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Abstract
We have designed, implemented, and evaluated AtomCaml, an ex-
tension to Objective Caml that provides a synchronization primitive
for atomic (transactional) execution of code. A first-class primitive
function of type(unit->’a)->’a evaluates its argument (which
may call other functions, even external C functions) as though
no other thread has interleaved execution. Our design ensures fair
scheduling and obstruction-freedom. Our implementation extends
the Objective Caml bytecode compiler and run-time system to sup-
port atomicity. A logging-and-rollback approach lets us undo un-
completed atomic blocks upon thread pre-emption, and retry them
when the thread is rescheduled. The mostly functional nature of
the Caml language and the Objective Caml implementation’s com-
mitment to a uniprocessor execution model (i.e., threads are in-
terleaved, not executed simultaneously) allow particularly efficient
logging. We have evaluated the efficiency and ease-of-use of Atom-
Caml by writing libraries and microbenchmarks, writing a small
application, and replacing all locking with atomicity in an existing,
large multithreaded application. Our experience indicates the per-
formance overhead is negligible, atomic helps avoid synchroniza-
tion mistakes, and idioms such as condition variables adapt reason-
ably to the atomic approach.

Categories and Subject DescriptorsD.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages

Keywords Atomicity, Transactions, Concurrent Programming,
Objective Caml

1. Introduction
Concurrency has been an important and widely-used programming
idiom for decades, even on uniprocessors. Programmers can mask
latency by spawning new threads to handle I/O or other inefficient
tasks while other threads continue to compute. They can also im-
prove the code structure and response time of interactive applica-
tions by spawning new threads to handle user requests while the
original thread waits for new requests. Unfortunately, concurrency
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remains a common source of software errors, resulting in incorrect
behavior, crashes, and security vulnerabilities. For example, recent
searches for “race condition” on the SecurityFocus [32] and US
CERT [37] websites yielded 994 and 537 hits respectively. These
difficulties are well-known and inspired much of the related work
described in Section 3.

Writing code in which threads communicate via mutable shared
memory will never be easy, but there is an increasing belief that
locks and condition variables (the most common concurrency prim-
itives in today’s high-level languages) make matters worse: As low-
level primitives they are difficult to reason about and provide only
weak guarantees. For example, locks provide correct synchroniza-
tion only if every thread accessing shared resources acquires and
releases locks at the correct times.

Recently, several researchers have proposed replacing locks
with atomicity (see, e.g., [14, 18, 16]). If a block of code is
marked as atomic, the language implementation guarantees that
the code appears to execute without interleaving of other threads.
Instead of “disabling interrupts,” the implementation also ensures
fair scheduling. Unlike locks, this guarantee is provided regardless
of the behavior of the other threads.1 Figure 1 contains an example
of an atomic block and Section 2 reviews some of the technical
reasons to prefer atomicity.

For atomicity to become the next-generation concurrency prim-
itive, now is the time to investigate the relevant questions in lan-
guage design, language implementation, and programming idioms.
To do so, we have built AtomCaml, a prototype system that ex-
tends the Objective Caml bytecode system with atomicity. At the
language level, the atomic construct is a first-class function of type
(unit->’a)->’a that takes a function and executes it atomically.
The block can contain arbitrary code, including buffered output, ex-
ceptions, and calls to Caml functions or native C code. AtomCaml
is available for download from our website [1].

Our implementation uses logging and rollback to undo an un-
completed atomic’s effects if the thread executing it is pre-empted.
Like the Objective Caml implementation, we assume a uniproces-
sor execution model—i.e., that (shared-memory) threads are in-
terleaved, and not run in parallel. Though support for multipro-
cessing is also important, we believe uniprocessors are an impor-
tant special-case that allows particularly efficient logging. Just as
garbage collectors and operating systems use “specialized” tech-
niques for uniprocessors, atomicity implementations should too.

Our evaluation includes microbenchmarks showing the low
overhead of atomic, libraries demonstrating key programming id-
ioms, a small application demonstrating atomic’s ease-of-use, and a
“port” of the PLANet active-network implementation [22, 21] that
removes all uses of locks. In particular, atomic is typically easier to

1 Some systems provide a slightly weaker guarantee, requiring that all
shared memory accesses in all threads occur inside atomic sections for the
atomicity property to hold.



let withdraw amt = let withdraw amt =
Mutex.lock acctLock; Thread.atomic (fun () ->
let oldBalance = readBalance () in let oldBalance = readBalance () in
let newBalance = oldBalance - amt in let newBalance = oldBalance - amt in
setBalance newBalance; setBalance newBalance
Mutex.unlock acctLock )

Figure 1. A withdraw function written with Objective Caml’s Mutex library, and the same function written withatomic. The atomic code
is just as easy to write, and provides a stronger synchronization guarantee.

use than locks, but idioms using condition variables require some
care. In porting PLANet, we fixed concurrency bugs and noticed
no significant change in performance.2

The rest of this paper is organized as follows: Section 2 dis-
cusses some benefits of usingatomic rather than locks. Section 3
discusses related work including other approaches to providing
atomic execution of code. Section 4 describes the design of Atom-
Caml from the programmer’s perspective. We present the function-
ality we added to Caml, the guarantees it provides, and the inter-
esting language design questions that arose. Section 5 describes
the implementation of AtomCaml, including our basic rollback ap-
proach, the implementation details, and some interesting imple-
mentation choices. Section 6 describes our experience using Atom-
Caml. Section 7 concludes and presents directions for future work,
including support for true shared-memory parallelism.

2. The Case for Atomic
Concurrency errors are still prevalent in modern software in part
because locks are difficult to use correctly in complex systems. Ac-
cesses to shared resources may be spread across many procedures
and files. If any access is not protected by the correct lock or locks,
a race condition may occur. The race may result in incorrect be-
havior by the unprotected code, or it may cause incorrect behavior
by protected pieces of code that access the same resource. In the
latter case, the source of the error can be difficult to locate. Fur-
ther compounding the difficulty, a thread may deadlock because
another thread (often executing a different procedure) fails to re-
lease a lock. These complex interactions force programs to obey
subtle program-wide invariants.

On the other hand, atomicity provides a key error-localization
advantage: An atomic block will execute as though there was no in-
terleaving, even if code executing in other threads is poorly written.
Conversely, a thread executing an atomic block that fails to com-
plete in a timely manner may make little progress, but fair schedul-
ing ensures other threads will not be starved. With locks, a thread
holding a lock too long can starve other threads.

Atomicity also has several other advantages over locks:

• As code evolves, it is possible to update any collection of
data objects atomically without risking deadlock or changing
existing code to obey a new locking discipline.

• Wrapping an abstract datatype’s operations in atomic blocks
can make the abstraction thread-safe without unneeded locking.

• As Flanagan and Qadeer showed [14], atomicity is often con-
ceptually what programmers achieve with existing synchroniza-
tion primitives; providing atomicity directly makes program-
ming easier.

• Atomicity and locks peacefully coexist. It is trivial for program-
mers to implement locks with theatomic primitive, but the
implementation also need not remove conventional lock imple-
mentations.

2 The performance point is admittedly a tad weak since a real active network
would not run as bytecodes in user space.

Atomicity does not eliminate thegranularity problem: Pro-
grammers must still decide whether concurrent operations are fine-
grained (potentially increasing performance and nondeterminism)
or coarse-grained (which in the limit becomes sequential code).
However, atomicity does make it easier to mix fine-grained and
coarse-grained operations; locking idioms require complex and
error-prone hierarchical locking schemes.

