
Safe and Flexible Memory Management in Cyclone

Michael Hicks Greg Morrisett Dan Grossman Trevor Jim
University of Maryland Cornell University AT&T Labs Research
mwh@cs.umd.edu {jgm,danieljg}@cs.cornell.edu trevor@research.att.com

ABSTRACT
Cyclone is a type-safe programming language intended for
applications requiring control over memory management.
Our previous work on Cyclone included support for stack
allocation, lexical region allocation, and a garbage-collected
heap. We achieved safety (i.e., prevented dangling pointers)
through a region-based type-and-effects system. This paper
describes some new memory-management mechanisms that
we have integrated into Cyclone: dynamic regions, unique
pointers, and reference-counted objects. Our experience
shows that these new mechanisms are well suited for the
timely recovery of objects in situations where it is awkward
to use lexical regions. Crucially, programmers can write
reusable functions without unnecessarily restricting callers’
choices among the variety of memory-management options.
To achieve this goal, Cyclone employs a combination of poly-
morphism and scoped constructs that temporarily let us
treat objects as if they were allocated in a lexical region.

1. INTRODUCTION
Cyclone is a type-safe, C-like language intended for use in

systems programs where control is needed over low-level de-
tails such as data representations and resource management.
In previous work [22], we described a region-based type sys-
tem for Cyclone, based on the work of Tofte and Talpin [39],
that gives programmers type-safe support for stack allo-
cation and lexically-scoped regions. We also showed how
these manual memory-management mechanisms could be
safely combined with heap allocation and a (conservative)
garbage collector to give programmers a range of memory-
management options. One attractive feature of the design is
that all data objects are treated as if they live in some region.
Using region polymorphism, one can write library routines
accepting pointers into any part of memory, including the
stack, a lexical region, or the heap.

Stack allocation is an important and pervasive idiom in
C programs, providing efficient allocation, access, and deal-
location. Region allocation is another important memory-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

management idiom, due to the efficiency of batched dealloca-
tion of objects. It is used in compilers such as LCC [18] and
servers such as Apache [4]. However, Cyclone’s type system
previously supported only regions that followed a strict last-
in-first-out (LIFO) discipline. The LIFO restriction keeps
type checking simple and naturally provides a form of re-
gion subtyping that is important for writing reusable code
(see Section 2).

Unfortunately, LIFO behavior has well-known limitations.
A key problem is that an object’s lifetime is fixed when it is
allocated, so subsequent input and computation can neither
shorten nor extend the lifetime. Furthermore, regions are
efficient for large collections of objects that need to be deal-
located together, but they are less so for small collections.
In particular, the costs for creating and deallocating a re-
gion make regions expensive for single objects. Until now,
garbage collection has been our best solution in such cases.

The work described here augments Cyclone with addi-
tional type-safe memory-management options to help pro-
grammers with these situations. The new options, described
in Sections 3–5, include (a) dynamic regions, (b) unique
pointers, and (c) reference-counted objects. Dynamic re-
gions provide support for region deallocation at almost any
program point and thus can be used to avoid the LIFO con-
straints of lexical regions. However, this flexibility incurs
some run-time overhead and possible exceptions. Unique
pointers are based on linear (more properly, affine) type
systems and provide lightweight memory management for
individual objects. In particular, a unique pointer’s ob-
ject can be deallocated at any program point. However,
unique pointers cannot be freely copied, and there are re-
strictions on how they can be accessed when placed in a
shared object. Finally, pointers to reference-counted objects
are treated similarly to unique pointers except that copies
of the pointer are allowed at the price of maintaining a ref-
erence count. When all copies of the pointer are destroyed,
the object is deallocated.

In our experience, it is extremely useful to have such a
large set of memory-management options so that program-
mers can choose a strategy that works best for their applica-
tion. Section 6 demonstrates how we tuned the performance
of two systems applications: an event-based web server and
MediaNet [29], an overlay network for streaming data. In
both cases we were able to keep memory consumption very
low. For MediaNet, using unique and reference-counted
pointers increased throughput by up to 42% compared to
relying entirely on conservative garbage collection.

However, there is a danger that so many different options

will overly complicate the language and make it impossible
to write reusable libraries. Thus, our most important con-
tribution is a design that focuses on uniformity and code
reuse. For example, dynamic regions reuse the lexical re-
gion machinery, and reference-counts are built on top of
unique pointers. Furthermore, we provide constructs called
open and alias that support controlled “pinning” for dy-
namic regions and controlled aliasing for unique pointers
respectively. Crucially, these constructs let programmers
write generic functions that can operate over lexical-region,
dynamic-region, unique or reference-counted pointers.

2. LEXICAL REGIONS
We begin by reviewing our previous work on region-based

memory management for Cyclone [22]. We then describe
important limitations of this work.

2.1 Review
All memory objects in Cyclone are placed in a logical con-

tainer called a region The previous version of Cyclone had
three basic kinds of regions: There is one heap region (‘H)
with global scope that conceptually lives forever. Objects
allocated in the heap cannot be reclaimed except with an
optional conservative garbage collector.

Stack regions correspond to local-declaration blocks. En-
tering a block creates a stack region and allocates space in
that region for the local variables. When control exits the
block, the stack region’s objects are deallocated. For exam-
ple, in the function:

void foo(int x) {

if (x)

L:{ int y = 3;

bar(&y);

}

}

entering the block labeled L creates a region named ‘L and
allocates space for the local variable y. The region is deal-
located after the call to bar. If the programmer omits the
label on a block, the compiler generates a fresh label. Stack
regions are really a special case of lexical regions that admits
a faster implementation by disallowing dynamic allocation.

Lexical regions1 also have creation and deallocation deter-
mined by scope, but a handle lets the program allocate ob-
jects into the region throughout the region’s lifetime. Allo-
cation primitives take handles so programs determine object
lifetimes at an allocation site. For example, in the function:

void baz() {

{ region<‘r> h;

int *x = rmalloc(h,sizeof(int));

*x = 3;

int *y = baf(h,x);

}

}

we create a fresh region named ‘r with an allocation handle
h. The handle can be passed to rmalloc to allocate storage.
It can also be passed to a user-defined function, such as

1Our previous paper [22] referred to lexical regions as dy-
namic regions due to their dynamically-determined sizes;
in this paper we use the latter term for regions with
dynamically-determined lifetimes.

baf, so a callee can allocate data in the region, and return
results that might point into it. In our example, all data
placed in h’s region is deallocated after the call to baf. The
ability to pass handles as first-class objects lets us allocate
a dynamically-determined number of objects in any caller’s
region.

The primary goal of the type system is to ensure programs
never dereference dangling pointers. To do so, we track the
set of regions that are live at each program point, and aug-
ment pointer types with the region name of the region into
which the value points. Thus, an attempt to dereference a
pointer into a region is allowed only if the region is still live.
The lexical scoping discipline makes it easy to track the set
of live regions statically because deallocation happens only
at structured program points.

Region names are type-level variables that describe re-
gions instead of types. For example, ‘H is the region name
for the heap, and int *‘H is a heap pointer. Lexical regions
have names that are in scope for the corresponding code
block. Handles have types of the form region_t<‘r>, where
‘r is the name of the region into which objects are placed
when the handle is used for allocation. For instance, if h has
type region_t<‘r>, then rmalloc(h,sizeof(int)) returns
a pointer of type int *‘r. We use intraprocedural type
inference and well-chosen defaults to avoid writing many re-
gion annotations; for example, the region annotations on x,
y, and h are inferred in the examples above.

