
REPLica: REPL Instrumentation for Coq Analysis
Talia Ringer

University of Washington
USA

tringer@cs.washington.edu

Alex Sanchez-Stern
University of California, San Diego

USA
alexss@eng.ucsd.edu

Dan Grossman
University of Washington

USA
djg@cs.washington.edu

Sorin Lerner
University of California, San Diego

USA
lerner@cs.ucsd.edu

Abstract
Proof engineering tools make it easier to develop and main-
tain large systems verified using interactive theorem provers.
Developing useful proof engineering tools hinges on under-
standing the development processes of proof engineers. This
paper breaks down one barrier to achieving that understand-
ing: remotely collecting granular data on proof developments
as they happen.

We have built a tool called REPLica that instruments Coq’s
interaction model in order to collect fine-grained data on
proof developments. It is decoupled from the user interface,
and designed in a way that generalizes to other interactive
theorem provers with similar interaction models.
We have used REPLica to collect data over the span of a

month from a group of intermediate through expert proof
engineers—enough data to reconstruct hundreds of inter-
active sessions. The data reveals patterns in fixing proofs
and in changing programs and specifications useful for the
improvement of proof engineering tools. Our experiences
conducting this study suggest design considerations both
at the level of the study and at the level of the interactive
theorem prover that can facilitate future studies of this kind.

CCS Concepts • Human-centered computing → User
studies; • Software and its engineering→ Software no-
tations and tools; Formal software verification; Soft-
ware evolution.

Keywords proof engineering, user interaction, studymethod-
ologies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’20, January 20–21, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7097-4/20/01. . . $15.00
https://doi.org/10.1145/3372885.3373823

ACM Reference Format:
Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner.
2020. REPLica: REPL Instrumentation for Coq Analysis. In Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’20), January 20–21, 2020, New Orleans,
LA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3372885.3373823

1 Introduction
The days of verifying only toy programs in interactive theo-
rem provers (ITPs) are long gone. The last two decades have
marked a new era of verification at scale, reaching large
and critical systems like operating system kernels, machine
learning systems, compilers, web browser kernels, and file
systems—an era of proof engineering [36].

In order to build useful proof engineering tools, it is crucial
to understand the development processes of proof engineers.
Data on the changes to programs, specifications, and proofs
that proof engineers make, for example, can guide tools for
proof maintenance to support features that matter.
Existing studies of proof development analyze coarse-

grained data like version control history, archives, project
logs, or artifacts, or build on personal experiences [2, 4, 6,
8, 27, 44, 45, 51, 52, 54]. These methods, while valuable, lack
access to information on many of the processes that lead
to the final artifact. For example, proof engineers may not
plan for failing proofs or debugging statements to reach the
final artifact, and may not even commit these to version
control. In addition, data from version control may include
many changes at once, which can be difficult to separate
into smaller changes [37]. Personal experiences may not be
enough to supplement this, as proof engineers may forget or
omit details like how they discovered bugs in specifications.
This paper shows how to instrument the ITP Coq [11]

to remotely collect fine-grained data on proof development
processes. We have built a Coq plugin (Section 2) called
REPLica (REPL Instrumentation for Coq Analysis) that lis-
tens to the Read Eval Print Loop (REPL)—a simple loop that
all user interaction with Coq passes through—to collect data
that the proof engineer sends to Coq during development.
This includes data difficult to obtain from other sources, like

https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3372885.3373823

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

failed proof attempts and incremental changes to definitions.
REPLica collects this data regardless of the proof engineer’s
user interface (UI), and it does so in a way that generalizes
to other REPL-based ITPs like HOL [21, 33] and Idris [46].

We have used REPLica to collect a month’s worth of data
on the proof developments of 8 intermediate to expert Coq
users (Section 3). The collected data is granular enough to
allow us to reconstruct hundreds of interactive sessions. It
is publicly available with the proof engineers’ consent.1

We have visualized and analyzed this data to classify hun-
dreds of fixes to broken proofs (Section 4) and changes to
programs and specifications (Section 5). Our analysis sug-
gests that our users most often fixed proofs by stepping
up above those proofs in the UI and fixing something else,
like a specification. It reveals four patterns of changes to
programs and specifications among those users particularly
amenable to automation: incremental development of in-
ductive types, repetitive refactoring of identifiers, repetitive
repair of specifications, and interactive discovery of pro-
grams and specifications. Both the changes we have classi-
fied and our findings about them suggest natural ways to
improve existing proof engineering tools like machine learn-
ing tools for proofs [19, 20, 25, 34, 43, 53], proof refactoring
tools [1, 8, 15, 39, 42, 49, 50], and proof repair tools [37, 39].
Our experiences collecting and analyzing this data have

helped us to identify three wishes (Section 6), the fulfillment
of which may facilitate future studies of proof development:
better abstraction of user environments, more information
about user interaction, and more users. We discuss impor-
tant design considerations for both study designers and ITP
designers who hope to grant each wish.

In summary, we contribute the following:
1. We build REPLica, a tool that instruments Coq to col-

lect fine-grained proof development data.
2. We use REPLica to collect and publish amonth’s worth

of data on 8 proof engineers’ developments in Coq.
3. We visualize and analyze the data to classify hundreds

of fixes to broken proofs and changes to programs and
specifications.

4. We discuss the patterns behind these changes and how
they suggest improvements to proof engineering tools.

5. We discuss design considerations both for the study
designer and for the ITP designer that can facilitate
future studies of proof development.

2 Building REPLica
REPLica is a tool that collects fine-grained proof develop-
ment data. It is available on Github for Coq 8.10, with back-
ported branches for Coq 8.8 and Coq 8.9.2
REPLica works by instrumenting Coq to listen to user

interaction. Coq’s interactionmodel (Section 2.1) implements

1
http://github.com/uwplse/analytics-data

2
http://github.com/uwplse/coq-change-analytics

Figure 1. REPLica design. The REPLica client listens to the
REPL and sends data to the REPLica server.

a REPL, or Read Eval Print Loop: a loop that continually reads
in messages from the user, evaluates the statements those
messages contain, and prints responses to the user. All UIs
for Coq, from the command line tool coqtop [12] to the IDEs
CoqIDE [13] and Proof General [3], communicate with Coq
through the REPL. REPLica instruments the REPL to collect
fine-grained data while remaining decoupled from the UI.
Figure 1 summarizes the design of REPLica. REPLica is

made of two parts: a client that the user installs, and a web
server that stores the data from multiple users. The client
instruments the REPL to record and log the data that the
user’s UI sends to Coq (Section 2.2), then sends this data to
the server (Section 2.3), which stores it for analysis.

The implementation effort for REPLica was modest, with
just 412 LOC of OCaml for the client and 178 LOC of Python
for the server.3 This modest effort was enough for us to
collect (Section 3) and analyze (Sections 4 and 5) data from
hundreds of interactive sessions.

2.1 User-Coq Interaction
The REPLica client listens for messages that the user’s UI
sends to Coq’s REPL. To provide a common API for different
UIs, the implementation of Coq’s REPL is organized into an
interactive state machine. Each state can include tactics in
Coq’s tactic language Ltac or commands in Coq’s vernacu-
lar; both of these can reference terms in Coq’s specification
language Gallina. When a UI sends a message to Coq’s REPL,
the message contains a state machine statement (a labeled
transition) that instructs Coq to do one of three things:

1. Add: produce a new state
2. Exec: execute an existing state to receive a response
3. Cancel: back up to an existing state

Coq reacts accordingly, then returns an ID for the new state
that corresponds to the statement.

Taken together, these three statement types can be used to
reconstruct the proof engineer’s behavior, such as defining
and redefining types, interactively constructing proofs, and
stepping up when the user hits a dead-end.

3Counted using David M. Wheeler’s SLOCCount.

100

http://github.com/uwplse/analytics-data
http://github.com/uwplse/coq-change-analytics

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

FromUser Behavior to the StateMachine When the user
runs a command or tactic in Coq, the UI first adds a new
state corresponding to the command or tactic. Adding a state
to the state machine does not actually execute the command
or tactic; to do that, the UI must execute the new state. In
other words, in state machine terms, each addition follows
a transition, but only returns the state number. To get the
state information, the UI must call Exec.
Using this mechanism, the UI can group state machine

statements and execute them all at once. For example, step-
ping down past 3 definitions at once in an IDE manifests as 3
additions followed by a constant number of executions, and
successfully compiling a file manifests as many additions
followed by a constant number of executions.4

When the user steps up in the UI, or attempts to run a tactic
or command that fails, the UI backs up to an existing state in
the state machine. Sending the state machine a cancellation
statement is not the only way to back up to an existing
state; cancellations can also take the form of state machine
additions of Cancel or BackTo commands in Coq’s vernacular.
In either form, cancellations take a state ID as an argument
to specify the state to back up to.

