure 1.
In the Java view, Thread 1 allocates an R object then writes
to its x field at E. Later, Thread 2 allocates a distinct R object
then writes to its x field at F. Clearly these Java accesses
to fields of distinct objects cannot race, but a low-level race
detector may report a data race between the writes at E and
F if the memory manager reuses the same memory to store
these two objects and threads accessing these objects do
not synchronize, as shown in Figure 1. The race detector

ignores memory accesses and synchronization in the garbage
collector, per Rules 1 and 2, and reports a data race on the
concurrent, conflicting writes to address 0xd4.

Extension Synchronization in the memory manager that
makes reuse of memory across threads must not be observed
by the race detector, since it could also hide true data races
in the Java program (§3.2). In the C/C++ memory model [9],
freeing a location happens before a later allocation of the
same memory location, but the ordering applies only to
accesses to that memory location.

We choose to clear low-level race detector access histories
on deallocation. Thus newly allocated low-level memory
locations appear fresh to the race detector whether or not
they have been accessed before. This approach matches the
language-level memory abstraction and is safe given memory
safety, making it valid for managed environments and well-
behaved C/C++ programs. It is the responsibility of the
race detector to clear access histories when requested. The
run-time system must use this support to ensure it clears
access histories of a memory location before reallocating
it. Helgrind [44] and RACEZ [40], two race detectors for
C programs, take a similar approach, treating malloc/free
specially. Helgrind additionally provides C preprocessor
macros to mark custom allocation routines to help reduce
false race reports.

3.4 Memory Movement
Some garbage collectors move language-level memory ob-
jects in low-level memory during collection to defragment
the heap. Movement is not part of the language-level mem-
ory abstraction. Collectors update all references to moved

objects to maintain a consistent heap. Without knowing a
language-level memory object has moved, a low-level race
detector may miss true data races between accesses at the
object’s old and new low-level memory locations. Choi, et
al., briefly identified (but did not solve) one aspect of this
problem in [11], §3.3. Similar issues arise for an operating
system or hypervisor running above a physical-memory race
detector when remapping virtual-memory pages.

RULE 4. The race detector should move access histories
of low-level memory locations to follow atomically with
language-level memory objects moved by the run-time system.

Example Consider the example execution in the lower right
of Figure 1, in which two Java threads increment the n field of
the same Java object, with no synchronization. Clearly, this
is a Java data race. However, garbage collection is triggered
after Thread 1 increments n at G but before Thread 2 does at
H and the garbage collector moves shared object at address
0x8c to address 0xbc. The low-level race detector ignores
accesses and synchronization by the collector, as it should.
Because the object moves, the two threads access different
low-level memory locations and the race detector misses a
true Java data race.

Extension Moving a language-level object in low-level
memory may be a non-atomic operation, requiring copying
the contents of several low-level memory locations. Some
concurrent copying collectors (e.g., [35]) may begin move-
ment operations optimistically, abort midway, or copy a single
low-level memory location multiple times to support contin-
ued non-blocking access by program threads during object
movement. Since object movement is rarely implemented
by a single, atomic, low-level operation and clearing access
history is already required to support memory allocation, it is
natural to add a primitive to copy the access history for one
low-level memory location to another. Once the language-
level object is fully copied, the old copy can be deallocated, at
which point its access history is cleared. Garbage collectors
already ensure that the movement of data appears atomic; it
is also their responsibility to ensure that they request access
history movement from the low-level race detector in a way
that ensures access history is moved atomically with program
data. Neither the run-time system nor the race detector can
accomplish this alone.

An alternative is to use logical addresses for race detection
analysis so it is resilient to movement [37], but this adds
a logical address lookup indirection to the critical path of
memory accesses, along with the cost of managing available
unique identifiers. For low-level race detectors, each tracked
memory instruction in the ISA would need to take an extra
logical address argument. TLB-like hardware support to
cache the low-level to logical address mapping could speed
the lookup at the cost of lengthening the critical path for cache
accesses, which is unmodified in hardware race detectors
such as RADISH [12], and would require shootdown on

object movement anyway. While reporting movement has
overheads to copy access histories, race-checked memory
accesses occur far more frequently than object movement.
We choose reporting movement (copying) as a less invasive
and higher-performance option.

3.5 Thread Identity
Some threading implementations (e.g., user-level threads
or work-stealing schedulers) multiplex a set of language-
level threads on a fixed set of low-level (kernel or hardware)
threads. Without knowledge of this mapping, a low-level race
detector may report false data races between accesses in a
single language-level thread or miss true data races between
accesses in distinct language-level threads.

RULE 5. The race detector should use language-level thread
identities in its analysis.

Example When two language threads execute conflicting
accesses without synchronization, they clearly race. However,
if they execute their accesses while scheduled on the same
kernel thread (at different times), the low-level race detector
observes two accesses by the same kernel thread and misses
a true data race. When a single language thread executes
multiple accesses to the same location, it cannot race with
itself, but if these accesses are executed while it is scheduled
on distinct kernel threads (at different times), the low-level
race detector observes conflicting accesses between distinct
kernel threads and may report a false data race.1

Extension We take an approach similar to object movement,
reporting a new thread identity whenever a threading system
schedules a language-level thread onto a low-level thread.
The low-level race detector uses this thread identity for all
operations of the low-level thread until the next such report.

3.6 Sufficiency
Data races – and accurate algorithms for their detection – are
defined in terms of memory, synchronization, and threads.
Program translation must affect one of these features to
affect post-translation data-race detection. To derive the
set of translation issues affecting data-race detection, we
enumerated all differences introduced in the language-to-ISA
translation that interact with these features, to the best of our
knowledge, finding that only the issues in §3.1-3.5 affect
data-race detection. The five extensions described above
ensure data-race detection is performed only on language-
level memory and synchronization operations (§3.1, §3.2)
and on the language’s abstractions of memory (§3.3, §3.4)
and thread identity (§3.5). While each issue and extension
is fairly simple, it is their composition that allows data-race
detection to virtualize. We believe our research is the first to
consider the full set of techniques needed to virtualize data-

1 We assume the race detector ignores synchronization involved in the
context-switching of language threads, as it should.

race detection. This perspective was essential for guiding our
implementation and evaluation.

