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Abstract

Low-level type systems aim to offer great flexibility
in the choice of a program’s data representations.
However, conventional wisdom suggests that low-
level, polymorphic type systems cannot naturally
support data representations that involve the shar-
ing of existentially quantified types between cor-
responding nodes of separate recursive data struc-
tures (herein referred to as coordinated data struc-
tures). In this paper, we do just that: We show
how a standard, low-level, polymorphic type sys-
tem can be modified to support coordinated data
structures by enriching recursive types and adding
type trees. We prove the soundness of our modi-
fication and illustrate its power with examples, in-
cluding “tagless” lists and red-black trees where the
values and colors are stored in separate trees that
are guaranteed to have the same shape.

1 Introduction

This paper extends conventional polymorphic typed
λ-calculi in a natural way such that the type sys-
tems can express invariants between coordinated re-
cursive data structures. Examples of such invari-
ants include two trees with identical shape, or a
list of function pointers and a separate list of cor-
responding environment records (where the i-th en-
vironment record corresponds to the i-th function).
The rest of this section motivates why such invari-
ants are important, explores why the scope of type
variables makes the problem appear daunting, and
discusses why our solution is both simple and pow-
erful.

∗Supported in part by an Achievement Rewards for Col-
lege Scientists (ARCS) fellowship sponsored by the Washing-
ton Research Foundation (WRF).

1.1 Low-Level Type Systems

Recent years have witnessed substantial work on
powerful type systems for safe, low-level languages.
Standard motivation for such systems includes com-
piler debugging (generated code that does not type
check implies a compiler error), proof-carrying code
(the type system encodes a safety property that the
type-checker verifies), automated optimization (an
optimizer can exploit the type information), and
manual optimization (humans can use idioms un-
available in higher-level languages without sacrific-
ing safety). An essential difference between high-
and low-level languages is that the latter have ex-
plicit data representations; implementations are not
at liberty to add fields or levels of indirection. Com-
pilers for high-level languages encode constructs
(e.g., function closures) explicitly (e.g., as a pair of
a code pointer and an environment record of free-
variable values).

For many reasons, including the belief that data-
representation decisions affect performance, low-
level type systems aim to allow great flexibility
in making these decisions. But as usual, the de-
mands of efficient type-checking limit the possi-
ble encodings. Type systems striking an attractive
balance between data-representation flexibility and
straightforward checking have typically been based
on typed λ-calculi with powerful constructors for
sum types, recursive types, universal types, existen-
tial types, and (higher-order) type constructors. In
such calculi, we can encode data structures such as
lists of closures without the type system mandating
the representation of lists or closures.

1.2 Type-Variable Scope

Unfortunately, low-level typed λ-calculi have suf-
fered from an embarrassing restriction resulting
from the scope of type variables. For example, con-
sider encoding functions that have type int→ int in
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Figure 1: A list of function closures encoded as (a) a single list, and (b) a coordinated pair of lists (using
two different list representations).

a typed functional language such as Haskell or ML.
A simple encoding is ∃α. α× ((α× int)→ int). We
abstract over the type of a data structure storing the
values of the function’s free variables and use a pair
holding this structure and a closed function taking
the structure and an int [14]. (Whether pair types
add a level of indirection is important in low-level
languages, but not for this paper.) The existential
quantifier is crucial for ensuring all functions of type
int→ int in the source language have the same type
after compilation (even if their environments have
different types), which allows functions to be first-
class. For example, a list of such functions could
have type µβ.1 + ((∃α. α× ((α× int)→ int))× β)
(or another list encoding), where α + β represents
a sum type with variants α and β, and 1 represents
the unit type. Figure 1a displays this encoding.

But suppose we want two coordinated lists (as
in Figure 1b) in which one list holds environment
records (the αs) and the other holds code pointers
(the →s), with the ith element of one list being the
record for the ith element of the other. This choice
may seem silly for a functional-language compiler,
but there are many reasons why we may wish to
“distribute” an existentially bound tuple across “co-
ordinated” data structures (such as lists):

• Legacy code: We may be conceptually adding a
field to existing types but be unable to recom-
pile parts of our system. We can do this by
leaving arrays of such records unchanged and
using a “parallel array” to hold the new field.

• Cache behavior: If some fields are rarely ac-
cessed, we may place them in a separate data
structure to reduce working-set size.

• Data packing: Collections of records with

fields of different sizes can be stored more effi-
ciently by segregating the fields rather than the
records. For example, a pair of a one-bit and
a 32-bit value often consumes 64-bits of space
due to alignment restrictions.

The most important reasons are the ones we have
not thought of: The purpose of low-level type sys-
tems is to allow “natural” data representations
without planning for them in advance. In low-level
code, there is nothing unnatural about coordinated
data structures.

At first glance, polymorphic type systems seem
ill-equipped to allow this flexibility: To abstract a
type, we must choose a scope for the type variable.
For coordinated lists, we need a scope encompassing
the lists. But the lists have unbounded size, thus
the scope may be unbounded.

This limitation is fairly well-known, but to our
knowledge it has remained because it was unclear
how to remove it in a way that “fit” with what are
already sophisticated systems. It turns out Crary
and Weirich’s formal language LX [6] can actually
encode coordinated data structures like the ones de-
scribed here (see Section 9), but it is more complex
than our extension and was not considered for this
purpose.

1.3 A Surprisingly Easy Extension

This paper describes a simple type-theoretic way
to allow coordinated data structures. It enjoys the
following strengths:

• Modest type-language extensions: We use a
simple form of parameterized recursive types.
The other type constructors are unchanged.
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We also add kinds for infinite collections
of types, which circumvent the type-variable
scope problem. Low-level type systems already
include kinds.

• Modest term-language extensions: We add
only one new term (called “peel”), which is es-
sentially a coercion on coordinated data struc-
tures that rewrites their types in a particu-
lar way. The typing rules for other constructs
are unchanged (modulo the form of recursive
types). The peel coercion has a straightforward
type-erasure interpretation as function applica-
tion (much like an existential unpack).

• Expressiveness: The extension is general; it
allows coordinated recursive types to abstract
over an infinite number of types. The recursive
types need not be the same (e.g., one could be a
tree and another a list). The extension is syn-
ergistic with type variables of unconventional
kinds, especially singleton integers.