AnExample: Defining andExtending an Inductive Type
To see how user behavior corresponds to state machine state-
ments, consider an example from User 1, Session 41, simpli-
fied for readability. In this session, User 1 stepped past the
definition of an inductive type Alpha. Later, User 1 stepped
above Alpha, imported list notations, then stepped down to
add a new constructor to Alpha using those notations.

When User 1 first stepped down below Alpha, Coq received
a state machine addition (denoted Add, following SerAPI [18])
of this definition (again simplified for readability):
(Add () "Inductive Alpha : . . . := . . .")

at the state ID 1, producing state ID 2. Since User 1 stepped
down a single step, Coq also received an execution (denoted
Exec) of the new state:
(Exec 2)

which did not produce a state with a new state ID, since
only additions produce states, and only states have state IDs.
When User 1 stepped up to above the definition of Alpha,
Coq received a cancellation (denoted Cancel):
(Cancel 1)

taking the state machine to before the definition of Alpha.
When User 1 added the import, Coq received an addition at
state ID 1, producing state ID 3, followed by an execution:
(Add () "Import Coq.Lists.List.ListNotations. ")

(Exec 3)

Finally, when User 1 added the new constructor to Alpha

and stepped down past it, Coq received an addition of Alpha
4Some UIs send Coq multiple executions for each group of additions.

with the new constructor at state ID 3 producing state ID 4,
followed by an execution:
(Add () "Inductive Alpha : . . . := . . .

| alpha_rec_mt : . . .")

(Exec 4)

The data that REPLica received provided us with enough
information to visualize these changes as a sequence of diffs
for later analysis (Section 5). As a consequence, we were
able to find this pattern of development of incrementally
extending inductive types for four of our users (Section 5.2.1).

2.2 User-Client Interaction
The REPLica client records all of the additions, executions,
and cancellations that the proof engineer’s UI or compiler
sends. To use it, the proof engineer installs the client, then
adds a line to the Coq requirements file [10] so that Coq
always loads it. On the first build, REPLica asks the proof en-
gineer for consent and for demographic information for the
study. From then on, the proof engineer uses Coq normally.
The implementation of the client is a Coq plugin. Coq’s

plugin system makes it possible to extend Coq without com-
promising trust in the Coq core. REPLica does not include
new commands or tactics; it simply attaches to Coq’s REPL
and listens for messages that the proof engineer sends to
Coq.
The hooks in the plugin API that allow plugins to listen

to the REPL were not initially present in Coq; we worked
with one of the Coq developers to add this to Coq 8.10.5 We
also developed backported branches of Coq 8.8 and 8.9 that
include this API, so that users whose projects depended on
those versions of Coq could participate in our study. This
API is now available in all versions of Coq going forward.

2.3 Client-Server Interaction
To record a history of user behavior, the REPLica client
sends a record of each state machine addition, execution,
and cancellation to the REPLica server. The server then
collects this data into a format suitable for analysis.
The message that the client sends to the server includes

both the state machine statement and additional metadata.

Metadata for Two Challenges The metadata beyond the
state ID and the state machine statement exists to handle two
challenges: The first challenge is that state machine interac-
tions alone are not enough to reconstruct a per-user history,
nor to group the user’s interaction into discrete sessions for
a particular project or module. The second challenge is that
the network can be slow or unreliable at times, causing mes-
sages to be received by the server out of order, and slowing
down the UI if not handled properly.

To handle the first challenge, REPLica labels each message
with a module name, user ID, and session ID. The module
5
http://github.com/coq/coq/pull/8768

101

http://github.com/coq/coq/pull/8768

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

User Years Expertise Purpose Frequency UI Version
0 2-4 ◦ ◦ ◦ ◦ ◦ Verification Daily Proof General Master
1 2-4 ◦ ◦ ◦ Mathematics Monthly Proof General 8.10
2 > 4 ◦ ◦ ◦ ◦ Verification Daily Proof General 8.10
3 > 4 ◦ ◦ ◦ ◦ ◦ Verification Weekly Proof General Master
4 > 4 ◦ ◦ ◦ ◦ Verification Daily coqtop Master
5 2-4 ◦ ◦ ◦ Verification Monthly Custom 8.10
6 2-4 ◦ ◦ ◦ ◦ Mathematics Daily Proof General Master
7 2-4 ◦ ◦ ◦ ◦ Mathematics Weekly Proof General 8.10
8 > 4 ◦ ◦ ◦ ◦ ◦ Verification Daily Proof General 8.8
9 > 4 ◦ ◦ ◦ ◦ ◦ Verification Monthly Proof General 8.9
10 > 4 ◦ ◦ ◦ Verification Daily Proof General 8.8
11 > 4 ◦ ◦ ◦ Mathematics Daily Proof General 8.9

Figure 2. User profiles of Coq development background: experience in years, self-
assessed expertise (beginner, novice, intermediate, knowledgeable, or expert, repre-
sented by circles), purpose of use, frequency of use, UI, and current version.

User Total Interactive Proof
0 6 0 0
1 42 10 4
2 7 3 0
3 11495 101 8
4 1 0 0
5 41 15 16
6 1 0 0
7 229 183 241
8 162 27 10
9 5 0 0
10 23 15 0
11 17 8 0

Figure 3. Number of total sessions, in-
teractive sessions, and interactive proof
subsessions per user.

name comes from the Coq plugin API. The user ID is gen-
erated by the server and stored on the user’s machine. The
session ID, in contrast, is generated by the client: When the
user loads the client, upon opening any new file, the client
records the start time of the session. This start time is then
used to identify the session.

To handle the second challenge, REPLica labels each mes-
sage with two pieces of metadata: the time at which the
state machine message was sent to Coq (to order messages)
and the state ID (to detect missing states). TCP alone is not
enough to address these issues since each invocation of the
plugin creates a separate network stream (so the server may
receive messages out of order), and since the user can disable
the plugin (so the client may never send some messages).6
In addition to this metadata, REPLica sends messages in
batches. If the network is not available, REPLica logs mes-
sages locally, then sends those logs to the server the next
time the network is available.

3 Deploying REPLica
We set out to answer the following questions:

• Q1: What kinds of mistakes do users make in interac-
tive proofs, and how do they fix them? (Section 4)

• Q2: What kinds of changes to programs and specifica-
tions do users make often, and do those changes reveal
patterns amenable to automation? (Section 5)

To answer these questions, we recruited 12 proof engineers
to install REPLica and use Coq normally for a month (Sec-
tion 3.1). We received a month’s worth of data containing
granular detail on Coq development for 8 of 12 of those users
(Section 3.2). After a month, we shut down the server, closed
the study, and visualized and analyzed the data (Section 3.3).

6The consent form allowed users to temporarily disable the plugin if neces-
sary, as long as they informed us of this.

3.1 Recruiting
We recruited proof engineers by distributing a promotional
video and study description. All potential users went through
a screening process, ensuring that they are at least 18 years
old, fluent in English, and have at least a year of experience
using Coq. Upon installation of the plugin, users filled out a
consent form. Users then filled out a questionnaire about Coq
background and usage, the results of which are in Figure 2.
All users reported more than 2 years of experience; 7

reported more than 4. Self-assessed expertise was evenly
distributed between intermediate, knowledgeable, and ex-
pert; no beginners or novices participated. 4 users reported
that they use Coq for writing mathematical proofs, while the
other 8 reported that they use Coq for verifying software.
7 users said that they use Coq every day, 2 a few times per
week, and 3 a few times per month. 10 users reported using
Proof General, while 1 user reported using coqtop, and 1 user
reported using a custom UI. 4 users installed the plugin with
the master branch of Coq, while 4 users used Coq 8.10, 2
users used Coq 8.9, and 2 users used Coq 8.8.

3.2 Collection
The study period lasted one month, during which users
agreed to develop Coq code with the plugin enabled when-
ever possible, or otherwise let us know why this was not
possible. All of the data collected within this time period has
been made publicly available with the consent of the users.7
Figure 3 shows the number of sessions by user. Every

time the plugin was loaded, either inside of a compiled file
or inside of a file open in a UI, this began a new session.
For both Q1 and Q2, our analyses looked for changes only
within sessions that involved some combination of failure
and stepping up and then back down in a UI; we call these
interactive sessions.

7
http://github.com/uwplse/analytics-data

http://github.com/uwplse/analytics-data

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

We marked a session as interactive if it contained at least
one cancellation followed by other changes in state. This did
not capture any compilation passes because Coq disallows
cancellations outside of interactive mode. For example, User
3 logged 11495 total sessions, only 101 of which were inter-
active. The remainder of User 3’s sessions were, for the most
part, compilation passes over large sets of dependencies (one
session per dependency). In total, across all users, there were
362 interactive sessions.
Within these interactive sessions, the analysis for Q1

looked for fixes to failing tactics only inside of spans of
time spent inside proofs that involved some combination of
failure and stepping up and then back down in a UI; we call
these interactive proof subsessions. There could be zero, one,
or multiple of these within an interactive session. We de-
tected these similarly to howwe detected interactive sessions.
There were 279 interactive proof subsessions.