3. Related Work
Atomicity is not a new idea: Operating systems disable interrupts
for short sequences. Databases group operations into atomic trans-
actions. Distributed systems employ protocols to commit consistent
updates. But as a general-purpose concurrency primitive, atomicity
has enjoyed a recent surge of interest in language design and im-
plementation.

Harris et al. have pioneered most of the recent work on lan-
guage support for atomicity. Their design for Java [18, 17] adds
a statement form for atomic execution and uses software transac-
tional memories (STMs) [20, 33] to ensure threads commit consis-
tent views to shared memory. Their atomic blocks have guards that
must hold before the atomic block executes. More recently, they
developed a system for Haskell [19] in which a transactions monad
provides atomicity and the composition (both sequential and alter-
native) of smaller transactions. Both systems are extremely promis-
ing and motivated our work considerably.

Our work complements or extends the work by Harris in sev-
eral ways. First, the Java system provides a weaker guarantee
(atomic blocks appear atomic only to other atomic blocks) and
the Haskell system relies on Haskell’s purity for the stronger guar-
antee. Second, in AtomCamlatomic is a first-class function of
type (unit->’a)->’a (STM Haskell’s atomic is also first-class,
but has return typeIO a rather than’a). Third, we eschew the
sophisticated data structures and commit protocols of STMs for
simple logging and uniprocessor-based simplifications. Fourth, we
develop an API for allowing calls to native code from atomic (in-
stead of raising a run-time exception). Fifth, we report new experi-
ence with applications and concurrency idioms.

Other language work has made related contributions. Welc et
al.’s transactional monitors [40] provide a weaker guarantee (code
guarded by a given monitor appears atomic to threads executing
code guarded by the same monitor) in hopes of allowing more par-
allelism. They also investigate the overhead of techniques (such as
write barriers) that we expect will be part of most atomicity imple-
mentations. Manson et al. [25] use a logging-and-rollback mecha-
nism similar to ours to add preemptible atomic regions to Real-time
Java. Less recently, the Venari project [41] used locks to imple-
ment serialized transactions in SML. The ARGUS language [24]
provided atomicity for actions that share only objects with special
atomic types that had to be accessed via handler calls.

Flanagan, Qadeer, and Freund [14, 13, 11] have taken the com-
plementary approach of checking or inferring that lock-based code
is actually atomic. In this sense, atomic is not a term-level primi-
tive but rather a checked type annotation. Programmers must still



let add_to_bbuf bbuf item =
Thread.atomic (fun () ->
if (is_full_bbuf bbuf) then

Thread.yield_r bbuf.out_ptr
else ();
bbuf.buffer.(!(bbuf.in_ptr))<-item;
advance bbuf bbuf.in_ptr)

let remove_from_bbuf bbuf =
Thread.atomic (fun () ->
if (is_empty_bbuf bbuf) then

Thread.yield_r bbuf.in_ptr
else ();
let ans = bbuf.buffer.(!(bbuf.out_ptr)) in
advance bbuf bbuf.out_ptr;
ans)

Figure 2. Bounded buffer insertion and removal functions that useyield_r to implement conditional critical regions in AtomCaml. The
advance function updates the associated reference (bbuf.in_ptr or bbuf.out_ptr). This update wakes any threads that were suspended
due to ayield_r on that reference.

use locks, but a type system can help detect unintended atomicity
violations. Their work builds on an underlying data-race detector.

Data-race detectors and deadlock detectors also help find bugs
in locking code, but race-freedom is neither necessary nor sufficient
for atomicity [14]. The detectors attempt to identify race conditions
statically (e.g., [12, 10, 9, 4, 5, 2]) or dynamically (e.g., [31, 8, 7,
38]), so that the programmer can fix them.

We use rollback to implement atomicity whereas some re-
searchers have investigated a variant of exceptions that reverts state
in addition to transferring control [26, 34]. Despite similar imple-
mentations, such a language construct is fundamentally different
in use. Our support for external calls is also slightly more power-
ful. Logging and rollback has also been used to prevent priority
inversion [39], allow safe thread termination [30], and automate
software checkpointing [6, 36]. Rollback without needing logging
can support specific atomic code sequences on uniprocessors, in-
cluding heap allocation [35] and an implementation of locking [3].

In the context of functional languages, Concurrent ML [28] and
the more recent kill-safe abstractions of Flatt et al [15] are ele-
gant concurrency systems based on asynchronous message passing
rather than implicit communication via shared memory. More gen-
erally, it is well-understood that the lack of mutation inherent to
functional programming reduces the need for synchronization. Our
logging approach exploits this fact: the expense of logging is pro-
portional to the number of mutations executed in an atomic block.

Finally, hardware support for software transactions remains on-
going research. Most recently the TCC project [16] uses hardware
buffers, consistency protocols, and (in the extreme case) locking
the bus to implement atomicity. Transactions have also been used
as an optimistic implementation of locking [27].

4. The Design of AtomCaml
In this section, we discuss the design of the AtomCaml language.
Section 4.1 describes theatomic primitive itself. Section 4.2 dis-
cusses theyield_r primitive and how it can be used to implement
conditional critical regions. Section 4.3 presents the interface that
lets programmers specify how external C functions interact with
atomic blocks. Finally, Section 4.4 describes design choices regard-
ing the interaction between atomic blocks, exceptions, and input.

As we see below, the only user-visible changes to Objective
Caml areatomic, yield_r, and some additional facilities for
interacting with external C code.3 In addition, our system is fully
backwards compatible with Objective Caml—all Objective Caml
programs are equivalent AtomCaml programs.

4.1 Theatomic Primitive

Theatomic primitive in AtomCaml is a first class function of type
(unit->’a)->’a. The function takes a thunked block of code
as its argument and executes it atomically. The implementation

3 In the actual implementation, we put the primitives in theThread module.

ensures that there will appear to be no interleaving during the
block’s execution. For example, to execute the following code
atomically:

let totalWidgets = !blackWidgets + !blueWidgets in
if totalWidgets > 0
then print_string (pickWidget () ^ " available")
else raise NoWidgets

we can simply write:

atomic (fun () ->
let totalWidgets= !blackWidgets + !blueWidgets in
if totalWidgets > 0
then print_string (pickWidget () ^ " available")
else raise NoWidgets)

As we describe in more detail in Section 5, AtomCaml provides
this atomicity guarantee with a rollback and retry-based approach.
When the currently executing thread reaches an atomic block, it
simply begins executing the block. If the thread is not pre-empted
during the execution of the block, then it has executed atomically,
since truly parallel execution is not possible in Objective Caml or
AtomCaml. On the other hand, if the thread is pre-empted in the
middle of the atomic block, we roll the block back (undoing its
side effects), and retry the block the next time the thread executes.

The atomic block can contain arbitrary Caml code, including
function calls to Caml code or to external C code (see Section 4.3).
The atomic block can also raise exceptions that are caught inside or
outside the block; an exception that leaves the atomic block causes
the atomic block to complete. In addition, Objective Caml’s built-
in buffered output (print_int, print_string, etc.) can appear
inside atomic blocks, but our current implementation raises an
exception if a built-in input function is called inside an atomic
block. It would also be possible to allow input inside an atomic
block, but as we discuss in Section 4.4, it is unclear if it is a good
idea. So far, our applications have not needed it.

Under our semantics, a nested atomic block (for example, an
atomic inside a function called from an atomic block) is redun-
dant. Our atomic sections appear to execute without interleaving.
Because the enclosing atomic block will (appear to) execute with-
out interleaving, all nested blocks will automatically (appear to)
execute without interleaving—regardless of whether or not they are
labeled as atomic blocks.

