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Cornell University 2003

Memory safety and type safety are invaluable features for building robust software.
However, most safe programming languages are at a high level of abstraction; pro-
grammers have little control over data representation and memory management.
This control is one reason C remains the de facto standard for writing systems
software or extending legacy systems already written in C. The Cyclone language
aims to bring safety to C-style programming without sacrificing the programmer
control necessary for low-level software. A combination of advanced compile-time
techniques, run-time checks, and modern language features helps achieve this goal.

This dissertation focuses on the advanced compile-time techniques. A type
system with quantified types and effects prevents incorrect type casts, dangling-
pointer dereferences, and data races. An intraprocedural flow analysis prevents
dereferencing NULL pointers and uninitialized memory, and extensions to it can
prevent array-bounds violations and misused unions. Formal abstract machines
and rigorous proofs demonstrate that these compile-time techniques are sound:
The safety violations they address become impossible.

A less formal evaluation establishes two other design goals of equal importance.
First, the language remains expressive. Although it rejects some safe programs,
it permits many C idioms regarding generic code, manual memory management,
lock-based synchronization, NULL-pointer checking, and data initialization. Sec-
ond, the language represents a unified approach. A small collection of techniques
addresses a range of problems, indicating that the problems are more alike than
they originally seem.
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Chapter 1

Introduction and Thesis

Programming languages and their implementations are essential tools for software
development because they provide a precise framework for specifying computer
behavior and realizing the specification. Using a language is easier when the con-
structs of the language are at a level of abstraction suitable for the task at hand.
The C programming language [132, 107, 123], originally developed for writing an
operating system, has been used for just about every type of program. At the
C level of abstraction, programs have almost complete control over the byte-level
representation of data and the placement of that data in memory. Unlike at lower
levels of abstraction, control flow is limited mostly to intraprocedural jumps and
function call/return.

Hence the C programmer can manage her own data-processing and resource-
management needs while forfeiting tedious assembly-level decisions such as instruc-
tion selection, register allocation, and procedure calling convention. This level of
abstraction appeals for many tasks, such as operating systems, device drivers,
(resource-constrained) embedded systems, runtime systems for higher level lan-
guages, data serializers (marshallers), etc. For lack of a better term, I call these
problems C-level tasks.

Unlike many higher level languages, C does not provide enough strong abstrac-
tions to allow well-defined modular programs. For example, a bad fragment of a
C program can arbitrarily modify any part of the entire program’s data. Such
incorrect behavior is much worse than a function that exits the program, diverges,
or computes the wrong answer, because these are local well-defined effects.

To date, programmers of C-level tasks have had to choose between safe lan-
guages at higher levels of abstraction and unsafe languages at a more natural level.
Language designers have proposed various solutions to this dilemma. First, con-
vince developers that their task is not really a C-level task and that their desire
to control data representation and resource management is misguided. Second,
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provide debugging tools (traditional debuggers, “lint”-like tools, etc.) for the un-
safe languages. Third, provide foreign-function interfaces so that safe-language
code can call C code and vice-versa. Fourth, compile C code in an unconventional
manner so that all safety violations can be detected when they occur at run time.
As an alternative, I propose that we can use a rich language of static invariants
and source-level flow analysis to provide programmers a convenient safe language
at the C level of abstraction.

To substantiate this claim, colleagues and I have developed Cyclone, a pro-
gramming language and implementation that is very much like C except that it
is safe. This dissertation focuses on certain Cyclone language-design features. In
particular, it evaluates Cyclone’s type system and flow analysis, each of which
addresses several safety issues in a uniform manner.

The rest of this introductory chapter further motivates compile-time guaran-
tees for C-level programming (Section 1.1), provides a cursory description of the
actual Cyclone language and this dissertation’s narrower focus (Section 1.2), ex-
plains this dissertation’s thesis (Section 1.3), highlights the technical contributions
of this work (Section 1.4), and describes the structure of subsequent chapters (Sec-
tion 1.5). I particularly urge reading Section 1.4 because it properly acknowledges
others’ work on Cyclone. This dissertation assumes familiarity with C, type sys-
tems, and operational semantics, but the first two chapters mostly require only
familiarity with C.

1.1 Safe C-Level Programming

Memory safety is crucial for writing and reasoning about software. For example,
consider a program that uses a simple password-checking routine like the following:

int check(char *p) {

static char *pwd = "klff";

return strcmp(p,pwd);

}

Because the pwd variable is visible only in the check function and this function
never mutates pwd, we would like to conclude that the function always passes a
pointer to an array holding "klff" as the second argument to strcmp. For a legal
C program, this property holds.