REPLica logged interactive sessions for only 8 of the 12
users. Section 6 discusses possible causes of, implications of,
and remedies for this.

3.3 Analysis
Once we had collected this data, we analyzed it to answer
Q1 and Q2. To answer these questions, we developed a small
Python codebase to analyze the data. The scripts used infor-
mation about cancellations to build visualizations to aid in
analysis. For Q1, we built this cancellation information into
a search tree for each proof, and produced visualizations of
each tree (see Figure 5). For Q2, we used this cancellation
information to reconstruct a sequence of diffs, and used Git
tooling to manually inspect these diffs (see Figure 7).

The scripts, visualizations, and results for Q1 and Q2 can
be found alongside the data in the public data repository.

4 Q1: Mistakes In and Fixes to Proofs
Q1 asked what mistakes proof engineers make in proofs, and
how they fix those mistakes. This data may inform the devel-
opment of tools that help users write proofs by suggesting
next steps and changes to existing tactics.

A1 We found the following:
1. Most interactive proof subsessions ended in the user

stepping up to an earlier definition. This shows that
writing definitions and proofs about those definitions
was usually a feedback loop. (Section 4.1)

2. Within proofs, application of lemmas was the main
driver of proving. (Section 4.2)

3. Within proofs, over half of fixes to tactic mistakes fixed
either an improper argument or wrong sequencing
structure. (Section 4.3)

Methodology Our analysis for Q1 looked within the 279
interactive proof subsessions. We first counted the number
of times each tactic was used, the number of times it was

Tactic Used Failed Stepped Above
apply 156 27 13
intros 108 16 5
destruct 94 24 12
rewrite 61 13 12
exists 47 9 1
unfold 45 2 8
simpl 32 6 4
reflexivity 27 1 1
simpl in 25 3 7
assumption 24 2 1
specialize 19 0 1
subst 14 1 0
split 12 0 0
eapply 11 0 5
dependent 10 0 8
inversion 10 0 0
constructor 10 3 0
eauto 9 0 4
assert 9 2 0
induction 8 0 1
validate 8 0 5
monoid 7 0 2
tauto 7 1 0
eassumption 7 0 5
repeat constructor 7 0 5

Figure 4. The top 25 most common tactics.

stepped above, and the number of times its invocation caused
an error. Then, we constructed a search tree using the can-
cellation structure, and for any state which had multiple out
edges (a proof state where multiple tactics were tried), we
compared the cancelled attempts to the final tactic used.

4.1 Fixing Proofs by Fixing Definitions
Of the 279 interactive proof subsessions, 209 (over 75%) began
a proof, only to step above the entire proof attempt and
return to make changes to earlier definitions or commands,
for example to change a specification to make the proof
possible. This suggests that tools that attempt to provide next
steps to users writing proof may also benefit from suggesting
possible fixes to definitions used in the proof.

Takeaway: It may be beneficial to combine ma-
chine learning tools that automatically complete
or suggest hints for proofs [19, 25, 34, 43, 53]
with tools for repairing definitions [37, 39].

We considered only the remaining 70 successful interac-
tive proof subsessions (made up of 1085 tactic invocations)
for the sake of analyzing behavior within proofs that ended
in a successful proof. The analysis for Q2 (Section 5) reveals
more about how specifications and programs changed.

103

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

Figure 5. An example search tree, generated from the collected data by REPLica. It shows the user attempting to apply a
lemma, which fails until they first run the intros tactic.

4.2 Tactics Used and Cancelled
Figure 4 shows the counts for each tactic (regardless of argu-
ments) in the 70 successful interactive proof subsessions. The
distribution of tactics run was top-heavy; over 50% of the
tactics invoked were either apply, intros, destruct, rewrite,
exists, unfold, or simpl. The apply tactic had a significant
lead over other tactics in invocations, but invocations of
destruct ended in failure or stepping above them nearly as
many times as invocations of apply did.

This data indicates two takeaways for proof tooling: Firstly,

Takeaway: Tools may be able to focus on un-
derstanding the behavior of and suggesting just
a small number of tactics, and still benefit.

And second, since lemma and hypothesis application was
the main driver of proofs,

Takeaway: Assessing which lemmas and hy-
potheses are useful would be one of the main
tasks of a tool which suggests tactics to the user.

Themachine learning tool ML4PG [25] for Coq already offers
promising developments in this direction by understanding
and providing hints about similar lemmas, as does the proof
automation tool CoqHammer [14]; similar functionality may
help improve the performance of tools that suggest tactics.

4.3 Fixing Proofs by Fixing Tactics
The raw cancellation numbers do not give a broader context
to each cancellation, namely what tactic it was cancelled in
favor of. To address this, we built a search graph and analyzed
the tactic attempts at each branching node (see Figure 5).
Where there were more than 2 attempts, we compared all
non-final attempts to the final one separately.

In our 71 successful interactive proof subsessions, 96 tac-
tics were cancelled in favor of another tactic at the same
state. Of the 96 cancelled-tactic and final-tactic pairs:

• 13 were semicolon clauses added after a tactic, like:
destruct w. → destruct w; reflexivity.

• 4 were semicolon clauses removed from the end of a
tactic, like:

intros; reflexivity. → intros.

• 31 were the same tactic with modified arguments, like:
intros k X t. → intros k X t Hfresh.

• 5 were similar, but a Search or Check command was
first run before replacing the tactic, like:

apply IdSetFacts.remove_3. →

Check IdSetFacts.remove_3.

apply IdSetFacts.remove_3 with Y.

• 43 changes did not fall into this categorization.
The proofs shown were complex, and users often made

nontrivial changes to attempted tactics, so not all changes
could be easily categorized or analyzed. However, over half of
the changes present could be categorized into simple changes,
and potentially synthesized by automated tools.
This data also shows us that for a large proportion of

tactics, users could correctly pick the tactic to invoke, even
when theymademistakes in its arguments. In addition, fixing
these arguments took both on average and in the worst case
longer than fixing other kinds of mistakes. Accordingly,

Takeaway: Automated tooling that suggests ac-
tions to take based on tactics that were recently
stepped above or failed may focus on predicting
new arguments for the attempted tactic.

104

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

5 Q2: Changes to Terms
Q2 asked what kinds of changes proof engineers make to
programs and specifications, and whether those changes
reveal patterns amenable to automation. This information
may be useful to ensure tools for proof evolution support
the features that help proof engineers.

A2 We found that while no single change was dominant
across all users, usersmade related changeswithin and across
sessions. Analysis of these changes revealed four patterns:

1. Incremental development of inductive types
2. Repetitive refactoring of identifiers
3. Repetitive repair of specifications
4. Interactive discovery of programs and specifications

Methodology To answer this question, we wrote a script
to visualize changes over time as diffs on Github (see Fig-
ure 7). The script reconstructed the state of the file up to
each cancellation within a session, then committed that to
the public data repository. When possible (see Section 6.2),
it augmented each commit with information on whether the
cancellation was a failure or the user stepping up in an IDE.

We then manually analyzed the diffs that this visualization
produced to build a classification of changes (Section 5.1),
then classify changes that we found (Section 5.2). We did
this for each of the 362 interactive sessions and, when rele-
vant, across sessions as well. Finally, we looked at clusters of
common changes for patterns. For each of the four patterns
we found (Sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4), we identified
benchmarks (examples of the pattern in our data) and lessons
for automation.

5.1 Building a Classification
After running the visualization script, we did a manual anal-
ysis of the diffs in order to build a classification of changes to
Gallina terms. This analysis was thorough in that it involved
inspecting each consecutive diff and, when relevant, diffs that
spanned several commits (when a user stepped up, changed
something, and then later stepped back down) or sessions
(when a user modified the same file during two different
sessions). However, it did not necessarily capture all changes
to terms; Section 6.2 discusses some of the challenges.

Classification We designed a classification that groups
changes along three dimensions:

1. Command: vernacular command used to define the
term in which a subterm changed

2. Operation: how the subterm changed
3. Location: innermost subterm that changed

with the following categories for Operation:
1. Structure:
a. Add or Del: add or delete information
b. Mov: move information

2. Content:

a. Pch or Uch: patch or unpatch
b. Cut or Uut: cut or uncut
c. Rpl: replace

3. Syntax:
a. Rnm: rename
b. Qfy or Ufy: qualify or unqualify

Changes listed together are inverse operations. The Struc-
ture changes are straightforward. Among the changes to
Content, Pch is applying a function to the old term to get
a new term, Cut is defining a new term or let-binding and
then referring to that term inside of an existing term, and
Rpl is replacing contents in any other way. Among the Syn-
tax changes, Qfy is qualifying a constant after changing an
import.