4.2 Conditional Critical Regions andyield_r

Conditional critical regions (CCR’s) are a useful concurrent pro-
gramming idiom. For example, a function that adds an item to a
bounded buffer must first check if the buffer is full, and if so, wait
for space to be available. In a lock-based implementation, we would
like to avoid acquiring the buffer’s lock if the buffer is full. How-
ever, we must also ensure that another thread does not fill the buffer
between when we check and when we add the new item. CCR’s



make this possible by allowing us to delay entry to a critical sec-
tion until a specified condition (a guard expression) holds.

Similar issues arise when programming withatomic. We must
check whether the buffer is full inside the same atomic block that
adds the item. Otherwise another thread could fill the buffer be-
tween when we check and when we insert our new item. However,
if it turns out that the buffer is in fact full, we would like to termi-
nate the atomic block immediately and try it again later, when the
buffer is no longer full.

Semantically, an explicit call toyield (already provided in
Caml) suffices:yield causes the thread to be suspended. Because
the atomic block has not completed, we will undo any effects and
restart the block when the thread next runs. After programming
this idiom withyield, we noticed that the yielding code is often
waiting for a mutable reference to have its contents changed and it
is useless to rerun the thread until such change occurs.

Theyield_r primitive (of type’a ref -> unit) lets a thread
indicate exactly that:yield_r x suspends the thread and allows
(but does not require) the scheduler to skip the suspended thread
whenever the contents of the reference bound tox are the same as
whenyield_r was called. Thus our bounded buffer insert function
can check if the buffer is full, and if so, simply execute ayield_r
on the buffer’s out pointer. Figure 2 shows a thread-safe bounded-
buffer implementation usingatomic andyield_r. These are the
same functions we use in the simplified web cache application
described in Section 6.3. Appendix A provides another example,
using the primitives to implement a variant of condition variables.
Note that it is always correct to useyield instead ofyield_r.

4.3 Calling External C Functions

Unlike the prior work described in Section 3, AtomCaml allows
programmers to call external C functions from inside atomic
blocks. Programmers can specify three types of behavior when
they declare an external function:

• If their code can be run without modification in an atomic
context (e.g., if it only modifies local state), they can use a
declaration of the form:

external foo : type_of_foo = "c_foo"

The C functionc_foo will be invoked wheneverfoo is called.
• If the programmer has created a separate version of the external

function that is safe to call from inside an atomic section, they
can use a declaration of the form:

external foo : type_of_foo = "c_foo1 c_foo2"

When we callfoo from a non-atomic context, the first C func-
tion (c_foo1 in this case) will be invoked, and when we call it
from an atomic section, the second (c_foo2) will be invoked.
AtomCaml provides facilities, described below, that make it
simple to create atomic-safe versions of many C functions.

• If a function should never be called in an atomic context (e.g., if
the programmer has not created an atomic-safe version because
they never expect the function to be called in an atomic context),
they should use a declaration of the form:

external foo : type = "c_foo1 raise_on_atomic"

If foo is ever called inside an atomic block, aSys_error
exception will be raised with an argument indicating the name
of the function that was improperly called.

Fundamentally, there is only one mechanism here:

external foo : type_of_foo = "c_foo"

is the same as

external foo : type_of_foo = "c_foo c_foo"

and is in fact implemented that way. The third option is the same
as the second ifraise_on_atomic is just a C function provided
by the run-time system. It could be if we did not (for convenience)
provide the function name in the value thatSys_error carries.

When a block rolls back, its side effects must be reversed. So to
create atomic versions of C functions, we let programmers specify
actions that must occur when the atomic block rolls back. We also
let them specify actions that must occur when the atomic block
successfully completes. The latter facility lets unreversible actions
be delayed until it is known that reversal is unnecessary. AtomCaml
provides two functions to specify these actions:

• Thecaml_register_rollback_action(void(*reg_func)
(void*), void* reg_env) function causes the function
reg_func to be called with argumentreg_env when the cur-
rently executing atomic block rolls back.

• Thecaml_register_commit_action(void (*reg_func)
(void*), void* reg_env) function causes the function
reg_func to be called with argumentreg_env when the cur-
rently executing atomic block completes.

The virtual machine thread scheduler will not pre-empt threads in
the middle of an external C function, so we do not need to worry
about being interrupted between executing an action and registering
the corresponding rollback action. Figure 3 shows how to use
these functions to create atomic-safe versions of C functions that
increment and delete heap-allocated counters. The rollback action
undoes any increments and the commit action completes any delete
(which was delayed during the atomic block).

This interface suffices for implementing atomic-safe buffered
output. The first output can register an action that reverts the buffer
to its original state if the atomic block rolls back. In addition, the
atomic-safe version of the flush function can register the flush as an
action to be taken when the atomic block successfully completes.

4.4 Language Design Choices

Several interesting language-design questions arose during our
work. We now consider the two most interesting: Should we al-
low input inside atomic blocks? What do exceptions thrown from
atomic blocks mean?

Given our implementation’s rollback-and-retry mechanism (see
Sections 4.1 and 5), it is not difficult to allow input within atomic
blocks, but for semantic and efficiency reasons (and the lack of a
compelling need) we have made the policy decision not to. To allow
input, each input statement in an atomic block would simply read
the next item from the buffer. If we rolled back, the items read
would be put back into the buffer. Implementing this approach,
however, would force all input functions (even the non-atomic
ones) to see if input is already available in a buffer because of
another thread’s rollback. Furthermore, we cannot statically bound
the size of the buffer, because we cannot predict how much data
may need to be put back into it due to a rollback. (For output, the
atomic functions’ buffers cannot be bounded, because we cannot
flush them until we complete the block. However, the non-atomic
functions’ bufferscan be bounded, because we can flush them
whenever. This asymmetry between input and output surprised us.)

There are also semantic problems with allowing input after out-
put in an atomic block: The input cannot depend on the output be-
cause we delay the output until the atomic block completes. For ex-
ample, the output could prompt a user for information and the input
could be their response. Our atomic primitive is for shared-memory
concurrency; it is unwise (and impossible, given our current choice
to raise an exception if an input function is called inside an atomic
block) to perform external communication atomically.

Turning to exceptions, the interesting case is when an exception
thrown from an atomic block is not caught in the atomic block.



struct Counter {
int val; // current value
int did_registration; // boolean
int old_val; // pre-atomic value
int pending_delete; // boolean

};

typedef struct Counter * counter;

void do_registration(counter c) {
if(c->did_registration) return;
c->did_registration = 1;
c->old_val = c->val;
caml_register_commit_action(commit_ctr,c);
caml_register_rollback_action(rollback_ctr,c);

}

void commit_ctr(void *v) {
counter c = (counter) v;
if(c->pending_delete)

delete_ctr(Val_int((int)c));
else

c->did_registration = 0;
}

void rollback_ctr(void *v) {
counter c = (counter) v;
c->val = c->old_val;
c->did_registration = 0;
c->pending_delete = 0;

}

value inc_ctr_atomic(value v) {
counter c = (counter) Int_val(v);
do_registration(c);
return inc_ctr(v);

}

value delete_ctr_atomic(value v) {
counter c = (counter) Int_val(v);
do_registration(c);
c->pending_delete = 1;
return Val_unit;

}

Figure 3. An atomic-safe version of C code that increments and deletes heap-allocated counters. The functions
caml_register_rollback_action and caml_register_commit_action register functions that are called if the currently exe-
cuting atomic block rolls back or completes, respectively. The code undoes increments on rollbacks and delays deletes until an atomic block
completes.new_ctr, inc_ctr, anddelete_ctr are straightforward and not shown.

