
Detecting Conflicts Among Declarative UI Extensions

Benjamin S. Lerner
Brown University

blerner@cs.brown.edu

Dan Grossman
University of Washington
djg@cs.washington.edu

Abstract
We examine overlays, a flexible aspect-like mechanism for third-
party declarative extensions of declarative U Is. Overlays can be de-
fined for any markup language and permit extensions to define new
content that is dynamically woven into a base U I document. While
powerful, overlays are inherently non-modular and may conflict
with each other, by defining duplicate or contradictory U I compo-
nents. We construct an abstract language to capture core overlay se-
mantics, and design an automatic analysis to detect inter-extension
conflicts. We apply the analysis to a case study of Firefox exten-
sions, finding several real-world bugs. Our analysis provides low-
level feedback to extension developers and high-level reports to end
users. Finally, we show how variants of overlays more expressive
than those of Firefox complicate conflict detection.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques — User interfaces; D.3.2 [Pro-
gramming Languages]: Language Classifications — Design lan-
guages

General Terms Languages, Experimentation

Keywords Extensions, web browsers, overlays, conflicts

1. Introduction
Many modern markup languages now exist for designing user
interfaces—e.g., Mozilla’s XUL, Microsoft’s XAML, and HTML—
and their distinguishing feature is providing a declarative means of
specifying the structure of a U I separately from its behavior. The
use of such languages is growing rapidly: all webapps, classic
applications (like Firefox), and even entire smartphone OS shells
(such as HP’s webOS or Mozilla’s Boot2Gecko) are written in this
manner.

Mozilla exploited this declarative structure in a novel way: they
created a new mechanism known as overlays that allow developers
to define U I portions in separate XUL documents that are then dy-
namically woven together into a complete document. This concept
is not XUL-specific, and can be applied to any markup language.
Overlays (informally) consist of a selection of some element in the
mainline document and a content subtree to be inserted into that
element. The terminology is deliberately suggestive: overlays are
akin both to “tree-shaped patches” and to aspects. Gecko (Mozilla’s
rendering engine) then merges the overlays dynamically. Figure 1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS’12, October 22, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1564-7/12/10. . . $10.00

shows a “Hello world” example written in XUL, a simple overlay
targeting it, and its composition with the base document. Appli-
cations like Firefox use this ability heavily to modularize their U I
definitions into many smaller documents.

Mozilla applications expose the overlay mechanism to third par-
ties and thereby enable a uniquely powerful extension mechanism.
Such third party extensions can enhance or modify the program’s
base functionality in arbitrary ways; overlays are used to integrate
the extension’s U I into the existing U I. Moreover, end users can
freely install extensions to customize their browser however they
wish. This expressiveness has led to the widespread popularity
of Firefox extensions—hundreds of millions of users have down-
loaded extensions billions of times [13].

1.1 Challenges of U I Extension via Overlays
Much like aspects, overlays shift the challenge from coding around
insufficiently-expressive hooks to reasoning about overly powerful
ones. Most U I frameworks let widget authors completely control
their U I and the A P I by which others use the widget. While con-
venient for widget authors, a developer who requires functionality
from an existing widget that is not provided is helpless to remedy
that lack.

By contrast, overlays permit fine-grained third-party integration
into existing U Is without any cooperation from the underlying
U I. As with aspects, this flexibility cuts both ways. Extension
authors can precisely modify nearly any facet of the underlying
application, and avoid the inflexibility of a predetermined set of
extension points. However, extensions might in turn be extended
without their consent, so they, like the U I they target, cannot protect
their own integrity. This challenge is made worse since every
user might have installed a different browser version and a unique
combination of extensions. Unwanted or unforeseen extension
interactions may cause buggy behavior at runtime, but it is simply
infeasible for developers to anticipate all possible interactions.

The sliver lining, however, is that markup languages are not
general-purpose, and overlays are not as expressive as traditional as-
pects. Accordingly, the challenge of detecting overlay-composition
conflicts is tractable, though as we will show, even reasonably mod-
est expressiveness enhancements will greatly complicate the con-
flict detection algorithm.

1.2 Contributions
• We identify three broad groups of overlay composition errors:

structural violations of overlay requirements, and structural or
semantic violations of the underlying markup language.
• We construct an abstract notion of overlays, then show how

to summarize their effects as document transformers. These
transformers encode the semantics of the markup and overlays
in a language-neutral manner.
• We develop an automatic analysis to detect the three overlay

incompatibilities above. Our analysis uses the transformers

〈window xmlns=“. . . ”〉
〈vbox id=“msg”〉
〈description〉

Hello, XUL
〈/description〉

〈/vbox〉
〈/window〉

(a) “Hello, XUL” base document

+
〈overlay xmlns=“. . . ”〉
〈vbox id=“msg”〉

〈button〉Overlay!〈/button〉
〈/vbox〉
〈/overlay〉

(b) Overlay targeting the 〈vbox/〉

=
〈window xmlns=“. . . ”〉
〈vbox id=“msg”〉
〈description〉

Hello, XUL
〈/description〉
〈button〉Overlay!〈/button〉
〈/vbox〉
〈/window〉

(c) Composition of base with overlay

Figure 1: Simple example of XUL, overlay, and composite result (overlay is appended to existing content)

above to compute a dependency graph among the overlays.
This analysis can detect errors at extension-installation time or
earlier, preventing the end user from experiencing broken U Is.
We detect a dozen conflicts among the top 350 extensions for
Firefox 3.0.
• We examine more general combinators for overlay composition,

and show that seemingly-modest extra expressiveness makes
conflict checking exponentially harder.

The rest of this paper is structured as follows. Section 2 presents
a brief tutorial of overlays as implemented in Firefox, and Section 3
presents the three forms of inter-extension conflict that we target.
Section 4 develops our framework for modeling overlays and de-
tecting conflicts among them. Section 5 presents a case study ap-
plying this approach to Firefox extensions. Section 6 motivates two
enhancements to our modeling language, and explains why such en-
hancements greatly complicate conflict checking. Finally, Section 7
presents related and future work.

2. A tutorial on Firefox-style overlays
We introduce overlays by a simple example, and describe the steps
involved in applying overlays to a base document. Conceptually,
overlays behave like “patches on trees”: they select a target location
in the tree and define new content to be inserted at that location.

Identifying targets: Consider the base document shown in Fig. 1a,
and the simple overlay shown in Fig. 1b. An overlay defines one or
more actions, denoted by the children of the 〈overlay/〉 root node.
These children indicate a target, namely those nodes in the base
document with the same tag name and id: here, (vbox, "msg").

Inserting content: Once an action’s target is identified, the ac-
tion’s children are cloned and appended to the target node.1 These
inserted nodes are now part of the base document; subsequent ex-
tensions may overlay them as if they had been present all along.
Additionally, any attributes on the action are cloned onto the target,
overwriting any that are already present.2

Failing softly: By design, extensions may apply to multiple pro-
grams (e.g., the AdBlock Plus extension applies to both Firefox
and Thunderbird), and several extensions include optional code that
should be used if other extensions are present (e.g., TabMix Plus
detects the presence of Session Manager and modifies its U I ac-
cordingly). Gecko supports such optional code by silently ignoring
actions that do not match any targets. This can cause problems; we
address optional code differently, below.

1 We ignore for now when to run 〈script/〉s that are cloned in this process.
2 Firefox overlays, like textual patches, can also remove existing text; this

ability is rarely used, and we do not support it here.

3. Kinds of overlay conflicts
The simple operational definition of overlay application in the pre-
vious section is designed for resilience: for any base document and
any set of input overlays, it will produce a composite document.
However this deliberately masks three kinds of conflicts, which
we wish to detect and help correct: violations of document well-
formedness, language-specific semantic violations, and load-order
violations. For brevity (and generality), we will abandon the con-
crete syntax of Fig. 1b, and instead write overlays using an abstract
syntax that we define more precisely in Section 4.1.