For Structure changes, there are five Locations:
1. Hyp: hypothesis of anything that can take arguments
2. Arg: argument in an application
3. Ctr: constructor of an inductive type
4. Cas: case of a match statement
5. Bod: body of anything that can take arguments
For Content changes, there are an additional two:
6. Fun: function in an application
7. Typ: type annotation
For Syntax changes, there are only three:
1. Bnd: binding in the local environment
2. Idn: identifier in the global environment
3. Con: constant

DesignConsiderations That classification thatwe designed
considers changes onlywithinGallina terms defined or stated
using vernacular commands. Since it is focused solely on
changes to defined terms, it does not consider other infor-
mation like changes to vernacular commands, hints, tactics,
notations, scope annotations, inference information, or im-
ports, and it considers additions of new terms only in Cut
changes.

In building this classification, we aimed to group changes
at a level of granularity narrow enough to inform the design
of proof engineering tools, but broad enough to capture pat-
terns.We suspect that within these categories, there are more
granular categories that can be useful for automation, like
distinguishing among hypotheses to set apart indices of in-
ductive types, or classifying a Content change as semantics-
preserving. We did not design a more granular classification
because we did not find it useful for describing our data.

5.2 Classifying Changes
Once we had designed this classification, we used it to clas-
sify the changes that we had found. We ignored intermediate
changes that immediately failed to lex, parse, or type check.
Classifying changes revealed clusters of related changes.

Further inspection of those clusters revealed common devel-
opment patterns. Figure 6 lists, for each user, the top three

105

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

User Top Changes # Changes # Interactive Expertise
1 Add Ctr (23) Add Cas (22) Qfy Con (6) 69 10 ◦ ◦ ◦

2 Add Cas (4) 10 3 ◦ ◦ ◦ ◦

3 Pch Arg (13) Mov Arg (8) Add Bod (7) Cut Arg (7) 55 101 ◦ ◦ ◦ ◦ ◦

5 Add Cas (20) Add Ctr (13) Add Hyp (12) 75 15 ◦ ◦ ◦

7 Rnm Idn (42) Mov Hyp (18) Add Hyp (18) 151 183 ◦ ◦ ◦ ◦

8 Rpl Fun (29) Del Hyp (4) Uch Arg (4) 44 27 ◦ ◦ ◦ ◦ ◦

10 Pch Arg (4) Rpl Cas (3) 15 15 ◦ ◦ ◦

11 Pch Cas (3) 7 8 ◦ ◦ ◦

Figure 6. Top changes, by user.

Figure 7. A change to an inductive type (left) and corresponding change to a fixpoint (right) that User 5 made in Session 19.

changes byOperation and Location (four if there was a tie,
and ignoring changes that we found fewer than three times
for the user), the total number of changes that we found,
and the total number of interactive sessions and self-rated
expertise for reference. Changes for which more detailed
inspection revealed patterns are highlighted in correspond-
ing colors: blue for incremental development, orange for
refactoring, pink for repair, and grey for discovery.
The remainder of this section discusses these patterns,

complete with an example, benchmarks, and lessons for au-
tomation for each. The benchmarks and lessons for automa-
tion are mainly for tool designers: The benchmarks point to
changes in specific sessions, the partial or complete automa-
tion of which would have helped our users. The lessons for
automation are natural directions for improvements to proof
engineering tools given the patterns we have observed.

The public data repository contains a complete list of the
changes that we classified, as well as a detailed walkthrough
of each benchmark.

5.2.1 Incremental Development of Inductive Types
The most common changes for Users 1 and 5 were adding
cases to match statements (Add Cas) and adding construc-
tors to inductive types (Add Ctr). These changes corre-
sponded to incremental development of inductive types, fol-
lowed by corresponding extensions to match statements of

functions that destruct over them, or to inductive types that
depend on or relate to them. This pattern sometimes spanned
multiple sessions. While this pattern was most prevalent for
Users 1 and 5, it was also present for Users 2 and 7.

The diffs in Figure 7 show an example change to an induc-
tive type, along with a corresponding change to a fixpoint.
The change on the left adds five constructors and moves one
constructor down. The change on the right adds five corre-
sponding cases and moves one corresponding case down.

Benchmark 1 The example change from Figure 7 came
from User 5, Sessions 18, 19, 27, 33, and 35. There, over the
course of three weeks, the user incrementally developed the
inductive type Term along with a record EpsilonLogic and fix-
points simplify (later renamed to identity) and free_vars.

Benchmark 2 In Sessions 37 and 41, over two days, User
1 incrementally developed similar inductive types ST and
GT, as well as fixpoints Gamma, Alpha, and eq that referred to
them.

Lessons for Automation Given that several users show
this pattern, this is one use case for which better automation
may help. Automation may help proof engineers adapt other
inductive types, match statements, and proofs after extend-
ing inductive types with new constructors. We are not aware
of any work on adapting related inductive types and match

106

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Figure 8. Renaming of definitions in User 7, Session 93.

statements. There is some work on adapting proof obliga-
tions to new constructors [7], and a proposed algorithm for
generating proofs that satisfy those obligations [29], but
nothing that exists for a current version of Coq.

Takeaway: Proof engineers could benefit from
automation to help update proofs and definitions
after adding constructors to inductive types.

5.2.2 Repetitive Refactoring of Identifiers
Users 1 and 7 showed a pattern of repetitive refactoring,
through qualifying constants after changing imports (Qfy
Con), and renaming identifiers (Rnm Idn) and the constants
that referred to them (Rnm Con), respectively. This pattern
sometimes spanned multiple sessions, and even simple refac-
torings sometimes resulted in failures.
Figure 8 shows an example renaming from the five defi-

nitions at the top to the five definitions at the bottom. The
change renames the identifiers of these definitions to follow
the same convention, then makes the corresponding changes
to constants in the bodies of the last two definitions.

Benchmark 3 The example from Figure 8 came from User
7, Session 93. The definition of ty failed, since User 7 had al-
ready defined an inductive type with that name. In response,
User 7 renamed all of these to follow the same convention.
This took four attempts, but only a few minutes.

Benchmark 4 In Session 193, User 7 split the TVar construc-
tor of the inductive type ty into two constructors: TBVar and
TFVar. User 7 at the same time split the fixpoint FV into FFV

and FBV. In Session 198, User 7 at the same time renamed
the broken lemma b_subst_var_eq to b_subst_bvar_eq, and
substituted in TBVar for TVar in its body.

Benchmark 5 User 1 imported the List module in Ses-
sion 37, commit 10. After the import, In referred to the list
membership predicate from the standard library, whereas
previously it had referred to Ensembles.In. The 6 qualify con-
stant changes that we found for User 1 were changing In to
Ensembles.In inside of three existing definitions. This took
multiple tries per definition, but only a few minutes in total.

Lessons for Automation Refactoring terms (rather than
proof scripts) as in RefactorAgda [50] and Chick [39] would

Figure 9. Patches to a lemma in User 3, Session 73.

have helped our users, but few refactoring tools for ITPs sup-
port this [36], and neither of these are implemented for Coq.
Supporting making similar changes throughout a program,
like Chick does, may be especially useful. Semantics-aware
refactoring support may take this even further: A refactor-
ing tool for Coq may, for example, determine that an import
shadows an identifier, compute what the identifier used to
refer to, and refactor appropriately. Or, it may guide the user
to rename terms that refer to other recently renamed terms.
Both of these would have helped our users.

Takeaway: Refactoring and renaming tools, sim-
ilar to those available for programmers in lan-
guages like Java, could also help proof engineers,
and could potentially be more powerful in ITPs.

5.2.3 Repetitive Repair of Specifications
The top changes that we found for Users 3 and 8 were patch-
ing arguments (PchArg) and replacing functions (Rpl Fun),
respectively. These corresponded to a pattern of repetitive re-
pair of specifications, often over several sessions. Sometimes
these repairs were necessary in order for the specification to
type check or for existing tactics to succeed. Sometimes, after
repairing specifications, users also repaired their proofs.

Figure 9 shows an example change patching the arguments
of a lemma. This change wraps two arguments into a single
application in three different hypotheses of a lemma.

Benchmark 6 11 of the 13 patches to arguments that we
found for User 3, including the example in Figure 9, came
from Session 73. All of these changes similarly wrapped
arguments into an application of Val. We suspect that this
was due to a change in the definition of absr, but we were not
able to confirm this since the change in question occurred
before the beginning of the study. The user admitted or
aborted the proofs of four of the five changed lemmas.