Functions and type constructors may be parameterized
by type and region variables. For example, the following
length function accepts lists with any element type and with
the list spine allocated in any (still-live) region.

struct List<‘a,‘r> {

‘a hd;

struct List<‘a,‘r> *‘r tl;

};

int length(struct List<‘a,‘r>*‘r lst) {

int i=0;

for(; lst != NULL; lst = lst->tl) ++i;

return i;

}

For safety, a pointer type is considered well formed only
when its region name is in scope. For example, consider a
function that tries to return a dangling pointer to a local
variable:

int *‘L bad() {

L: { int x = 3;

return &x;

}

}

Because x is declared in block L, the address of x has type
int *‘L. Our scoping rules state that ‘L is not in scope
outside the block, so int *‘L is not well-formed as a return
type, and Cyclone would flag this as an error.

However, Cyclone supports existential types, which can
hide a region in a function’s return type. For example, one
can write something similar to:

(∃‘r. int *‘r) bad() {

L: { int x = 3;

return pack(‘L,&x) as ∃‘r. int *‘r;

}

}

(The actual syntax for existentials is shown in Section 6).
The result type is well-formed and allows a dangling pointer.
Thus, in general, the set of live regions is a subset of those
that are in scope. To prevent access to a deallocated region,
the type system keeps track of which regions are live at
each program point. An intraprocedural analysis is extended
across function boundaries by requiring an explicit effect
that records the set of regions that must be live across the
call. By default, Cyclone assumes all region parameters are
live across the call. In practice, this default works well and
thus programmers almost never write explicit effects.

Finally, we have a natural notion of subtyping: If the
region named ‘r1 outlives the region named ‘r2, then we
can coerce a value of type τ *‘r1 to type τ *‘r2 because
the latter type allows access at strictly fewer program points.
For instance, the following code is well-formed:

void h(int *‘r1 x, int *‘r2 y) {

L:{ int *‘L z = (rand()) ? x : y;

...

}

}

Note that z is assigned either a ‘r1 or ‘r2 pointer. Since
both regions must be live across the call, they naturally
outlive ‘L, so we can safely promote x and y to ‘L pointer
types. If regions did not have structured scope, such sub-
typing would not arise naturally. We remark that the type
system supports deep subtyping along read-only pointers.
Thus, if τ1 is a subtype of τ2 and ‘r1 outlives ‘r2, then τ1*

‘r1 is a subtype of τ2 const *‘r2.
For this and several other reasons, lexical regions lead to

convenient programming and a simple type system. Per-
haps the most compelling advantage is that the system is
completely static, so there is no need for run-time checks.

2.2 Limitations of Lexical Regions
Unfortunately, lexical regions provide insufficient control

over memory lifetimes. First, the region-deallocation point
is determined at region-allocation time, so programs cannot
choose to deallocate based on computation following region
allocation. For instance, we cannot decide to deallocate a
region based on a user input.

Second, regions are often forced to live longer than neces-
sary. For example, a callee cannot deallocate a region allo-
cated by a caller, even if the caller will not later access the
region. Conversely, callees cannot give callers freshly allo-
cated regions, which forces callers to allocate regions earlier
than necessary. This restriction makes important idioms
impossible, such as the copying collector of Wang and Ap-
pel [44]. In general, any iterative process that maintains
state across iterations is forced to leak memory; the state
must reside in a region allocated outside of the loop. In
other words, there is no support for a “tail-call” that deal-
locates a region before performing a call.

Third, objects often live longer than necessary because
pointers allocated before a region exists cannot be used to
access an object in the region. In particular, global variables
can access only heap-allocated data.

Fourth, manipulating nonstack regions takes more time
and space than using malloc/free for an individual object.
For regions holding many objects, amortization overcomes
this cost. But for many programs, individual objects have
distinct points of “last use” so aggregating lifetimes retains

excessive memory.
In other implementations and designs, these limitations

have been noted and partially addressed. For instance, the
ML Kit compiler [38] includes a special reset primitive that
is used to deallocate regions early, but its use is an internal
optimization whose soundness is not captured by the type
system. The Capability Calculus [41] supports deallocation
at any program point, but requires much more elaborate
effects and region aliasing information. Other approaches
are discussed in Section 7, but no solution seems to provide
the degree of control we have found necessary. Thus, we
have adapted several mechanisms—dynamic regions, unique
pointers, and reference-counted objects—each with its own
strengths and weaknesses, to provide programmers a better
set of tradeoffs. The following sections discuss these new
mechanisms.

3. DYNAMIC REGIONS
Our first addition to Cyclone is a form of dynamic regions

inspired by the work of Hawblitzel and von Eiken [25]. Dy-
namic regions, like lexical regions, are containers that allow
allocation of individual objects, but only deallocation of the
entire container. Unlike a lexical region, a dynamic region
can be explicitly deallocated at (almost) any program point.

To ensure that a dynamic region is not accessed after it
has been deallocated, we associate extra state with the re-
gion that must be checked at runtime before granting access
to the region. If the region has been deallocated, the access
check fails by throwing an exception. This check is analo-
gous to a checked type cast to a live, lexical region.

To avoid checking the state each time a dynamic region
is accessed, we provide a lexically scoped open construct, as
this example demonstrates:

void foo(dynregion_t<‘r,‘H> k) {

int *‘r x;

{ region h = open(k); //grants access to ‘r

x = rmalloc(h, sizeof(int));

*x = 42;

bar(h,x);

}

free_dynregion(k); //destroys ‘r

}

The function takes a parameter k that is a key for the dy-
namic region ‘r. The key contains the state indicating
whether the region has been deallocated, as well as a ref-
erence to the region itself. This state must persist beyond
the lifetime of the region because it may be consulted after
the region has been deallocated. In this example, the state
is stored in the heap region (‘H), but, in general, the state
can be allocated anywhere. The key can be used only when
the region in which it resides is known to be live.

In the example above, ‘r is a region name in scope in
foo. However, it is not assumed to be live upon entry to the
function—by default, regions occurring within dynregion_t

are not assumed live (though an explicit effect can indicate
otherwise). Thus, any attempt to dereference a pointer into
‘r will be rejected by the type checker. The open construct
allows access to a dynamic region given a key. In particu-
lar, region h = open(k); S takes a key k, checks that the
region has not been deallocated, and if so, binds a handle
for the region to h. Access to the region is granted through-
out the scope of the statement S. Thus, in the scope of an

open, one can freely allocate, dereference and pass to func-
tions pointers into the region, exactly as though it were a
lexical region.

The primitive free_dynregion takes a key and reclaims
the storage of the associated region, updating the key’s state
to record that the region is no longer accessible. Thus, sub-
sequent attempts to open will result in an exception. If
the region is open or it has already been deallocated, then
free_dynregion fails.

Adding dynamic regions to Cyclone was extremely sim-
ple, as we already had an effect system to keep track of
regions that can be safely accessed. Indeed, we can think
of the lexical-region declaration region<‘r> h; S as an ab-
breviation for creating a dynamic region, opening it for the
scope of S, and calling free_dynregion upon exit from S.
The user is never given access to the key for ‘r, so S can-
not deallocate the region, but it can be safely deallocated
outside of S.

When coupled with existential types, dynamic regions are
fully first class: they can be placed in data structures (e.g.,
a hash table) and deallocated at will (e.g., when removing
an item from the table).