In our view, an exception is just a nonlocal control transfer and
when control transfers outside the atomic block, the atomic block
commits successfully. This policy is semantically simple and aligns
with our view that atomic is nothing more and nothing less than a
concurrency primitive.

Another possibility is to roll back an atomic block when an ex-
ception occurs, which is tempting because exceptions often indi-
cate unexpected conditions. This is a fundamentally different ex-
ception semantics: Rather than just transfer control, an exception
raise would also revert to a previous state. While such an operator
has its advocates [26, 34], we consider it an orthogonal language
feature that happens to enjoy a very similar implementation. From
the perspective of atomicity,yield andyield_r allow a thread
to abort an atomic block and retry it later. Quite differently, this
variant of exception would abort an atomic block and not retry it
(continuing as though the atomic block were empty). This feature
has its own pitfalls, however. For example in AtomCaml this code
will never fail, because the write tox will not be undone—even if
f raises an exception:

let x = ref 0
atomic (fun () ->

x := 1;
f() (* f may raise an exception *))

if !x = 0 then failwith "huh" else ...

If exceptions had a rollback-and-do-not-retry semantics, an excep-
tion thrown inf would cancel the write tox. The code would then
fail becausex would be 0 when we reached the conditional.

5. The Implementation of AtomCaml
We now discuss our strategy for implementing the design described
in the previous section. As described earlier, we implemented
AtomCaml as an extension to bytecode-compiled Objective Caml.
Section 5.1 describes our basic approach to guaranteeing atomicity.
Section 5.2 discusses why Objective Caml and other mostly func-
tional languages are a good target for this approach. Section 5.3

presents some details of our implementation. Finally, Section 5.4
discusses key implementation choices.

5.1 The Approach—Atomicity via Logging and Rollback

The ease and correctness ofatomic is well-known; it is why
operating system code disables interrupts for short code sequences.
The problem with making atomic a language construct in a safe
language is that we do not trust code to re-enable interrupts, nor
do we want draconian restrictions like disallowing function calls
in atomic blocks. We show how to provide particularly efficient
support for atomicity on systems without true parallelism (e.g.,
uniprocessor systems and systems like Objective Caml where the
run-time system requires that at most one thread executes at any
given time), without disabling interrupts or restricting code.

We designed our approach based on the belief that most atomic
blocks will be short, and that most code will execute outside of
atomic blocks. The applications described in Section 6 confirm
these observations. Thus we have designed a system where short
atomic blocks execute with low overhead and where non-atomic
code is not slowed down compared to systems without atomicity.

The key idea is this: We know exactly one thread is executing at
any time. When the currently executing thread reaches an atomic
block, it optimistically begins executing the block. If the thread
completes the block without being pre-empted by the scheduler, no
further action is required—the block executed atomically. Because
atomic blocks are typically short, this case is the common one. If
the scheduler does pre-empt a thread during an atomic block, the
thread rolls back to the beginning of the block and removes any
evidence that the block was partially executed. The next time the
thread executes, it will restart at the beginning of the block.

Given this general approach, several questions remain:

• In a language with side effects, how can we ensure that the
program behaves as if a rolled back block never executed? In
particular, how do we handle writes to mutable data and output?

• How do we ensure that an atomic block eventually completes
successfully, without starving other threads?



• How do we handle functions that may be used inside both
atomic and non-atomic contexts? Their behavior must be dif-
ferent in these two cases, but we do not want to slow down
non-atomic code.

• How do we ensure that our approach has low overhead?

The rest of this section answers these questions in turn.
To enable rollbacks, side effects (memory writes, output, mes-

sage sends, etc.) in atomic blocks must be reversible. The essential
uniprocessor “optimization” is that our system has no need to log
reads to memory. In atomic blocks, the system tracks updates to
mutable locations with a log that records the location and the pre-
vious value. If rollback becomes necessary, it simply reverts every
location in the log to its original value. The only exceptions to this
rule are variables and memory that are local to the atomic block—
they do not need to be logged or reversed because the thread will
recreate them when it retries the block. In a garbage collected lan-
guage, the memory occupied by these local variables will be re-
claimed because there will be no references to them after the roll-
back. We handle output and message sends by buffering, and by
not allowing the buffers to flush in the middle of an atomic block.
Rollbacks can then remove the writes and sends from the appro-
priate buffers.4 Input during atomic blocks is an interesting policy
question, discussed in Section 4.4.

We also must ensure that an atomic block will eventually be
able to complete (provided, of course, that it does not enter an
infinite loop). To achieve this, the scheduler allocates extra time to
a thread’s next execution if it fails to complete an atomic block after
two attempts. (Note that the block will have been given a full time
slice on the second attempt.) If the block still fails to complete, we
can allocate even more time on subsequent executions. This extra
time may not be necessary—the atomic block may complete faster
because of work done by other threads. However, by allocating
more time, the scheduler ensures that inherently long atomic blocks
will eventually be able to complete. To ensure fair scheduling (i.e.,
that we do not starve other threads), the scheduler skips the thread
for a number of rounds proportional to the extra time allocated. The
scheduler can also enforce an upper bound on the allocated time
per thread execution, in order to prevent unresponsiveness. These
policy issues may depend on an application and should be tunable
just like garbage-collection parameters.

To allow function calls inside atomic blocks, the system must
also log writes in functions called from inside an atomic block.
We could test at function entry whether the current thread is in an
atomic context, but this test would slow down non-atomic code.
Instead, the compiler generates two versions of each function: an
atomic version that logs side effects and buffers output, and a non-
atomic version that executes normally. We can determine statically
which version to call: when we call the argument to anatomic, or
when we make a call inside the atomic version of a function, we call
the atomic version. Otherwise, we call the non-atomic version. In a
functional language, this requires adding a second function pointer
to each closure,5 and creating new versions of theapply bytecodes
that follow the new code pointers. We can also reduce the code size
somewhat by statically identifying functions that are called only
in atomic contexts, or only in non-atomic contexts, and generating
only the appropriate versions. We can also avoid duplicating purely
functional code, because there will be no writes to log.

Because non-atomic code is essentially unchanged and roll-
backs are rare, the primary source of overhead is logging writes.
Logging occurs only inside atomic blocks (which are typically only

4 Removing writes and sends from buffers is really just a special case of
reversing memory writes.
5 We can save this extra per-closure space, but at the expense of increasing
the overhead of atomic function calls. See Section 5.4.

a small fraction of the code), and writes must already be tracked by
the (generational) garbage collector. Thus this overhead has little
effect on the overall running time of the applications discussed in
Section 6. Even if an atomic block has trouble completing (thus suf-
fering multiple rollbacks), only the thread executing it slows down.
This is in contrast to locking systems, where other threads wait for
locks held by a thread executing a problematic critical section.

Should it prove necessary, we could investigate dynamic and
static approaches to reduce rollback frequency. For example, a
thread can yield rather than start an atomic block near the end of
its time slice (when it is less likely the block will complete). The
compiler can also use static analysis to shrink atomic blocks with
right- and left-movers at, respectively, the beginning and end of the
block (see [13, 14, 23] for information about movers).