Benchmark 7 28 of the 29 replace function changes that
we found for User 8 were changes from = to == over the
course of about a week in Sessions 2, 14, 37, 40, 65, 79, 108,

107

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

Figure 10. A partial attempt at proving and later correction
to an incorrect theorem from User 3, Session 11377 (tactic for-
matting is not preserved in the data that REPLica receives).

125, and 160. The corresponding proof attempts suggest that
while these terms were well-founded with =, the changes to
use == may have been necessary to make progress in proofs
using certain tactics. Sometimes, after making these changes,
User 8 also fixed tactics that had worked before.

Lessons for Automation Automationmay helpwith these
sorts of repairs to theorems and proofs. The proof repair tool
PUMPKIN PATCH already handles some repairs to proofs
after changes to both Content [37] and Structure [38], but
has support for repairing the theorem statement itself only
in the latter case, and only for a specific class of changes
to inductive types. These changes provide examples where
changing the theorem type is also desirable, and may make
good benchmarks for further development to support this.

Takeaway: Proof repair tools should repair pro-
grams and specifications, not just proofs.

5.2.4 Interactive Discovery of Programs and
Specifications

In Q1 (Section 4), we found that users most often fixed proofs
by stepping up outside of proofs and changing other things.
Our observations from Q2 are consistent with this, and give
some insight into the details. Changes from Users 3, 7, 8, and
10 all revealed a pattern of interactive discovery of programs
and specifications: In some cases, these users discovered bugs
in their programs during a proof attempt or test. In other
cases, these users discovered that their specifications were
incorrect, too weak, or difficult to work with. Users some-
times assigned temporary names to lemmas or theorems,
then renamed them only after finalizing their types. Even
experts made mistakes in programs and theorem statements
(perhaps they were the ones catching them most effectively).

Figure 10 shows an example of catching a bug in a spec-
ification during an attempted proof attempt. The theorem
before the change is impossible (let m be 3 and n be 1). After
attempting to prove it and reaching this goal:

m : nat

0 = m

the user steps up and fixes the theorem statement by replac-
ing an argument (Rpl Arg), then later finishes the proof.

Benchmark 8 The change from Figure 10 can be found in
User 3, Session 11377. The same session contains changes
to the same theorem by moving arguments (Mov Arg). The
user succeeded at the proof after about three minutes.

Benchmark 9 In Session 13, commit 11, User 10 patched a
case (Pch Cas) of a fixpoint fib' after testing. This took the
user about thirty seconds. The fixpoint fib' itself may have
been used to test a different function.

Benchmark 10 User 7 mainly demonstrated this pattern
through adding andmoving hypotheses (Add andMovHyp).
The latter most often corresponded to generalizing the in-
ductive hypothesis after a partial proof attempt by swapping
theorem hypotheses, in some cases in order to induct over a
different hypothesis altogether. We found such changes in
Sessions 19, 56, 93, 94, 104, 110, 153, 159, and 176. See, for
example, match_ty__value_type_l in Session 94, commit 15.

Benchmark 11 In Session 2, User 7 temporarily named a
lemma weird_trans, then renamed it to sub_r_nf__trans by
Session 10 after finalizing its type after several partial proof
attempts over the course of about a day and a half.

Lessons for Automation The effect of discovering bugs
by attempting a proof accounts for some of the benefits of
verification [31]. It makes sense, then, to continue to build
automation to support users in finding and fixing those bugs.
One possible unexplored avenue for this is integrating repair
tools with QuickChick [35] for testing specifications, or with
the induct tactic from FRAP [9] or the hypothesis renam-
ing functionality from CoqPIE [42] for simple generalization
of inductive hypotheses. Integrating tools for discovering
lemma and theorem names [5] during the development pro-
cess may help users who use temporary names. Above all,
repair is not just something that happens to stable proof
developments—change is everywhere in developing those
programs and proofs to begin with.

Takeaway: Integrating tools for proof repair
with tools for discovery and development of
specifications is an unaddressed opportunity to
support proof engineers.

6 Conclusions & Future Work
We built REPLica, a Coq plugin that remotely collects fine-
grained proof development data in a way that is decoupled
from the UI. Using REPLica, we collected data on changes to
proofs, programs, and specifications at a level of granularity
not previously seen for an ITP. Visualization and analysis
of this data revealed evidence in our study population of
development patterns, at times confirming folk knowledge—
like that discovering the correct program or specificationwas
often a conversation with the proof itself, even for experts—
and providing useful insights and benchmarks for tools.

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

The infrastructure that we have built and the data that
we have collected using it are publicly available. We hope
to see it used as benchmarks for the improvement of proof
engineering tools, and as data for future studies. We hope to
see the infrastructure that we have built reused or adapted
to other ITPs for future studies.

Three Wishes We would like for our experiences building
and using REPLica to help the community conduct more
studies of proof development processes. We thus conclude
with three wishes, the fulfillment of which would help ad-
dress the challenges that we encountered along the way:

1. Better abstraction of user environments (Section 6.1)
2. More information about user interaction (Section 6.2)
3. More users (Section 6.3)

We discuss how to grant each wish both at the level of study
design and at the level of ITP design in order to facilitate
future studies of this kind.

6.1 Wish: Better Abstraction of User Environments
In order to cast as broad of a net as possible for potential
users, we designed REPLica to be independent of the UI, the
version of Coq, and the build system. Coq’s plugin infrastruc-
ture and interaction model offered a promising avenue for
this, and Coq’s resource file infrastructure meant that users
could load the plugin universally with just one LOC in one
location. All of this gave us the impression of independence
from the details of the UI, ITP version, and build system.
We later found that, while this infrastructure was useful,

the impression of total independence was somewhat of an
illusion; all of these details mattered. In particular, while
REPLica itself was UI-independent, the analyses that we ran
did not achieve full independence. For example, we found
that depending on the version of Coq andwhat event triggers
a cancellation, different UIs use different mechanisms for
cancellation (recall these mechanisms from Section 2). Our
analyses had to deal with all of these mechanisms.

In addition, partway through the study, we received a bug
report that noted that one common build system for Coq
compiles files by default using a flag that disables loading
the Coq resource file. This is one possible explanation for
the lack of data that some users sent. To remedy this, we
must ask future users of REPLica to compile all of their
Coq projects without using this flag; we have updated the
REPLica documentation to account for this.

The Study Designer Without help from the ITP designer,
the study designer cannot achieve full abstraction from these
details. The study designer may, however, work around the
lack of full abstraction. We recommend testing the study
infrastructure with many different environments for many
different scenarios. It may help to identify potential users
early and survey their development environments before
even beginning to test, covering likely scenarios in advance.

It may also help to build in a short trial period on the final
users before the final data collection begins, thereby covering
their particular development environments. The latter has
the additional benefit of giving the study designer time to dis-
cover and discuss with users possible confounding variables
for analysis, like development style or project phase.
We had the foresight to test REPLica with coqtop, Proof

General, and CoqIDE, but we did not anticipate User 5’s
custom UI, which treated failures differently from the others.
We also did not anticipate the behavior of different build
systems on Coq’s resource file, since we tested only one
build configuration. We could have avoided both of these
issues with our recommendations. Instead, we had to work
around both issues after deployment.

The ITP Designer Most of the power to grant this wish
is in the hands of the ITP designer. Full abstraction over
development environments may not be possible, but the ITP
designer may design the interaction model with this as a
goal. The REPL and state machine already strive for this—and
come close to achieving it—but their current implementa-
tions in Coq fall short. Improvements to abstraction here
may be minimal, like providing fewer mechanisms for UIs to
accomplish the same thing, or providing a way to guarantee
that a plugin is always loaded for all build systems.
For a more radical approach, the ITP designer may look

to other interaction models. For example, Isabelle/HOL has
recently moved away from its REPL, instead favoring the
Prover IDE (PIDE) [47] framework as its interaction model.
With PIDE, UIs and ITPs communicate using an asynchro-
nous protocol to manage versions of a document [48], anno-
tating the document with new information when it becomes
available [47]. Personal communication suggests that there
is an ongoing attempt to to centralize functionality like the
build system into PIDE. While centralization may limit the
potential for customization by different UIs, it may make
studies of fine-grained proof development data easier, since
the instrumentation may occur at a higher level, guarantee-
ing more uniform interaction.

6.2 Wish: More Information about User Interaction
By observing state machine messages through the plugin
API, we were able to log data at high enough granularity to
reconstruct hundreds of interactive sessions. This helped us
identify incremental changes to tactics and terms that are
difficult to gather from other sources.