LARD’s effectiveness depends on the contract between the
low-level race detector and the language implementation; it
does not free the language implementation from reasoning
about all details of race detection. It is up to the language
implementation to ensure that its use of the LARD primi-
tives meets its particular semantics. For example, garbage
collectors are responsible for ensuring that primitives like
access history clearing and copying appear atomic with re-
spect to memory accesses by program threads. The language
implementation is also responsible for compilation choices.
For example, some compiler optimizations allowed by the
Java [26] and C/C++ [7] memory models may remove races
from the original program, but none introduce races where
races did not exist. Roach-motel reordering allows the move-
ment of memory operations into – but not out of – critical
sections [45]. As a result, the access may now be well-ordered
when it would have raced if the transformation was not ap-
plied. We do not consider this a missed race. It is explicitly al-
lowable behavior in the language memory model and, unlike
with the issues above, the program can never manifest this
race as compiled. If the language implementers do consider
this a missed race, they must choose compiler optimizations
appropriately. Regardless, this is the language implementer’s
choice and is an issue common to dynamic race detectors
implemented at all levels of abstraction, not just low-level
race detection for high-level languages.

4. Implementation
To validate the efficacy and feasibility of low-level detec-
tion of language-level data races, we implemented a data-
race detector for Java using a low-level data-race detector
and a Java virtual machine that communicate through the
LARD interface. This section describes four parts of our im-
plementation (bold items in Figure 2): LARDx86 (§4.1) is an
extension of the x86 ISA with LARD primitives. LARDISH
(§4.2) is a simulated hardware implementation of LARDx86
that performs accurate, LARD-aware, data-race detection de-
rived from the RADISH [12] hardware-based race detector.
Jikes LARDVM (§4.3) is a Java virtual machine that runs on
LARDx86 and implements accurate Java data-race detection
using the LARDx86 primitives. We also extended these three
parts for fine-grained accuracy evaluation of LARD and naı̈ve
low-level data-race detectors (§4.4).

4.1 The LARDx86 ISA
LARDx86 extends the x86 ISA to provide a LARD interface
between software run-time systems and low-level vector-
clock race detectors. To support the tasks described in §3,
LARDx86 extends the x86 ISA with Tracked accesses, a
Thread instruction to report thread identity, WriteVC and
ReadVC instructions to report synchronization, and ClearHis-
tory and CopyHistory to manipulate access histories.

LARDx86

Jikes LardVM

Accuracy
AnalysisLARDISH

gcc + libc

Extended ISA

Low-Level
Abstractable

Race Detectors

Language

Implementations

C programJava program

...

...

...

Figure 2. The LARD environment.

ISA Extensions for Memory Access and Synchronization
Explicit Tracked memory access instructions, distinguished
by separate opcodes or a prefix, have the usual semantics
of memory accesses, but are additionally checked for races
by the low-level race detector. Untracked accesses are never
checked. The low-level race detector must store a vector clock
for each thread internally, representing the most recent event
from each thread that happens before the current event of
this thread. It is used when checking Tracked accesses for
races. The run-time system must track ordering effects of
synchronization using vector clocks, using the ReadVC and
WriteVC instructions to read and write entries in the low-level
race detector’s per-thread vector clocks.

Alternatively, the run-time system could report synchro-
nization on a particular memory object (e.g., lock), leaving
storage and tracking of all vector clocks to the low-level race
detector. This hides vector clocks from the run-time system,
but is best suited for locks or barriers. Additional purpose-
built instructions would be necessary to support synchroniza-
tion operations that also atomically manipulate data, such as
language-level atomic CAS operations or Java’s volatile field
accesses (§4.3). Since the semantics of synchronization is
best understood in its implementation (i.e., above the ISA),
exposing vector clocks is more flexible and ultimately has
lower complexity.

ISA Extensions for Mapping Memory Management The
ClearHistory and CopyHistory instructions clear and copy low-
level race detector access histories of given memory locations.
They are intended for use by a memory manager when it
frees or moves language-level memory objects. ClearHistory
takes two arguments, the address and size of a memory region
whose access histories should be discarded. CopyHistory takes
three arguments, the address of a source region of memory,
the address of a destination region of memory, and the size
of the two regions. (They must be the same size.) In response
to a CopyHistory instruction, a low-level race detector copies
the access history for each memory location in the source
region to use as the access history for the corresponding
memory location in the destination region. Specifying regions
of memory rather than individual locations allows the race
detector to optimize bulk updates internally, but regions are
restricted to a single virtual memory page to simplify support
in hardware-based race detectors.

Encapsulated vs. Exposed Access Histories LARDx86 as-
sumes that the low-level race detector is solely responsible for
managing access histories. Exposing control of access history
storage to a language implementation may be more natural
and efficient if access histories can be colocated with the data
they shadow and automatically moved and deallocated by the
garbage collector. This is not feasible with our implemen-
tation because the hardware race detector manages access
histories based on physical – not virtual – addresses (§4.2).
Reverse address translation or virtually addressed caches
would be necessary to support efficient external software
management of access histories.

4.2 The LARDISH Hardware Race Detector
To evaluate the performance potential of a hardware-based
LARD system, we designed LARDISH, an extension of
RADISH [12], a hardware-supported race detector. This sec-
tion outlines our extensions to RADISH to support low-level
abstractable race detection with LARDx86.

RADISH [12] is a hybrid hardware-software race detector
that is accurate for low-level programs. It optimizes the
canonical vector clock race detection algorithm by caching
access histories in the hardware data cache, allowing most
accesses to be checked for races purely in hardware. Several
optimizations ensure that the common case race check has
little or no latency. A software system handles storage of race
detector access histories after cache evictions and context
switches and support for occasional race checks that require
access history information not cached in hardware. The
software stores access histories in a format independent from
the in-cache hardware representation.