However, there are many illegal C programs that C compilers do not reject.
Although the implementation of such programs is undefined, conventional C com-
pilers often choose implementations that could mutate pwd. Therefore, soundly
reasoning about check requires that the rest of the program has no such safety
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violations. This dissertation explains and prevents many safety violations, includ-
ing incorrect type casts, dangling-pointer dereferences, data races, uninitialized
memory, NULL-pointer dereferences, array-bounds violations, and incorrect use of
unions.

Many safe languages exist, and they use a variety of techniques to enforce
safety. Language restrictions can make certain violations impossible. For exam-
ple, uninitialized memory is impossible if all declarations must have initializers.
Automated memory management (garbage collection) prevents dangling-pointer
dereferences. Advanced type systems can support generic code without allowing
unsafe type casts. Run-time checks can prevent safety violations during execution.
For example, most safe languages prevent array-bounds violations by storing array
lengths with arrays and implementing subscript operations to check the lengths.

As a safe language, Cyclone uses many of these techniques. In particular, its use
of quantified types is similar to ML [149, 40] and Haskell [130]. However, as a C-
level language, it gives programmers substantial control over data representation,
resource management, and the use of run-time checks. To do otherwise is to treat
C as though it were a higher level language, which is counterproductive for C-level
tasks. As such, it is inappropriate to rely exclusively on hidden fields (such as array
lengths) and garbage collection. Instead, Cyclone programmers use the Cyclone
language to express safety-critical properties, such as the lifetime of data objects
and where array lengths are stored.

This design point is challenging: Compared to C, the language must express
many properties that are exposed to programmers but cannot be described in the
C language. Compared to higher-level languages, these properties are exposed to
programmers rather than left to the implementation. This dissertation explores a
set of uniform techniques that addresses this challenge.

1.2 Relation of This Dissertation to Cyclone

The Cyclone implementation is currently available on the World Wide Web at
http://www.cs.cornell.edu/projects/cyclone and
http://www.research.att.com/projects/cyclone. The distribution includes
tens of thousands of lines of Cyclone code, in part because the compiler itself is
written in Cyclone. An extensive user’s manual [52] describes the full language and
an overview has been previously published [126]. In this section, we briefly sum-
marize Cyclone’s techniques and applications before explaining this dissertation’s
focus and departures from actual Cyclone.

Cyclone is a safe programming language that retains (to the extent possible)
the syntax, semantics, and idioms of C. Ideally, Cyclone would permit exactly
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C programs that are safe, but it is well-known that this ideal is mathematically
impossible. Therefore, we restrict programs to a more manageable subset of C, but
such a subset by itself is too impoverished for realistic programming. Extensions
discussed in detail in this dissertation let programmers express invariants that the
Cyclone compiler would not otherwise infer. Other extensions capture idioms that
would otherwise require C features disallowed in Cyclone. For example, Cyclone
has exceptions but does not allow setjmp and longjmp.

In general, Cyclone ensures safety via a range of techniques including sophisti-
cated types, intraprocedural flow analysis, run-time checking, and a safe interface
to the C standard library. Preventing NULL-pointer dereferences provides a good
example of how these techniques interact synergistically: The C library function
getc has undefined (typically unsafe) behavior if callers pass it NULL. Rather than
incur the run-time cost of checking for NULL in the body of getc, Cyclone’s type
for this function indicates that callers may not pass NULL. If an argument might
not satisfy this precondition, Cyclone can insert a run-time check at the call site.
Alternately, programmers can use the type system to propagate a not-NULL in-
variant through functions and data structures as appropriate. Furthermore, the
flow analysis can often determine that extra checks are unnecessary because of
conditional tests and loop guards in the source program.

Relying only on run-time checking would not let programmers control run-time
cost or catch errors at compile-time. Relying only on invariants would prove too
strong; some pointers are sometimes NULL. Relying only on intraprocedural flow
analysis would prove too weak when safety relies on interprocedural invariants.
By integrating these approaches, programmers can choose what is appropriate for
their task without resorting to unsafe languages. Nonetheless, by implementing
Cyclone like a conventional C implementation, programmers can easily resort to
linking against C code. This ability makes Cyclone convenient for extending or
incrementally porting systems already written in C.

Several projects have used Cyclone. First, my colleagues and I have used it to
implement the Cyclone compiler and related tools (including a memory profiler,
a documentation generator, a scanner generator, and a parser generator). We
have also ported many C applications and benchmarks to Cyclone to measure
the difficulty of porting and the run-time cost of ensuring safety [126]. I also
ported a floppy-disk device driver for Windows to Cyclone. Encouragingly, almost
the entire driver could be written in Cyclone. Discouragingly, there are ways to
corrupt an operating system beyond the notions of safety that Cyclone captures, so
the guarantees that Cyclone provides a device driver are necessary but insufficient.
(In general, safety is always a necessary but insufficient aspect of correct software.)