5.2 Why Objective Caml?

We chose Objective Caml as a starting point for our prototype for
several reasons. First, as a mostly functional language, writes to
mutable data structures in Caml are relatively rare. Since these
writes are our primary source of overhead,6 we expect that logs will
remain quite small and our experience confirms it. Second, Objec-
tive Caml already lacks support for true parallelism, so we exploit
the same simplifications that the existing run-time system already
does. Third, we can make atomicity a fully first-class construct, i.e.,
a function of type(unit->’a)->’a. Without higher-order func-
tions this is clearly impossible. Moreover, in a purely functional
language like Haskell, atomic is useful only as a monad [19].

Making atomic a function helps enormously in localizing the
changes necessary to the implementation. We simply add the dec-
laration

external atomic: (unit->’a)->’a = "atomic"

to the Thread module, and the front end correctly parses and
typechecks uses ofatomic. In short, we changednothing in the
front end.

Makingatomic a function also simplifies nested atomic blocks.
As described in Section 4.1, nested atomics are redundant; such a
call should just apply its argument because there is already a log set
up. However, a singleatomic construct may be used in both nested
and non-nested contexts. Treatingatomic as a function solves this
problem. We already have two versions of every function, and we
already determine which one to call based on the context. The
outermostatomic will always be called from a non-atomic context
(otherwise it would not be the outermost), and nestedatomics will
always be called from atomic contexts (otherwise they would not
be nested). Thus the non-atomic version ofatomic does the setup
for logging and rollback, and calls the atomic version of the passed
function, and the atomic version is simply:7

let atomic th = th ()

Since we are already in an atomic context, we automatically call
the atomic version ofth.

We chose to change the bytecode compiler rather than the native
compiler for three reasons: (1) simplicity (it is a smaller system),
(2) portability, and (3) a user-level thread scheduler (so we did not
have to deal with the kernel). The disadvantage is that bytecode
typically runs slower than native code, making our performance
results less reliable. Our approach should work fine with native
code and a system thread scheduler provided the latter provides

6 Recall that initialization writes do not need to be logged, because we will
lose all references to the data after a rollback.
7 As we discuss in Section 5.3.3,atomic is actually a C function built in to
the virtual machine. However, the behavior of the atomic version ofatomic
is identical to the Caml code given here.
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a hook for executing code when a (lightweight, i.e., intraprocess)
thread is pre-empted.

5.3 Implementation Details

We implemented AtomCaml by modifying the Objective Caml
bytecode compiler, the run-time system (particularly the thread
scheduler and the garbage collector), and theThread library. As
mentioned earlier, we did not touch the front end of the compiler.

This section describes (at a high level) the modifications we
made to implement AtomCaml. None of these modifications rely
on any unusual properties of Caml or the Objective Caml vir-
tual machine. Thus similar extensions should be possible in other
mostly functional languages.

5.3.1 Logging and Rollback

As Section 5.1 describes, AtomCaml logs all non-initialization
writes occurring inside atomic blocks and reverses them if the block
is rolled back. To do so, the AtomCaml compiler uses alternate
versions of bytecodes and primitives that might modify existing
data. These alternate forms cause the virtual machine to log the
modification. This approach is more efficient than setting a flag
when we enter an atomic block and checking the flag on every
write, because the check would slow down non-atomic code. The
log is a stack of modified addresses and their previous values. Thus
when we roll back, the first writes are the last reversed. As Figure 4
illustrates, this ensures all locations revert to the value they held
before the atomic block. If the log becomes large, we switch to
a hashing scheme to avoid logging multiple writes to the same
address (see Section 5.4).

We must also consider how logging and rollback interact with
garbage collection: If we lose the last reference to an object during
an atomic block, we still must not garbage collect it. Otherwise,
after a rollback the program could have a reference to an object
that no longer exists. We must also ensure that the garbage collector
updates the log if it moves any logged data structures. Thus the log
must be reachable to the garbage collector.

5.3.2 Code Duplication

AtomCaml creates two copies of each function: an atomic version
that logs writes and buffers output, and a non-atomic version that
does not. Thus our compiled code size is roughly twice that of an
equivalent Objective Caml program. The compiler indicates which
function should be called by inserting differentapply bytecodes in
atomic and non-atomic contexts. Sinceatomic is simply a function
that calls the atomic version of its argument, the atomic contexts

consist of theatomic function itself, and the atomic versions of all
other functions. Thus, to compile AtomCaml code, the bytecode
compiler merely needs to compile each function twice. The first
compile generates the non-atomic version of the function, and pro-
ceeds exactly as a normal Objective Caml compilation would. The
second compile generates the atomic version, and is identical to the
first except that instructions that call functions or modify mutable
data are replaced with their alternate, atomic forms. Calls inside
atomic blocks will then automatically call the atomic version.

The virtual machine keeps track of these two function versions
by adding an extra code pointer to every closure. This is depicted
in Figure 5b. The normalapply bytecodes follow the original
code pointer, and the atomicapply bytecodes follow the new code
pointer. In Section 5.4, we discuss an alternate representation that
eliminates this extra per-closure space at the expense of slower
function calls inside atomic blocks.

5.3.3 Theatomic Function

Theatomic function lets the programmer pass in code that should
be evaluated atomically. We implementedatomic as a C function
that is built-in to the virtual machine runtime. It must be a part of
the runtime because it is the one place where we transition from
a non-atomic context to an atomic context. The compiler need not
(and in general does not) know if a function-call target isatomic.

The version ofatomic called from non-atomic contexts must
perform the setup work necessary to enter an atomic section, call
the argument function, and rollback the block if it failed to com-
plete. The function first sets up the modified-memory log. It then
calls a new version of the Objective Caml callback function that fol-
lows the atomic code pointer of the passed function. If the thread
scheduler interrupts an atomic block,8 it throws a special rollback
exception. If the callback returns this exception,atomic rolls back
the modifications in the log and executes any registered rollback
actions (see Section 4.3). Otherwise, we empty the log and execute
any registered commit actions. The version ofatomic called from
atomic contexts simply calls the passed function. As described in
Section 4.1, nestedatomics are redundant, so this is sufficient.

5.4 Design Choices

In this section, we consider key choices we made in the AtomCaml
implementation. We first discuss the representation of function

8 Objective Caml experts may recall that the virtual machine normally pre-
vents pre-emption during callbacks. AtomCaml allows pre-emption during
callbacks, but only if all active callbacks are from theatomic function.
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closures and an alternate representation (Section 5.4.1). We then
describe some optimizations to the logging mechanism that we
chose to implement, and the associated tradeoffs (Section 5.4.2).

5.4.1 Closure Representations

Function closures consist of a code pointer and an environment
containing the function’s free variables (see Figure 5a). The most
straightforward extension adds a second code pointer, as depicted
in Figure 5b. This representation has the advantage of not adding
any extra levels of indirection for function calls. However, the
closures become larger, so closure creation is more expensive, even
in non-atomic code.

Alternately, we could place the atomic-code pointer at a fixed
offset from the start of the non-atomic code. We would then need
only one code pointer in the function closure, as depicted in Fig-
ure 5c. This representation avoids enlarging the closures, thus clo-
sure creation is not slowed down. However, atomic functions calls
will now have to follow two code pointers. Thus non-atomic code is
sped up (due to cheaper closure creation), at the expense of slowing
down function calls in atomic blocks.

As Section 6.5 shows, our test applications that useatomic run
slightly faster (or at the same speed) with the first representation;
thus we chose it for our implementation.

Objective Caml also uses special “flattened” representations
for closures containing mutually recursive functions. Both our ap-
proaches extend naturally to such closures.