3.1 Structural uniqueness constraints: node ids
Consider the following simple document snippet:
〈p id=“greeting”〉〈span〉Hello,〈/span〉〈/p〉

Suppose two extension authors wanted to complete the greeting by
supplying the subject:

OV1: Overlay(Insert(p#greeting, end,
〈span id=“subj”〉stranger.〈/span〉))

OV2: Overlay(Insert(p#greeting, end,
〈span id=“subj”〉friend.〈/span〉))

(Read OV1 as declaring, “Insert, into the node matching the selec-
tor p#greeting, at the end of its existing content, the new node
〈span id=“subj”〉stranger.〈/span〉.”) And suppose a later exten-
sion author wanted to modify the greeting:

OV3: Overlay(Insert(p#greeting, end,
〈span id=“mod”〉and good day,〈/span〉))

Two problems arise if a user applied both OV1 and OV2: one
in the structure of the composite, and one in its English-level
content. Structurally, the composite document is not well-formed,
because two 〈span/〉 elements exist with the same id “subj”. An
automated conflict-detection system can and should flag such errors.
By contrast, the English content of the sentence—“Hello, stranger.
friend.” or “Hello, friend. stranger.”, depending on the order of
insertion—is nonsensical, but this is beyond the scope of overlay
conflict detection. To detect and report structural conflicts, we must
have a way of summarizing the effect of each extension, particularly
any well-formedness constraints (e.g., element ids must be unique),
and check all pairs of effects for overlap.

On the other hand, if the user applied OV1 and OV3 (or OV2 and
OV3), the result would be a well-formed HTML document, since
no duplicate ids would be present. Note that the sentence might
still be nonsensical English—“Hello, stranger. and good day,”—
due to insertion order. However, the extensions are not in conflict,
but merely imprecise: they only claim to be inserted at the end
of existing content, and make no mention of their order relative to
other extensions. We will return to errors of this sort in Section 3.3.

3.2 Semantic uniqueness constraints: hotkey bindings
Uniqueness of identifiers is essentially a language-agnostic prop-
erty (all markup-based languages share this kind of well-formedness

constraint), but other properties depend on the semantics of the
markup language being used.

For instance, XUL allows developers to declare application-
wide hotkeys using 〈key/〉 elements. Assume the base document
defines a container tag 〈keyset id=“keys”/〉. Then define three
extensions:

OV4: Overlay(Insert(keyset#keys, end,
〈key key=“F” oncommand=“alert(”1”)”/〉))

OV5: Overlay(Insert(keyset#keys, end,
〈key key=“F” oncommand=“alert(”2”)”/〉))

OV6: Overlay(Insert(keyset#keys, end,
〈key key=“G” oncommand=“alert(”3”)”/〉))

The composite document is well-formed, but the intended se-
mantics of application-wide hotkeys are not satisfied: a hotkey can
only trigger one unique action, and both OV4 and OV5 expect to
run in response to the key “F”. A conflict-detection system should
detect that OV4 and OV5 conflict with each other, but that neither
one conflicts with OV6.

If the only potential conflicts were global uniqueness of re-
sources, such as ids or hotkeys, the conflict-detection problem
would be straightforward. However some conflicts are more local
in scope. Consider the semantics of XUL’s 〈radiogroup/〉s, where
at most one of its several 〈radio/〉 button children are selected.

OV7: Overlay(Insert(radiogroup#g1, end,
〈radio selected=“true”〉G1:ov7〈/radio〉))

OV8: Overlay(Insert(radiogroup#g1, end,
〈radio selected=“true”〉G1:ov8〈/radio〉))

OV9: Overlay(Insert(radiogroup#g2, end,
〈radio selected=“true”〉G2:ov9〈/radio〉))

Here, OV7 and OV8 conflict with each other, as both attempt to add
a selected item to the same group, but neither conflicts with OV9,
which adds a selected item to a different group.

The equivalent problem in HTML is still more challenging, as
there is even less structural information available. Radio 〈input/〉s
are grouped by their name attribute, rather than by a common
〈radiogroup/〉 ancestor, and so multiple groups could be inter-
leaved in the markup. Thus any automated conflict detector must
be flexible enough not to assume a particular hierarchical tree struc-
ture, but respond to attributes and other properties in the tree as
well.

3.3 Load-order constraints
We saw one example of load-order dependencies already, where
OV3 needed to assert that it loaded before OV1 or OV2, but had no
way of doing so. In a less-contrived example, extensions can build
upon each other in useful ways. Firefox extensions commonly add
new submenus to the “Tools” menu: for example, the Session Man-
ager extension adds a submenu with menu items to save currently
open tabs as a “session”, to load a previously-saved session, and to
delete saved sessions:

OV10: Overlay(
Insert(menu#tools-menu, end,

〈submenu id=“sessionManagerMenu”〉
〈item〉Load session. . . 〈/item〉
〈item〉Save session. . . 〈/item〉
〈item〉Delete session. . . 〈/item〉
〈/submenu〉))

A common use-case for Session Manager is to use sessions as
“temporary bookmarks”, where the session is used once and then
discarded. A second extension might make this available as its own
menu item:

c ∈ Comp ::= g –guarded overlay∣∣ c ; c –sequential composition∣∣ c ! c –exclusive composition∣∣ c? –optional composition
g ∈ Guard ::= o –overlay∣∣ Require(~r, g) –must be defined∣∣ Forbid(~r, g) –must be undefined∣∣ First(~r, g) –must not be overlaid yet∣∣ Last(~r, g) –must not be overlaid again
o ∈ Overlay ::= Overlay(~a)

a ∈ Action ::= Insert(s, w, htmlSubtree)∣∣ Modify(s,~t)

r ∈ Resource = Sel(s)] Id(identifier)]
Key(keyName)]
Selected(htmlSubtree)] · · ·

s ∈ Sel ::= tagName#identifier

w ∈ Where ::= before
∣∣ after

∣∣ start
∣∣ end

t ∈ Attribs ::= (attribName, attribValue)

Figure 2: Abstract syntax for overlays

• OV11: Overlay(Insert(
submenu#sessionManagerMenu, start,
〈menu〉Load/discard session. . . 〈/menu〉))

These two extensions are not in conflict, but OV11 depends upon
OV10 being loaded first: otherwise, OV11’s target node does not
yet exist. The current overlay loader in Gecko does not ensure any
deterministic loading order; indeed, individual actions of a single
overlay may be applied in arbitrary order relative to each other and
to actions from other overlays. Code such as OV11 seems to work
in practice, but there is no guarantee it will continue to do so.

4. Abstract overlays and document transformers
Overlays present a compelling means for modularizing U I defini-
tions, but specific implementation details make reasoning about
them challenging. In this section and the next, we define an analy-
sis to compute a compatible load-order among a set of overlays, or
else to find and report a set of incompatible overlays. Our strategy is
to: 1. define an abstract language of overlays and combinators (se-
quential, optional, or one-of-several composition), 2. interpret each
overlay as a document transformer describing its requirements and
effects, 3. compute a conflict dependency graph among the trans-
formers, and 4. model the base document and then topologically
sort the graph, or else find a cycle. Supporting optional (or one-of-
several) compositions is provably hard, so finally we must 5. use
heuristics to handle optional compositions. These steps will be de-
scribed in Section 4.1 through Section 4.5.

4.1 An abstract overlay language
Figure 2 defines the syntax of our abstract overlay language; we
have shown simple examples of it in the previous section. In this
section we explain the semantics of the language; in Section 5.1
we highlight some of the accommodations needed to map concrete
XUL overlays to this abstraction.