In short, we have a straightforward localized way to
increase the data-representation flexibility of low-
level languages. In this paper, we focus on the key
idea by using it in a typed λ-calculus, establish-
ing the necessary metatheory, and demonstrating
its power via examples. We are confident the idea
can carry over to its intended use in safe low-level
languages. Additional work could make the tech-
nique suitable for human-generated code.

1.4 Outline

The rest of this paper:

• Explains how we use type lists, an enriched
form of recursive type, and a new “peel” co-
ercion to circumvent the type-variable scoping
issues (Section 2).

• Builds progressively more complex languages,
starting with a language for coordinated lists
(Section 3), extending it with singleton inte-
gers (Section 6), and finally supporting more
general recursive coordinated types (Section 7).
We illustrate each language with an extended
example.

• Establishes type safety and type erasure for the
simple coordinated list language (Section 4).

• Considers why it is difficult to encode conven-
tional recursive types with our modified ones,
and describes some modest language exten-
sions that make such an encoding possible (Sec-
tion 5).

• Discusses our prototype implementation (Sec-
tion 8), related work (Section 9), and future
work (Section 10).

2 The Trick

The essence of coordinated data structures is that
they assume a potentially unbounded number of
type equalities. For example, two lists may assume
their ith elements have some connection (such as if
one has type β then the other has type β → int for
some β). Conventional type systems can describe
potentially unbounded data structures with a re-
cursive type, µα.τ , that has finite size. We change
conventional recursive types to a simple form of pa-
rameterized recursive type:

µ(σ ← β)α.τ

where σ is an infinite-list of types and, later, an
infinite-tree of types, and β (and α) are bound in τ .
Intuitively, on the ith unrolling of a recursive type,
we substitute the ith element of σ for β. The typing
rule for an unroll coercion is therefore the following,
where τ [τ ′/α] is capture-avoiding substitution of τ ′

for α in τ :

unroll
∆; Γ t̀ e : µ(τ ′::σ′ ← β)α.τ

∆; Γ t̀ unroll e : τ [τ ′/β][µ(σ′ ← β)α.τ/α]

That is, if σ is some τ ′ :: σ′ (a list beginning with
τ ′), then the unroll coercion substitutes τ ′ for β and
µ(σ′ ← β)α.τ for α, so the next unroll will use the
next element of σ (i.e., the first element of σ′). The
roll coercion is, as usual, the inverse of unroll:1

roll
∆; Γ t̀ e : τ [τ ′/β][µ(σ′ ← β)α.τ/α]

∆; Γ t̀ roll e as µ(τ ′::σ′ ← β)α.τ : µ(τ ′::σ′ ← β)α.τ

Both rules reduce to the conventional rules for re-
cursive types provided β does not occur free in τ
and we ignore the type lists.

To express that two (or more) data structures
are coordinated, we just use the same σ. The exam-
ple from Figure 1b separating closure-environments
and code pointers into coordinated lists is

(µ(σ ← β)α.1 + β × α)
× (µ(σ ← β)α.1 + α× ((β × int)→ int))

But adding just σ and β accomplishes nothing: The
type of an unbounded data structure would include

1The result type must be well-formed; the rule in Section 3
includes the necessary technical condition.
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variables x ∈ Var
type variables α, β ∈ Tyvar
kinds κ ::= T | L
types σ, τ ::= 1 | α | τ × τ | τ + τ | τ → τ | ∀α:κ.τ | ∃α:κ.τ | µ(σ ← β)α.τ | τ∗ | τ ::σ
expressions e ::= () | x | (e, e) | πi e | ini e | case e of x.e x.e | λx:τ. e | e e | fix e

| Λα:κ. e | e [τ ] | pack τ, e as τ | unpack e as α, x in e
| roll e as τ | unroll e | peel e as α, α, x in e

values v ::= () | (v, v) | ini v | λx:τ. e | Λα:κ. e | pack τ, v as τ | roll v as τ
type contexts Γ ::= · | Γ, x:τ
kind contexts ∆ ::= · | ∆, α:κ

Figure 2: The syntax for a language supporting coordinated lists.

a σ of unbounded size. Fortunately, many uses of
coordinated data structures need not know the el-
ements of σ, only that the coordinated data struc-
tures use the same σ. Hence, it suffices to abstract
over lists of types, using ordinary existential quan-
tification. For example:

∃β′:L.( (µ(β′ ← β)α.1 + β × α)
×(µ(β′ ← β)α.1 + α× ((β × int)→ int)))

where L is a kind annotation indicating that β′ rep-
resents a list of types. Adding this kind to a type
system that already has kinds requires no changes
to the typing rules for quantified types.

However, our typing rule for unroll does not ap-
ply to types of the form µ(β′ ← β)α.τ , so there is
not yet a way to do anything useful with the pair
obtained from unpacking a value with the existen-
tial type above. We need a way to replace the β′

with some αhd::αtl (where αhd has kind T, the kind
of conventional types, and αtl has kind L). Most
crucially, given multiple types that are coordinated
in that they use the same β′, we need to replace the
β′ with the same αhd and αtl lest we forget the very
invariant we aim to track. We introduce a “peel”
coercion (as in peeling αhd off an unknown list) for
this purpose:
peel

∆; Γ t̀ e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2)
∆, αhd :T, αtl :L; Γ, x:(µ(αhd ::αtl ← β)α.τ1) ×

(µ(αhd ::αtl ← β)α.τ2)
t̀ e2 : τ

∆; Γ t̀ peel e1 as αhd , αtl , x in e2 : τ

This rule allows two coordinated data structures; in
practice peel should allow an n-tuple. As Section 3
shows, the coercion never fails at run-time.

In summary, we have introduced type-lists, a
kind for abstracting over them, an enrichment of
recursive types, and a special peel coercion.

3 A Language For Coordinated Lists

In this section, we present a simple language con-
taining our extensions. Sections 3.1, 3.2, and 3.3
present, respectively, the syntax, semantics, and
typing rules. Section 3.4 illustrates the language
with an example involving function closures.

We emphasize that this simple language is pow-
erful enough to encode only coordinated data struc-
tures where each node has at most one recursive
child2 (e.g., lists). In Section 7, we generalize the
language to support coordinated data structures
with multiple children (e.g., trees).