LARD Extensions Supporting LARD requires minor adjust-
ments to RADISH’s access and synchronization tracking and
modest hardware extensions to support LARD’s memory man-
agement. RADISH checks for races on all memory accesses
except stack accesses and accesses in its software manager.
We generalize this to use LARDx86’s explicit Tracked memory
access instructions. We implement the WriteVC and ReadVC
instructions with RADISH’s existing support for tracking and
reporting synchronization in libraries.2 The Thread instruc-
tion is identical a to context switch in RADISH, swapping the
thread’s vector clock and requiring eager or lazy flushing of
the old thread’s cached access histories to the software man-
ager, which maintains the mapping between processor cores,
kernel threads, and language threads. ClearHistory and Copy-
History instructions must perform tasks similar to context
switches or virtual memory paging in RADISH. Manipulating
access histories in RADISH’s software manager is straight-
forward when they are not cached in hardware, but hardware
support is need to invalidate or move cached access histories.

2 The original RADISH simulator hard-codes pthreads support; we imple-
ment true vector-clock instructions.

Manipulating Cached Access Histories The RADISH soft-
ware manager identifies access histories by physical ad-
dresses, since it receives physically addressed access his-
tory cache lines on eviction. We use the existing address
translation mechanism to map the virtual addresses specified
by ClearHistory and CopyHistory instructions to physical ad-
dresses that the extended RADISH software manager can use
to manipulate the relevant access histories.

When a hardware cached access history is not available to
perform a check, the RADISH hardware requests it from soft-
ware. When dirty cached access history is evicted, RADISH
calls its software manager manager to persist it instead of
storing it to memory. The software manager keeps track of
what access histories may be in-cache (on calls for fills and
evictions). If an access history to be cleared or copied is not
cached, it can be handled by the software manager alone. If an
access history is cached, ClearHistory and CopyHistory must
explicitly invalidate or copy hardware-cached access histo-
ries to ensure they stay consistent with the software-managed
copies and the new mapping of language-level to low-level
memory. For ClearHistory, we instead invalidate the cached
access history without calling the software handler.

CopyHistory must persist hardware-cached histories for its
source location. In this case, hardware first forces eviction of
the source locations’ cached access histories via the normal
RADISH eviction handler. We assume that the destination of
an object movement has no preexisting access histories. If it
does, the memory manager must use ClearHistory to explicitly
invalidate any cached version before copying. Once the
software manager has persisted any cached access histories
for the source region, it copies all access histories for the
source region to become access histories for the destination
region. On the first access to a location in the destination
region after copying, hardware will request the software-
managed access history as usual.

If the language implementation allows program threads
to access objects concurrently with copying, the software
manager must ensure the atomicity of the copy operation
by disallowing hardware requests for access histories of
the affected regions for the duration of the copy, effectively
blocking access to the region during access history copying.
To allow finer-grained access, concurrent copying collectors
may issue smaller CopyHistory operations, ensuring atomicity
of the full copy themselves.

An alternative is to copy cached access histories directly
in cache, moving stale software-managed access histories
“underneath” them. This approach must consider whether it is
profitable to keep the history in cache, but evict another cache
line at its destination. We implement a simpler evict-and-copy
policy. Additionally, a MoveHistory instruction could enable
optimizations when the intent is to copy an access history and
immediately clear the original, as in stop-the-world copying
collectors. We have not explored this.

4.3 The Jikes LARDVM Java Virtual Machine
Jikes LARDVM is a modified version of Jikes RVM [2] 3.1.1
that implements accurate data-race detection for Java using
LARDx86. Jikes LARDVM marks source program accesses
for race checks (§4.3.1), tracks source program thread identity
and synchronization (§4.3.2), and reports garbage collector
operations (§4.3.3). Our implementation was designed for
detailed accuracy analysis and is only lightly optimized for
performance.

4.3.1 Memory Tracking
The Jikes LARDVM JIT compiler emits Tracked accesses for
potentially racing field and array accesses in Java programs.
All other accesses in the system are unmarked, to be ignored
by the low-level race detector. This includes JVM code like
garbage collector write barriers that are inlined into compiled
code. In write barriers, the memory write on behalf of the
source program is marked Tracked, but all other accesses
are untracked. The compiler may decide not to mark some
source program accesses Tracked if it can prove their data-
race-freedom, such as for read-only final fields. We have not
yet enabled thread-escape analysis.

Since Jikes RVM is a self-hosted JVM written in Java and
compiled to machine code by its own compiler, the compiler
must distinguish Jikes RVM Java code from source program
Java code, emitting Tracked accesses and synchronization
reporting only for the source program. Compilers in con-
ventional JVMs written in lower-level languages can emit
Tracked accesses everywhere except inlined VM code.

4.3.2 Thread Identity and Synchronization
Jikes RVM uses kernel threads directly, so we issue a Thread
instruction only once per thread. Every Java object may be
used as a lock. To track lock synchronization, we shadow
each lock with a vector clock indicating the last logical time
it was released. A word in the object header stores a pointer
to a lazily allocated vector clock. We also augment each
Jikes RVM thread with a thread vector clock tracking its logi-
cal time and synchronization with other threads. We instru-
ment lock operations and thread fork/join to track happens-
before ordering with vector clocks in the JVM, reporting
updates to the race detector’s per-thread vector-clock using
WriteVC/ReadVC. Jikes RVM and source programs share syn-
chronization implementations. We added an instrumentation-
wrapped version of each for program synchronization.

Under the Java Memory Model [26], volatile field ac-
cesses never race; they induce synchronization instead. There
is a happens-before edge from a volatile write to each
volatile read observing the write, enforced by hardware
memory fences and restrictions on compiler reorderings.
Jikes LARDVM never marks volatile accesses Tracked. Each
volatile field is shadowed by a vector clock representing
the last logical time a volatile write occurred on that field.
The field contents and the vector clock must be updated and

observed atomically. Volatile reads have the same type of
happens-before effects as lock acquires (volatile writes are
like lock releases), but provide no mutual exclusion. The
vector clock to store on a volatile write operation depends on
the field’s vector clock at the time of the write, which requires
allocating one new vector clock per volatile write operation.
To avoid introducing a lock into the source program’s lock-
free code, we align volatile fields with an adjacent vector
clock pointer and use a wide CAS to operate atomically over
the two, optimistically computing the vector clock to store
and retrying under contention in a standard lock-free manner.

4.3.3 Memory Management and Mapping
We modified the classical mark-sweep and semispace col-
lectors in Jikes RVM and MMTk [4] to issue a CopyHistory
instruction when moving an object and a ClearHistory instruc-
tion when reclaiming an object, including after movement.
The garbage collector handles source program objects and
objects representing Jikes RVM internals (including vector
clocks). We issue ClearHistory and CopyHistory conserva-
tively for all objects whose contents may have been used by
race-checked source program accesses and thus may have
access histories in the race detector. Unlike synchronization
and access, conservative reporting of memory-management
events cannot cause missed or false races.