Dynamic regions have some drawbacks. First, unlike lexi-
cal regions, there is a potential for an exception to be thrown
when opening or freeing a dynamic region. Second, the key
state for a dynamic region (12 bytes in our current imple-
mentation) has to be stored somewhere and can become a
source of leaks. For instance, we can code an iterative algo-
rithm, such as Wang and Appel’s copying collector, but we
end up leaking a key for each collection. A unique pointer
to the key can prevent this leak and is an important synergy
of our mechanisms.

4. UNIQUE POINTERS
Lexical and dynamic regions are not efficient memory man-

agement mechanisms for small sets of objects, or for sets of
objects that need to be deallocated at widely varying times.
Cyclone’s unique pointers address these situations by pro-
viding for the safe and efficient deallocation of individual
objects using free.

In the presence of aliases, free can lead to unsafe pro-
grams. In particular, calling free(x) may deallocate an ob-
ject referred to by another variable y, introducing a dangling
pointer. By limiting use of free to unique—unaliased—
pointers, we avoid the problem.

Like a dynamic region, the object that a unique pointer
points to can be deallocated at will. Unlike a dynamic re-
gion, there is no run-time state to ensure that subsequent
accesses are prevented. Instead, we rely on a conventional
flow analysis to ensure that an object is never accessed once
it has been deallocated. The analysis is greatly simplified
by disallowing copies of unique pointers. More properly, at
any program point, there is at most one (usable) copy of a
value assigned a unique-pointer type. If that pointer’s ob-
ject is freed, then we need not worry about preventing access
through an alias.

The idea of using unique pointers is derived from linear
and affine type systems, and has been suggested in many
other settings (see Section 7). However, we found that a
conventional approach to linearity was far too restrictive.
In particular, a conventional linear type system prohibits
placing linear objects inside nonlinear objects. Further-
more, a conventional linear type system forces the user to

follow awkward coding idioms. For instance, to calculate
the length of a list, the list must be torn apart and recon-
structed. Finally, the introduction of linearity complicates
type abstraction (i.e., polymorphism) since we must distin-
guish linear and nonlinear types. In turn, it becomes difficult
to write reusable libraries.

Our design extends conventional approaches to linearity
in three key respects:

1. We allow unique pointers to be embedded within shared
objects, and provide an atomic swap operator that lets
them be accessed safely.

2. We provide support for temporarily treating a collec-
tion of unique pointers as if they were pointers into a
lexical region. Hence we can reuse code for “reader”
functions (e.g., calculating a list’s length) without us-
ing awkward coding idioms.

3. We provide additional polymorphism to let us abstract
over types that can contain unique pointers or nonu-
nique pointers.

The following sections discuss these aspects of our design.

4.1 Simple Unique Pointers
A unique pointer can be created by calling malloc and

destroyed by calling free. To distinguish unique pointers
from pointers into a lexical or dynamic region, we use types
of the form τ *‘U. Here, ‘U is a distinguished region name
that indicates uniqueness. Semantically, we think of τ *‘U

as an abbreviation for (ν‘r. τ *‘r) where we interpret the
binding ν‘r as meaning “there exists a fresh region ‘r.” In
other words, each unique pointer is conceptually a reference
into a region that contains a single object, and that region
is distinct from any other region.

As a simple example, we can write:

struct point { int x; int y; } *‘U p;

p = malloc(sizeof(struct point));

p->x = 1;

p->y = 2;

...

free(p);

This code declares p to be a unique pointer to a point, al-
locates storage for the point, initializes its components, and
ultimately frees it.

An intraprocedural, flow-sensitive, path-insensitive analy-
sis guarantees that variables and components of data struc-
tures are defined before they are used. The analysis is a
largely straightforward abstract interpretation that oper-
ates over a heap abstraction that includes must points-to
information. (The details of the analysis are described in
Grossman’s dissertation [20].) The important point for this
paper is that a unique pointer can become consumed (e.g.,
by passing it to free), in which case the analysis signals an
error if there is a subsequent attempt to use it. We chose
an intraprocedural analysis to ensure that type-checking re-
mains modular, and a path-insensitive analysis to ensure
scalability.

To simplify the analysis further, we ensure that there is at
most one usable copy of a unique pointer value by treating
copies as destructive. For instance, if p is a unique pointer
variable, and we assign its value to q, then in the continu-
ation, p is considered to be consumed. This ensures that if

we call free on q, the deallocated object cannot be accessed
through the alias p. At run-time, we do not actually destroy
the reference in p. Reading through a unique pointer (e.g.,
*p or p->x) does not consume it.

By default, the analysis considers unique pointers passed
to function calls as consumed, expecting the callee to deal-
locate the value, return it to the caller, or place it in a data
structure. This treatment can be overridden with an ex-
plicit noconsume attribute on the function’s prototype. If
present, the caller is ensured that the value is still defined
upon return, and the callee cannot consume the value.

At join points in the control-flow graph, our analysis con-
servatively considers a value consumed if there is an incom-
ing path on which it is consumed. For instance, if p is a
defined unique pointer and we write:

if (rand()) free(p);

then in the continuation, the analysis treats p as being con-
sumed. Unfortunately, this can lead to leaks, so we issue a
warning in this situation (and a few others such as overwrit-
ing a defined unique pointer). We could generate an error
instead, but we have found that this results in too many type
errors, primarily because of exception handlers. These han-
dlers typically have a large number of incoming control-flow
edges (at least one for each function call within the scope of
the handler) and it is almost never the case that the same
unique pointers have been consumed on every edge.

A few other details are necessary to ensure the system is
sound. First, we must prevent pointer arithmetic or expres-
sions like &p->y when p is a unique pointer because free

expects a pointer to the beginning of the object. Second,
polymorphism must be treated with some care, as we dis-
cuss in Section 4.3.

Finally, we must ensure that copies of unique pointers are
made only along unique paths. A unique path u has the form

u ::= x | u.m | u->m | *u
where x is a local variable, and u is a unique pointer. To ap-
preciate the unique-path restriction, consider this incorrect
code:

int f(int *‘U *‘r x) {

int *‘U *‘r y = x; //x and y are aliases

int *‘U z = *y;

free(z);

return **x; //accesses deallocated storage!

}

Here, x is a pointer into a conventional region ‘r and thus its
value can be freely copied into y. We then extract a unique
pointer from the contents of y and free it. Then we attempt
to access the deallocated storage through x.

In most languages based on linear types, this problem is
avoided by requiring that linear objects cannot be placed
in nonlinear containers. Our approach is similar, except
that we forbid copying of a unique value unless the path to
the value is unique. In the example above, the attempt to
initialize z with *y is a compile-time error.

4.2 Unique Pointers in Shared Data
With no additional access mechanism, the unique-path

restriction prevents using a unique pointer that is placed
within a shared object, which is too restrictive. For in-
stance, we could never use a unique pointer stored in a
global variable. To overcome this limitation, we provide

an atomic swap operation, written e1 :=: e2. The addition
of swap was inspired by Baker’s work on a linear variant
of LISP [6]. In Cyclone, swap can be performed on any
pair of (left-hand-side) expressions of unique-pointer type,
including paths that go through nonunique pointers. It is
roughly equivalent to, “temp = e1; e1 = e2; e2 = temp;”
The intuition behind the soundness of swap is that it pre-
serves our crucial invariant: at any program point there is
at most one usable copy of a unique pointer value. This
idea is formalized in our work on linearly typed assembly
language [14] and can also be justified with formalisms such
as alias types [37].