3.1 Syntax

Figures 2 defines the syntax for our simple language.
Expressions (e) can be: () for unit, x for variables,
(e, e) for pairs, πi e for projection, ini e for injec-
tion into a sum type, case e of x.e x.e for branching
based on sum types, λx:τ. e for functions, e e for
function application, or fix e for recursion. We also
have four cases for introducing and eliminating uni-
versally and existentially quantified types. Finally,
we have roll and unroll coercions for recursive types,
and the previously mentioned peel coercion.

Types (τ or σ) also contain the standard forms,
including 1 for unit, τ × τ for pair types, τ + τ for
sum types, ∀α:κ.τ for universally quantified types,
and ∃α:κ.τ for existentially quantified types. We
also have the enriched recursive types described in
Section 2. The last two cases, τ∗ and τ ::σ, indicate
type lists. The type τ∗ represents an infinite list of
τs, and τ ::σ represents the list created by adding τ
to the head of the type list σ. The kind T represents

2Technically, multiple recursive children can be sup-
ported, but only if the coordinated types are identical in
every child. See Section 7.
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E ::= [·] | (E, e) | (v,E) | πi E | ini E | case E of x.e x.e | E e | v E | fix E
| E [τ ] | pack τ, E as τ | unpack E as α, x in e
| roll E as τ | unroll E | peel E as α, β, x in e

πi (v1, v2)
r→ vi where i ∈ {1, 2}

case ini v of x.e1 x.e2
r→ ei[v/x] where i ∈ {1, 2}

(λx:τ. e) v
r→ e[v/x]

fix λx:τ. e
r→ e[(fix λx:τ. e)/x]

(Λα:κ. e) [τ ] r→ e[τ/α]
unpack (pack τ1, v as ∃α:κ.τ2) as α, x in e

r→ e[τ1/α][v/x]
unroll roll v as τ

r→ v
peel (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2) as αhd , αtl , x in e
r→ e[τ ′/αhd ][σ′/αtl ][(roll v1 as µ(τ ′::σ′ ← β)α.τ1, roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

where peel(σ) = τ ′::σ′

peel(τ ::σ) = τ ::σ
peel(τ∗) = τ ::τ∗

e
r→ e′

E[e]→ E[e′]

Figure 3: The operational semantics for our coordinated-list language.

conventional types, and the kind L represents lists
of conventional types.

3.2 Semantics

Figure 3 presents the operational semantics for our
coordinated list language. The term-substitution
notation e1[e2/x] signifies capture-avoiding substi-
tution of e2 for x in e1. Similarly, we use τ1[τ2/α]
for type substitution. The semantics uses evalua-
tion contexts (E) to specify order of evaluation (see,
for instance, [25]). With the exception of the peel
coercion, the rules are fairly standard.

The peel coercion takes a pair of recursively
typed values with identical type lists and applies the
partial metafunction peel(σ) (defined for all closed
types of kind L) to split the type list into a head
and a tail. The reduction produces the expression
e, modified by substituting the list head for αhd , the
list tail for αtl , and the input pair (with peeled lists)
for x. A peel coercion never fails at run-time, be-
cause all types of kind L represent infinite-list types.
If peel could fail, the type-erasure theorem in Sec-
tion 4 would not hold. As the example in Section 3.4
shows, we can use 1∗ (or another infinite-list type)
for finite terms like the empty-list.

3.3 Typing Rules

Typing judgments have the form ∆;Γ t̀ e : τ , where
∆ is the kind environment and Γ is the type en-
vironment. We implicitly assume ∆ and Γ have

no repeated elements. To avoid naming conflicts,
we can systematically rename binding occurrences.
The rules ensure every variable in Γ has kind T un-
der ∆. Figure 4 presents the typing rules for our
extended language. We use the notation

P1

P2

P3

as shorthand for
P1

P2

and
P1

P3

.

The kstar and kcons rules imply that list types
(types of kind L) can be constructed by either ap-
plying the ? operator to a conventional type (a type
of kind T), or by applying the :: operator to a con-
ventional type followed by a list type. The kmu rule
states that the type list of a recursive type must
have kind L, and that if we assume the bound type
variables (α and β) have kind T, then the body (τ)
must also have type T. It is correct to assume that
β has type T, because the kstar and kcons rules
guarantee that the list σ from which β is instanti-
ated will be composed of types of kind T.

The peel rule states that the peeled expression
(e1) must be a pair of recursively typed expressions
with identical type lists. The type lists are replaced
with αhd ::αtl , and the resulting type is assumed for
x in e2 (similar to how x is assigned type τ ′ in the
expression e2 for unpack coercions). The roll and
unroll rules are explained in Section 2. The rest
of the rules have their standard forms. Thus our
extension requires only modest changes to the type
system. The system also remains syntax-directed,
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∆ k̀ τ : κ

kbase

∆ k̀ 1 : T
∆ k̀ α : ∆(α)

kpair
∆ k̀ τ1 : T ∆ k̀ τ2 : T

∆ k̀ τ1 × τ2 : T
∆ k̀ τ1 + τ2 : T
∆ k̀ τ1 → τ2 : T

kquant

∆, α:κ k̀ τ : T
∆ k̀ ∀α:κ.τ : T
∆ k̀ ∃α:κ.τ : T

kmu
∆ k̀ σ : L ∆, α:T, β:T k̀ τ : T

∆ k̀ µ(σ ← β)α.τ : T

kstar
∆ k̀ τ : T
∆ k̀ τ∗ : L

kcons
∆ k̀ τ : T ∆ k̀ σ : L

∆ k̀ τ ::σ : L

∆; Γ t̀ e : τ

base

∆; Γ t̀ () : 1
∆; Γ t̀ x : Γ(x)

pair
∆; Γ t̀ e1 : τ1 ∆; Γ t̀ e2 : τ2

∆; Γ t̀ (e1, e2) : τ1 × τ2

proj
∆; Γ t̀ e : τ1 × τ2

∆; Γ t̀ π1 e : τ1

∆; Γ t̀ π2 e : τ2

inject
∆; Γ t̀ e : τ ∆ k̀ τ ′ : T

∆; Γ t̀ in1 e : τ + τ ′

∆; Γ t̀ in2 e : τ ′ + τ

case
∆; Γ t̀ e : τ1 + τ2 ∆; Γ, x:τ1 t̀ e1 : τ ∆; Γ, x:τ2 t̀ e2 : τ

∆; Γ t̀ case e of x.e1 x.e2 : τ

fun
∆; Γ, x:τ t̀ e : τ ′ ∆ k̀ τ : T

∆; Γ t̀ λx:τ. e : τ → τ ′

app
∆; Γ t̀ e1 : τ ′ → τ ∆; Γ t̀ e2 : τ ′

∆; Γ t̀ e1 e2 : τ

fix
∆; Γ t̀ e : τ → τ

∆; Γ t̀ fix e : τ

tfun
∆, α:κ; Γ t̀ e : τ

∆; Γ t̀ Λα:κ. e : ∀α:κ.τ

tapp
∆; Γ t̀ e1 : ∀α:κ.τ ′ ∆ k̀ τ : κ

∆; Γ t̀ e [τ ] : τ ′[τ/α]