Other researchers have used and extended Cyclone for several interesting sys-
tems. MediaNet [118] is a multimedia overlay network. Its servers are written in
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Cyclone and exploit support for safe memory management. The Open Kernel En-
vironment [27] allows partially trusted extensions in an operating-system kernel.
They exploit the isolation that memory safety affords, but they employ additional
run-time techniques to prevent excessive resource consumption. The RBClick [170]
system uses a modified version of Cyclone for active-network extensions.

This dissertation focuses on Cyclone’s type system and flow analysis. We ignore
many important issues such as syntax, language extensions (such as exceptions
and pattern matching), and idiosyncratic C features (such as variable-argument
functions). We also ignore some safety-critical issues that are simple (such as
preventing jumps into the scope of local variables) and difficult (such as supporting
nul-terminated strings). We investigate neither the quantitative results nor the
implementation experience cited above.

Rather, we focus on developing a core set of compile-time techniques that
provides the foundation for Cyclone’s safety. We explain these techniques, demon-
strate their usefulness, develop abstract machines that model the relevant consid-
erations, and prove (for the abstract machines) that the techniques work. As such,
this dissertation is no substitute for the user’s manual and does not serve as a
primer for the language. Before Section 1.3 explains the thesis that these tech-
niques demonstrate, we describe more specific disparities between actual Cyclone
and this dissertation.

First, aspects of the language discussed in this dissertation are evolving; the
discussion here may not accurately reflect the current language and implementa-
tion. For example, we are designing features that take advantage of restrictions on
aliasing.

Second, this dissertation often deviates from Cyclone’s concrete syntax in favor
of more readable symbols, such as Greek letters. In general, compile-time variables
are written like ‘a (a back-quote character followed by an identifier), whereas I
write α and allow subscripts (α1) and primes (α′).

Third, this dissertation ignores much of the difficulty in implementing Cyclone.
For example, the implementation runs on several architectures and provides a
safe interface to the C standard library, which was not designed with safety in
mind. Another example is work to provide useful error messages despite Cyclone’s
advanced type system.

Fourth, the material in Chapters 5 and 7 has not been thoroughly implemented
and tested. Although I am confident that the design described in these chapters is
sound and useful, I cannot claim as much confidence as for the features that have
been used extensively in the development of Cyclone.
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1.3 Explanation of Thesis

With the previous section as background, I now explain what I mean by the thesis,
we can use a rich language of static invariants and source-level flow analysis to
provide programmers a convenient safe language at the C level of abstraction.

Rich Language of Static Invariants: The C type system describes terms with
only enough detail for the compiler to generate code that properly accesses fields,
calls functions, and so on. For the most part, a type in C is a size. Beyond size, C
distinguishes floating-point types from other scalars and lets compilers adjust for
alignment constraints precisely because code generation for conventional hardware
requires doing so.

In contrast, the Cyclone type system is a much richer language. Types can
distinguish the lifetime of an object, the length of an array, the lock that guards
data, the value of an int, whether a pointer is NULL, and so on. These distinctions
are crucial for preserving safety without resorting to compilation strategies and run-
time checks inappropriate for the C level of abstraction. These additions describe
invariants. For example, a pointer’s type could indicate it refers to an array of at
least three elements. An assignment can change which array it refers to, but it
cannot cause it to refer to an array that is too short.

The Cyclone type system is not just an ad hoc collection of annotations. Each
feature describes a safety-critical condition: An array must be some length; an ob-
ject must be live; a lock must be held; a type equality must hold. Correspondingly,
we have abstract compile-time variables for array lengths, object lifetimes, locks,
and types. In fact, they are all just type variables of different kinds. As such, letting
functions universally quantify over all kinds of compile-time variables is a natural
feature that requires essentially no additional support for each kind. Similarly, we
use tools like existential quantification, type constructors, effects, constraints, and
singleton types more than twice. Subsequent chapters fully explain this jargon.

In short, by encoding the necessary safety conditions using well-understood
type-system technology, we get a compile-time language that is rich and powerful
yet uniform and elegant.

Source-Level Flow Analysis: For safety conditions for which invariants are too
strong for effective programming, we use flow analysis to refine the static informa-
tion for each program point. Examples include ensuring that programs initialize
memory before using it and ensuring that an integer is less than an array bound.
For an imperative language without implicit run-time checks, program-point spe-
cific information seems crucial. Although type theory can certainly describe such
information, using a more conventional flow analysis appears more natural.
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By flow analysis, I mean something more restrictive than just any analysis
that ascribes different information to different program points. In particular, the
analysis is path insensitive. For example, Cyclone rejects this program because the
analysis concludes that p might be uninitialized:

int f(int x) {

int *p;

if(x)

p = new 0;

if(x)

return *p;

}

At the point after the first conditional, we must assume p might be uninitialized.
Because the return statement is reachable from this point, the analysis rejects the
program. A more sophisticated analysis could determine that there are only two
feasible execution paths in f and both are safe.