Here is a simple example of the utility of swap:

int *‘U g = NULL;

void init(int x) {

int *‘U temp = malloc(sizeof(int));

*temp = x;

g :=: temp;

if (temp != NULL) free(temp);

}

Here, g is a global variable that holds a unique pointer to an
int. The init routine creates the unique pointer and stores
it in a temporary variable. Then, the value of the temporary
is swapped for the value of g. After the swap, if temp is not
NULL, then we free the pointer. It is easy to verify that at
any program point, there is at most one usable copy of any
unique value. Furthermore, since the swap is atomic, this
property holds even if multiple threads were to execute init
concurrently.

Our atomic swap operator makes it possible to build a set
of protocols for shared, concurrent objects without losing
the advantages of local reasoning afforded by unique point-
ers. An obvious extension is to provide a form of compare-
and-swap so that we could build arbitrary wait-free struc-
tures [28].

4.3 Polymorphism
Cyclone supports polymorphism, which is crucial for writ-

ing reusable library functions. With some care, Cyclone’s
polymorphism can be extended to handle unique pointers.
The following function illustrates some of the difficulties. It
takes a (nonempty) list and turns it into a circular list:

typedef struct List<‘a,‘r> *‘r list_t<‘a,‘r>;

list_t<‘a,‘r> cycle(list_t<‘a,‘r> x) {

list_t<‘a,‘r> res = x;

while (x->tl != NULL) x = x->tl;

x->tl = res;

return res;

}

The full type of the function might informally be written

∀‘a::BT,‘r::R.list_t<‘a,‘r> → list_t<‘a,‘r>

where ‘a ranges over boxed types, indicated by the kind BT,
and ‘r ranges over regions, indicated by the kind R.

Circular lists clearly violate our uniqueness invariant, so,
we do not expect cycle to work on lists allocated in ‘U.
Indeed, if we instantiate ‘r with ‘U, the body of the function
does not typecheck, because x becomes consumed at the
assignment to res, so it cannot be used in the while loop.
To prevent this, we make a distinction between ‘U and other

regions: we make R the kind of nonunique regions, and we
have a separate, incompatible kind UR for ‘U.

A different problem arises if we attempt to instantiate a
type variable with a unique-pointer type. Consider:

‘a hd(list_t<‘a,‘r> x) { return x->hd; }

If we instantiate ‘a with int *‘U, the code does not type
check because we access a unique pointer via a nonunique
path. To avoid this problem, we introduce a kind distinction
between unique pointer types (UBT) and other boxed types.

These distinctions are sufficient to make our polymor-
phism safe, but they do not help us as much as we would like.
For example, the length function of Section 2 applies only
to lists of elements that are not unique pointers. We can
write a version for lists of unique pointers just by changing
the kind of the element type to UBT, but that version would
not work on lists with nonunique elements.

To address this, we further augment the kind system by
adding “top” elements to type and region kinds. The kind
TopR ranges over unique and non-unique regions, and the
kind TopBT ranges over all boxed types, resulting in a natural
sub-kinding lattice for both regions and types:

R UR

TopR

�
��

@
@I

BT UBT

TopBT

�
��

@
@I

The top kinds are restricted by all of the constraints imposed
by their subkinds. For instance, a value of type ‘a::TopBT

cannot be freely duplicated, must be accessed via unique
paths or a swap, and cannot be freed. We note that kinds
and sub-kinding were already necessary in Cyclone to distin-
guish types from regions, and boxed types from other types.
Fortunately, default kinds and kind inference minimize the
programmer’s burden.

Top kinds make it possible to write functions that are
polymorphic over uniqueness. For instance, the following
function destructively reverses lists:

list_t<‘a::TopBT,‘r::TopR>

imp_rev(list_t<‘a,‘r> x) {

if (x == NULL) return NULL;

list_t<‘a,‘r> y = NULL;

x->tl :=: y;

while (y != NULL) {

list_t<‘a,‘r> temp = NULL;

temp :=: y->tl;

y->tl = x;

x = y;

y = temp;

}

return x;

}

Careful examination shows that the code is well-typed, re-
gardless of the boxed type we use to instantiate ‘a or the
kind of region we use for ‘r.

Unfortunately, the restrictions imposed by the top kinds
prevent us from writing many useful polymorphic functions.
For example, many functions need to alias their arguments
internally, in a way that is not visible to the caller. It should
be safe to call such a function with a unique pointer, but
this will not be permitted by the kind discipline we have
described. The next section gives a solution to this problem.

4.4 Temporary Aliasing
Programmers often write code that aliases values tem-

porarily, e.g., by storing pointers in loop iterator variables
or by passing them to functions. Even with noconsume,
such reasonable uses would be severely hampered by the
system presented thus far. To address this problem, we in-
troduce a primitive called alias that permits temporary
aliasing of a unique pointer for the duration of a statement
block, provided that no aliases are live when the block com-
pletes. This primitive resembles and extends Walker and
Watkins’ let! [43], the unpack primitive of alias types [37],
and Clarke’s notion of borrowing [15]. Here is a contrived
example:

void inc(int *‘r1 cell) {

int *‘r1 t = cell;

print_cell(t);

*cell = *t + 1;

}

void g() {

int *‘U xptr = malloc(sizeof(int));

*xptr = 3;

{ alias <‘r2> int *‘r2 temp = xptr;

inc(temp);

}

free(xptr);

}

Imagine that inc is an existing, widely-used library function
that was not written with the constraints of uniqueness in
mind. In this simple example, it copies its pointer argument
(using both copies) and passes its pointer argument off to
another function (print_cell). Thus, inc would not be
well-typed if we replaced ‘r1 with ‘U, so ‘r1 is restricted to
nonunique regions (kind R).

The function g creates a unique pointer xptr that it wishes
to pass to inc. It does so by using an alias declaration
to (a) introduce a fresh region variable ‘r2 of kind R and
(b) introduce an alias for xptr in the locally-bound variable
temp. The temp alias is assigned the type int *‘r2 and can
thus be passed to inc and freely copied. The original unique
pointer, xptr, is considered consumed for the duration of
the block. Thus, it is impossible for the value to be freed
during the execution of the declaration’s block. At the end
of the alias block, any copies of the unique pointer become
unusable, since ‘r2 goes out of scope. This allows us to once
again treat xptr as if it is a unique pointer so that we can,
for instance, pass it to free.

In short, alias lets us temporarily treat a unique pointer
as if it were a pointer into a conventional region, without los-
ing the ability to recycle the storage later. Throughout the
scope of the alias, we can make copies of a pointer, place
it in conventional (shared) data structures, etc. The fresh
region name, ‘r2, ensures that no (usable) copies escape the
scope of the construct.

Viewed from another perspective, the flow analysis and
type system are preventing the unique pointer from being
deallocated, at least temporarily. Thus, if we introduce a
lexically scoped region ‘r2, the unique pointer will always
outlive ‘r2. Thus, it is safe to treat τ *‘U as a subtype of τ
*‘r2. Indeed, it is sound to extend this subtyping relation
through read-only type constructors, so that we can treat
an indeterminate number of unique pointers as if they were
references into ‘r2.