pack
∆; Γ t̀ e : τ ′[τ/α] ∆ k̀ τ : κ ∆ k̀ ∃α:κ.τ ′ : T

∆; Γ t̀ pack τ, e as ∃α:κ.τ ′ : ∃α:κ.τ ′

unpack
∆; Γ t̀ e1 : ∃α:κ.τ ′ ∆, α:κ; Γ, x:τ ′ t̀ e2 : τ ∆ k̀ τ : T

∆; Γ t̀ unpack e1 as α, x in e2 : τ

roll
∆; Γ t̀ e : τ [τ ′/β][µ(σ ← β)α.τ/α] ∆ k̀ µ(τ ′::σ ← β)α.τ : T

∆; Γ t̀ roll e as µ(τ ′::σ ← β)α.τ : µ(τ ′::σ ← β)α.τ

unroll
∆; Γ t̀ e : µ(τ ′::σ ← β)α.τ

∆; Γ t̀ unroll e : τ [τ ′/β][µ(σ ← β)α.τ/α]

peel
∆; Γ t̀ e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2)

∆, αhd :T, αtl :L; Γ, x:(µ(αhd ::αtl ← β)α.τ1)× (µ(αhd ::αtl ← β)α.τ2) t̀ e2 : τ ∆ k̀ τ : T
∆; Γ t̀ peel e1 as αhd , αtl , x in e2 : τ

Figure 4: The typing rules for our coordinated-list language.

6



thus type-checking is straightforward.

3.4 An Extended Example

As in Section 2, we consider storing the environ-
ments and code pointers for a collection of closures
separately. For brevity and readability, we use stan-
dard syntactic sugar such as type abbreviations,
let x:τ = e1 in e2 for (λx:τ. e2) e1, and let rec for
fix. To emphasize that we do not restrict programs
to use predefined data representations, we use dif-
ferent list encodings for the environments3 and the
code pointers4:

let t1 = ∃β′:L.(
(µ(β′ ← β)α. 1 + (β × α))
×(µ(β′ ← β)α. 1 + (α× ((β × int)→ int))))

The function apply nth takes a t1 and returns the
application of 0 to the nth closure, or 0 if the lists
are too short:

let apply nth : t1->int->int = λx. λ n.
let rec f x n =
peel x as α1,α2,x2 in
case unroll(π1 x2) of
x3. 0 (*1st list too short*)
x3. case unroll(π2 x2) of

x4. 0 (*2nd list too short*)
x4. if n==1(*apply closure or recur*)

then (π2 x4) ((π1 x3), 0)
else f ((π2 x3), (π1 x4)) (n-1)

in
unpack x as β′,x1 in
f x1 n

Without the peel coercion, the subsequent unroll
expression would not typecheck because π1 x has a
type of the form µ(β′ ← β)α.τ . Furthermore, we
must peel both components of x simultaneously or
the function application in the then branch would
not type-check.

Adding a closure to a list involves creating an
existential type abstracting a larger list of types:

let cons: t1→ (∃α.α× ((α× int)→ int))→t1
= λ x. λ c.

unpack x as β′,x2 in
unpack c as α′,c2 in
pack α′::β′,
((roll (in2 (π1 c2, π1 x2)) as

µ(α′::β′ ← β)α. 1 + (β × α)),
(roll (in2 (π2 x2, π2 c2)) as
µ(α′::β′ ← β)α. 1 + (α× ((β × int)→ int))))

as t1
3We place the next-node pointer at the end of each node.
4We place the next-node pointer at the front of each node.

One problem remains: How do we make the pair
of empty lists we need to represent that there are
no closures? For the recursive types, any σ suffices,
so we can use 1∗. Infinite lists of types ensure the
peel coercion in apply nth never gets stuck.

let empty list : t1 =
pack 1∗,
((roll (in1 ()) as

µ(1∗ ← β)α. 1 + (β × α)),
(roll (in1 ()) as
µ(1∗ ← β)α. 1 + (α× ((β × int)→ int))))

as t1

The encoding of an empty list appears daunting,
but it needs to be done only once.

4 Metatheory

This section describes the important metatheoretic
results we established for the language presented
in Section 3. In Section 4.1, we outline our type-
safety proof. In Section 4.2, we briefly describe a
set of type-erasure rules and a corresponding type-
erasure theorem.

4.1 Type Safety

We now sketch a proof of type safety for our coor-
dinated list language. The accompanying technical
report [21] contains detailed proofs of all lemmas.
We consider the most interesting cases here.

Definition 1 (Stuck)

An expression e is stuck if e is not a value and there
is no e′ such that e→ e′.

Theorem 2 (Type Safety)

If ·; · t̀ e : τ and e→∗ e′ (where →∗ is the reflexive,
transitive closure of →), then e′ is not stuck.

Proof sketch: As usual, type safety is a corollary
of the Preservation and Progress Lemmas [25].

Lemma 3 (Preservation)

1. If ·; · t̀ e : τ and e
r→ e′, then ·; · t̀ e′ : τ .

2. If ·; · t̀ e : τ and e→ e′, then ·; · t̀ e′ : τ .

Proof sketch: We consider only the first lemma,
as the second lemma is a corollary. Our proof is by
cases on the reduction rules. We present the peel
reduction case here:
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• Case e =
peel(roll v1 as µ(σ ← β)α.τ1,

roll v2 as µ(σ ← β)α.τ2)
as αhd , αtl , x in e1

r→ e′

where e′ =
e1[τ ′/αhd ][σ′/αtl ]

[(roll v1 as µ(τ ′::σ′ ← β)α.τ1,
roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

and peel(σ) = τ ′::σ′:
By the peel typing rule, ·; · t̀ e : τ ensures:

(1) · k̀ τ : T
(2)

·; · t̀ (roll v1 as µ(σ ← β)α.τ1,
roll v2 as µ(σ ← β)α.τ2) :

µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2

(3)

·, αhd:T, αtl:L; ·, x:(µ(αhd ::αtl ← β)α.τ1)×
(µ(αhd ::αtl ← β)α.τ2)

t̀ e1:τ

By inversion of (1) and the peel metafunction,
· k̀ τ ′ : T and · k̀ σ′ : L. With this, (2), and (3),
the Substitution Lemma (below) can conclude
·; · t̀ e′ : τ .