The hooks that we designed together with the Coq devel-
opers, however, were not perfect. There was no way for us to
use those hooks to listen to the messages that Coq sent back
to the UI. Making this change would have required modify-
ing Coq again, and by the time we realized this, it was too
late. Listening to those responses would have given us more
insight into user behavior. It would have also helped us dis-
tinguish between failures and stepping up. Instead, we had

109

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

to distinguish between these using IDE-specific heuristics,
which left us with no automatic way to distinguish failures
from stepping up for User 5’s custom UI.
We also found that once we had collected granular data,

analyzing it was sometimes difficult. For example, sometimes
users defined a term, stepped up and changed an earlier
term, then stepped back down and changed the original
term. For such a change, our visualization script constructed
3 consecutive commits; to determine that the original term
had changed, we had to look at the difference between the 1st
and the 3rd commits. Sometimes, changes occurred over tens
of commits, or over several sessions. Thus, manual analysis of
changes for Q2 was tedious, and involved not only inspecting
thousands of diffs but also understanding each session well
enough to track term information over time.
We considered automating the analysis for Q2, but we

found automatically classifying changes in terms to be pro-
hibitively difficult. While part of this was due to the inherent
difficulty of the problem, part of this was also due to missing
information: When the UI backed up to an earlier state, we
did not know what was below the command or tactic corre-
sponding to that state in the file. So, when a user copied and
pasted a term and then modified both versions, or made sev-
eral changes at once to a term before stepping down below it,
even manually deciding whether it was the same term that
had changed or a new term entirely proved to be difficult.

The Study Designer To grant this wish, we recommend
that the study designer run a beta test, complete with analy-
sis, as we did—and that they do so early, as we did not. That
way, there is enough time to address needs discovered during
testing, for example by communicating with ITP designers.
It may also help to use multiple methods for data collection,
for example by augmenting the collected data with informa-
tion from the IDE to track the state of definitions in the file
below the location to which the user has stepped.
The beta testing phase was extremely useful to us; as a

result we reworked our server infrastructure to receive and
easily analyze larger amounts of data, and we tested data
backup infrastructure and network failure resilience code.
We also discovered and reported a bug8 in CoqIDE and Proof
General that had made it impossible for us to tell which
sessions corresponded to which files; the fix was marked
as critical and backported to Coq 8.9, so only the analyses
for Users 5 (custom UI), 8 (Coq 8.8), and 10 (Coq 8.8) were
impacted. However, while we discovered the lack of response
information in the plugin hooks during this period, we did
not have enough time to coordinate with Coq developers on
changes to the hooks. Leaving more time between testing
and the final study would have helped us.

The ITP Designer By implementing hooks like the one
that we helped implement for Coq, the ITP designer can

8
http://github.com/coq/coq/issues/8989

make it easier for researchers to study proof development
processes. To grant this wish, we recommend that these
hooks expose not just request information, but also response
information, especially error information.

Augmenting the interaction model with more information
about the file may also help. For example, the interaction
model could expose a simple and uniform way for UIs to
track that a definition in a new state corresponds to a defini-
tion in a previous state (that is, that the user did not remove
that definition from the file and replace it with something en-
tirely new). This could make it much simpler for an analysis
to track changes to a definition over time, and to choose the
granularity with which to inspect changes. There is some
tension between this and the wish for abstraction from Sec-
tion 6.1, but it may be worth weighing the tradeoffs.

6.3 Wish: More Users
We attempted to recruit a large and representative sample
of Coq proof engineers. In our attempts to recruit users, we
contacted programming languages groups at several univer-
sities that were known to be working with Coq, and emailed
coq-club with our project pitch. We included a promotional
video in the hopes of attracting as many users as possible.

In the end, however, we were able to recruit only 12 users,
all of whom were intermediate through expert users with at
least two years of Coq experience. We received interactive
sessions for just 8 of 12 of these users. While this data was
rich and granular, with just 8 users, we were not able to reach
broad conclusions about proof engineers more generally.
Part of this was likely due to the demographics of the

community: Compared to other programming environments,
Coq has only a small number of users, many of whom have
or are pursuing graduate degrees. However, part of this may
have been due to deterrents in our screening process, or poor
incentives for our users.

The Study Designer The study designer may fulfill this
in part by casting as broad of a net as possible, carefully
considering any deterrents in screening criteria. It may help
to use welcoming language to encourage potential users
who are unsure if they qualify. To reach beginner users, it
may help to recruit students. To reach a more international
audience, it may help to distribute promotional materials
and consent forms in multiple languages. It may also help to
consider incentives that appeal to proof engineers. However,
until the ITP user community grows significantly, it will
continue to be difficult to conduct large-scale studies of proof
engineering.

We reached users from different institutions, but most of
our users had similar levels of expertise. We suspect that this
was in part because we asked for users to have at least a year
of experience using Coq, so as to avoid mixing in data from
users learning Coq for the first time.We also required fluency
in English to ensure that users understood the consent forms.

110

http://github.com/coq/coq/issues/8989

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Both of these may have deterred users. One potential user
who did not participate noted that we did not make it clear
in our recruitment materials that data from occasional rather
than frequent Coq users was still useful to us. The same
potential user noted that we could have engaged more with
community leaders, thereby giving others in the community
more incentive to participate. We considered monetary in-
centives, but ultimately decided they were less tempting to
the community than appeals to improving tools. Perhaps
this was misguided or attracted a more advanced population,
and perhaps we could have considered a different incentive.

The ITP Designer The ITP designer may help reduce the
costs of participating in these studies. We suspect that the
primary gains here will come from continuing to break down
barriers to using plugins and other outside tooling. Some
examples of this include reducing the brittleness of plugin
APIs over time, improving build and distribution systems,
making it possible to prove that a plugin does not interact
with a kernel in a way that could compromise soundness of
the system, and providing more support for users who port
proof developments and tools between ITP versions.
Of course, continuing to improve the ITP itself may con-

tinue to expand the community to reach more users. This
may cause a positive feedback loop, helping to collect more
data in order to drive further improvements to the ITP, in
turn continuing to help the community grow.

7 Related Work
We consider work on analysis of development processes and
on identifying, classifying, and visualizing changes, in proof
engineering and in software engineering more generally.

Analysis ofDevelopment Processes REPLica instruments
Coq’s REPL to collect fine-grained data on proof engineer-
ing development processes. Outside of the context of ITPs,
REPLica is not the first tool to collect data at this level of
granularity. Mylar [22] monitors Java development activity
and uses it to visualize codebases to make them easier to
navigate. The Solstice [32] plugin instruments the IDE to
make program analysis possible at this level of granularity.
Several studies have used video recordings [24, 41], some-
times combined with IDE instrumentation [26], to study how
programmers develop and change code. REPLica brings fine-
grained analysis to an ITP, taking advantage of an interaction
model that is especially common for ITPs to build instru-
mentation that is minimally invasive, decoupled from the UI,
and captures all information that the user sends to the ITP.
There have been a number of recent studies on the de-

velopment processes and productivity of proof engineers,
drawing on sources like version control history [2, 44, 54],
archives and libraries [4, 6, 27, 51], project logs [2, 54], ar-
tifacts [4, 27, 45], meeting notes [2, 54], and personal ex-
periences [8, 52]. Collecting proof development data at the

level of user interaction was, until now, an unaddressed op-
portunity to understand proof development processes [36].
This has not gone unnoticed. For example, one study [54]
of proof development processes cited lack of precision of
version control data as a limitation in measuring the size and
timing of changes. Another study [27] assumed that proof
development is linear, but noted that this assumption did not
reflect the interative nature of proof development (like that
observed in Section 5.2.4). The study cited this assumption
as a threat to validity, and noted that this threat is inherent
to using an artifact with complete proofs. REPLica collects
more precise data that may alleviate or eliminate these limita-
tions and provide insights into proof development processes
that other techniques lack access to.

Identifying, Classifying, & Visualizing Changes The
REPLica analyses identify, classify, and visualize changes to
proof scripts and terms over time in the context of an ITP.
There is a wealth of work along these lines beyond the con-
text of an ITP. Type-directed diffing [28] describes a general
framework for representing changes in algebraic datatypes.
Existing work [16] analyzes a large repository and collects
data on changes to quantify code decay. TreeJuxtaposer [30]
implements structural comparison of very large trees, which
can be used to represent both terms and proofs scripts. Pre-
vious work has also studied the types of mistakes that users
make while writing their code [23]. Adapting these tech-
niques to Coq and applying them to analyze the collected
data may help improve the REPLica analyses to reveal new
insights, even using the same data.
There is some work along these lines within the context

of an ITP. The proof repair tool PUMPKIN PATCH [37] is
evaluated on case studies identified using a manual change
analysis of Git commits. The proof refactoring and repair
tool Chick [39] includes a classification of changes to terms
and types in a language similar to Gallina. This classification
is similar to ours in that it includes adding, moving, or delet-
ing information, though it does not include any breakdown
of changes in content or syntax. The IDEs CoqIDE [17], Co-
qPIE [42], and PeaCoq [40] all have support for visualizing
changes during development. The machine learning tool
Proverbot9001 [43] uses similar search trees to the ones that
we use to visualize proof state, though without information
on intermediate failing steps.