4.1.1 Overlays, resources and guards
An Overlay consists of a mandatory, atomic set of actions: all
actions must apply successfully in sequence, or else the entire
overlay fails to apply. Each action selects a target s and can either

Insert new content into it or Modify existing attributes. Insertions
occur before or after the target node, or at the start or end of its
contents.

The examples in the preceding sections highlight several distinct
types of conflicts that must all be properly accounted for by a
conflict detection algorithm. The hotkey example requires knowing
that each key must be unique within a document. The options list
example must include the HTML semantics that at most one option
be selected within a group. And the hello-world example shows
that even if all uniqueness constraints are known and modeled, an
analysis may potentially still miss higher-level conflicts that are not
expressible within the markup language. To support all of these
kinds of conflicts in a single system, in a uniform, declarative way,
our analysis will be defined in terms of an abstract set of resources,
which may include pieces of the overlay itself (e.g., ids, keys,
selectors), and guards, which may be automatically inferred or
may be assertions manually provided by the overlay author to help
further constrain when the overlay applies successfully. Finally, our
language includes compositions to express the variations needed
for targeting multiple applications. We illustrate their behavior by
revisiting the earlier examples.

“Hello, world”, revisited: Recall that OV3’s English-level con-
flict with OV1 and OV2 occurs since OV3 has no way to assert it
must load before the others. The authors of OV1 or OV2 might de-
fensively try to accommodate OV3 by claiming to overlay OV3’s
content but in fact do nothing to it:

OV1*: Overlay(
Insert(p#greeting, end,

〈span id=“subj”〉stranger.〈/span〉),
Modify(span#mod))

(In this paper, overlays marked with a star are broken variations
of a correct overlay; those marked with an apostrophe are working,
alternate versions.) This Modify action has the effect of making
OV1* depend upon—and hence load after—OV3, but there are
three fundamental problems with this approach. First, OV1 does
not actually modify the 〈span/〉 produced by OV3, so OV1* should
not claim to modify it. Second, this approach is non-local: OV1
and OV2 were written first and could not have known about OV3,
so it must be OV3’s responsibility to impose ordering constraints on
itself, rather than expect others to accommodate it. Third, and most
important, OV1* will not successfully apply if OV3 is not present,
a behavior that differs from OV1.

Instead, a better approach is to assert extra guards in the defi-
nition of OV3, so that it can express the constraint that it must not
apply when OV1 or OV2 is present:

OV3’: Forbid (Id (subj),
Overlay(Insert(p#greeting, end,

〈span id=“mod”〉
and good day,
〈/span〉)))

Read this as “OV3’ applies successfully to documents in which
the Overlay successfully applies, but not those documents that
match the Id subj”. The four types of guarded compositions apply
successfully when:

• Require(~r, g): When g succeeds and all resources in r are
present in the document
• Forbid (~r, g): When g succeeds and all resources in r are not

present in the document
• First(~r, g): When g succeeds and no resources in r have been

overlaid by some prior overlay

• Last(~r, g): When g succeeds and no resources in r will be
overlaid by some future overlay

Hotkey responses, revisited: Rather than hard-code knowledge
of the markup language’s semantics into the conflict-resolution
algorithm, constraints can be encoded using additional guards. For
example, OV4 and OV5 may each assert they must be the last key
to use the letter “F”:

OV4’: Last(Key(F), Overlay(
Insert(keyset#keys, end,

〈key key=“F” oncommand=“. . . ”/〉)))
OV5’: Last(Key(F), Overlay(

Insert(keyset#keys, end,
〈key key=“F” oncommand=“. . . ”/〉)))

Now the presence of both OV4’ and OV5’ will trigger a conflict
due to these general-purpose Last guards, rather than due to an
algorithm finely tuned to XUL’s idiosyncrasies.

Rather than require overlay authors to write these Last guards
every time they use a 〈key/〉 element, we may mechanically de-
rive them from the overlay markup. In particular, these language-
specific details can be encoded during the parsing of concrete-
syntax overlays into the abstract overlay language. This leaves the
underlying conflict-detection algorithm agnostic to the initial input
language, but also relieves authors from the tedium of writing “ob-
vious” guards.

Handling 〈script/〉 tags: Script tags violate the static, purely
declarative nature of markup. In both HTML and XUL, scripts are
(by default) run as they are encountered, and can affect how the
remainder of the input file is parsed. Overlays intrinsically require
parsing both the base document and the overlay, so there are several
possible choices for when an overlay mechanism should execute
scripts. We treat scripts as inert within the overlay document,
and execute them as they are cloned into the target document.
Overlays apply to the base document after it has finished parsing,
and therefore after its scripts have executed.

4.1.2 Composing overlays within one extension
So far, (guarded) overlays are “all-or-nothing”: they either apply
successfully or not at all. Extension authors may want to control
how their overlays are applied in a more fine-grained fashion. To
support such intentions, our overlay language includes three types
of composition: sequencing, one-of-several targeting, and optional
components.

Sequencing helps modularize overlay code: the extension au-
thor can separate overlays into logically-distinct pieces, and ensure
that they are applied to the base document in the desired order. The
sequential composition c1 ; c2 succeeds for documentsD whenever
c1 succeeds in D and c2 succeeds in the document resulting from
applying c1 to D.

One-of-several targeting is useful for the relatively frequent case
where extensions are written that may apply to multiple, “similar”
applications. For example, an extension may add a command to
the “Tools” menu of both Firefox and Thunderbird. In Firefox,
that menu is 〈menu id=“tools-menu”/〉, but in Thunderbird it is
〈menu id=“tasksMenu”/〉. Currently, extension authors essentially
write

Overlay(Insert(menu#tools-menu, end, new content),
Insert(menu#tasksMenu, end, new content))

This implicitly relies on Gecko’s quirky, silent dropping of indi-
vidual overlay actions with missing targets. This often works in
practice, but it is subtly wrong: if another extension happens to
insert a 〈menu id=“tasksMenu”/〉 element into Firefox, this exten-
sion would insert new content twice, with likely malformed results
(e.g., if the inserted content contains elements with ids, these would

become duplicated). In our overlay language, the one-of-several
composition allows extension authors to indicate mutually exclu-
sive overlays. A composition c1 ! c2 succeeds in a document D if
either c1 or c2 (or both) can apply successfully to D, but will apply
only one of them. We choose a left-biased implementation for one-
of-several targeting (i.e., if c1 can apply then it does so, and only
if it fails will c2 be tried), but an unbiased and non-deterministic
implementation is equally feasible. Neither semantics can automati-
cally detect, say, an extension that rudely adds menu#tasksMenu to
Firefox; conventionally, this is resolved by using extension-specific
prefixes for ids.

Finally, extensions often deliberately include optional behaviors
that are installed only when other extensions are installed as well.
Once again Firefox extensions rely on Gecko’s silent dropping of
unmatched overlays to implement these optional features, and this
works successfully. The unfortunate consequence, though, is that
Gecko cannot distinguish optional components (to be ignored) from
typos (to be surfaced as errors). In our overlay language, com-
ponents must be marked explicitly as c? for the composition and
conflict-detection algorithms to consider them optional; everything
else must succeed or fail as a unit.

4.2 Overlays as document transformers
A precise conflict-detection algorithm must keep track of resources
and must keep track of four kinds of guards on those resources.
Moreover, as OV10 and OV11 show, it must record how those con-
straints and available resources change as a consequence of sequen-
tially applying extensions’ compositions overlays, so that later com-
positions can see the effects of preceding ones. Ultimately, it must
compute, given a base documentD and a set of extensions ~e that de-
fine compositions ~c, some permutation of the extensions that yields
a feasible loading order (i.e., the composition D ; cπ(1) ; · · · ; cπ(n),
for some permutation π, is valid according to the analysis), or else
demonstrate some subset of the overlays that are conflicting.