For example, consider the following definitions:

struct CList<‘a,‘r> { // read-only lists

‘a hd;

struct CList<‘a,‘r> *const ‘r tl;

};

typedef

struct CList<‘a,‘r>*const ‘r clist_t<‘a,‘r>;

int clength(clist_t<‘a,‘r::R> x);

int ulength(list_t<‘a,‘U> x) __noconsume(1)__ {

int res;

{ alias<‘r2> clist_t<‘a,‘r2> t =

(clist_t<‘a,‘U>)x;

res = clength(t);

}

return res;

}

The clist_t constructor is the same as list_t except that
the list spine must be read-only. The clength function takes
a read-only list where each cons cell is, as far as the function
is concerned, allocated in a nonunique region ‘r. Through
conventional subtyping, it is possible to pass a list_t, al-
located in some nonunique region to clength. That is,
list_t<‘a,‘r> is a subtype of clist_t<‘a,‘r> for any type
‘a and any region ‘r.

However, it is also possible to pass a unique list_t to
clength as shown by the function ulength. In that function,
we first coerce the value x to a read-only list. We then bind
it with the alias construct to a temporary that allows us to
promote the clist_t<‘a,‘U> value to a clist_t<‘a,‘r2>

value. We then pass the ‘r2 version to clength. At the end
of the function, we are ensured that x is not consumed which
is required due to the noconsume attribute. In turn, this
ensures that the caller can continue to use, and ultimately
free, the list.

What is the intuition behind the soundness of such a
“deep” alias? It is clear that region scoping prevents any
copies of the pointers from escaping. By assigning these tail
pointers nonunique pointer types, we are preventing some
function from deallocating one of the cells throughout the
call to length. Furthermore, because we have a unique root
for the data structure (i.e., exclusive ownership), there can
be no other way to get to these values and free them.

It may seem that the read-only requirement is too strong,
but the counterexample below shows its necessity. In the ex-
ample, we overwrite one of the unique pointers with another
to create a circular list by taking advantage of alias. The
type-checker would not reject the assignment since we have
temporarily given all the unique pointers the same type (a
list pointer into region ‘r). But on exit from the alias, we
free what the tail of the list points to, namely the list itself.
We then attempt to access the deallocated storage. To pre-
vent this problem, we must therefore restrict deep aliasing
to read-only paths. This is not surprising as deep subtyping,
in general, is restricted in the same fashion.

‘a foo(list_t<‘a,‘U> x) {

{ alias<‘r> list_t<‘a,‘r> temp = x;

temp->tl = temp; //unsound: creates cycle!

}

list_t<‘a,‘U> tail = x->tl;

free(tail);

return x->hd;

}

For improved programmer convenience, the Cyclone type-
checker optimistically inserts alias blocks around function-
call arguments that are unique pointers when the formal-
parameter type is polymorphic in the pointer’s region. If
this modified call does not type-check, we remove the in-
serted alias. For example, one can rewrite the ulength

function from the previous section as simply:

int ulength(list_t<‘a,‘U> x) __noconsume(1)__ {

return clength(x);

}

This backtracking scheme is much like Aiken et al.’s ap-
proach for inferring uses of a similar confine construct [3].

We have not yet proven the soundness of our alias con-
struct, though we are confident that it is true. As mentioned
previously, the shallow version of alias can be seen as a ver-
sion of Walker and Watkins’ let!. However, we have left the
soundness of deep alias to future work.

5. REFERENCE-COUNTED OBJECTS
Reference counting is often used to track the lifetimes of

shared objects in systems applications; for example, it is
used in both COM and in the Linux kernel. Cyclone sup-
ports a form of reference counting that builds on unique
pointers. This has two great advantages: First, we introduce
almost no new language features, rather only some simple
run-time support. Second, the hard work that went into
ensuring that unique pointers coexisted with conventional
regions is automatically inherited for reference-counted ob-
jects.

We define a new reference-counted region ‘RC, whose ob-
jects, when allocated, are prepended with a hidden reference-
count field. As with unique pointers, the flow analysis pre-
vents the user from making implicit aliases. Instead, ‘RC

pointers must be copied explicitly by calling alias_refptr,
which has type:

‘a *‘RC alias_refptr(‘a *‘RC) __noconsume(1)__;

Calling alias_refptr creates an alias and increases the ref-
erence count of the underlying object. The noconsume at-
tribute specifies that the caller can still use the original
pointer, as well as the newly returned pointer. In essence,
they are both explicit capabilities for the same object.

A reference-counted pointer is destroyed by a call to:

void drop_refptr(‘a *‘RC);

This consumes the given pointer and decrements the object’s
reference count; if the count becomes zero, the memory is
freed. As with unique pointers, the flow analysis warns when
an ‘RC pointer is potentially “lost” at a control-flow join
point. This helps ensure that we do not forget to decrement
the counter on some path. Most importantly, we guarantee a
pointer is not prematurely freed due to a mismanaged count.

We assign ‘RC the kind TopR. Thus pointers into it are
treated the same as unique pointers, except they cannot
form part of a unique path, and cannot be passed to free.
Thus, a function such as imp_rev (Section 4.3) that ab-
stracts over TopR can be passed a reference-counted object.

6. PROGRAMMING EXPERIENCE
Cyclone has been used for several projects where safety

is important and designers felt garbage collection was in-
appropriate [34, 33, 10]. We have used the language to

build the Cyclone compiler, and a large collection of li-
braries and tools. In this section, we describe our overall
assessment of Cyclone’s memory-management support, fol-
lowed by more detailed experiences with an event-based web
server and in an overlay network for streaming data [29]. We
also present performance results demonstrating the ability
to control memory consumption from within our language.

6.1 Overall Experience
Not surprisingly, code that does only heap allocation and

relies upon garbage collection is the easiest to write and
maintain. On the other hand, we generally found that we
could improve performance and/or space overheads by judi-
cious application of the other options.

Stack and lexical region allocation are relatively easy to
use, due to the local region inference, the carefully chosen
default effects, and the fact that we developed most of our
libraries with region allocation in mind. For instance, the
string, standard I/O, list, and hashtable libraries all expect
region-allocated data. There are annoying aspects, such as
having to parameterize type definitions by a suitable number
of regions, and having to pass region handles to the right
functions. Support for nested functions (i.e., closures) would
ease the latter considerably.

Dynamic regions are as easy to use as lexical regions, and
sometimes easier. For instance, dynamic region keys can be
placed in global variables that hold cached results, such as
lexemes in our compiler.

Our initial design for unique pointers had no support for
alias or placing unique pointers in shared objects. We
quickly found this design unusable. When we added sup-
port for these features, coding become easier, though still
somewhat tedious. With the addition of our primitive alias
inference, writing code became much easier.

Nonetheless, room for improvement remains. For instance,
our alias inference is restricted to function call contexts. In
MediaNet, inference discovers 71% of the 66 needed alias

statements. Of the ones that remain, the majority are due
to the need to perform pointer arithmetic on or take the ad-
dress of unique pointers. A more general constraint-based
inference could discover these and other uses. Similarly,
support for a restrict mechanism in the style of Aiken et
al. [3] might help eliminate the need for swapping, at least
for single-threaded code.

6.2 Web Server
We built a simple, space-conscious web server to demon-

strate how unique pointers give Cyclone programmers fine-
grained control over memory use. The web server allocates
its objects either statically, on the stack, or with unique
pointers. Consequently, it does not need a garbage collector
at all, and we linked it with the Lea allocator [30] instead.