Other more advanced garbage collectors do not introduce
other issues beyond the reuse and movement exhibited by
mark-sweep or semispace. For example, accesses to metadata
in generational write barriers are properly left untracked, as
they are not explicit in the program.

4.3.4 Extent of Changes to Jikes RVM
Our modifications to Jikes RVM add or change 8229 lines of
code. The core LARD additions account for well under half
those lines, with the rest devoted to extensions for accuracy
analysis (§4.4), extensive debugging/profiling, and significant
code duplication for garbage collector access barriers.

The core LARD additions mainly track synchronization
events mark tracked accesses in the compiler. Other signifi-
cant additions involved object layout for volatile fields with
adjacent vector clocks and proper garbage collector tracing
of vector clock references. Those aspects of the race detector
that are shared in common with software implementations
(i.e., synchronization tracking) were the most complicated to
implement. Memory reuse and movement reporting was rela-
tively simple once we understood the memory management
architecture in Jikes RVM and MMTk.

4.4 Extensions for Accuracy Analysis
For the accuracy analysis in §5.2, we built an analysis tool
that runs multiple race detection algorithms on the same
LARDx86 execution, comparing their results at each memory
access. Specifically, we support several detectors that each
ignore one of the LARD extensions in their analysis. It is sim-
ple to analyze all accesses instead of Tracked accesses only.

To ignore memory reuse or movement, a detector ignores
the ClearHistory or CopyHistory instructions, respectively. To
analyze all synchronization instead of language-level synchro-
nization only, we must explicitly report all synchronization.
Tracking all synchronization in Jikes LARDVM on the same
execution where we track language-level synchronization re-
quires a separate vector clock for each lock, volatile field,
and thread. This addition is needed only for the accuracy
evaluation (§5.2) and not in real deployments.

5. Evaluation
We evaluate the efficacy of LARD and multiple naı̈ve low-
level data-race detectors for implementing accurate dynamic
data-race detection for Java. We validate LARD’s capacity
to eliminate missed races and false races by comparing
the results of our LARD-based Java data-race detector with
the accurate FastTrack Java data-race detector [16] and a
naı̈ve low-level vector-clock data-race detector (§5.1) and
quantify the effects of individual LARD extensions in terms
of the missed races and false races they eliminate (§5.2).
Although the accuracy analysis is the main contribution of our
evaluation, we include initial evaluation of the performance
of a LARD implementation composed of Jikes LARDVM
executing on LARDISH via simulation (§5.3). Additionally,
we evaluate the performance of Jikes LARDVM alone on
conventional x86 hardware (§5.4).

Experimental Configuration We ran experiments with
multithreaded benchmarks from Java Grande [43] and Da-
Capo 9.12 [3].3 The Java Grande benchmarks are mostly
small scientific applications with relatively static memory
footprints.We replace Java Grande’s custom racy spin-waiting
barriers with data-race-free versions to verify LARD’s accu-
racy for data-race-free programs. We report their results as
one unit. DaCapo is composed of larger applications with
varied concurrency patterns. Where applicable, benchmarks
were configured to use 4 threads. To make heavyweight accu-
racy analyses and simulations feasible, we used small inputs.
For performance experiments on real hardware, we used
the largest inputs. We ran two configurations each of Jikes
RVM and Jikes LARDVM, using the mark-sweep (MS) and
semispace (SS) garbage collectors. All experiments were run
on quad-core 64-bit 2.8GHz Intel Xeon Pentium 4 machines
with 4GB of RAM and a Linux 2.6.32 kernel.

5.1 False Races and Missed Races
To validate the accuracy of our LARD implementation and
illustrate the degree to which naı̈ve low-level race detectors
can suffer from false and missed races, we compare the race
reports from three data-race detectors. FastTrack [16] is an
accurate data-race detector for Java implemented via byte-
code instrumentation. We compared FastTrack race reports

3 We omit DaCapo benchmarks that crash on unmodified Jikes RVM or take
too long to complete under simulation.

Benchmark FastTrack GC LARD Naı̈ve
DRE PC DRE PC DRE PC

Java Grande 0 0
MS 0 0 28211 124
SS 0 0 7899 175

avrora 83315 6
MS 106405 8 1997242 129
SS 104579 8 139131 194

luindex 0 0
MS 0 0 2841482 745
SS 0 0 539216 528

lusearch 0 0
MS 0 0 2823974 2395
SS 0 0 26469692 2865

pmd 3 3
MS 9 9 827934 87
SS 9 9 17378 189

sunflow 32 7
MS 84 16 3224426 123
SS 64 16 65075 203

xalan 588 8
MS 703 34 4152344 149
SS 704 36 203473 237

Table 2. Numbers of dynamic accesses on which data-race
reports occur (DRE) and distinct PCs of these reports.

with those of our LARD implementation (described in §4)
and a Naı̈ve low-level vector-clock race detector equivalent
to RADISH [12]. LARD and Naı̈ve are run over the same exact
execution of the benchmarks, but FastTrack uses separate
executions. We have not reimplemented FastTrack within
Jikes LARDVM due to the complexity of co-hosting the two.
FastTrack ignores accesses and synchronization in the JDK
standard libraries. LARD instruments all Java code by default.

Table 2 contains results from running these data-race de-
tectors on the Java Grande benchmarks and selected DaCapo
benchmarks. Exact numbers can vary across executions; we
show the highest number of races reported by each detector
on any single execution. Column DRE shows the number
of dynamic accesses on which races were reported. Column
PC shows the number of distinct program counters of these
reports. Each racy access (DRE) races with one or more pre-
vious accesses, hence counting DREs is slightly different
than counting distinct races. We report data races on the sec-
ond of a racing pair of accesses and only report those racing
pairs where the previous access has happened since (or is)
the last write to an address. Due to this optimization, Fast-
Track and LARD are accurate (sound and complete) through
the first data race. In practice, accuracy is not often compro-
mised thereafter, so we report total data race reports in each
execution as is conventional in the literature.