To model how resources change as a consequence of a single
overlay, the analysis will view an overlay as a document trans-
former that takes an input document and produces a modified
document as a result; the analysis will then be concerned with
tracking resources as they are manipulated within successive doc-
uments. To start, we model the state of the document by a record
{Def ,Undef ,Clean,Frozen} of sets of resources describing the
set of requirements that must be defined, that must not be defined,
that must have not yet been overlaid and that must never again be
overlaid in order for the overlay to succeed. (For notational brevity,
we elide empty sets in records, below.) These sets give the over-
lay a small footprint: nothing can be inferred about resources that
are not mentioned. For instance, an empty input Def set does not
assert that the input document is empty, but rather that nothing is
known to be defined.

Our dependency analysis will reason about guarded overlays as
a pair of states (Si, So), which can be thought of as the weakest pre-
condition and strongest postcondition of the overlay; an example is
shown below. Computing this interface is purely structural (details
are in the appendix, Fig. 3). We ignore for now the complications
of one-of-several and optional compositions, and return to them in
Section 4.5.

Of the eight sets in (Si, So) for some overlay, the SDef
o and

SUndef
o sets are uniquely determined from the overlay itself, SDef

i ,
and SUndef

i . Additionally, the SFrozen
i and SClean

o sets are redun-
dant: anything that was Clean before the overlay applied, and that
was unused by the overlay, will remain Clean; similarly, the over-
lay need only check the output Frozen set of the preceding overlay,
and not vice versa. The remaining four sets can be specified or
extended independently, using the four guard types above.

This redundant representation has two advantages. First, it rep-
resents the effects of an overlay in a uniform way: we can compare
the input and output states without needing to know any internal
details of the overlay. Second, these states are closed under compo-
sition: a state pair can describe the effects of a sequence of overlays,
again without needing to know the details of the sequencing. We
rely on this fact heavily in the dependency analysis in the next sec-
tion.

The interface of “Hello, world”: Recall the definitions of OV1
and OV3’:

OV1: Overlay(Insert(p#greeting, end,
〈span id=“subj”〉stranger.〈/span〉))

OV3’: Forbid (Id (subj),
Overlay(Insert(p#greeting, end,
〈span id=“mod”〉 and good day,〈/span〉)))

The meaning of OV1 in words is “for any document containing a
node p#greeting and not containing nodes matching span#subj
or any node with id subj, OV1 will produce a document that
contains p#greeting, span#subj and a node with id subj”. In
symbols, this becomes the state pair (S1

i , S
1
o):

S1
i =

{
Def = {Sel(p#greeting)}

Undef = {Sel(span#subj), Id(subj)}

}
S1
o =

{
Def = {Sel(p#greeting),

Sel(span#subj), Id(subj)}

}
The Sel resources describe the structural changes to the document,
so that overlays can detect if their targets exist. The Id resources
encode the unique-id requirements.

Similarly, the effect of OV3’ in words is “for any document
containing a node matching p#greeting and not containing nodes
matching span#mod or any node with id mod or any node with id
subj, OV3’ will produce a document that contains p#greeting,
span#mod and a node with id mod and still does not contain any
node with id subj”. In symbols, this is the state pair (S3

i , S
3
o):

S3
i =

 Def = {Sel(p#greeting)}
Undef = {Sel(span#mod),

Id(mod), Id(subj)}

S3
o =

 Def = {Sel(p#greeting),
Sel(span#mod), Id(mod)}

Undef = {Id(subj)}

The Id (subj) constraint is added to the input Undef set by the
Forbid assertion that the specified resource not exist, and to the
output Undef set because OV3’ does not itself cause that resource
to be defined.

4.3 Determining the overlay conflict graph
Consider just the two overlays OV3’ and OV1. Can OV3’ be
composed with OV1, and if so in what order? Suppose the system
tried OV1 ;OV3’, applying OV1 first. Then the input state of OV3’
must be compatible with the output state of OV1. However, it is
clear that S1

o .Def ∩ S3
i .Undef = {Id(subj)} 6= ∅. In words,

something that OV3’ requires to be undefined is guaranteed to be
defined by OV1. This one contradiction suffices to prohibit the
ordering OV1 ;OV3’.

On the other hand, suppose the system tried the other order,
OV3’ ;OV1. This time, the intersection test above succeeds, as
well as several others. In general, for OV3’ to precede OV1 the
system must check:

S3
o .Def ∩ S1

i .Undef = ∅ (1)

S3
o .Def ∩ defs(OV1) = ∅ (2)

S3
o .Frozen ∩ used(OV1) = ∅ (3)

reqs(OV3’) ∩ S1
i .Clean = ∅ (4)

These equations assert that OV3’ must not define anything OV1
requires as undefined, nor anything that OV1 itself defines; it also
must not freeze anything that OV1 later uses, or require anything
that OV1 asserts to be clean. These four equations do hold for OV3’
and OV1, and hence OV3’ ;OV1 is a valid composition order for
the two overlays.

The resulting composition itself can be represented by a state-
pair interface (S3,1

i , S3,1
o) that is computable from S1

i , S3
i , S1

o

and S3
o . The rule (shown in Fig. 4, in the appendix), checks the

four equations above, and the resulting interface should mean “in a
document satisfying the combined requirements of OV3’ and OV1,
as described by S3,1

i , the composition OV3’ ;OV1 will result in
a document satisfying their combined guarantees, as described by
S3,1
o ”. Consequently, the input state S3,1

i must be a combination of
the Def and Undef sets of S3

i with those of S1
i . To do otherwise

would effectively enforce that OV3’ define everything needed by
OV1, which is not the intended semantics:

S3,1
i =

{
Def = {Sel(p#greeting)}

Undef = {Sel(span#mod), Id(mod),
Sel(span#subj), Id(subj)}

}

S3,1
o =

{
Def = {Sel(p#greeting),

Sel(span#subj), Id(subj),
Sel(span#mod), Id(mod)}

}

In words, this says that “for any document containing a node
matching p#greeting and not containing nodes matching span#mod
or span#subj or any nodes with id subj or mod, the composition
(OV3’ ;OV1) will produce a document containing p#greeting,
span#mod, span#subj, and nodes with id subj or mod”.

The approach Eqs. (1) to (4) above define when one overlay may
feasibly follow another. If, however, any equation is unsatisfied
(as when applying OV1 before OV3’), the analysis knows such
an ordering is infeasible: in the example above, OV3’ must not
follow OV1 because of Eq. (1) and Id (subj). The analysis records
such observations in a directed graph, whose nodes are overlays,
and whose edges are the pairwise must-not-follow relation. For
diagnostic purposes later, it annotates the edges with which of the
four equations above were unsatisfied. This is the conflict graph for
a set of extensions.

Note that it is possible that extension X must-not-follow exten-
sion Y according to Eqs. (1) to (4), and Y must-not-follow exten-
sion Z, but that X may feasibly follow Z:

• X: Overlay(Insert(p#w, 〈p id=“x”/〉))
• Y : Overlay(Insert(p#x, 〈p id=“y”/〉))
• Z: Overlay(Insert(p#y, 〈p id=“z”/〉))

X must-not-follow Y because Y uses something that X defines;
similarly for Y and Z. But X and Z are independent of each
other, and can be applied in either order. However, when all three
extensions are loaded together, the conflict graph shows that Z
transitively must-not-follow X because of a path of pairwise must-
not-follow edges.

Recall that, given some base documentD and a set of extensions
~e, the analysis must compute either a feasible composition order, if
one exists, or else a set of conflicting extensions. It can resolve
both questions simply by computing whether the conflict graph is

acyclic. If the graph contains a cycle, then there exist extensions
e1, . . . en such that ei must not follow ei+1, and en must not follow
e1. Transitively, each extension must not follow itself, which is
problematic: there cannot exist a loading order for which all of
these constraints are satisfied, and so extensions e1, . . . , en are
in conflict. Moreover, the annotations on each edge of the cycle
explain to the user precisely why the extensions conflict.