The server is single threaded, and supports concurrent
connections using non-blocking I/O and an event library in
the style of libasync [31] and libevent [35]. After opening a
socket to listen for HTTP connections, the server enters an
event loop that dispatches ready file descriptors or signals
to callbacks registered by the server. A callback is imple-
mented as a closure consisting of a pointer to a function
and an environment that is passed to the function when it
is called. Because concurrent HTTP connections overlap in
a non-nested fashion, we used unique pointers to implement
closures and environments, rather than using our lexical re-

gion constructs.
Our callbacks are implemented with Cyclone structs:

struct CB { <‘a::TopBT> : regions(‘a) > ‘H

void (*f)(int,short,‘a);

‘a env;

};

Here, ‘a is an existentially-bound type variable that rep-
resents the type of the environment, and f is a function
pointer that expects the environment env of type ‘a to be
passed as its third argument. The first argument of f will be
the ready file descriptor or signal, and the second argument
tells the function whether the first argument is a descriptor
ready for reading, a descriptor ready for writing, or a sig-
nal. The environment type ‘a is declared with kind TopBT,
which is the kind of boxed types that are potentially unique
pointers. (The outlives constraint “regions(‘a) > ‘H” is
necessary in practice as described in our previous work [22],
but for simplicity, we ignore it here.) In our web server,
environments are either integers or unique pointers to com-
pound objects. When the environment is a unique pointer,
our convention is that the callback itself is responsible for
freeing the environment if necessary.

File-descriptor callbacks are registered with the fdcb func-
tion, which has the following type:

void fdcb(int fd, short ev, struct CB *‘U cb);

For example, fdcb(5,EV_READ,cb) registers a callback that
waits for input (indicated by the constant EV_READ) on file
descriptor 5. Here cb is a unique pointer to a callback struc-
ture that the caller must allocate. The callback structure is
freed by the event loop when the callback is invoked.

Our web server is optimized for space usage. When a file
is requested by a client, the server allocates a small buffer
and uses the buffer to read the file and send it to the client
in chunks. We used a 1KB buffer size for our measurements,
but of course the size is configurable. Figure 1 demonstrates
the tight control over memory that we achieved, by tracking
the memory use of the web server under a sustained load
with a maximum of 40 concurrent connections. The x-axis
plots CPU time in terms of clock ticks (as determined by
the clock() system call), while the y-axis plots memory
consumed. We also plot the total space reserved by the
allocator (i.e., acquired from the operating system). Our
profiler confirms that all dynamic memory is stored in the
unique region, which occupies at most 40KB or so (1KB per
40 connections) of the total reserved memory of 44KB. The
server thus makes very efficient use of heap memory, with
little fragmentation. And, of course, there are no pauses
introduced by garbage collection.

6.3 MediaNet
MediaNet is an overlay network for performing on-line,

adaptive scheduling for packet streams with user-specified
resource constraints [29]. Each node in the network runs
a local server, implemented in Cyclone, that communicates
with the other servers to deliver and adaptively transform
streaming data. Each local server behaves according to a
configuration program called a Continuous Media Network
(CMN). This is simply a directed acyclic graph (DAG) of op-
erations, where each operation works on the data as it passes
through. As network conditions change, a global sched-
uler may reconfigure local schedulers to implement better-
performing CMNs. On each local scheduler, the new CMN

reserved
unique

44

1.44 KTime (CPU clock ticks)

M
em

or
y

U
se

d
(K

B
)

Figure 1: Memory use of the web server with up to 40

concurrent clients

will begin to run alongside the old one, until all old data has
been delivered and the old CMN can be removed.

In the local-scheduler implementation, we allocate CMNs
in dynamic regions; the currently-active CMN is in the cur-
rent region, while the new CMN, present only during recon-
figuration, is in the new region. After reconfiguration, the
current region can be freed, and the new region becomes
current. Regions work well for CMNs because all the rele-
vant data is allocated and logically deleted at the same time.
Dynamic regions are necessary because the lifetimes of the
current and new CMNs overlap, but are not nested.

The packets sent between operations are implemented as
a simpler variant of Linux’s skbuffs, called streambuffs:

struct StreamBuff { <i::I>
... // three omitted header fields

tag_t<i> numbufs;

struct DataBuff<‘RC> bufs[numbufs];

};

The packet data is stored in the array bufs. Note that
bufs is not a pointer to an array, but is flattened directly
within StreamBuff. Thus StreamBuff elements will vary in
size, depending on the number of buffers in the array. The
numbufs field holds the length of bufs. The notation <i::I>
introduces an existential type variable that has integer kind
I, and is used by our type system to enforce the correspon-
dence between the numbufs field and the length of the bufs

array. Databuffs store packet data:

struct DataBuff<‘r> {

unsigned int ofs;

char ?‘r buf;

};

The buf field points to an array of the actual data. The ?

notation designates a pointer to a dynamically-sized buffer,
which is accompanied by bounds information to prevent
overflow. The ofs field indicates an offset, in bytes, into
the buf array. This offset is necessary when ‘r is ‘U or
‘RC since pointer arithmetic is disallowed in those cases; the
StreamBuff definition allocates buf in ‘RC.

While databuffs are reference-counted, we allocate stream-
buffs uniquely, so they can be freed immediately after the

A buffer with data

1234

0 4 00 0

A B C

Figure 2: Pointer graph for three streambuffs

corresponding data is sent. When multiple streambuffs must
refer to portions of the same packet data, we clone them as
shown in Figure 2. Here, three individual streambuffs A,
B, and C share some underlying data; unique pointers have
open arrowheads, while reference-counted ones are filled in.
This situation could have arisen by (1) receiving a packet
and storing its contents in A; (2) creating a new buffer B
that prepends a sequence number 1234 to the data of A; and
(3) stripping off the sequence number for later processing
(assuming the sequence number’s length is 4 bytes). Thus,
C and A are equivalent. When we free a streambuff, we
decrement the reference counts on its databuffs, so they will
be freed as soon as possible.

An earlier version of MediaNet stored all packet data in
the garbage-collected heap, and used essentially the same
structures for packet data. One important difference was
that databuffs contained an explicit refcnt field managed
by the application to track aliasing. If an operation deter-
mined that no aliases to a packet’s data existed, the data
could be safely mutated, improving performance. Unfortu-
nately, this approach yielded a number of hard-to-find bugs
whose appearance depended on configuration, data format,
and timing. The current version uses ‘RC pointers instead of
manual counts. This greatly reduces the possibility of mis-
managing the count, and lets us free the data immediately
after its last use.

6.3.1 Performance
Although moving streambuffs and databuffs to unique

pointers and reference counting does not eliminate Medi-
aNet’s reliance on the garbage collector, it does significantly
improve performance. In a simple experiment, we used the
TTCP microbenchmark [32] to measure MediaNet’s packet-
forwarding throughput and memory use for varying packet
sizes. We measured two configurations:

• gc+free is MediaNet built as described above, using
the Boehm-Demers-Weiser (BDW) conservative garbage
collector [9], version 6.2α4, for garbage collection and
manual deallocation.

• gc is as above, but with streambuffs and databuffs
stored in the garbage-collected heap.

For our experimental setup, we used three 1 GHz Pentium
III’s, each running Linux kernel 2.4.18 with 250 MB of RAM.
The machines were directly connected in a line via gigabit
Ethernet (using Intel Pro/1000 F cards), with the middle
machine acting as a router. The MediaNet server ran on
this machine, and the TTCP sender and receiver ran on
opposite ends.