FastTrack vs. LARD We compared data-race reports from
FastTrack and LARD to validate LARD’s accuracy. LARD
consistently reported at least as many data races and at least
as many racy accesses as FastTrack, though generally in the
same order of magnitude. We examined the differing reports
and found three sources. None is inaccuracy in LARD.

First, LARD instruments all Java code in the source pro-
gram, including the JDK. It therefore reports some races
involving JDK code, where applications misused unsynchro-
nized JDK data structures. FastTrack misses these since it

does not instrument the JDK. In pmd, LARD reports the same
3 data races on 3 accesses as reported by FastTrack and LARD,
as well as 6 data races on unsynchronized ArrayLists from the
JDK. Data races on the contents of java.util.Properties objects
in xalan cause similar disparities.

Second, for each benchmark, FastTrack and LARD ana-
lyzed separate executions on entirely different JVMs, so some
dynamic race-count variance is expected. Some benchmarks,
such as sunflow, had wide variance even between runs on the
same detector and JVM. There is large overlap in the races
reported. We carefully examined races reported by only one
detector. All appear possible in some executions and hidden
in others, accounting for differences in sunflow and avrora.
LARD reports more DREs, but at related program points.

Third, Jikes RVM is implemented for IA32 and emits
two 32-bit accesses to implement accesses for Java’s 64-bit
long and double types. The Java Memory Model allows non-
atomic long/double accesses, so we report races individually.
These duplicated reports inflate LARD’s race counts com-
pared to those of FastTrack, though they report the same
races, and account for the remaining disparities between
LARD and FastTrack. We plan to remove this duplication
in future implementations.

Comparison with a Naı̈ve Low-Level Race Detector The
Naı̈ve configuration reports up to several orders of magnitude
more races than LARD or FastTrack, as shown in Table 2. The
majority of these are false races involving system accesses;
some are false races between language-level accesses. The
Naı̈ve detector also misses some races reported by LARD or
FastTrack, as discussed in §5.2, and reports races on a large
number of PCs, including many outside the source program.

5.2 Impacts of LARD Extensions
To understand the practical impact of each LARD extension
on missed and false races, we compared the accurate LARD
detector to variants with one or all of the LARD extensions
disabled. The detectors are as follows, labeled as in Table 3:

• LARD is accurate, with all LARD extensions enabled.
• AllMem tracks all non-stack memory accesses in the

JVM and the source program.
• AllSync tracks all synchronization in the JVM and the

source program (§4.4).
• NoClear ignores reports of memory deallocation.
• NoCopy ignores reports of memory movement.
• Naı̈ve tracks all non-stack memory accesses and all syn-

chronization and ignores all memory management.

Jikes RVM uses a one-to-one mapping between kernel threads
and Java threads, so we do not evaluate a detector that
ignores thread identity. For each benchmark and garbage
collector (mark-sweep (MS) or semispace (SS)), we ran all
six detectors over the same execution, comparing their results

on each dynamic memory access, with LARD as ground truth
(by proxy to FastTrack). Table 3 shows the results.

The LARD column repeats the count of racy accesses and
distinct PCs for LARD from Table 2. For the other detectors,
we report: (1) the number of false DREs (F DRE) – those
accesses on which LARD does not report a race but the other
detector does, (2) the number of distinct PCs of false DREs
(F PC), (3) the number of missed DREs (M DRE) – those
accesses on which LARD reports a race but the other detector
does not, and (4) the number of distinct PCs of missed DREs
(M PC). All four of these are reported for Naı̈ve. For the
remaining four detectors, only one of missed or false is
reported. The omitted columns contain only zeroes.

The most notable feature of these results is that disabling
any one extension in our experiments results in false or
missed races in at least one benchmark. All of these LARD
extensions are necessary for accuracy in practice.

Program vs. System All benchmarks in our experiments
have false data races under AllMem, with tracking of pro-
gram and system accesses. The majority of false data races
are reported on accesses outside the source program, but false
data races are also reported on program accesses. Filtering
out race reports on PCs in system code does not eliminate
false data races. Conversely, AllSync misses data races on
all benchmarks, often (e.g., pmd, sunflow, xalan) missing all
or nearly all the data races reported by LARD.

Memory Management Empirically, most benchmarks do
not lead to false races when memory reuse is ignored
(NoClear), but avrora and sunflow do suffer false races under
semispace collection. Short executions and low garbage col-
lection pressure make problematic reuse of memory rare in
these experiments. In particular, the Java Grande benchmarks
generally use large, long-lived arrays, rather than short-lived
shared objects. Nonetheless, false races occurred under these
relatively favorable conditions.

Ignoring memory movement in the NoCopy detector has
no effect on the accuracy of data-race detection when using
mark-sweep garbage collection, since mark-sweep never
moves objects. Ignoring movement never leads to missed
races in data-race-free executions such as the Java Grande
benchmarks, but missed races do occur under semispace
collection in pmd and sunflow.

5.3 Jikes LARDVM Performance on LARDISH

We have begun evaluation of the performance potential of
hardware-based LARD data-race detection for Java by run-
ning benchmarks from DaCapo Jikes LARDVM on simulated
LARDISH hardware. We model the same baseline configura-
tion as in [12], extended with mechanisms described in §4.2.
A PIN [25] binary instrumentation tool emulates LARDx86 to
drive the simulator, an extension of the simulator used in [12].
Our main addition is to model the costs of ClearHistory and
CopyHistory. For each, we charge 100 cycles to transition to
the software manager. Next we simulate memory accesses for

Bench GC LARD AllMem AllSync NoClear NoCopy Naı̈ve
DRE PC F DRE F PC M DRE M PC F DRE F PC M DRE M PC F DRE F PC M DRE M PC