4.4 Modeling the initial document
If the conflict graph is acyclic, then any topological sort of the graph
will yield a loading order that respects all extension dependencies.
To ensure they combine properly with a given base document, two
further checks remain: first, does the base document in fact satisfy
the input requirements of the resulting composition? Additionally,
does the composition define anything already defined by the docu-
ment? These two checks amount to precisely the same four condi-
tions as for sequencing of two compositions.

To resolve these remaining questions, we simply model the base
document itself by its interface, as if it too were an overlay. The
interface for a base document begins with the empty input state,
and produces an output state containing everything defined in the
base document. Adding this interface as a node to the conflict
graph obtains the needed sequencing checks “for free”. The final
algorithm for computing conflicts and loading order is:

1. For each extensionEi and its corresponding guarded overlay gi,
compute its interface Ii.

2. For the base document D, compute its interface I0 = ID .

3. Construct the conflict graph, with nodes Ii and I0, and edges
Ii → Ij if and only if Ii must-not-follow Ij using the four
conflict rules above.

4. If the graph is acyclic, and ID is traversed first in a topological
sort of the graph, then the extensions Ei are compatible with
each other. Further,

1. If the input state S is compatible with the empty world, i.e.,
S.Def = ∅, then the extensions are compatible with the
base document D, and may be loaded in the topologically-
sorted order.

2. Otherwise, the extensions are incompatible with the base
document, and some required resources are missing, which
are then reported.

5. If the graph is acyclic, but ID is not traversed first, then some-
how an extension defines something that D relies upon. This
cannot happen with the current overlay language (but see Sec-
tion 6 where it may occur).

6. Else the graph is cyclic, and so report the extensions contribut-
ing to a cycle as conflicting.

This algorithm is only as useful as its input is precise: it assumes
that all semantic constraints have been encoded appropriately as
guards on the relevant overlays. If any constraints are not so en-
coded, some topologically-sorted orderings may actually be “bad”
while others are “good”, though nothing in the conflict graph distin-
guishes them. This may cause false negatives: for some incompati-
ble extensions, the algorithm will claim the conflict graph is acyclic
and hence that some extensions are compatible; properly modeling
all semantic constraints would yield a cyclic conflict graph.

4.5 Heuristics to determine optional composition order
The conflict-graph algorithm above takes guarded overlays as in-
put. These have the simple property that they either successfully
apply or fail. However, extension authors define compositions, not
merely guarded overlays, and compositions may contain optional

(or one-of-several) components that can “successfully apply” by
silently doing nothing. As we’ve seen, optional and one-of-several
components are useful for expressing higher-level structural design
constraints on the guarded overlays within an extension. Support-
ing such constructions, however, complicates the definition of when
two guarded overlays conflict: for instance, an optional component
can always succeed by doing nothing!

Extension authors would not bother to write an optional compo-
nent and expect it always to do nothing; the intent is for it to apply
whenever possible, but not to fail if it cannot do so. The goal must
therefore be to compute a maximal set of optional components from
source extensions that, when combined with the extensions’ non-
optional components and when treated as non-optional themselves,
succeed in finding a compatible loading order. Unfortunately, this
task is substantially harder than before: with n optional compo-
nents, there are 2n subsets to try, to see whether they can be loaded
compatibly.

In fact, it is straightforward to prove that selecting such a subset
is at least NP-hard:

Theorem 1. Given a set of compositions {c1, . . . , cn} that may
contain optional (?) or one-of-several (!) clauses, determining
whether there exists a compatible loading order cπ(1), . . . , cπ(n)
(for some permutation π) is NP-hard.

Proof sketch. Encode the clauses of a 3-CNF-SAT instance as a set
of optional compositions and guarded overlays, and the formula it-
self as one additional, non-optional composition. It will success-
fully apply only if some subset of the optional compositions can
be loaded compatibly; this subset induces a solution to the original
3-CNF-SAT problem. �

Since an exact solution is in general infeasible, any effective
heuristic algorithm is appropriate instead. (This arises in practice:
non-negligible numbers of users install over ten extensions [13];
exhaustively testing a worst case of over 210 subsets is too slow.)
We use a greedy heuristic, starting with all optional components
and removing one arbitrary, conflicted component at a time until
a compatible loading order is found. If we remove all optional
components and still have not found a valid loading order, we report
an error.

5. Firefox case-study
We applied the analysis defined in the previous section to a corpus
of 350 Firefox extensions (the top-ranked extensions as of Novem-
ber 2008), all of which claimed compatibility with Firefox 3.0 and
so could conceivably be installed simultaneously. Additionally,
many extensions claimed compatibility with other Mozilla prod-
ucts, and so included overlays that were not intended for Firefox.
(Precise details of the case study can be found in the first author’s
thesis [9, appendix B].)

As noted earlier, our analysis must support several idiosyn-
crasies of XUL and Firefox’s implementation to model Firefox’s
behavior faithfully. Not handling these quirks leads to unaccept-
ably many false positives in the analysis: too many extensions
were claimed to conflict when in fact they were compatible. Note
that there may be false negatives in the analysis (i.e., extensions
are claimed to be compatible when in fact they conflict) only if it
neglects to model some semantic constraint on resources. For ex-
ample, the algorithm guarantees no false negatives with regard to
Key and Id constraints.

5.1 Handling XUL idiosyncrasies
The intuitive understanding of XUL overlays is easily representable
in the overlay language. A concrete XUL overlay

〈overlay〉
〈tag1 id=“id1” attrs〉content1〈/tag1〉
more actions
〈/overlay〉

might be modeled by the abstract overlay
Overlay(Insert(tag1#id1, end, content1),

Modify(tag1#id1, attrs),
more actions)

which highlights the dual actions of modifying the node’s attributes
and inserting new content into its subtree. Unfortunately, the actual
implementation of XUL overlays does not match this simple intu-
ition, in two ways.

Recursive overlays: First, Gecko appears to treat all descendants
of the 〈overlay/〉 as potential actions, rather than merely its chil-
dren. This makes it syntactically impossible to distinguish new
nodes being contributed by the overlay from potentially-existing
nodes that are intended targets. For example, the SpeedDial exten-
sion contains the following excerpt, which deals with new popup
menu items:
〈popupset id=“mainPopupSet”〉
〈popup id=“contentAreaContextMenu”〉

. . . actual overlay code. . .
〈/popup〉
〈popup id=“speedDialButtonMenu”. . . 〉

. . . new code. . .
〈/popup〉
〈/popupset〉

Firefox defines both the 〈popupset id=“mainPopupSet”/〉 element
and its child 〈popup id=“contentAreaContextMenu”/〉: the intent
of this overlay is clearly to overlay that popup with additional menu
items. However, the following 〈popup id=“speedDialButtonMenu”/〉
is a new popup menu, and is intended to overlay the 〈popupset
id=“mainPopupSet”/〉. These two 〈popup/〉 nodes impose differ-
ent constraints on the overlay, yet are syntactically indistinguish-
able. The “corrected” overlays to achieve these two behaviors
should be
〈popup id=“contentAreaContextMenu”〉

. . . actual overlay code. . .
〈/popup〉
〈popupset id=“mainPopupSet”〉
〈popup id=“speedDialButtonMenu”. . . 〉

. . . new code. . .
〈/popup〉
〈/popupset〉

where now the named children of the target node must never previ-
ously exist. In our dataset, this pattern occurs over sixty times, and
must be manually removed prior to analysis.