5.4.2 Optimizing Logging and Rollback

Generally, we want to reduce the work done for each atomic write,
even if it means more expensive rollbacks, because we expect
rollbacks to be rare. However, there are some cases where doing
a little extra work when we log a write can save lots of time on a
rollback. In particular, if we update the same location many times,
we can save time on rollback by only logging the first update.
However, checking for repeats has overhead; thus it only makes
sense for atomic blocks that have an above-average chance of being
rolled back, and that perform enough repeated writes that they stand
to gain by eliminating duplicates. In our current implementation,
we dynamically track the total number of writes to mutable data in
a block to approximate both quantities. A block with a large number

of writes has a higher chance of repeated writes, and will likely take
longer to complete and thus have a higher chance of being rolled
back. Thus, once the number of writes reaches our preset threshold
(currently 50), we begin hashing newly logged addresses to check
for duplicates. We also begin incrementally hashing the previously
logged addresses to check for any duplicates that have already been
inserted. Another option we plan to try in the future would attempt
to identify repeated writes statically. For instance, a static analysis
could determine that the write tobig_number in the following loop
needs to be logged only once:

atomic (fun () ->
while (!big_number > 0) do

big_number := !big_number - 1; ... done)

6. Experience
To understand the convenience and efficiency of AtomCaml, we
have written or modified multithreaded libraries and applications.
Section 6.1 describes common idioms we encountered in existing
code and external C libraries and how these idioms appear when
using atomic. Section 6.2 investigates the performance implica-
tions of our implementation on contrived microbenchmarks and
non-atomic applications. Sections 6.3 and 6.4 describe more com-
plete case studies involving one new and one existing application.
Section 6.5 compares closure representations.

6.1 Common Idioms with Atomic

Usually, programming with atomic is much easier than program-
ming with locks. With locks, one typically uses patterns like the
following (which is a much-used utility function copied verbatim
from PLANet [22, 21]):

let critical m thunk =
try

Mutex.lock m;
let result = thunk() in
Mutex.unlock m;
result

with e -> (Mutex.unlock m; raise e)



It is often but not always meaning-preserving to replace this func-
tion with:

let critical m thunk = atomic thunk

In many cases, a change like this one suffices. For example, the
Objective Caml standard library provides an implementation of the
Concurrent ML primitives [28]. The implementation keeps private
data structures consistent with a “master lock” and atomic works
just as well. It took only a few minutes to change the library, which
we had never seen before. Similarly, code that wraps libraries
such as hashtable implementations with a lock to implement a
monitor-style abstraction is ideally suited for atomic. In one place
in PLANet described below, making the simple change to atomic
made a library more useful by avoiding a potential deadlock.

However, occasionally using atomic where current practice
would use locks is incorrect or a bad idea. We consider three such
scenarios, two of which we encountered during our case studies.

6.1.1 Condition Variables

Threads often communicate viacondition variables, which have
an associated lock and support thewait, signal, and broadcast
operations9 (see theCondition library in Objective Caml). A
thread callingwait should hold the associated lock.wait then
releases the lock and suspends the thread. Upon resumption,wait
reacquires the lock before returning.signal resumes one thread
waiting on the condition variable andbroadcast resumes all of
them. To our knowledge, prior work on atomic has not considered
using this important idiom.

Code usingwait generally has this form, wherelk is a lock and
cv is a condition variable:

critical lk (fun () ->
e1;
let rec loop () =

if e2 then e5

else (e3; wait cv lk; e4; loop ()) in
loop ())

It is crucial that the call towait suspends the thread so that another
thread may modify shared state such thate2 becomes true. But
rolling back (as the atomic implementation ofcritical would do
upon suspension) is incorrect if other threads need the effects ofe1,
e2, e3, ore4 to make progress. (If and only if these four expressions
are pure does a conditional critical region [18] oryield_r suffice.)

Although there are often simpler solutions (it is rare that this
pattern is used in its full generality), a general solution isalmost
the following:10

let f() = if e2 then Some e5 else (e3; None) in
let rec loop x =

match x with
None -> (wait’ cv;

loop (atomic (fun () -> e4; f())))
| Some y -> y in

loop (atomic (fun () -> e1; f()))

As needed, this code evaluates the correct expressions atomically
and it does not callwait’ (which we suppose takes a condition
variable but not a lock) from withinatomic. Unfortunately it has
a race condition: Between the evaluation ofe2 and wait’ cv ,
another thread could makee2 true and signalcv; the waiting thread
will never see a signal that precedes the wait. In the lock-based
code, this race does not exist because the waiting thread holds the

9 These operations are sometimes calledwait, notify, andnotifyAll.
10Note it is also easy to abstract the pattern with a higher-order function
taking thunks that evaluatee1, e2, e3, e4, ande5.

condition variable’s lock until it suspends and a signaling thread
must hold the lock.

To solve the problem, the waiting thread must startlistening
for a signal insideatomic (with listen) but suspenditself (with
wait) outside atomic. The following interface and revised code
suffices:

type condvar
type channel
val create : unit -> condvar

(*signal a channel that hasn’t yet been signaled*)
val signal : condvar -> unit
val broadcast : condvar -> unit
val listen : condvar -> channel

(*suspends unless/until channel is signaled*)
val wait : channel -> unit

type ’a attempt = Wait of channel | Go of ’a

let f() =
if e2 then Go e5 else (e3; Wait (listen cv) in

let rec loop x =
match x with

Wait ch -> (wait ch;
loop (atomic (fun () -> e4; f())))

| Go y -> y in
loop (atomic (fun () -> e1; f()))

In an atomic section, a thread can start listening for a signal, so
a signal cannot be missed. The call tolisten returns achannel
on which signals occur; thewait operation suspends unless the
channel has been signaled. If another thread “quickly” signals the
channel, then thewait operation will simply not suspend.

Our implementation of condition variables is about 20 lines
of AtomCaml; Appendix A contains its entirety. Note our use of
atomic above leads to nestedatomic evaluations, but these pose
no problem.

6.1.2 External Calls (e.g., I/O)

If Caml code calls C code while holding a lock, then before replac-
ing the lock acquisition/release withatomic, we must do one of
the following to ensure that we will be able to safely roll back the
block: (1) modify the Caml code, (2) manually verify the C code (at
least as it is being called) is safe for atomic, (3) write an atomic ver-
sion of the C code using the API described in Section 4.3. Which
approach is easiest depends on the situation.

Modifying the Caml code is often not difficult. For example, this
lock-based code closes or writes to a shared output channel held in
a shared variablef that is guarded bylk:

fun close () =
critical lk (fun () -> match !f with

None -> ()
| Some oc -> close_out oc; f := None)

fun output () =
critical lk (fun () -> match !f with

None -> () | Some oc -> output_string "ICFP")

We have modified the C code implementingclose_out and
output_string to have no effect until an atomic block com-
pletes. But suppose it was too difficult to provide this functionality
for close_out, so we had it raise an exception instead. Then the
programmer can still just write:



fun close () =
let th = atomic (fun () -> match !f with

None -> (fun () -> ())
| Some oc -> (f:=None; (fun () -> close_out oc))
in th()

fun output () =
atomic (fun () -> match !f with

None -> () | Some oc -> output_string "ICFP")

Other times, we may know an operation is pure so we can move it
outside of an atomic block. For example, the Objective Caml library
uses C code for parsing, but parsing a constant (and well-formed)
string is nonetheless a pure operation at the application level.

Determining if the C code is actually safe for atomic is usually
easy: Getter functions (e.g.,pos_out, which returns an output-
channel’s current position) are typically safe and other functions
typically are not. In the latter case, it may be possible to delay
effects until an atomic block commits.