The novelty in the REPLica analyses, classifications, and
visualizations come from the fact that these are run on, de-
rived from, and produced using remote logs of live ITP de-
velopment data. The changes themselves and the patterns
that they reveal suggest ways to continue to improve and to
measure the improvement of proof engineering tools.

Acknowledgments
We thank Emilio J. Gallego Arias for designing the initial
version of the hooks into the REPL that enabled this study.

111

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner

We thank Enrico Tassi, Gaëtan Gilbert, Maxime Dénès, Vin-
cent Laporte, and Théo Zimmermann for help improving,
finalizing, and merging the hooks for distribution in Coq 8.10.
We thank Jason Gross for alpha testing REPLica before the
study began and reporting bugs. We thank Dimitar Bounov,
Martin Kellogg, Chandrakana Nandi, Doug Woos, and Karl
Palmskog for help writing and filming the study recruitment
video. We thank all who participated in the study or helped
distribute promotional materials. We thank the UW PLSE
lab, the UCSD Programming Systems group, and the anony-
mous reviewers for feedback. This material is based upon
work supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE-1256082.
Any opinions, findings, and conclusions or recommenda-
tions expressedin this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

References
[1] Mark Adams. 2015. Refactoring Proofs with Tactician. In Software Engi-

neering and Formal Methods, Domenico Bianculli, Radu Calinescu, and
Bernhard Rumpe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
53–67. https://doi.org/10.1007/978-3-662-49224-6_6

[2] June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark
Staples, He Zhang, and Liming Zhu. 2012. Large-Scale Formal Ver-
ification in Practice: A Process Perspective. In International Confer-
ence on Software Engineering. ACM, Zurich, Switzerland, 1002–1011.
https://doi.org/10.1109/ICSE.2012.6227120

[3] David Aspinall. 2000. Proof General: A Generic Tool for Proof Devel-
opment. In Tools and Algorithms for the Construction and Analysis of
Systems: 6th International Conference, TACAS 2000 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2000 Berlin, Germany, March 25 – April 2, 2000 Proceedings. Springer,
Berlin, Heidelberg, 38–43. https://doi.org/10.1007/3-540-46419-0_3

[4] David Aspinall and Cezary Kaliszyk. 2016. Towards Formal Proof
Metrics. In Fundamental Approaches to Software Engineering. Springer,
Berlin, Heidelberg, 325–341. https://doi.org/10.1007/978-3-662-49665-

7_19

[5] David Aspinall and Cezary Kaliszyk. 2016. What’s in a Theorem
Name?. In Interactive Theorem Proving. Springer International Publish-
ing, Cham, 459–465. https://doi.org/10.1007/978-3-319-43144-4_28

[6] Jasmin Christian Blanchette, Maximilian Haslbeck, Daniel Matichuk,
and Tobias Nipkow. 2015. Mining the Archive of Formal Proofs. In
Intelligent Computer Mathematics: International Conference, CICM 2015,
Washington, DC, USA, July 13-17, 2015, Proceedings. Springer Inter-
national Publishing, Cham, 3–17. https://doi.org/10.1007/978-3-319-

20615-8_1

[7] Olivier Boite. 2004. Proof Reuse with Extended Inductive Types. In
Theorem Proving in Higher Order Logics: 17th International Conference,
TPHOLs 2004, Park City, Utah, USA, September 14-17, 2004. Proceedings,
Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 50–65. https://doi.org/

10.1007/978-3-540-30142-4_4

[8] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski.
2012. Challenges and Experiences in Managing Large-Scale Proofs. In
Intelligent Computer Mathematics. Springer, Berlin, Heidelberg, 32–48.
https://doi.org/10.1007/978-3-642-31374-5_3

[9] Adam Chlipala. 2017. Formal Reasoning About Programs. http:

//adam.chlipala.net/frap/

[10] Coq Development Team. 1989-2018. The Coq Commands: Customiza-
tion at launch time. http://coq.inria.fr/refman/practical-tools/coq-

commands.html#customization-at-launch-time

[11] Coq Development Team. 1989-2019. The Coq Proof Assistant. http:

//coq.inria.fr

[12] Coq Development Team. 1999-2018. The Coq Commands. http:

//coq.inria.fr/refman/practical-tools/coq-commands.html

[13] Coq Development Team. 1999-2018. Coq Integrated Development
Environment. http://coq.inria.fr/refman/practical-tools/coqide.html

[14] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. Journal of Automated Reasoning 61,
1 (01 Jun 2018), 423–453. https://doi.org/10.1007/s10817-018-9458-4

[15] Dominik Dietrich, Iain Whiteside, and David Aspinall. 2013. Polar:
A Framework for Proof Refactoring. In Logic for Programming, Artifi-
cial Intelligence, and Reasoning. Springer, Berlin, Heidelberg, 776–791.
https://doi.org/10.1007/978-3-642-45221-5_52

[16] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. 2001.
Does code decay? Assessing the evidence from change management
data. IEEE Transactions on Software Engineering 27, 1 (Jan 2001), 1–12.
https://doi.org/10.1109/32.895984

[17] Jim Fehrle. 2018. Pull Request: Highlight differences between succes-
sive proof steps (color, underline, etc.). http://github.com/coq/coq/

pull/6801

[18] Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-
Centric Serialization for Coq. Technical Report. MINES ParisTech.
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

[19] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. 2017. Tactic-
Toe: Learning to Reason with HOL4 Tactics. In LPAR-21. 21st Inter-
national Conference on Logic for Programming, Artificial Intelligence
and Reasoning (EPiC Series in Computing), Vol. 46. EasyChair, 125–143.
https://doi.org/10.29007/ntlb

[20] Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and
Ewen Maclean. 2013. Proof-Pattern Recognition and Lemma Dis-
covery in ACL2. In Logic for Programming, Artificial Intelligence, and
Reasoning: 19th International Conference, LPAR-19, Stellenbosch, South
Africa, December 14-19, 2013. Proceedings. Springer, Berlin, Heidelberg,
389–406. https://doi.org/10.1007/978-3-642-45221-5_27

[21] HOL Development Team. 2016-2018. Running hol. https://hol-

theorem-prover.org/guidebook/#running-hol

[22] Mik Kersten and Gail C. Murphy. 2005. Mylar: A Degree-of-interest
Model for IDEs. In Proceedings of the 4th International Conference on
Aspect-oriented Software Development (AOSD ’05). ACM, New York,
NY, USA, 159–168. https://doi.org/10.1145/1052898.1052912

[23] Amy Ko and Brad Myers. 2005. A framework and methodology for
studying the causes of software errors in programming systems. Jour-
nal of Visual Languages & Computing 16 (02 2005), 41–84. https:

//doi.org/10.1016/j.jvlc.2004.08.003

[24] A. J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.
2006. An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks.
IEEE Transactions on Software Engineering 32 (2006).

[25] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov.
2012. Machine Learning in Proof General: Interfacing Interfaces. In
Proceedings 10th International Workshop On User Interfaces for The-
orem Provers, UITP 2012, Bremen, Germany, July 11th, 2012. 15–41.
https://doi.org/10.4204/EPTCS.118.2

[26] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A.
Myers. 2007. Program Comprehension As Fact Finding. In Proceed-
ings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 361–
370. https://doi.org/10.1145/1287624.1287675

[27] D. Matichuk, T. Murray, J. Andronick, R. Jeffery, G. Klein, and M.
Staples. 2015. Empirical Study Towards a Leading Indicator for Cost of
Formal Software Verification. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. 722–732. https://doi.org/

112

https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1109/ICSE.2012.6227120
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/978-3-662-49665-7_19
https://doi.org/10.1007/978-3-662-49665-7_19
https://doi.org/10.1007/978-3-319-43144-4_28
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1007/978-3-540-30142-4_4
https://doi.org/10.1007/978-3-540-30142-4_4
https://doi.org/10.1007/978-3-642-31374-5_3
http://adam.chlipala.net/frap/
http://adam.chlipala.net/frap/
http://coq.inria.fr/refman/practical-tools/coq-commands.html#customization-at-launch-time
http://coq.inria.fr/refman/practical-tools/coq-commands.html#customization-at-launch-time
http://coq.inria.fr
http://coq.inria.fr
http://coq.inria.fr/refman/practical-tools/coq-commands.html
http://coq.inria.fr/refman/practical-tools/coq-commands.html
http://coq.inria.fr/refman/practical-tools/coqide.html
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/978-3-642-45221-5_52
https://doi.org/10.1109/32.895984
http://github.com/coq/coq/pull/6801
http://github.com/coq/coq/pull/6801
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://doi.org/10.29007/ntlb
https://doi.org/10.1007/978-3-642-45221-5_27
https://hol-theorem-prover.org/guidebook/#running-hol
https://hol-theorem-prover.org/guidebook/#running-hol
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.4204/EPTCS.118.2
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1109/ICSE.2015.85
https://doi.org/10.1109/ICSE.2015.85

REPLica CPP ’20, January 20–21, 2020, New Orleans, LA, USA

10.1109/ICSE.2015.85

[28] Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter Swier-
stra. 2017. Type-directed Diffing of Structured Data. In Proceedings
of the 2Nd ACM SIGPLAN International Workshop on Type-Driven
Development (TyDe 2017). ACM, New York, NY, USA, 2–15. https:

//doi.org/10.1145/3122975.3122976

[29] Anne Mulhern. 2006. Proof Weaving. In In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metatheory.