Lemma 4 (Progress)

1. If ·; · t̀ e : τ and e is not a value then there
exists an E, er, and e′r such that e = E[er]
and er

r→ e′r.

2. If ·; · t̀ e : τ then e is a value or there exists an
e′ such that e→ e′.

Proof sketch: Again, we consider only the first
lemma. The proof is by induction on the structure
of e. We consider the peel case:

• If e is some peel e1 as αhd , αtl , x in e2, then
inverting ·; · t̀ e : τ ensures that ·; · t̀ e1 :
µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2. If e1 is not a
value, then by induction there are E1 and er

such that e1 = E1[er] and er
r→ e′r. Then

e = peel E1[er] as αhd , αtl , x in e2, so letting
E = peel E1 as αhd , αtl , x in e2 suffices. Other-
wise, if e1 is a value then the canonical forms
of pair types and recursive types (and inver-
sion of the pair rule), ensures that e1 has the
form (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ←
β)α.τ2).
Thus e

r→ e2[τ ′/αhd ][σ′/αtl ]
[(roll v1 as µ(τ ′::σ′ ← β)α.τ1,

roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]
where peel(σ) = τ ′::σ′. Thus [·] suffices for E.

Lemma 5 (Substitution)

1. If ∆, α:κ′; Γ t̀ e : τ and ∆ k̀ τ ′ : κ′, then
∆; Γ[τ ′/α] t̀ e[τ ′/α] : τ [τ ′/α].

2. If ∆; Γ, x:τ ′ t̀ e : τ and ∆; Γ t̀ e′ : τ ′, then
∆; Γ t̀ e[e′/x] : τ .

Proof sketch: By induction on the typing deriva-
tions for e.

4.2 Erasure

We define an erase metafunction that converts ex-
pressions in our typed language into equivalent ex-
pressions in an untyped language. The erasure rules
for our language are all standard, and can be found
in the accompanying technical report [21]. The rule
for peel is typical for coercions:

erase(peel e1 as αhd , αtl , x in e2) =
(λx. erase(e2)) erase(e1)

The technical report proves erasure and evaluation
commute:

Theorem 6 (Erasure Theorem)

If e is an expression in the typed language, v
is a value in the typed language, and e →? v,
then erase(e)→?erase(v) in the untyped language.
(Also, e and erase(e) have the same termination
behavior.)

5 Encoding Conventional Recursive Types

This section considers whether we can replace con-
ventional recursive types (of the form µα.τ) with
our enriched recursive types (of the form µ(σ ←
β)α.τ). It turns out to require a richer theory of
type equality.

There is no problem with a type system support-
ing both forms of recursive types separately. We
simply need separate roll/unroll coercions and typ-
ing rules for the distinct forms.

Nonetheless, minimalist type systems are ap-
pealing. They reduce the metatheoretic proof obli-
gations and ease implementation. It also helps to
understand one form of type by considering if it is
strictly more expressive than another. Toward this
end, we consider why it is difficult to encode con-
ventional recursive types with our enriched types
(Section 5.1). We then consider two possible so-
lutions. The first, a subtyping-style approach (Sec-
tion 5.2), solves the problem but requires extensions
to the language. The other, a type abstraction ap-
proach (Section 5.3), seems intriguing but unfortu-
nately fails to solve the problem.
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5.1 The Problem

Intuitively, we expect any encoding to translate
µα.τ to some µ(σ ← β)α.τ ′ where β does not ap-
pear free in τ ′. For simplicity, it is important for
the translation to be injective in the sense that all
expressions of the same source type are translated
to expressions of the same target type. Otherwise,
we have to mediate type mismatches. For example,
we do not want the translation of if e1 then e2

else e3 to give e2 and e3 different types.
Because β is unused, we just need a σ of kind

L, and 1∗ seems like a fine choice. Unfortunately,
our typing rule for roll is insufficient. To see why,
consider this pre-encoding cons function for an or-
dinary list of integers:

let cons (i:int) (lst:µα.1 + int× α) =
roll (in2 (i,lst)) as µα.1 + int× α

A straightforward translation may look like this:

let cons (i:int) (lst:µ(1∗←β)α.1 + int×α) =
roll (in2 (i,lst)) as

µ(1::1∗ ← β)α.1 + int×α

The typing rule for roll must give a roll expression
a type of the form µ(τ :: σ ← β)α.τ ′. This trans-
lation of cons is incorrect; its result type is not the
translated type of integer lists.

Conversely, the type µ(1∗ ← β)α.1 + int× α
does not let us unroll a value of the type. We can
use a peel coercion and then an unroll, but peel ab-
stracts 1∗ with some αhd and αtl. Hence we can
give the tail of a linked list a type like µ(αtl ←
β)α.1 + int× α, but not µ(1∗ ← β)α.1 + int× α.

5.2 The Subtyping Approach

We can add coercions to do what we need:

∆; Γ t̀ e : µ(τ1::τ1
∗ ← β)α.τ2

∆; Γ t̀ shorten e : µ(τ1
∗ ← β)α.τ2

∆; Γ t̀ e : µ(τ1
∗ ← β)α.τ2

∆; Γ t̀ lengthen e : µ(τ1::τ1
∗ ← β)α.τ2

Similarly, if we had subtyping (or type equivalence)
for type lists,5 τ∗ ≤ τ ::τ∗ and τ ::τ∗ ≤ τ∗, we would
not need explicit coercions. For languages with sub-
typing (or type equivalence), this solution works
well and encodes an obvious equivalence. Other-
wise, adding a theory of equality may be more trou-
ble than simply using two forms of recursive types.

5The polarity of a type list σ in a recursive type µ(σ ←
β)α.τ depends on the polarity of the free βs in τ . If every β
appears in a covariant context, then σ is covariant. If every
β appears in a contravariant context, then σ is contravariant.
Otherwise σ is invariant.