Java MS 0 0 762969 222 0 0 0 0 0 0 28211 124 0 0
Grande SS 0 0 753437 226 0 0 0 0 0 0 7899 175 0 0

avrora
MS 106405 8 95644 276 3374 7 0 0 0 0 1894211 121 3374 7
SS 104579 8 68010 174 1236 7 2 1 0 0 35788 186 1236 7

luindex
MS 0 0 42670 157 0 0 0 0 0 0 2841482 745 0 0
SS 0 0 43460 159 0 0 0 0 0 0 539216 528 0 0

lusearch
MS 0 0 17079935 839 0 0 2823974 370 0 0 41760642 2395 0 0
SS 0 0 16690434 873 0 0 3770587 264 0 0 26469692 2865 0 0

pmd
MS 9 9 43123 613 9 9 0 0 0 0 827934 87 9 9
SS 9 9 17899 236 9 9 0 0 6 6 17378 189 9 9

sunflow
MS 84 16 99250 481 81 15 0 0 0 0 3224423 121 81 15
SS 64 16 104457 255 61 15 17 10 9 6 65072 201 61 15

xalan
MS 703 34 837451 723 699 34 0 0 0 0 4152340 147 699 34
SS 704 36 596556 649 700 36 0 0 0 0 203469 235 700 36

Table 3. False/missed races with individual LARD extensions disabled.

mark-sweep semispace MarkSweep SemiSpace
h2

LUFact
MonteCarlo
RayTracer
SOR
Series
JGF
MolDyn
avrora
luindex
lusearch
pmd
sunflow
xalan
(mean)

-100.00% -100.00%

101.80% 101.80%

100.90% 100.90%

102.00% 102.00%

177.48% 192.41%

101.70% 101.70%

16.78% 19.76% 116.78% 119.76%

134.30% 134.20% 234.30% 234.20%

58.60% 54.68% 158.60% 154.68%

8.20% 8.20% 106.29% 107.53%

33.73% 17.01% 133.73% 117.01%

8.24% 18.35% 108.24% 118.35%

5.53% 11.49% 105.53% 111.49%

18.79% 19.43% 118.79% 119.43%

21.86% 21.42% 121.86% 121.42%

0%

10%

20%

30%

40%

50%

JGF MolDyn avrora h2 luindex lusearch pmd sunflow xalan

T
im

e
O

ve
rh

ea
d

137%

0%
10%
20%
30%
40%
50%
60%

avrora luindex lusearch pmd sunflow xalan (mean)

Ti
m

e
O

ve
rh

ea
d mark-sweep

semispace

Figure 3. Execution time overhead of Jikes LARDVM nor-
malized to unmodified Jikes RVM, both run on native x86.

software manager lookups of what access histories may need
to be invalidated in the cache, issuing invalidations (the same
cost as a cache hit for the cache where the access history lives
in the cache hierarchy). For CopyHistory, we simulate the
accesses of the software handler for eviction; in ClearHistory
there is no handler for eviction since the data is discarded.
Finally, we simulate each memory access required in the
software manager to clear or copy software access histories.

Results from these initial simulations suggest Jikes
LARDVM on LARDISH has overheads under 50% in most
cases, comparable to those reported for C programs in [12],
while lower on average. JVM accesses are not race-checked,
so LARDISH can introduce less overhead than RADISH does
for C programs in which all accesses are checked.

5.4 Jikes LARDVM Performance on x86
We evaluated the performance overhead of our JVM modifi-
cations alone on real x86 hardware (with compilers emitting
no LARDx86 instructions) to measure the costs of tracking
synchronization and memory management in software. We
ran benchmarks from DaCapo with their largest input 10
times each with Jikes LARDVM and with an unmodified
Jikes RVM, and with the mark-sweep and semispace col-
lectors. Figure 3 shows the additional overheads of Jikes
LARDVM normalized to unmodified Jikes RVM using the

same garbage collector. Overheads average 22% for mark-
sweep and 21% for semispace. All overheads are under 60%
and most are under 20%. These results show that synchro-
nization and memory management events can be tracked in
software with relatively low overhead, even in our relatively
unoptimized prototype.

6. Related Work
We believe LARD is the first approach for accurate dynamic
data-race detection in high-level languages using hardware
support or other low-level implementations.

6.1 General Data-Race Detection
Static data-race detectors, such as Chord [31] and Rcc-
Java [15], are imprecise, employing conservative analyses
to avoid missing races at the cost of reporting false races.
Race-free programming models such as Cyclone [19] and
Deterministic Parallel Java [5] use conservative language re-
strictions to ensure race-freedom and other properties. Model
checking approaches, as in Java RaceFinder [21], can use
precise happens-before race detection to avoid reporting false
races, but they remain subject to the limits of model checking,
potentially missing races beyond the state-space they explore.
This paper focuses on dynamic data-race detection, which
can avoid precision problems for general programs.

This paper focuses on accurate dynamic data-race detec-
tion (§2). Imprecise dynamic data-race detectors use heuris-
tics such as the single protecting lock pattern checked by
the lockset algorithm in Eraser [38] to approximate data-
race detection. While Eraser misses no races, it reports many
false races since it does not reason about synchronization pat-
terns beyond simple locking. Industrial-strength tools such as
Helgrind [44], Google’s ThreadSanitizer [39], and Intel’s In-
spector [20] also have limited precision and may impose high
performance overheads. Other low-level data-race detectors
have been proposed (CORD [36], HARD [48], SigRace [30],

etc.), but they do not guarantee accuracy. Other data-race de-
tectors, such as LiteRace [27], Pacer [8], and SOS [23], start
from accurate algorithms and use sampling or other methods
to trade full accuracy for performance. While the inaccuracy
of all of these techniques renders them unsuitable for our
goal of accurate data-race exceptions, our approach nonethe-
less could be applied to fundamentally inaccurate detectors.
LARD could also bring hardware support to dynamic data-
race detectors that generalize the current execution to detect
data races possible in other executions [42, 47].

6.2 Sequential Consistency Violation Exceptions
DRFx [28, 41] and Conflict Exceptions [24] are proposals
for precise low-level detection of data races that may violate
sequential consistency. While LARD addresses full data-race
detection, some of the same translation problems arise when
using low-level support to check language-level sequential
consistency. For example, ensuring sequential consistency
for Java may not require sequential consistency of the full
low-level execution, if run-time systems use careful lock-free
techniques. Regardless, the stronger property of data-race
freedom remains desirable in many contexts. Full data-race
detection is a part of many other concurrency analyses.

6.3 Memory Management and Synchronization Issues
Others have previously identified memory management or
custom synchronization as potential sources of inaccuracy,
but have provided only partial solutions in general.