Higher-order behavior: Second, the overlay-loading process per-
mits “higher-order overlays”, where nodes in an overlay target other
nodes in that same overlay, or in another overlay document, rather
than the woven base document, two emergent properties of overlays
that are not implied by the documentation for overlays [11]. Some
extensions take advantage of this behavior: for example, Stylish
uses the following snippet
〈keyset id=“mainKeyset”〉
〈key id=“stylish-open-manage”/〉
〈/keyset〉
〈key id=“stylish-open-manage” more attrs. . ./〉

to produce
〈keyset id=“mainKeyset”〉
〈key id=“stylish-open-manage” more attrs. . ./〉
〈/keyset〉

as opposed to two separate key handlers, one of which fails to
define a key! A straightforward translation of the former overlay
into the abstract language yields

Overlay(Insert(keyset#mainKeyset, end,
〈key id=“stylish-open-manage”/〉),

Modify(keyset#mainKeyset),
Insert(key#stylish-open-manage, end),
Modify(key#stylish-open-manage,

more attrs))
which has the wrong interface: the latter two actions require
key#stylish-open-manage to be defined, but it is defined within
this Overlay itself. Rather than contort our analysis, we manually
rewrote overlays to remove this idiom [9].

5.2 Results and performance
Detected conflicts: Our analysis proceeds by processing each
Firefox source file independently, examining all the overlays
that are declared to target it. For example, of the 350 exten-
sions we examined, 261 of them declare 331 overlays targeting
chrome://browser/content/browser.xul, the main Firefox
browser window. We analyze the target files independently be-
cause Firefox gives no guarantee that extensions are loaded atom-
ically; instead, overlays are applied on demand, when the target
files are parsed and displayed to the user. Thus the load order for
browser.xul may be different than for preferences.xul.

The 350 extensions attempt to install a total of 1121 overlay
files, of which 18 overlays purport to overlay a non-existent target
file; several of these target other Mozilla applications, and the rest
truly are erroneous. Note that no individual Mozilla application can
detect these errors, because no Mozilla application is bundled with
information about the structure of all the other Mozilla applications.

Once such mistaken overlay declarations and other quirks were
accommodated, we found a dozen problematic extensions. Four
points jump out from these results. First, the algorithm correctly
detects three pairs of differently-versioned extensions (Sage and
Sage Too, CaptureIt 1.0 and 2.5, and ForecastFox 0.9.7.7 and
ForecastFox˙l10n 0.7) as conflicting with each other. This is a
valuable sanity check that the algorithm is properly computing
intersections.

Second, there are only twelve conflicting pairs of extensions,
out of nearly 35,000 possible conflicting pairs. This may reveal a
heavy selection bias in the sample: we examined the top 350 most
popular extensions. (Alternate samplings would either deliberately
seek out buggy extensions, inflating the reported conflict rate, or
sample randomly and thereby deflate the reported rate.) Regardless
of whether their conflict-freedom led to their popularity or vice
versa, popular extensions work surprisingly well with others.

Third, the algorithm can detect simple typos that would other-
wise be silently ignored by Firefox, or targets that are no longer
defined. These are ignored by design, because they might be cor-
rect for other Mozilla applications or other versions, but this design
choice prevents extension authors from detecting simple but subtle
bugs in their code. To be sure, warnings about typos could likely
be detected by a much simpler system; the analysis presented here
incorporates them while providing additional benefit.

Finally, and most importantly, the effort needed to model the
effects of previous extensions is warranted, because extensions do
conflict with and extend each other in reality. Without this preci-
sion, the algorithm would miss true conflicts due to cycles of length
greater than two, such as between MiniMap Sidebar, Toolbar But-
tons, and Firefox itself. Likewise, it would produce false negatives
and complain that an extension such as FireCookie (which depends
on Firebug) always had missing dependencies, even if they were
present.

The potential for false positives is highlighted by a trio of
non-conflicting extensions. For chrome://firebug/content/
firebugOverlay.xul (the main Firebug panel U I), both YS-
low and FireCookie extend Firebug’s main toolbar with an addi-
tional item. However, their overlays only work thanks to the quirks
of Firefox’s overlay loader mentioned above: to an analysis that
strictly enforces XUL overlay semantics, it appears that both YSlow
and FireCookie actually define a node (with id "fbToolbarInner")
that Firebug itself defines, when in fact Firefox treats that node as
an overlay target. Further, because of how Firebug factored its code,
it also appears that "fbToolbarInner" is not even defined! With-
out a sufficiently precise accounting of all three extensions, and a
sufficient encoding of Firefox’s quirks, the analysis might detect
two distinct problems, neither of which in fact exist.

Performance: The conflict analysis is inherently cubic: it must
compare the actions in the interfaces of every pair of extensions
to compute potential conflict-graph edges. We ran the algorithm
on all 264 overlays applicable to the main Firefox U I file at once;
this is by far the largest target document and an order of magnitude
more overlays than typical users will have installed. Nevertheless,
the analysis completed in under four minutes, with 1.2GB of peak
memory usage. This is sufficiently quick for extension developers
to use regularly to ensure their work is compatible with most exten-
sions.

The common case for end-users, however, is much faster. More
typical end-user workloads of up to 25 extensions [13] (10×
smaller than our test) will see roughly a 1000× improvement, for
a runtime of a few seconds and memory usage of a few dozen
megabytes. Additionally, the implementation has not been highly
optimized; many expensive set-intersection tests can be memoized
or optimized away. Further, the results of the compatibility analysis
need not be repeated unless the set of installed extensions changes;
they can be cached easily and compactly the rest of the time. Fi-
nally, these compatibility checks can be cached by Mozilla for all
users, amortizing the cost to practically nothing.

6. Enhancements to overlays, and challenges to
analysis

Sections 3 to 5 presented the challenges facing Firefox-like over-
lays. But the abstract overlay language of Fig. 2 can generalize in
several ways. We focus on just one here: using full CSS selectors
to choose target nodes. This greatly improves the expressiveness
of overlays, but also greatly complicates the conflict-detection al-
gorithm. As no existing system implements this generalization yet,
the results in this section are a warning of the pitfalls ahead.

Currently, overlay actions can target precisely one node at a
time: that unique node with the given name and id. However, ex-
tensions may reasonably want to target multiple nodes in a uniform
way; we motivate this flexibility with two examples, one simplified
from real-world extension idioms and one that highlights why such
flexibility is distinctly different from the versions of this language
examined above.

The ability for selectors to match multiple nodes introduces a
new and difficult problem: nodes can now match several different
selectors, rather than just the sole selector determined by the tag-
name and id of the node. Conversely, it is possible for two distinct
selectors to intersect, such that there exist nodes matching them
both. It is therefore now possible for two overlays with different
selectors to in fact apply to the same targets, and hence potentially
conflict.

Checking for the overlap of two selectors can be done effi-
ciently, and using it, the conflict-graph analysis defined above can
be adapted to provide partial support for these new selectors. The
use of the intersection algorithm complicates the maintenance of

chrome://browser/content/browser.xul
browser.xul
preferences.xul
chrome://firebug/content/firebugOverlay.xul
chrome://firebug/content/firebugOverlay.xul

the Undef sets of the analysis; additionally, the CSS universal se-
lector must be handled differently than others. We explain the adap-
tation of the analysis, and then explain these two caveats. Fully
adapting the analysis to remove these problems remains as future
work.

6.1 Motivating examples
Refactoring a single extension: Consider an extension (simpli-
fied from real examples) that adds a submenu of actions to the
“Tools” menu of some application, and adds an identical submenu
to the application’s context menu. One way to write the extension
might be to duplicate the submenu’s contents in two overlays (writ-
ten here using XUL):

OV12*: Overlay(Insert(menu#tools-menu, end,
〈submenu id=“aMenu”〉
〈menuitem〉Hi〈/menuitem〉
〈/submenu〉))

OV13*: Overlay(Insert(menu#context-menu, end,
〈submenu id=“aMenu”〉
〈menuitem〉Hi〈/menuitem〉
〈/submenu〉))

However, such copy-and-paste duplication easily leads to diver-
gences between the two versions. An alternate approach might per-
mit extensions to specify a set of selectors:

Overlay(Insert({menu#tools-menu,
menu#context-menu}, . . .))