5.3 The Type Abstraction Approach

Alternatively, to avoid mismatches between “place-
holder” types (such as 1∗ and 1::1∗), we can try
to translate conventional recursive types into exis-
tential packages that hide the type lists; i.e., trans-
late µα.τ to ∃β′:L.µ(β′ ← β)α.τ (assuming τ has
no types of the form µα′.τ ′).

At the term level, this type translation requires
an unroll coercion to become an unpack (to remove
the existential quantifier), a peel6 (to separate the
newly unpacked type list into a head and a tail),
and an unroll, which is fine: None of these coercions
have a run-time effect.

But no translation of the roll coercion works.
We would like to translate roll to a roll followed
by a pack, but the roll coercion will not type-check
when applied to a translated expression. For exam-
ple, in2 (i,lst) in the body of cons can have type
1+ int× ∃β′:L.µ(β′ ← β)α.1 + int× α. The roll co-
ercion cannot apply because it would require using
β′ outside of its scope, producing an ill-formed type.
In this example, we can write cons by unpacking lst
and using the unpacked version to build (i,lst),
which corresponds to the implementation of cons in
Section 3.4.

However, this approach is awkward to automate
fully. Roughly, to perform a roll, we need a ver-
sion of the rolled-expression where occurrences of
the type being rolled have all been unpacked. Cre-
ating this version may require making a copy (e.g., if
the untranslated expression is a variable). Making
this copy has run-time cost and requires different
code for each recursive type being encoded.

Alternately, we might devise a “deep coercion”
for treating arbitrary data structures as though
some of their existential types are unpacked. Such
a coercion would be difficult to define and would
almost surely be unsound in the presence of muta-
tion [8].

6 Synergy With Singleton-Integer Types

In this section, we discuss the synergy between our
extensions and singleton integers. We show how the
combination of the two lets us create a pair of lists
where only one list has tags.

The standard implementation of typed recursive
data structures requires that each node include a
run-time tag indicating whether or not the node has
recursive children. For instance, in a list with type

6Technically peel needs a pair, but we can peel a pair with
identical components (e.g., peel (y, y) as αhd , αtl , x in e2) and
then unroll the first component (e.g., π1 x).
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κ ::= . . . | I
τ ::= . . . | i | S(τ) | if τ then τ else τ i ∈ Z
e ::= . . . | i | tosum e, τ | match e x.e x.e i ∈ Z
v ::= . . . | i | tosum v, τ i ∈ Z
E ::= . . . | tosum E, τ | match E x.e x.e

match (i, (tosum v,E)) x.e1 x.e0
r→ ei[v/x]

i ∈ Z
∆ k̀ i : I

∆ k̀ τ : I
∆ k̀ S(τ) : T

i ∈ Z
∆; Γ t̀ i : S(i)

∆; Γ, x:τ2 t̀ e2 : τ4 ∆; Γ, x:τ3 t̀ e3 : τ4

∆; Γ t̀ e1 : τ1 × if τ1 then τ2 else τ3

∆; Γ t̀ match e1 x.e2 x.e3 : τ4

∆; Γ t̀ e : τi ∆ k̀ τ1−i : T i ∈ {0, 1}
∆; Γ t̀ tosum e, if S(i) then τ1 else τ0 : if S(i) then τ1 else τ0

Figure 5: The extensions for singleton integers and conditional types.

µα.1 + int× α, each node carries a tag indicating
whether it has type 1 or type int × α. These tags
seem necessary to discriminate between node types.

We can partially eliminate tags, though, by com-
bining our enriched recursive types with singleton
integers and conditional types (see, e.g., [1]). Specif-
ically, we can create a pair of coordinated lists7

where one list has tagged nodes and the other has
tagless nodes. The type of the coordinated pair en-
sures that corresponding nodes in the two lists are
either both empty or both non-empty. That is, both
lists have the same length. The type also ensures
that a node of the tagless list cannot be accessed
without first checking the tag of the corresponding
node in the tagged list. Neither singleton integers
nor conditional types are new—it is their combina-
tion with our enriched recursive types that enables
this encoding.

We first extend our language to include singleton
integers. Figure 5 contains the necessary changes.
We add a new integer kind (I), a new expression
form for integers (i), and two new type forms (i and
S(τ)). We use Z to denote the set of integers. To
avoid ambiguity, we now use unit for the unit type,
rather than 1. We also add three new typing rules.
The rules state that integer types (i) have kind I,
singleton integer types (S(τ), where τ has kind I)
have kind T, and that each integer expression i has
singleton type S(i). A type for all integers is just
int = ∃α:I.S(α).

Figure 5 also contains the extensions for condi-
tional types. We require a new conditional type
(if τ then τ else τ), two new expression forms for
constructing and branching on conditional types

7We can do the same thing for general recursive data
structures using the extensions described in Section 7.

(tosum e, τ and match e x.e x.e), and a new value
form (tosum v, τ). We also add new typing rules,
expression contexts, and reductions for tosum and
match. The semantics and typing rules show that
match, tosum, and conditional types can achieve
the same effect as case and sum types, but with
more control over the data representation (see, for
instance, [15] and [26]).

These additions let us create a coordinated pair
consisting of a tagged and a tagless list. We give
the pair the type:

tagged tagless = ∃β′:L.
((µ(β′ ← β)α.(β × if β then unit else (int× α))) ×
(µ(β′ ← β)α. if β then unit else (int× α)))

The first list is tagged (with β), and the second
list is untagged. However, the conditional types of
both lists depend on β. The two lists are coordi-
nated, so both β are drawn from the same type list
β′. Thus, for each pair of corresponding nodes, the
conditional types must evaluate to the same branch.
That is, both will evaluate to unit (an empty list),
or both will evaluate to int× α (a non-empty list).
Figure 6 presents a picture of this data structure.

We also know that all accesses to the untagged
list must first check the corresponding tag in the
tagged list. Recall that conditionally typed values
can be accessed only with match expressions. For
the match to typecheck, it must be passed a pair
with type of the form S(i) × if S(i) then τ1 else τ2.
For the tagless list, the if-clause type (τ1 in
if τ1 then τ2 else τ3) is drawn from the existentially
quantified list β′. Thus the only integer which can
be used as the first element of the pair is the only
integer known to have the same type: the tag of the
corresponding element of the tagged list.
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Figure 6: A tagged-tagless pair of lists. The type of the tags and the conditions of the if-then-else types are
drawn from an existentially quantified type list σ that is shared by both lists.