Helgrind [44] offers C preprocessor macros to annotate
custom synchronization and allocation in C/C++ programs
to reduce false race reports, but there is no way to turn off
analysis of synchronization instrumented by default (e.g.,
pthreads) or to specify memory movement in a way that
preserves data-race detection access history. LARD provides
a general interface to communicate the salient details of
language-level synchronization and memory abstractions to
the low-level race detector for accurate data-race detection.

Choi, et al., mention that memory reuse and movement in
garbage collection could break their JVM-level race detector,
since it stores addresses of objects in its analysis state [11].
Their solution, a large enough heap size that garbage collec-
tion never occurs, is not feasible for production systems. Qi,
et al., address this problem in their MulticoreSDK [37] JVM
race detector implementation with logical addresses for race-
checked locations. As discussed in §3.4, this approach adds
overhead to the memory access critical path and is poorly
suited for low-level race detectors. LARD uses explicit move-
ment of analysis state to follow the movement of objects,
which occurs much less frequently than memory accesses.

RACEZ [40] is an offline, dynamic data-race detector
for C/C++ that uses the imprecise lockset algorithm [38],
sampling of memory accesses via hardware performance
monitoring, and offline log analysis to improve run-time
performance at the cost of missing some true races and
reporting some false races. RACEZ uses memory allocation

events as a heuristic to filter false positives, but the authors
give no discussion of why tracking memory allocation is
important – nor to what extent it is effective – in reducing
false positives. Memory movement is not considered.

This prior work indicates that memory management affects
the accuracy of data-race detection, but our work is the first
to provide a single clear interface for managing all aspects
of the gap between language-level and low-level memory
abstractions and to make low-level data-race detection imple-
mentations accurate for language-level data-race detection.

7. Conclusions
LARD is a set of extensions to low-level data-race detectors
and run-time systems. LARD’s five extensions – distinguish-
ing program vs. system memory accesses, distinguishing pro-
gram vs. system synchronization, reporting memory reuse,
reporting memory movement, and reporting thread identity –
are sufficient for low-level detection of language-level data
races. We have implemented a prototype system to detect
data races in Java programs using a low-level data-race de-
tector and modifications to a JVM. Our results demonstrate
that basic low-level detection mechanisms alone do not pro-
vide accurate detection of language-level data races, but a
LARD implementation does. LARD admits general hardware
implementations of performance-critical race-checking logic,
while allowing language implementations to customize the
semantics of memory, synchronization, and thread identity.
This result is a step toward feasible data-race exceptions for
high-level languages.

Acknowledgments
This work was supported in part by NSF grants CCF-1016495
and CCF-0811405; and C-FAR, one of six centers of STAR-
net, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA. Several colleagues con-
tributed insights to this project: Joe Devietti assisted with
the RADISH simulator; Laura Effinger-Dean discussed the
C/C++ memory model semantics for allocation; Sebastian
Burckhardt confirmed that thread identity can be an issue in
analyses at the kernel level; Hadi Esmailzadeh, Jacob Nelson,
and Adrian Sampson provided insights on hardware design;
Tom Bergan, Joe Devietti, and Brandon Lucia gave helpful
feedback on the manuscript. Finally, our anonymous review-
ers gave insightful and constructive feedback that improved
the presentation of our work.

References
[1] Sarita V. Adve and Hans-J. Boehm. Memory Models: A Case

for Rethinking Parallel Languages and Hardware. CACM, 53,
August 2010.

[2] Bowen Alpern, C. Richard Attanasio, John J. Barton, An-
thony Cocchi, Susan Flynn Hummel, Derek Lieber, Ton
Ngo, Mark F. Mergen, Janice C. Shepherd, and Stephen E.

Smith. Implementing Jalapeño in Java. In OOPSLA, 1999.
http://www.jikesrvm.org.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA,
2006.

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley.
Oil and Water? High Performance Garbage Collection in Java
with MMTk. In ICSE, 2004.

[5] Robert L. Bocchino, Jr., Vikram Adve, Danny Dig, Sarita V.
Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Over-
bey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A
Type and Effect System for Deterministic Parallel Java. In
OOPSLA, 2009.

[6] Hans-J. Boehm and Sarita V. Adve. You Don’t Know Jack
About Shared Variables or Memory Models. CACM, 55(2):48–
54, February 2012.

[7] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the
C++ Concurrency Memory Model. In PLDI, 2008.

[8] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKin-
ley. PACER: Proportional Detection of Data Races. In PLDI,
2010.

[9] C++ Standards Comittee, Stefanus Du Toit,
ed. Working Draft, Standard for Program-
ming Language C++. 2012. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.pdf.

[10] Luis Ceze, Joseph Devietti, Brandon Lucia, and Shaz Qadeer.
A Case for System Support for Concurrency Exceptions. In
HotPar, 2009.

[11] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert
O’Callahan, Vivek Sarkar, and Manu Sridharan. Efficient and
Precise Datarace Detection for Multithreaded Object-Oriented
Programs. In PLDI, 2002.

[12] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze,
Dan Grossman, and Shaz Qadeer. RADISH: Always-On Sound
and Complete Race Detection in Software and Hardware. In
ISCA, 2012.

[13] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
A Race and Transaction-Aware Java Runtime. In PLDI, 2007.

[14] Colin Fidge. Logical Time in Distributed Computing Systems.
Computer, 24, August 1991.

[15] Cormac Flanagan and Stephen N. Freund. Type-Based Race
Detection for Java. In PLDI, 2000.

[16] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient
and Precise Dynamic Race Detection. In PLDI, 2009.

[17] Cormac Flanagan and Stephen N. Freund. RedCard: Redundant
Check Elimination For Dynamic Race Detectors. In ECOOP,
2013.

[18] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velo-
drome: A Sound And Complete Dynamic Atomicity Checker
for Multithreaded Programs. In PLDI, 2008.

[19] Dan Grossman. Type-Safe Multithreading in Cyclone. In TLDI,
2003.

[20] Intel. Inpector XE. http://software.intel.com/en-us/intel-
inspector-xe, 2013.

[21] Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A. Sanders.
Java Memory Model-Aware Model Checking. TACAS, 7214,
2012.

[22] Leslie Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21, July 1978.