6.1.3 Long Critical Sections

We have yet to find a situation where it seemed appropriate to hold
a lock while performing a long computation but inappropriate to
perform the computation atomically. This could happen if the com-
putation was long enough to force the atomic block to roll back
repeatedly. In this situation, it would be better to use locks or an
idiom simulating them. We can “have our cake and eat it too” be-
cause our implementation ofatomic is compatible with conven-
tional lock implementations such as Objective Caml’sMutex li-
brary. Moreover, as a simple exercise we have written a library on
top of atomic that provides simple locks, locks that check the re-
leasing thread is the acquiring thread, reentrant locks, and read-
ers/writer locks. The simple lock implementation is trivial:

type simple_lock = bool ref
let acquire lk = atomic (fun () ->

if !lk then yield_r lk else lk := true)
let release lk = atomic (fun () -> lk := false)

6.2 Simple Benchmarks

We created several small tests to evaluate the performance of var-
ious aspects of AtomCaml. The tests were run on a 500MB, 2.26
GHz Pentium 4. Sections 6.3 and 6.4 present the overhead of two
real applications.

As described in Section 5, our primary source of overhead in
non-atomic code is closure creation. We measured this cost with a
loop that creates 100,000,000 functions. AtomCaml required 2.945
sec. to execute this test and Objective Caml required 2.457 (a
19.9% overhead).11 To see how this carries over to real applications,
we compiled the AtomCaml compiler (which contains no atomic
blocks) with both AtomCaml and Objective Caml, and compared
the resulting compilers on two large Caml source files from the
AtomCaml distribution: parser.ml and ctype.ml. The AtomCaml-
compiled compiler took 1.6% longer to compile parser.ml (0.594
vs. 0.584 sec.) and 2.7% longer to compile ctype.ml (1.015 vs.
0.988 sec.). We also compiled an interpreter for the language de-
scribed in [29] with both AtomCaml and Objective Caml. The
AtomCaml version took 1.3% longer to run our largest test (3.483
vs. 3.440 sec.). Thus for “real” non-atomic code, AtomCaml adds
about a 2% overhead.12 These results are summarized in Figure 6a.

11Neither version experienced any major garbage collections. The number
of minor collections was directly proportional to the size of the closures:
9155 for AtomCaml, and 6103 for Objective Caml.
12There are situations where closure-creation overhead is more significant.
In particular, a large application with many top-level functions creates many
closures when the application starts. If the application does little additional

We also created three microbenchmarks to measure the cost
of logging and rollback. Each has a loop that iterates 100,000
times. The first microbenchmark’s loop body executes a series of
writes (decrements of an int ref) followed by an empty atomic
block. The second has the same writes inside the atomic block
instead of outside; thus the difference with the first is the cost
of logging. The third is like the second except the atomic block
rolls back instead of completing;13 thus the difference with the
second is the cost of rollback (slightly underestimated since the
enclosing loop body never completes). We ran each benchmark
with 0, 10, 50, and 100 writes of the same top-level reference.
Figure 6b summarizes the results; the running time for the first
benchmark is “execution”, the second “execution plus logging”,
and the third “execution plus logging plus rollback”. Rollback was
actually faster with 100 writes than with 50 because our duplicate-
elimination logging optimization removed redundant writes from
the log. Appendix B contains the data for this graph.

Finally, we compared the cost of executing an atomic block
and executing the same code surrounded by a lock acquire and
release. Our blocks consisted of a loop (implemented as a recursive
function) that executes a variable number of writes. Our results are
summarized in Figure 6c. With no writes, the atomic block took
2.15 times longer (0.118 sec. vs. 0.055 sec. for 100,000 executions).
With 5 writes, the atomic block took 2.08 times longer (0.156 vs.
0.075 sec.), and with 10 writes, it took 1.82 times longer (0.182
vs. 0.100 sec.). The longer atomic blocks experienced less relative
overhead (despite having to do more write-logging) because there
are fixed costs associated with atomic entry and exit. For instance,
we must allocate the log, perform a callback of the passed in
function, and then check if a rollback is necessary. We evaluated
the source of this overhead with another set of benchmarks that
add callbacks to the lock acquire/release benchmarks described
above. We determined that the callback accounts for 23.3% of the
overhead in the 0 write case, 19.8% in the 5 write case, and 17.7%
in the 10 write case.

6.3 Small Application: Web Cache

We also wrote a simple web cache application in AtomCaml. The
application is initially given a page to cache. It searches that page
for links and embedded objects (e.g., images), and caches them as
well. If any of these objects are themselves HTML pages, we search
them in turn. For simplicity, and for more consistent performance
results, our application only works with locally stored web pages.

We implemented our web cache with a simple thread-safe
bounded buffer library we wrote in AtomCaml. We create a
bounded buffer for each HTML page and a producer thread to
scan the page and insert any linked or embedded objects into the
buffer. We also create a consumer thread to remove the objects
from the buffer and cache them. If the object is an HTML page, the
consumer creates a new bounded buffer and the two threads for it.
Thus two threads share each bounded buffer, and every consumer
thread shares the cache. Figure 7 depicts this architecture.

Our bounded buffer insert and remove functions are shown in
Figure 2. Usingatomic in these functions ensures no thread ever
sees a bounded buffer with a partially-inserted or partially-removed
object. Usingyield_r lets us rollback the atomic block if we
attempt to insert into a full (or remove from an empty) buffer, and to
put the thread to sleep until the buffer is no longer full (or empty).

work, the start-up cost can dominate. For situations like these, it may be
better to use the alternative closure representation described in Section 5.4.
13We use a call toyield at the end of the block to roll back. For a fair
comparison, we included a call to yield immediately after the atomic block
in the other two microbenchmarks.



AtomCaml Objective Caml
Test Min Max Avg Min Max Avg Overhead
Compilectype.ml 1.007 sec 1.021 sec 1.015 sec 0.975 sec 0.996 sec 0.988 sec 2.7%
Compileparser.ml 0.591 sec 0.597 sec 0.594 sec 0.578 sec 0.592 sec 0.584 sec 1.6%
CDS Interpreter 3.466 sec 3.502 sec 3.483 sec 3.432 sec 3.456 sec 3.440 sec 1.3%
Web Cache 7.582 sec 7.758 sec 7.689 sec 7.563 sec 7.787 sec 7.630 sec 0.8%
PLANet ping 1.062 ms 1.709 ms 1.198 ms 1.024 ms 1.398 ms 1.150 ms 4.2%
“” send (in sec/MB) 0.0657 0.0683 0.0667 0.0710 0.0754 0.0736 (–9.4%)
“” receive (sec/MB) 0.0868 0.0925 0.0898 0.0820 0.0857 0.0839 7.0%
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Figure 6. Results of tests evaluating AtomCaml’s performance: Table (a) compares the performance of programs compiled with Objective
Caml and with AtomCaml. Table (b) measures the overhead of logging and rollback for atomic blocks with 0, 10, 50, and 100 writes. Table
(c) compares the execution time for a short atomic block with the execution time for the same block plus a lock acquire and release.

We implemented the same application in Objective Caml using
locks and ran both versions with the first author’s homepage as
input. The web cache has 177 lines of code and three atomic blocks.
The AtomCaml version took 7.689 seconds on average to fill a
100MB cache. The Objective Caml version took 7.630 seconds.
Thus our overhead for this I/O-bound application was just 0.8%.