We have written zip and unzip functions for
tagged-tagless pairs of lists (see our website [28]).
The zip function converts a tagged-tagless pair into
a single list of pairs, and unzip is its inverse.

7 A Full Language Supporting General Re-
cursive Data Structures

In this section, we generalize our enriched recursive
types to support recursive data structures with mul-
tiple children (e.g., trees). We use this extension to
encode a red-black tree [4] implementation of inte-
ger sets as a pair of trees, where one tree contains
the values and the other tree contains the colors.
Our enhanced type system guarantees that the two
trees have the same shape: Every value node has a
corresponding color node, and vice versa. By split-
ting the tree like this, the lookup function needs
to access only the value tree. In some cases, this
may lead to better cache performance. Similarly,
if our red-black tree were a dictionary (with a key
and value for each conceptual node), separating the
keys and the values could make functions accessing
only the keys (e.g., “is member”) faster.

7.1 The Full Language

The enriched recursive types presented in Section 3
are not well suited for encoding coordinated sets of
recursive data structures with more than one child.
For example, consider a pair of coordinated binary
trees. A conventional encoding of a binary tree of
pairs will have a type similar to

µα.unit + ((∃β.(β × β))× (α× α)) .

If we attempt to encode this tree as a coordinated
pair of trees with our enriched recursive types, we
will end up with a type of the form

∃σ:L.((µ(σ ← β)α.unit + (β × (α× α)))×
(µ(σ ← β)α.unit + (β × (α× α)))) .

When we peel this pair, we get back a single αtl list
tail. When we unroll one of the trees, the same tail
list will be used for both children. So each child will
share types drawn from σ not only with the corre-
sponding child in the other tree, but also with its
sibling in the same tree. In other words, if node A1

in tree A has children A2 and A3, and correspond-
ing node B1 in tree B has children B2 and B3, then
the four nodes A2, A3, B2, and B3 all share types
with each other. This result is unsatisfactory if we
only want A2 to share with B2, and A3 to share
with B3.

We solve this problem by replacing our type lists
with type trees. Type trees are like type lists, ex-
cept that each tree has n children instead of a sin-
gle tail. For generality, we also add multiple types
to each node of the type tree, instead of a single
head. Multiple types allow coordinated nodes to
share multiple existential types.

We describe the syntactic modifications in Fig-
ure 7. We have a new kind L(m,n) for n-ary type
trees with m coordinated types per node. For exam-
ple, our red-black tree example will use type trees
of kind L(1,2). We also modify our recursive types
to take m βs (one for each of the coordinated types)
and n αs (one for each of the type tree’s children).
The modified star type ∗n takes a sequence τm of m
conventional types and generates an infinite n-ary
tree of nodes containing the types in τm. The mod-
ified cons type ::m,n takes a sequence τm of m con-
ventional types and a sequence σn of n type trees of
kind L(m,n), and returns a tree whose root contains
the types in τm and whose children are the trees in
σn. We also modify the syntax of peel to take m+n
type variables—one for each of the m coordinated
types and one for each of the n children.

Figure 7 also describes the necessary semantic
modifications for this generalization. Only the peel
reduction and peel metafunction change. Applying
the peel metafunction to a type tree constructed
with ::m,n yields the same tree (as was the case
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let τm = τ1, τ2, . . . , τm

κ ::= . . . | L(m,n)

σ, τ ::= . . . | µ(σ ← (βm))(αn).τ | (τm)∗n | (τm)::m,n(σn)
e ::= . . . | peel e as αm, βn, x in e
E ::= . . . | peel E as αm, βn, x in e

peel(roll v1 as µ(σ ← βm)αn.τ1,
roll v2 as µ(σ ← βm)αn.τ2) as αm

hd , αn
tl , x in e

r→
e[τ ′i/αhd,i ][σ′j/αtl,j ][(roll v1 as µ((τ ′m)::m,n(σ′n)← (βm))(αn).τ1,

roll v2 as µ((τ ′m)::m,n(σ′n)← (βm))(αn).τ2)/x]
for all i ∈ [1,m] and j ∈ [1, n], where peel(σ) = (τ ′m)::m,n(σ′n)

peel((τm)::m,n(σn)) = (τm)::m,n(σn)
peel((τm)∗n) = (τm)::m,n(((τm)∗n)n)

Figure 7: The syntactic and semantic modifications for the full coordinated data structure language.

with type lists constructed with ::). Applying the
peel metafunction to a type tree constructed with
(τm)∗n yields a tree with a root containing the con-
ventional types in τm, and with n copies of (τm)∗n

as children. The modified peel reduction is simply
the type tree analog of the previously described peel
reduction for type lists. The original peel reduction
substituted the head of the type list (τ ′ in Figure 3)
for αhd . The new peel instead substitutes each ele-
ment τ ′i of the type tree head for the corresponding
type variable αhd,i . Similarly, where the original
peel substituted the list tail σ′ for αtl , the new peel
substitutes each child tree σ′j for the corresponding
type variable αtl,j .

We describe the modified typing rules in Fig-
ure 8. The kmu, kstar and kcons rules sim-
ply formalize what we described above, and ensure
that the kinds and type variables match up with
the number of coordinated types and children. The
type tree versions of the roll, unroll, and peel
rules are identical to their type list versions, except
that we now substitute all m coordinated types and
all n children.

7.2 Split Red-Black Trees

In this section, we describe an implementation of
red-black trees in our full language. Our implemen-
tation uses our enriched recursive types to encode
the tree as two separate but coordinated trees. The
first tree is tagged and contains the values, and the
second tree is tagless and contains the correspond-
ing colors. As was the case in Section 6, the type of
the pair guarantees that the two trees have the same
shape. A visual representation of this encoding is
shown in Figure 9. Because lookups access only the

values of each node, we do not need to use the color
tree unless we are adding or removing nodes. Our
encoding has type rbtree =

∃β′:L(1,2).
(µ(β′ ← (β))(α1, α2).

(β × if β then unit else (int× (α1 × α2))) ×
µ(β′ ← (β))(α1, α2).

(if β then black t else (color × (α1 × α2))))

where color = int, (black = 0 and red = 1), and
black t = S(0). The empty leaf nodes of red-black
trees are always colored black, thus the then-clause
of the second tree’s conditional type is black t—the
type of the value black.