[23] Du Li, Witawas Srisa-an, and Matthew B. Dwyer. SOS: Saving
Time in Dynamic Race Detection with Stationary Analysis. In
OOPSLA, 2011.

[24] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and
Hans-Juergen Boehm. Conflict Exceptions: Simplifying Con-
current Language Semantics with Precise Hardware Exceptions
for Data-Races. In ISCA, 2010.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. PIN: Building Customized Program
Analysis Tools With Dynamic Instrumentation. In PLDI, 2005.
http://www.pintool.org.

[26] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java
Memory Model. In POPL, 2005.

[27] Daniel Marino, Madanlal Musuvathi, and Satish
Narayanasamy. LiteRace: Effective Sampling for Lightweight
Data-race Detection. In PLDI, 2009.

[28] Daniel Marino, Abhayendra Singh, Todd D. Millstein, Madan-
lal Musuvathi, and Satish Narayanasamy. DRFx: A Simple
and Efficient Memory Model for Concurrent Programming
Languages. In PLDI, 2010.

[29] Friedemann Mattern. Virtual Time and Global States of
Distributed Systems. In International Workshop on Parallel
and Distributed Algorithms, pages 215–226, 1989.

[30] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep
Torrellas. SigRace: Signature-Based Data Race Detection. In
ISCA, 2009.

[31] Mayur Naik, Alex Aiken, and John Whaley. Effective Static
Race Detection for Java. In PLDI, 2006.

[32] Robert H. B. Netzer and Barton P. Miller. What Are Race
Conditions?: Some Issues and Formalizations. ACM Letters
on Programming Languages and Systems, 1(1):7488, March
1992.

[33] Marek Olszewski, Jason Ansel, and Saman Amarasinghe.
Kendo: Efficient Deterministic Multithreading in Software.
In ASPLOS, 2009.

[34] Marek Olszewski, Qin Zhao, David Koh, Jason Ansel, and
Saman Amarasinghe. Aikido: Accelerating Shared Data
Dynamic Analyses. In ASPLOS, 2012.

[35] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A Study of
Concurrent Real-Time Garbage Collectors. In PLDI, 2008.

[36] Milos Prvulovic. CORD: Cost-effective (and nearly overhead-
free) Order-Recording and Data race detection. In HPCA,
2006.

[37] Yao Qi, Raja Das, Zhi Da Luo, and Martin Trotter. Multi-
coreSDK: A Practical and Efficient Data Race Detector for
Real-World Applications. In PADTAD, 2009.

[38] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: A Dynamic Data Race
Detector for Multithreaded Programs. TOCS, 15(4), 1997.

[39] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSani-
tizer: Data Race Detection in Practice. In Workshop on Binary
Instrumentation and Applications, 2009.

[40] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert
Hundt, Wenguang Chen, and Weimin Zheng. RACEZ: a
Lightweight and Non-Invasive Race Detection Tool for Pro-
duction Applications. In ICSE, 2011.

[41] Abhayendra Singh, Daniel Marino, Satish Narayanasamy,
Todd D. Millstein, and Madanlal Musuvathi. Efficient Pro-
cessor Support for DRFx, a Memory Model with Exceptions.
In ASPLOS, 2011.

[42] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon
Yi, and Cormac Flanagan. Sound Predictive Race Detection in
Polynomial Time. In POPL, 2012.

[43] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java
Grande Benchmark Suite. In Supercomputing, 2001.

[44] Valgrind Project. Helgrind: a thread error detector.
http://valgrind.org/docs/manual/hg-manual.html, 2013.

[45] Jaroslav Ševčı́k. Safe optimisations for shared-memory con-
current programs. In PLDI, 2011.

[46] Benjamin P. Wood, Luis Ceze, and Dan Grossman. Data-Race
Exceptions Have Benefits Beyond the Memory Model. In
MSPC, 2011.

[47] Xinwei Xie and Jingling Xue. Acculock: Accurate and Effi-
cient Detection of Data Races. In CGO, 2011.

[48] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In HPCA, 2007.

A. A Canonical Race Detector
The algorithm optimized by the state-of-the-art accurate
software [16] and hardware [12] race detectors uses vector
clocks [14, 29] to represent the happens-before graph. Each
thread maintains its own local integer logical time, starting
at zero. A vector clock contains an integer logical clock for
each thread, indexed by thread ID. Each thread maintains a
vector clock representing the last logical time in each thread

that happened before the current logical time in this thread.
(The ith entry in thread i’s vector clock is its local logical
time.) Each lock in the program also has an associated vector
clock representing the last logical time in each thread that
happened before the last release of the lock.

Synchronization updates the vector clocks of threads and
locks as follows: When thread t forks thread u, thread u’s
vector clock is initialized with a copy of thread t’s current
vector clock. Afterwards, both threads’ local clocks are
incremented. When thread t joins thread u, thread t’s vector
clock is updated to be the pairwise maximum of the current
vector clocks of threads t and u. When thread t acquires
lock l, thread t’s vector clock is updated to be the pairwise
maximum of the current vector clocks of thread t and lock
l. When thread t releases lock l, lock l’s vector clock is
updated to the pairwise maximum of the vector clocks of
thread t and lock l. (Note this maximum is always equivalent
to thread t’s vector clock, since lock l’s vector clock was
merged into thread t’s vector clock on the preceding acquire,
and no other thread may have released the lock since.) Other
types of synchronization are handled similarly: incoming
synchronization merges into the thread’s vector clock and
outgoing synchronization merges from the thread’s vector
clock and then advances the thread’s local time.

Each memory location has an access history storing the
thread that performed the last write to the location and the
local time at which it performed that write, as well as, for
each thread, the last local time at which that thread read
from the location. When a memory access is executed, it is
first checked against the access history. On any access to x,
we check that the current thread’s vector clock entry for the
thread t that last wrote x is greater than or equal to the time
at which t last wrote to x. On a write to x, we check, for each
thread t, that the current thread’s vector clock entry for t is
greater than or equal to the time at which t last read from x.
If any of these checks fails, a data race is reported, otherwise
the access is safe and it must be recorded in the access history.
For a write, we set the last writer of x to the current thread
and the last write clock to be the current thread’s current local
time. As an optimization, we typically zero all the last reads
as well. On a write, we set the last read of x by the current
thread to the current thread’s current local time.