Such an overlay would apply to all nodes matching any element
in that set. However, this is a fairly limited improvement, as the
extension author must enumerate all targets explicitly, which may
not always be possible, as the next example will show. A better
approach (and, indeed, one taken by some Firefox extensions), is
to refactor the common code (in this case, the 〈menuitem/〉) into
a third overlay:

OV12**: Overlay(Insert(menu#tools-menu, end,
〈submenu id=“myMenu”/〉))

OV13**: Overlay(Insert(menu#context-menu, end,
〈submenu id=“myMenu”/〉))

OV14*: Overlay(Insert(submenu#myMenu, end,
〈menuitem〉Hi〈/menuitem〉))

Here, overlays OV12** and OV13** create stubs that can be filled
in by OV14*. As written, however, these overlays violate the
well-formedness property of the combined document, since two
〈submenu/〉 items with the same id will be created. The best
approach, then, is to use a property other than ids for OV14*:

OV12: Overlay(Insert(menu#tools-menu, end,
〈submenu class=“myMenu”/〉))

OV13: Overlay(Insert(menu#context-menu, end,
〈submenu class=“myMenu”/〉))

OV14: Overlay(Insert(submenu.myMenu, end,
〈menuitem〉Hello〈/menuitem〉))

Such an approach requires more flexible selectors than we’ve per-
mitted so far. This seemingly-small improvement—after all, this is
still merely a simple selector—provides a large expressive jump, as
such selectors can match multiple targets.

Supporting relationships between nodes: Suppose an extension
wanted to render lists of items as set notation, by surrounding them
with braces and inserting commas between the items. Such an
overlay might be written using

Overlay(Insert(ul, start, 〈span〉{〈/span〉),
Insert(ul > li ~ li, before, 〈span〉, 〈/span〉),
Insert(ul, end, 〈span〉}〈/span〉))

The first and last actions insert the list braces, while the middle
action inserts commas only before those list items with at least one
preceding sibling, i.e., every list item except the first.3 This overlay
uses a non-simple selector (the child and sibling combinators), and
so marks a large expressive jump from the languages in the previous
sections.

6.2 CSS selector intersection
Generalizing to arbitrary CSS selectors means not only that selec-
tors can match multiple nodes, but that nodes can be matched by
several distinct selectors. Therefore to detect when two overlays
might interfere, we need to know whether, for a given pair of selec-
tors, there could exist a tree with elements matching both selectors
simultaneously. Such language intersection problems are common
(cf. regular expression intersections [1, 4], XQuery and XPath inter-
section [2, 3, 6], etc.), and for arbitrary (context-free or larger) lan-
guages these problems are undecidable [12]. Fortunately, in prior
work we showed that CSS is at heart a regular language, and so the
intersection problem is decidable.

The details of constructing the precise intersection of two selec-
tors are intricate: in general, the intersection cannot be described
by a single selector, but rather only by a set of them. While
the full algorithm is exponentially expensive, we can test it for
(non-)emptiness very efficiently, which is all that is needed for the
conflict-detection algorithm [9].

6.3 Impact on the conflict-detection algorithm
The conflict-graph construction algorithm must be adapted to han-
dle the enhanced expressive power of these selectors: it is no longer
enough simply to check for set intersections. Consider a base doc-
ument consisting solely of the empty node 〈a/〉, and the following
three overlays

OV15: Overlay(Insert(a, end, 〈b class=“x y”/〉),
Insert(a, end, 〈c class=“y”id=“idC”/〉),
Forbid (Sel (d.foo)))

OV16: Overlay(Insert(b.x, end, 〈d class=“foo”/〉))
OV17: Overlay(Insert(*.foo, end, 〈e/〉))

The compositions OV15 ;OV16 and OV15 ;OV17 are both feasible
and demonstrate two challenges in dealing with general selectors,
both due to the possibility of aliasing.

Handling Undef sets A careful translation of OV15’s and OV16’s
interfaces yields the following sets:

S15
i .Def = {Sel(a)}

S15
i .Undef = {Id(idC),Sel(d.foo)}
S15
o .Def = {Sel(a),Sel(a > b.x.y), Id(idC),

Sel(a > b.x.y + c.y#idC)}
S15
o .Undef = {Sel(d.foo)}
S16
i .Def = {Sel(b.x)}
S16
o .Def = {Sel(b.x),Sel(b.x > d.foo)}

These sets satisfy Eqs. (1) to (4), so the current algorithm would
decide OV15 ;OV16 is feasible, and compute Si and So for the

3 The HTML5-expert reader will notice that these three insertions pro-
duce a technically malformed 〈ul/〉, but this is no worse than what
scripts can already create at runtime. The CSS 3-expert reader will no-
tice that these insertions can be mimicked by generated content, but such
content is not selectable and does not behave as regular text.

composition. But doing so yields

Si.Def = S15
i .Def ∪ (S16

i .Def \ defs(OV15))
= {Sel(a),Sel(b.x)}

This implies that OV15 ;OV16 can apply only to a document al-
ready containing a node matching b.x—but OV15 defines such a
node! This extra constraint may falsely prevent OV15 ;OV16 from
applying. The problem arises because the set-difference operation
is too restrictive: it compares elements by equality, rather than
by overlap. OV15 defines a > b.x.y, which intersects with—and
therefore satisfies—the b.x requirement of OV16.

Similarly, the set-intersections in Eqs. (1) to (4) are likewise
too restrictive. The algorithm should decide the composition or-
der OV16 ;OV15 is infeasible, because OV15 forbids documents
containing nodes matching d.foo. But the two relevant selectors,
Sel(d.foo) ∈ S15

i .Undef and Sel(b.x > d.foo) ∈ S16
o .Def are

not equal, though they do intersect; a set intersection would unhelp-
fully decide these two sets are disjoint and incorrectly accept this
composition.

As a result, sequencing must be revised to use pairwise tests
for non-intersection: for two overlays OV1 and OV2, and their
interfaces S1 and S2, Eqs. (1) to (4) become

∀d2 ∈ S2
o .Def , ∀u1 ∈ S1

i .Undef , d2 ! u1 = ∅ (5)

∀d2 ∈ S2
o .Def ,∀d1 ∈ defs(OV1), d2 ! d1 = ∅ (6)

∀f2 ∈ S2
o .Frozen, ∀u1 ∈ used(OV1), f2 ! u1 = ∅ (7)

∀r2 ∈ reqs(OV2),∀c1 ∈ S1
i .Clean, r2 ! c1 = ∅ (8)

(Here, s ! t denotes the intersection of two selectors.) These
equations strictly generalize Eqs. (1) to (4). But similarly changing
the set-difference operation introduces false positives: many CSS
selectors now may produce unexpectedly non-empty intersections.
Finding an appropriate analogue for set-difference with general
selectors is open work.

Handling universal selectors: A similar problem arises with uni-
versal selectors. For example, overlay OV17 applies to nodes
matching *.foo. Therefore Sel(*.foo) must be included in both
S17
i .Def and S17

o .Def . But this exposes an ambiguity in the mean-
ing of the universal selector. In the input set, *.foo means “any
node with class foo,” while in the output set it means “some node
with class foo.” But for the intersection algorithm, it takes only the
former meaning. In particular, suppose the analysis tried to com-
pose OV15 ;OV17. Then since S15

o .Undef = {Sel(d.foo)} and
S17
i .Def = {Sel(*.foo)}, which clearly overlap, Eq. (5) would

erroneously conclude that OV17 cannot follow OV15. In fact, so
long as some element existed with class foo and tagname not d,
both OV15 and OV17 would be satisfied.