Our website [28] contains lookup and insert func-
tions implemented for red-black tree-pairs. The re-
cursive procedure in lookup traverses only the value-
tree; it does not even have a color-tree argument.

8 Implementation

We implemented an interpreter for our language in
O’Caml. We verified that the examples in previous
sections typecheck and evaluate as expected. We
also confirmed that preservation and type erasure
hold during evaluation. The interpreter and exam-
ples can be found on our website [28].

Our red-black tree implementation contains code
for an empty tree, a lookup function, and an insert
function. Lookup takes an integer and a tree pair.
The value tree component of the pair is passed to
another function which recursively searches for the
key. Insert takes a tree pair and an integer, inserts
the integer, and balances the tree pair.

12



kmu

∆ k̀ σ : L(m,n) ∆, αi:T, βj :T k̀ τ : T, ∀i ∈ [1, n], ∀j ∈ [1,m]
∆ k̀ µ(σ ← (βm))(αn).τ : T

kstar
∆ k̀ τi : T, ∀i ∈ [1,m]

∆ k̀ (τm)∗n : L(m,n)

kcons

∆ k̀ τi : T, ∀i ∈ [1,m] ∆ k̀ σi : L(m,n), ∀i ∈ [1, n]

∆ k̀ (τm)::m,n(σn) : L(m,n)

roll
∆ k̀ µ((τ ′m)::m,n(σn)← (βm))(αn).τ : T

∆; Γ t̀ e : τ [τ ′j/βj ][µ(σi ← (βm))(αn).τ/αi], ∀i ∈ [1, n], ∀j ∈ [1,m]
∆; Γ t̀ roll e as µ((τ ′m)::m,n(σn)← (βm))(αn).τ : µ((τ ′m)::m,n(σn)← (βm))(αn).τ

unroll
∆; Γ t̀ e : µ((τ ′m)::m,n(σn)← (βm))(αn).τ

∆; Γ t̀ unroll e : τ [τ ′j/βj ][µ(σi ← (βm))(αn).τ/αi], ∀i ∈ [1, n], ∀j ∈ [1,m]

peel
τpair,i = µ(αm

hd ::αn
tl ← βm)αn.τi ∆; Γ t̀ e1 : (µ(σ ← βm)αn.τ1)× (µ(σ ← βm)αn.τ2)

∆, αhd,j :T, αtl,i :L; Γ, x:τpair,1 × τpair,2 t̀ e2 : τ, ∀i ∈ [1, n], ∀j ∈ [1,m] ∆ k̀ τ : T
∆; Γ t̀ peel e1 as αm

hd , αn
tl , x in e2 : τ

Figure 8: The modified typing rules for the full coordinated data structure language.
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if S(1) then unit else (int× (α1 × α2))

if S(1) then unit else (int× (α1 × α2))

if S(1) then black t else (color × (α1 × α2))

if S(1) then black t else (color × (α1 × α2))
if S(0) then black t else (color × (α1 × α2))

Figure 9: A red-black tree encoded as a pair of coordinated trees. The top tree contains the tags and values,
and the bottom tree contains the corresponding colors.
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9 Related Work

Typed assembly languages and proof-carrying code
frameworks (e.g, [16, 18, 12, 2, 3, 5]) aim to pro-
vide expressive type languages so that compilers can
choose natural and efficient data representations.
To our knowledge, none of these systems support
coordinated data structures. Many do have single-
ton types (which have many uses such as enforcing
lock-based mutual exclusion [7, 9] or region-based
memory management [23, 11]), so our work could
make them more useful.

Crary and Weirich’s formal language LX [6]
can actually encode coordinated data structures
even though LX was designed for flexible run-
time type analysis. Very roughly, (1) parameter-
ized recursive types can encode µ(σ ← β)α.τ as
rec((λα.λβ.τ),σ), inductive kinds and pair kinds
can encode L(m,n), and primitive recursion [13] can
encode the peel coercion. In this sense, our tech-
nical contribution is finding a much less power-
ful language that is powerful enough for our pur-
poses. (LX essentially provides a rich but strongly-
normalizing programming language at the type
level.) Our simplicity better demonstrates what
is necessary for coordinated data structures and
makes it more likely that techniques for efficient
type-checkers (e.g., hash-consing [22, 10] and ex-
plicit substitutions [17]) will apply. Conversely, we
have demonstrated some of what LX can do; prior
work did not consider coordinated data structures
or provide examples of them in a typed language.

Xi’s work on dependent types [27, 26] has ex-
pressiveness that overlaps with our work, but it is
actually incomparable. Both approaches can en-
force that two lists of unknown length have the same
length. By using type-level arithmetic, dependent
types can also enforce that an append function re-
turns a list of length n + m given lists of lengths n
and m. But arithmetic summarizes quite a bit; it
cannot express that corresponding elements of two
lists are related. Similarly, Xi’s dependent types can
enforce the red-black invariant for balanced trees,
but they cannot describe tree shapes.

Okasaki has used nested datatypes and rank-
2 polymorphism to enforce data-structure shapes,
such as the fact that a matrix is square [19]. We
have not investigated his approach thoroughly, but
it seems to suffice for “coordinated” examples over
finite domains (such as tag bits), but not for infinite
domains (such as closures’ environment records).

Separation logic [20] can often express more so-
phisticated data invariants than type systems, but

it appears no better equipped to abstract over
an unbounded number of coordinated elements.
Adapting our approach to a program logic could
prove interesting.

Many type systems abstract over type lists (for
example, consider row variables [24]), but the key to
our work is developing the necessary peel coercion.

10 Conclusions and Future Work

Surprisingly modest extensions to low-level, poly-
morphic type systems can support coordinated data
structures. With type trees and enriched recur-
sive types, we have circumvented the type-variable
scoping issues. We have demonstrated our exten-
sion’s synergy with singleton integers and condi-
tional types. For example, we have encoded a red-
black tree using a pair of trees that are guaranteed
to have the same shape.

In the future, we hope to make our ideas more
practical. A key technical step is support for coor-
dinated arrays. Typical arrays have (1) first-class
index expressions and (2) mutation. The first is
easy to handle, but mutable coordinated data may
prove more challenging. We would also like to adapt
our ideas for use in a source language or a modeling
language. Inferring peel coercions seems crucial.
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