[30] Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang,
and Yunhong Zhou. 2003. TreeJuxtaposer: Scalable Tree Comparison
Using Focus+Context with Guaranteed Visibility. ACM Trans. Graph.
22 (07 2003), 453–462. https://doi.org/10.1145/1201775.882291

[31] Toby Murray and P. C. van Oorschot. 2018. BP: Formal Proofs, the Fine
Print and Side Effects. In IEEE Cybersecurity Development (SecDev).
1–10. https://doi.org/10.1109/SecDev.2018.00009

[32] Kıvanç Muşlu, Yuriy Brun, Michael D. Ernst, and David Notkin. 2015.
Reducing feedback delay of software development tools via continuous
analysis. IEEE Transactions on Software Engineering 41, 8 (Aug. 2015),
745–763.

[33] Magnus O. Myreen. 2008-2018. Guide to HOL4 interaction and basic
proofs. http://hol-theorem-prover.org/HOL-interaction.pdf

[34] Yutaka Nagashima and Yilun He. 2018. PaMpeR: Proof Method Recom-
mendation System for Isabelle/HOL. In Proceedings of the International
Conference on Automated Software Engineering (ASE 2018). ACM, New
York, NY, USA, 362–372. https://doi.org/10.1145/3238147.3238210

[35] Zoe Paraskevopoulou, Cătălin Hritçu, Maxime Dénès, Leonidas Lam-
propoulos, and Benjamin C. Pierce. 2015. Foundational Property-Based
Testing. In Interactive Theorem Proving: 6th International Conference,
ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings. Springer
International Publishing, Cham, 325–343. https://doi.org/10.1007/978-

3-319-22102-1_22

[36] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary
Tatlock. 2019. QED at Large: A Survey of Engineering of Formally
Verified Software. Foundations and Trends® in Programming Languages
5, 2-3 (2019), 102–281. https://doi.org/10.1561/2500000045

[37] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018.
Adapting Proof Automation to Adapt Proofs. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP 2018). ACM, New York, NY, USA, 115–129. https://doi.

org/10.1145/3167094

[38] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2019.
Ornaments for Proof Reuse in Coq. In 10th International Conference
on Interactive Theorem Proving (ITP 2019) (Leibniz International Pro-
ceedings in Informatics (LIPIcs)), John Harrison, John O’Leary, and
Andrew Tolmach (Eds.), Vol. 141. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 26:1–26:19. https://doi.org/10.

4230/LIPIcs.ITP.2019.26

[39] Valentin Robert. 2018. Front-end tooling for building and maintaining
dependently-typed functional programs. Ph.D. Dissertation. UC San
Diego.

[40] Valentin Robert and Sorin Lerner. 2014-2016. PeaCoq. http://goto.

ucsd.edu/peacoq/

[41] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. 2004. How
Effective Developers Investigate Source Code: An Exploratory Study.

IEEE Trans. Softw. Eng. 30, 12 (Dec. 2004), 889–903. https://doi.org/10.

1109/TSE.2004.101

[42] Kenneth Roe and Scott Smith. 2016. CoqPIE: An IDE Aimed at Improv-
ing Proof Development Productivity. In Interactive Theorem Proving:
7th International Conference, ITP 2016, Nancy, France, August 22-25,
2016, Proceedings. Springer International Publishing, Cham, 491–499.
https://doi.org/10.1007/978-3-319-43144-4_32

[43] Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin Lerner.
2019. Generating Correctness Proofs with Neural Networks. CoRR
abs/1907.07794 (2019). arXiv:1907.07794 http://arxiv.org/abs/1907.

07794

[44] Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin
Klein, and Rafal Kolanski. 2014. Productivity for Proof Engineering. In
Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’14). ACM, New York,
NY, USA, Article 15, 4 pages. https://doi.org/10.1145/2652524.2652551

[45] Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis, June An-
dronick, Toby Murray, Ross Jeffery, and Len Bass. 2013. Formal
Specifications Better Than Function Points for Code Sizing. In Pro-
ceedings of the 2013 International Conference on Software Engineer-
ing (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 1257–1260. https:

//doi.org/10.1109/ICSE.2013.6606692

[46] The Idris Community. 2017. The Idris REPL. http://docs.idris-lang.

org/en/latest/reference/repl.html

[47] Makarius Wenzel. 2012. Isabelle/jEdit – A Prover IDE within the PIDE
Framework. In Intelligent Computer Mathematics. Springer, Berlin,
Heidelberg, 468–471. https://doi.org/10.1007/978-3-642-31374-5_38

[48] Makarius Wenzel. 2014. Asynchronous User Interaction and Tool
Integration in Isabelle/PIDE. In Interactive Theorem Proving: 5th Inter-
national Conference, ITP 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Springer
International Publishing, Cham, 515–530. https://doi.org/10.1007/978-

3-319-08970-6_33

[49] Iain Johnston Whiteside. 2013. Refactoring proofs. Ph.D. Dissertation.
University of Edinburgh. http://hdl.handle.net/1842/7970

[50] Karin Wibergh. 2019. Automatic refactoring for Agda. Master’s thesis.
Chalmers University of Technology and University of Gothenburg.

[51] Freek Wiedijk. 2009. Statistics on digital libraries of mathematics.
Studies in Logic, Grammar and Rhetoric 18(31) (2009), 137–151.

[52] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.
Ernst, and Thomas Anderson. 2016. Planning for Change in a Formal
Verification of the Raft Consensus Protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2016).
ACM, New York, NY, USA, 154–165. https://doi.org/10.1145/2854065.

2854081

[53] Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via Inter-
acting with Proof Assistants. In International Conference on Machine
Learning.

[54] He Zhang, Gerwin Klein, Mark Staples, June Andronick, Liming
Zhu, and Rafal Kolanski. 2012. Simulation Modeling of A Large
Scale Formal Verification Process. In International Conference on Soft-
ware and Systems Process. IEEE, Zurich, Switzerland, 3–12. https:

//doi.org/10.1109/ICSSP.2012.6225979

113

https://doi.org/10.1109/ICSE.2015.85
https://doi.org/10.1145/3122975.3122976
https://doi.org/10.1145/3122975.3122976
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1109/SecDev.2018.00009
http://hol-theorem-prover.org/HOL-interaction.pdf
https://doi.org/10.1145/3238147.3238210
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3167094
https://doi.org/10.1145/3167094
https://doi.org/10.4230/LIPIcs.ITP.2019.26
https://doi.org/10.4230/LIPIcs.ITP.2019.26
http://goto.ucsd.edu/peacoq/
http://goto.ucsd.edu/peacoq/
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1007/978-3-319-43144-4_32
http://arxiv.org/abs/1907.07794
http://arxiv.org/abs/1907.07794
http://arxiv.org/abs/1907.07794
https://doi.org/10.1145/2652524.2652551
https://doi.org/10.1109/ICSE.2013.6606692
https://doi.org/10.1109/ICSE.2013.6606692
http://docs.idris-lang.org/en/latest/reference/repl.html
http://docs.idris-lang.org/en/latest/reference/repl.html
https://doi.org/10.1007/978-3-642-31374-5_38
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
http://hdl.handle.net/1842/7970
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1109/ICSSP.2012.6225979
https://doi.org/10.1109/ICSSP.2012.6225979

	Abstract
	1 Introduction
	2 Building REPLica
	2.1 User-Coq Interaction
	2.2 User-Client Interaction
	2.3 Client-Server Interaction

	3 Deploying REPLica
	3.1 Recruiting
	3.2 Collection
	3.3 Analysis

	4 Q1: Mistakes In and Fixes to Proofs
	4.1 Fixing Proofs by Fixing Definitions
	4.2 Tactics Used and Cancelled
	4.3 Fixing Proofs by Fixing Tactics

	5 Q2: Changes to Terms
	5.1 Building a Classification
	5.2 Classifying Changes

	6 Conclusions & Future Work
	6.1 Wish: Better Abstraction of User Environments
	6.2 Wish: More Information about User Interaction
	6.3 Wish: More Users

	7 Related Work
	Acknowledgments
	References