Figure 3 plots the total throughput of MediaNet, in me-
gabits per second, as a function of packet size (note the
logarithmic scale). Each point is the median of 21 trials in
which 5000 packets are transferred, with little variance: the

100 1000 10000
packet size (bytes)

0

100

200

300
th

ro
ug

hp
ut

 (M
b/

s)

gc+free
gc

Figure 3: MediaNet throughput

semi-interquartile range2 is typically less than 0.1% of the
median. The two configurations perform roughly the same
for smaller packet sizes, but gc starts to fall behind as pack-
ets become larger than 512 bytes. The largest gap is for
2 KB packets, where the gc+free case achieves 42% better
throughput; at 32 KB packets the improvement is 21%.

Figure 4 illustrates the memory usage of each configu-
ration for the experiment in which 5000 4 KB packets are
transferred. This graph has the same format as the graph
in Figure 1, but additionally shows the heap and reference-
counted regions. Also, the reserved memory for the gc+free
case is not shown.

The gc configuration exhibits a sawtooth pattern, where
each peak roughly coincides with a garbage collection. Inter-
estingly, the locations of the peaks also exhibit a sawtooth
trend; the BDW collector often collects before all available
memory is exhausted, and delays some work to reduce pause
times. The large gap between the topmost peak and the
amount of reserved data is evidently fragmentation. The
gc+free configuration both uses and reserves far less mem-
ory (128 as opposed to 840 KB for reserved memory, and
8 as opposed to 420 KB of peak used memory) There is
some initial data allocated in the heap that stays constant
through the run, and the reference-counted and unique data
(the small line at the bottom) never consume more than
a single packet’s worth of space, since each packet is freed
before the next packet is read in.

For comparison, we also ran our experiment using the Lea
allocator. It performed slightly better than gc+free, exhibit-
ing slightly higher throughput, and reserving less memory
(only 25 KB as opposed to 128 KB).

7. RELATED WORK
The ML Kit [38] implements Standard ML with regions.

Whole-program analysis (type inference) assigns regions us-
ing a system that (like Cyclone) has LIFO regions as its
backbone [39]. Extensions to avoid some LIFO restrictions
include an analysis for late allocation and early deallocation
of regions [2], integration with an accurate garbage collec-
tor [23], and a region reset analysis.

The RC language and compiler [19] provides language sup-
port for regions in C. Access control for regions is accom-

2The semi-interquartile range is similar to the standard de-
viation, but is relevant when choosing the median as the
single-point summarizer.

reserved
heap
unique

840 KB

81.0 clocksTime (CPU clock ticks)
gc configuration

M
em

or
y

U
se

d
(K

B
)

refcnt
heap
unique

7.78 KB

74.0 clocksTime (CPU clock ticks)
gc+free configuration

M
em

or
y

U
se

d
(K

B
)

Figure 4: MediaNet memory profile (4 KB packets)

plished by dynamic reference counts instead of static type
tests, though an analysis tends to eliminate much of the
overhead. RC does not prevent dangling pointers to data
not in regions, so there is no support for ensuring conven-
tional uses of malloc/free are safe.

Work by Bacon et al. [5] and Boyapati et al. [11] to pre-
vent data races in Java uses unique pointers as one way
to prevent two threads from simultaneously accessing the
same object. These projects use special syntax for “destruc-
tive reads” (swapping in NULL). Boyapati et al. [12] have
recently used a region-based type system for avoiding run-
time errors in Real-Time Java [7] programs. Real-Time Java
regions are like Cyclone’s dynamic regions but have a more
awkward semantics. A region is implicitly deallocated when
no thread has it opened and a rather ad hoc “portal” field
is NULL. Without portals, threads would have no way to
share memory that did not outlive one of the threads. With
unique pointers to dynamic-region keys, Cyclone program-
mers can encode portals.

Work on linear types [40], alias types [37, 42], capabili-
ties [41], and linear regions [43, 27] provide important foun-
dations for safe manual memory management on which we
have built. In making these ideas convenient in a source lan-
guage, we have needed interesting extensions like alias and
reading through unique pointers without consuming them.

Vault [16, 17] is another project adapting work on regions
and linearity to a source language. Unique pointers allow
Vault to track sophisticated type states, including whether
memory has been deallocated. To relax the uniqueness in-
variant, they use novel adoption and focus operators. Adop-
tion lets programs violate uniqueness by choosing a unique
object to own a no-longer-unique object. Deallocating the
unique object deallocates both objects. Compared to Cy-
clone’s support for unique pointers in nonunique context,
adoption prevents more space leaks, but the semantics re-
quires hidden data fields so the run-time system can deallo-
cate large data structures implicitly. Focus allows adopted
objects to be temporarily unique. Compared to swap, focus
does not incur run-time overhead, but the type system to
prevent access through an unknown alias requires more user
annotations. That said, the type system appears expressive
enough to encode swap. Compared to alias, focus is less
powerful because it applies only to a single object. Focus
also does not work as-is with multithreading, whereas im-
plementing swap atomically makes our approach sound in
a multithreaded setting. Integration with Cyclone’s multi-
threading design [21] remains future work.

Numerous projects have enriched imperative languages
with unique pointers using destructive reads to preserve
uniqueness. Using swaps instead of an implicit NULL is rare,
but has been done [6, 24]. Most systems allow temporary
aliasing of an individual object, but nothing like our “deep”
alias. Clarke’s recent work on external uniqueness [15] uses
ownership types to ensure references do not escape the scope
of a temporary alias. The technique is similar to our use of
regions, but the lack of an effects system leads to different
design decisions. Boyland [13] summarizes several projects
and proposes using static analysis to avoid the disadvan-
tages of destructive reads. An intraprocedural analysis can
allow aliases of unique objects so long as multiple aliases are
not used on any program path.

Uniqueness types in the functional language Clean [1] al-
low in-place update and functional I/O. Such types can refer
only to values pointing to objects not otherwise referenced.
A flow-sensitive “sharing” analysis ensures this restriction.

Berger et al.’s reaps [8] combine the run-time performance
advantages of regions (batched deallocation) with individual
objects (fine-grained deallocation). They permit deallocat-
ing objects within regions and report performance superior
to application-specific allocators. Reaps validate the im-
portance of regions and individual objects, but they do not
prevent dangling-pointer dereferences.

Finally, sophisticated interprocedural analyses are start-
ing to appear to detect leaks (e.g., [26]) or more generally
reason about temporal heap properties (e.g., [36]). It is not
yet clear if they are cheap enough to run on every compila-
tion or if they can give the strong safety guarantees of Cy-
clone’s intraprocedural analysis, especially in the presence of
threads and/or separately compiled libraries. On the other
hand, these analyses typically need far fewer annotations.

8. CONCLUSIONS
Cyclone now supports a rich set of safe memory-management

idioms for users unwilling to use only automatic techniques:

• Stack/lexical regions: We can avoid any run-time cost
for data whose lifetime is known sufficiently well when
allocated.

• Dynamic regions: We can aggregate the run-time cost
and potential failures for data that can be deallocated
simultaneously.

• Heap region: We can use conservative garbage collec-
tion for a portion of a program’s data.

• Uniqueness: We can support manual deallocation of
unaliased data. We can put unique pointers in non-
unique data structures by using a swap operator to
access them.

• Reference counting: We can support explicit copies of
otherwise unaliased data and reclaim the data when
no copies remain.