6.4 Large Application: PLANet

PLANet [22] is a prototype active network system that allows
arbitrary network topologies, extensible routers using a domain-
specific language for the extensions [21], and many other features.
Separate threads interpret network packets, perform router updates,
generate performance statistics, etc. PLANet was last used with
version 2.2 of Objective Caml, so we first made minor changes so
the code would run with version 3.08.1 (the version from which
AtomCaml is derived).14 We then replacedall lock-based synchro-
nization with uses of atomic, though of course we could have left
some uses of locks had we preferred. Although we modified all the
code, we should note that the experiments we ran exercise some but
not all of the system’s synchronization.

Most synchronization used thecritical function described in
Section 6.1 and was therefore trivial to switch to atomic. Condition
variables were used in several places; in all of them, the transforma-
tion described earlier sufficed. One place used Caml’s Concurrent
ML library; we changed this library not to use locks and the actual
PLANet code needed no change. The PLANet code also imple-
mented readers/writer locks on top of regular locks and used them
to mediate access to a hashtable. We removed the readers/writer
locks and wrapped the hashtable operations in atomic blocks.

At this point, we had five unsafe calls to C functions from within
atomic blocks. We deemed one pure (so we moved it to before the
atomic block), one delayable (so we moved it to after the atomic

14The most interesting change had nothing to do with changes to Caml: as
of January 10, 2004, the number of seconds since January 1, 1970 no longer
fits in a signed 31-bit integer.

block), and three requiring atomic-safe versions of the C code
(which we implemented). Two of the three functions performed
output (which we buffered); the third killed a thread (which we
delayed until the block commits). The atomic-safe versions use the
rollback and commit callbacks described in Section 4.3.

In examining the code base, we also discovered three concur-
rency bugs. First, a “clock” module for performing periodic events
would deadlock if one callback attempted to register another call-
back. None of the PLANet code would do this, but the module’s in-
terface suggests it is perfectly reasonable. Such library-reentrancy
bugs are probably quite common. Second, the readers/writer locks
had a glaring bug: An inverted test would cause a write-lock ac-
quisition to block only if there were waiting readersand waiting
writers. Third, the same library did not always allow simultaneous
readers: When releasing a write-lock when no writers were wait-
ing, the library would signal only one waiting reader rather than
broadcasting to all of them. (So if one reader does not terminate,
subsequent waiting readers will starve, which is not the desired be-
havior.) In our opinion, PLANet is well-written code; it is just very
difficult to write and test concurrent applications.

Though it may be coincidence, our “port” to use atomic re-
moved all three bugs, and would have even if we had not noticed
them: The deadlock was a thread waiting on a lock it already held;
this translates to a nested atomic block which is no problem. The
readers-writer locks are not used in the atomic version of PLANet.

The resulting logging in the atomic version was small even
though we did not make atomic blocks any smaller than the critical
regions in the original code. We instrumented the run-time system
to record the size of the logs and never found more than 41 logged
writes in any atomic-block execution.

As for performance, the PLANet publications already indicate
that the Objective Caml code’s speed is typically lost in the noise:
An active network with routers running in user space spends most
of its time copying data from user-space to kernel-space and vice-
versa. Nonetheless, we ran basic latency (“ping”) and throughput
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Figure 7. The architecture of our simple web cache. A producer thread scans an HTML page, inserting linked and embedded objects into
a bounded buffer. A consumer thread removes objects from the buffer and caches them. If any object is an HTML page, a new producer,
bounded buffer, and consumer are created.

(“stream”) tests for a trivial two-node network (two machines, each
with 2.8 GHz Pentium 4 processors and 1 GB of RAM). The
latency test took on average 4.2% longer per self-routed ping in the
AtomCaml-compiled version (1.198 ms vs. 1.150 ms). However, as
we see in Figure 6, the variation between tests was much larger than
this difference, so it is probably not particularly meaningful. The
throughput test measured the speed at which sender and receiver
nodes process data. The AtomCaml compiled receiver node was
7.0% slower than the Objective Caml receiver, but the AtomCaml
sender was 9.4%faster. There are several reasons that could explain
why the locks version of the code is actually slower. For example,
a thread could be pre-empted while it holds a lock for some data
structure that every thread accesses. Or, the readers/writer lock bug
that switching to atomic eliminated may have hurt performance.

6.5 Alternate Closure Representation

The results described above used the two-pointer closure repre-
sentation depicted in Figure 5b. We also tested the single-pointer
representation shown in Figure 5c. As expected, non-atomic code
sped up slightly (0–2.5%): Compilingparser.ml andctype.ml
took 0.586 and 1.012 seconds, respectively, and the interpreter test
took 3.407 sec. Applications usingatomic were unchanged except
for the ping test which slowed down by 7%: The web cache took
7.718 s, the ping test took 1.278 ms, and the send and receive tests
took 0.0670 and .0894 s/MB respectively.

7. Conclusions and Future Work
We have designed, implemented, and evaluated AtomCaml, an ex-
tension to bytecode-compiled Objective Caml that supports atomic
critical sections. Our design adds two first-class primitives,atomic
andyield_r, and provides support for calling external C functions
within atomic blocks. Theatomic function takes a thunked block
of code, evaluates it as if there was no interleaving of other threads,
and returns the result. Theyield_r function suspends the current
thread (triggering a rollback if it occurs inside an atomic block)
and allows the scheduler to keep it suspended until the reference
bound to its argument changes. Our implementation uses logging
and rollback to guarantee atomicity. Our approach is appropriate
for any system that, like Objective Caml, enforces a uniproces-
sor execution model (i.e., that does not allow multiple threads to
execute simultaneously). We evaluated the efficiency and conve-
nience of AtomCaml by writing libraries, microbenchmarks, and a
small application, and by porting a large multithreaded application.
The overhead for “real” applications was small, and replacing locks
with atomicity removed (at least) three concurrency errors from the
application we ported.

The primary drawback to ourcurrent implementationis the re-
quirement that threads not execute in true parallel. However, many
language implementations (e.g., Objective Caml and DrScheme) do
not have true shared-memory parallelism and a functional program
needing such support would presumably also need a state-of-the-art

parallel and/or concurrent garbage collector. Even when multipro-
cessors become commonplace, we believe many concurrent lan-
guages and applications will continue being run such that threads
sharing memory are interleaved but not truly parallel. Moreover,
many desktop applications (e.g., editors) need concurrency for re-
sponsiveness, but it is much less clear that they need the perfor-
mance of parallel computing.

In addition, we are extending our ideas to settings with true
shared-memory parallelism. We have begun preliminary work on
our next project: AtomJava. AtomJava will bring the same strong
atomicity guarantees present in AtomCaml to an object-oriented
setting with support for true parallelism.
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A. AtomCAML Condition Variable Library
open Thread
type channel = bool ref
type condvar = channel list ref (*a queue would be

fairer perhaps*)
let create () = ref []
let signal cv =

atomic (fun () ->
match !cv with

[] -> ()
| hd::tl -> (cv := tl; hd := false))

let broadcast cv =
List.iter

(fun r -> r := false)
(atomic (fun () ->

let ans = !cv in cv := []; ans))
let listen cv = atomic (fun () ->

let r = ref true in
cv := r :: !cv;
r)

let wait ch = atomic (fun () ->
if !ch then yield_r ch else ())

B. Logging and Rollback Microbenchmarks
Writes Execution Execution Execution

Logging Logging
& Rollback

0 0.194 0.195 0.245
10 0.238 0.271 0.327
50 0.368 0.643 0.741

100 0.543 1.064 1.158