Properly handling these two meanings of * requires going out-
side the CSS selector language, and is also future work.

7. Related work
While overlays resemble aspects in several ways, their conflict-
resolution algorithms look very different. Here, we focus instead
on two related areas of research that contend with overlays’ key
actions of describing regions in a document and describing changes
to them.

Context logic and dynamic overlays Context logic [5, 7] reasons
about mutations of tree-shaped data. It employs a “small-footprint”
approach similar to the overlay interfaces above, where modifica-
tions mention only the part of the structure that they touch. The
structure of the logic then explores how the context of one modi-
fication is changed by the effects of another, earlier modification,

which may resolve the ambiguities described above for overlay in-
terfaces. For example, if one overlay ensures that the document
matches a+b and a second overlay inserts 〈c/〉 after the 〈a/〉, the
composite document no longer satisfies a+b, but rather a+c+b. It
is unclear how to encode CSS selectors into context logic formulas
such that the context will transform appropriately.

Patch theory Patch theory [8, 10] defines an algebra of patches,
and was invented to give a formal foundation to text-based patch
tools. The algebra describes how patches commute with one an-
other, and requires the existence of an inverse for every possible
patch action. As presented, overlays have no inverses, but if we per-
mit them to remove nodes as well as add new ones, such inverses
do exist. As yet, no theory of patches on tree-shaped data exists.

References
[1] V. M. Antimirov and P. D. Mosses. Rewriting extended regular

expressions. Theoretical Computer Science, 143(1):51 – 72, 1995.
[2] M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys

(CSUR), 41:3:1–3:54, Jan. 2009.
[3] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the

presence of DTDs. Journal of the ACM (JACM), 55(2):1–79, 2008.
[4] J. A. Brzozowski. Derivatives of regular expressions. Journal of the

ACM (JACM), 11:481–494, Oct. 1964.
[5] C. Calcagno, T. Dinsdale-Young, and P. Gardner. Adjunct elimination

in context logic for trees. In Z. Shao, editor, Programming Languages
and Systems, volume 4807 of Lecture Notes in Computer Science,
pages 255–270. Springer Berlin / Heidelberg, 2007.

[6] J. Cheney. Satisfiability algorithms for conjunctive queries over trees.
In International Conference on Database Theory (ICDT), 2011.

[7] P. Gardner and U. Zarfaty. An introduction to context logic. In
D. Leivant and R. de Queiroz, editors, Logic, Language, Information
and Computation, volume 4576 of Lecture Notes in Computer Science,
pages 189–202. Springer Berlin / Heidelberg, 2007.

[8] J. Jacobson. A formalization of darcs patch theory using inverse
semigroups. Technical Report (09-83), UCLA Computational and
Applied Mathematics, Oct. 2009. http://www.math.ucla.edu/

~jjacobson/patch-theory/.
[9] B. S. Lerner. Designing for Extensibility and Planning for Conflict:

Experiments in Web-Browser Design. PhD thesis, University of
Washington Computer Science & Engineering, Aug. 2011.

[10] I. Lynagh. Darcs patch theory (more or less). Originally posted to
darcs-users mailing list, Sept. 2008. http://lists.osuosl.org/
pipermail/darcs-users/2008-August/013040.html.

[11] Mozilla. XUL overlays. Written Jan. 2010. https://developer.
mozilla.org/en/XUL_Overlays.

[12] M.-J. Nederhof and G. Satta. The language intersection problem for
non-recursive context-free grammars. Information and Computation,
192(2):172 – 184, 2004.

[13] J. Scott. How many Firefox users have add-ons installed? 85%!
Written June 2011. http://blog.mozilla.com/addons/2011/
06/21/firefox-4-add-on-users/.

http://www.math.ucla.edu/~jjacobson/patch-theory/
http://www.math.ucla.edu/~jjacobson/patch-theory/
http://lists.osuosl.org/pipermail/darcs-users/2008-August/013040.html
http://lists.osuosl.org/pipermail/darcs-users/2008-August/013040.html
https://developer.mozilla.org/en/XUL_Overlays
https://developer.mozilla.org/en/XUL_Overlays
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/

A. Details of overlay interfaces

reqs(Overlay(~a))
def
=
⋃
{reqs(ai)

∣∣ ai ∈ ~a}
reqs(Insert(s, ,))

def
= {Selector(s)}

reqs(Modify(s,))
def
= {Selector(s)}

defs(Overlay(~a))
def
=
⋃
{defs(ai)

∣∣ ai ∈ ~a}
defs(Insert(s, ,~h))

def
=
⋃
{selectors describing each hi ∈ ~h}

defs(Modify(,))
def
= ∅

used(o)
def
= reqs(o) ∪ defs(o)

OV E R L AY- I N T E R F A C E

Si =

{
Def = reqs(o)

Undef = defs(o)

}
, So =

{
Def = used(o)

}
[[Si]] o [[So]]

G - R E Q U I R E

[[Si]] g [[So]]
S′
i = Si ∪ {Def = ~r}

S′
o = So ∪ {Def = ~r}

[[S′
i]] Require(~r, g) [[S′

o]]

G - F O R B I D
[[Si]] g [[So]]

S′
i = Si ∪ {Undef = ~r}

S′
o = So ∪ {Undef = ~r \ So.Def }

[[S′
i]] Forbid(~r, g) [[S′

o]]

G - F I R S T
[[Si]] g [[So]]

S′
i = Si ∪ {Clean = ~r}
[[S′
i]] First(~r, g) [[So]]

G - L A S T
[[Si]] g [[So]]

S′
o = So ∪ {Frozen = ~r}
[[Si]] Last(~r, g) [[S′

o]]

Figure 3: Defining the interface for a guarded overlay

S - S E Q U E N C E

[[S1
i]] c1 [[S1

o]] [[S2
i]] c2 [[S2

o]]
S1
o .Def ∩ S2

i .Undef = ∅ S1
o .Def ∩ defs(c2) = ∅

S1
o .Frozen ∩ used(c2) = ∅ S2

i .Clean ∩ reqs(c1) = ∅

Si =

Def = S1

i .Def ∪ (S2
i .Def \ defs(c1))

Undef = S1
i .Undef ∪ S2

i .Undef
Clean = S1

i .Clean ∪ S2
i .Clean

Frozen = ∅

So =

Def = S1

o .Def ∪ S2
o .Def

Undef = S2
o .Undef ∪ (S1

o .Undef \ defs(c2))
Clean = ∅

Frozen = S1
o .Frozen ∪ S2

o .Frozen

[[Si]] c1 ; c2 [[So]]

Figure 4: Semantics of sequencing

	1 Introduction
	1.1 Challenges of UIExtension via Overlays
	1.2 Contributions

	2 A tutorial on Firefox-style overlays
	3 Kinds of overlay conflicts
	3.1 Structural uniqueness constraints: node ids
	3.2 Semantic uniqueness constraints: hotkey bindings
	3.3 Load-order constraints

	4 Abstract overlays and document transformers
	4.1 An abstract overlay language
	4.1.1 Overlays, resources and guards
	4.1.2 Composing overlays within one extension

	4.2 Overlays as document transformers
	4.3 Determining the overlay conflict graph
	4.4 Modeling the initial document
	4.5 Heuristics to determine optional composition order

	5 Firefox case-study
	5.1 Handling XUL idiosyncrasies
	5.2 Results and performance

	6 Enhancements to overlays, and challenges to analysis
	6.1 Motivating examples
	6.2 CSS selector intersection
	6.3 Impact on the conflict-detection algorithm

	7 Related work
	Bibliography
	A Details of overlay interfaces