Users can use the best idioms for their application.
Moreover, we have designed linguistic constructs for tying

these idioms together in a coherent language that supports
reusable code amid well-known tradeoffs. Lexical regions
are the backbone of our system and exploit the convenience
of data lifetime corresponding to scope. We regain this con-
venience for dynamic regions with open and for unique and
reference-counted pointers with alias. The latter extends
previous approaches by allowing temporary aliasing of en-
tire data structures. We also use polymorphism to write
reusable code without temporary aliasing, but the coding
style is often too awkward. Finally, we provide run-time
checking when static enforcement is too onerous: Dynamic
regions provide checkable keys to relax the compile-time con-
straints of lexical regions. Analogously, reference-counting
provides checkable counts to relax the uniqueness invariant.

Together, these idioms represent significant progress to-
ward our goal of enforcing sound, user-specified idioms. Look-
ing forward, we envision a need for more specific aliasing
information and more first-class status for reference counts.
Nonetheless, we have been pleased with our ability to sup-
port natural invariants that improve actual application per-
formance and predictability.

9. REFERENCES
[1] P. Achten and R. Plasmeijer. The ins and outs of Clean

I/O. Journal of Functional Programming, 5(1):81–110,
1995.

[2] A. Aiken, M. Fähndrich, and R. Levien. Better static
memory management: Improving region-based analysis of
higher-order languages. In ACM Conference on
Programming Language Design and Implementation, pages
174–185, La Jolla, CA, June 1995.

[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi.
Checking and inferring local non-aliasing. In ACM
Conference on Programming Language Design and
Implementation, pages 129–140, San Diego, CA, June 2003.

[4] Apache Foundation. Apache web server.
http://www.apache.org.

[5] D. Bacon, R. Strom, and A. Tarafdar. Guava: A dialect of
Java without data races. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 382–400, Minneapolis, MN, Oct. 2000.

[6] H. Baker. Lively linear LISP—look ma, no garbage. ACM
SIGPLAN Notices, 27(8):89–98, 1992.

[7] G. Bellella, editor. The Real-Time Specification for Java.
Addison-Wesley, 2000.

[8] E. D. Berger, B. G. Zorn, and K. S. McKinley.
Reconsidering custom memory allocation. In ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 1–12, Seattle, WA,
Nov. 2002.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software – Practice and
Experience, 18(9):807–820, 1988.

[10] H. Bos and B. Samwel. Safe kernel programming in the
OKE. In 5th IEEE Conference on Open Architectures and
Network Programming, pages 141–152, New York, NY,
June 2002.

[11] C. Boyapati and M. Rinard. A parameterized type system
for race-free Java programs. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 56–69, Tampa Bay, FL, Oct. 2001.

[12] C. Boyapati, A. Sălcianu, W. Beebee, and M. Rinard.
Ownership types for safe region-based memory
management in real-time Java. In ACM Conference on
Programming Language Design and Implementation, pages
324–337, San Diego, CA, June 2003.

[13] J. Boyland. Alias burying: Unique variables without
destructive reads. Software Practice and Experience,
31(6):533–553, May 2001.

[14] J. Cheney and G. Morrisett. A linearly typed assembly
language. Technical Report 2003-1900, Department of
Computer Science, Cornell University, 2003.

[15] D. Clarke and T. Wrigstad. External uniqueness. In
International Workshop on Foundations of Object-Oriented
Languages, New Orleans, LA, Jan. 2003.

[16] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In ACM Conference on
Programming Language Design and Implementation, pages
59–69, Snowbird, UT, June 2001.

[17] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In ACM
Conference on Programming Language Design and
Implementation, pages 13–24, Berlin, Germany, June 2002.

[18] C. Fraser and D. Hanson. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley, 1995.

[19] D. Gay and A. Aiken. Language support for regions. In
ACM Conference on Programming Language Design and
Implementation, pages 70–80, Snowbird, UT, June 2001.

[20] D. Grossman. Safe Programming at the C Level of
Abstraction. PhD thesis, Cornell University, 2003.

[21] D. Grossman. Type-safe multithreading in Cyclone. In
ACM International Workshop on Types in Language
Design and Implmentation, pages 13–25, New Orleans, LA,
Jan. 2003.

[22] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
Cyclone. In ACM Conference on Programming Language
Design and Implementation, pages 282–293, Berlin,
Germany, June 2002.

[23] N. Hallenberg, M. Elsman, and M. Tofte. Combining region
inference and garbage collection. In ACM Conference on
Programming Language Design and Implementation, pages
141–152, Berlin, Germany, June 2002.

[24] D. Harms and B. Weide. Copying and swapping: Influences
on the design of reusable software components. IEEE
Transactions on Software Engineering, 17(5):424–435, May
1991.

[25] C. Hawblitzel and T. von Eiken. Type system support for
dynamic revokation. May 1999.

[26] D. L. Heine and M. S. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. In
ACM Conference on Programming Language Design and
Implementation, pages 168–181, San Diego, CA, June 2003.

[27] F. Henglein, H. Makholm, and H. Niss. A direct approach
to control-flow sensitive region-based memory management.
In Principles and Practice of Declarative Programming,
Florence, Italy, Sept. 2001.

[28] M. Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124–149,
Jan. 1991.

[29] M. Hicks, A. Nagajaran, and R. van Renesse. MediaNet:

User-defined adaptive scheduling for streaming data. In 6th
IEEE Conference on Open Architectures and Network
Programming, pages 87–96, San Francisco, CA, Apr. 2003.

[30] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[31] D. Mazières. A toolkit for user-level file systems. In
USENIX Annual Technical Conference, pages 261–274,
Monterey, CA, June 2001.

[32] M. Muuss. The story of TTCP.
http://ftp.arl.mil/~mike/ttcp.html.

[33] P. Patel and J. Lepreau. Hybrid resource control of active
extensions. In 6th IEEE Conference on Open Architectures
and Network Programming, pages 23–31, San Francisco,
CA, Apr. 2003.

[34] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading transport protocols using untrusted
mobile code. In 19th ACM Symposium on Operating
System Principles, Oct. 2003. To appear.

[35] N. Provos. libevent — an event notification library.
http://www.monkey.org/~provos/libevent/.

[36] R. Shaham, E. Yahav, E. Kolodner, and M. Sagiv.
Establishing local temporal heap safety properties with
application to compile-time memory management. In Static
Analysis Symposium, pages 483–503, San Diego, CA, June
2003.

[37] F. Smith, D. Walker, and G. Morrisett. Alias types. In 9th
European Symposium on Programming, volume 1782 of
Lecture Notes in Computer Science, pages 366–381, Berlin,
Germany, Mar. 2000. Springer-Verlag.

[38] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H.
Olesen, and P. Sestoft. Programming with regions in the
ML Kit (for version 4). Technical report, IT University of
Copenhagen, Sept. 2001.

[39] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, Feb. 1997.

[40] P. Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors, Programming Concepts and Methods,
Sea of Galilee, Israel, Apr. 1990. North Holland. IFIP TC 2
Working Conference.

[41] D. Walker, K. Crary, and G. Morrisett. Typed memory
management in a calculus of capabilities. ACM
Transactions on Programming Languages and Systems,
24(4):701–771, July 2000.

[42] D. Walker and G. Morrisett. Alias types for recursive data
structures. In Workshop on Types in Compilation, volume
2071 of Lecture Notes in Computer Science, pages 177–206,
Montreal, Canada, Sept. 2000. Springer-Verlag.

[43] D. Walker and K. Watkins. On regions and linear types. In
6th ACM International Conference on Functional
Programming, pages 181–192, Florence, Italy, Sept. 2001.

[44] D. Wang and A. Appel. Type-preserving garbage collectors.
In 28th ACM Symposium on Principles of Programming
Languages, pages 166–178, London, England, Jan. 2001.