The distinction between flow-sensitivity and path-sensitivity actually depends
on the domain of the analysis; that is, on the information we store at each program
point. For example, if the analysis concludes that after the first conditional, “p is
uninitialized only if x is 0,” it can conclude that the second conditional is safe.

Finally, the analysis is source-level, by which I mean its definition is in terms
of Cyclone source programs and the compiler reports errors in source-level terms.
This requirement is crucial for using a flow analysis as part of a language definition,
as opposed to using it internally in a compiler. The distinction affects the design
of the analysis. First, it leads me to favor simplicity even more than usual because
the definition should be explainable (even if only language implementors truly
understand the details). Second, it can make the analysis more difficult because
we cannot define it in terms of a simpler intermediate language.

Convenient Safe Language for Programmers: A programming language
should have a precise definition. So Cyclone is not just a tool that “magically”
tries to find safety violations in C programs; it is a language with exact rules for
what constitutes a legal program.

Cyclone is safe, an intuitive concept that is frustratingly difficult to define.
Informally, we cannot write a Cyclone function that mutates the contents of an
arbitrary address. More positively, parts of Cyclone programs can enforce strong
abstractions. For example, consider this silly interface:

struct Foo; // an abstract type

struct Foo * make_foo(int);

int use_foo(struct Foo *);
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Now consider this implementation:

struct Foo { int x; };

struct Foo * make_foo(int x) { return new Foo(2*x); }

int use_foo(struct Foo * s) { return s->x; }

In a safe language, we could conclude that the result of any call to use_foo is even
(ignoring NULL pointers) because clients cannot break the struct Foo abstrac-
tion. In an unsafe language, poorly written or malicious clients could “forge” a
struct Foo that held an int that make_foo did not compute.

It is actually trivial to define a safe language: Reject all programs. So one
important aspect of convenience is allowing users to write the safe programs they
wish to write. However, this definition is subject to the so-called “Turing Tarpit”:
Because almost all languages with loops or recursion are equally expressive (if you
can write a program in one, there is some way to write an equivalent program in
another), the ability to write a program with some behavior is an almost meaning-
less metric. In our case, a better goal is, “any safe C program is a legal Cyclone
program.” Because the safety of a C program is undecidable, we cannot attain
this goal, but it remains a useful qualitative metric.

There are many possible answers to the question, “Does Cyclone accept this C
program?” including:

• This unmodified C program is also a Cyclone program.

• This C program needs some Cyclone type annotations, but otherwise it is a
Cyclone program.

• Some terms need local modification, but the overall structure of the program
need not change.

• An equivalent Cyclone program exists, but it is necessary to change the data
representation and control flow of the C program.

Roughly speaking, convenience favors the answers near the beginning of the
list. For machine-generated programs, the difference between the first two answers
is small; explicit type information increases the burden on programmers, so it is
important to emphasize that Cyclone is designed for humans. Toward this end,
certain decisions sacrifice expressiveness in favor of human convenience. The choice
of default annotations is an important part of convenience for humans.
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C Level of Abstraction: As noted at the beginning of this chapter, C differs
from most higher level languages in that conventional implementations let the
programmer guide the representation of data (e.g., the order of fields in a struct

or the levels of indirection for a reference) and management of resources (e.g.,
reclamation of memory). This low-level control over data is important for C-level
tasks; it is a primary reason that C remains a popular language for implementing
low-level systems.

Strictly speaking, the C standard does not expose these representation and
resource management details to programmers. An ANSI-C compliant implemen-
tation can add bounds fields to arrays, pad struct definitions, even check at run-
time for dangling-pointer dereferences. In other words, one can implement C like
a high-level language. But in doing so, one loses C’s advantages for low-level sys-
tems. My thesis claims we can provide a safe C-like language without resorting to
high-level implementation techniques. For example, the Cyclone implementation
compiles pointers to machine addresses, just like conventional C compilers.

The C Level of Abstraction also distinguishes Cyclone from safe lower level
languages, such as Typed Assembly Language [157]. Such languages require a
level of detail appropriate for an assembly language, but C is often better than
assembly for building large systems precisely because, in the interest of portability
and programmer productivity, we are often willing to sacrifice control over details
like calling convention, instruction selection, and register allocation.

Another measure of being C-level is the ease of interoperability with C itself.
Because Cyclone does not change data representation or calling convention, pro-
grammers can give a C function a Cyclone type and call it directly from Cyclone
code. There is no data-conversion cost, but the resulting program is only as safe
as the Cyclone type the programmer chooses. For example, giving the C function
void * id(void*p) { return p; } the type β id(α) “enriches” Cyclone with
an unchecked cast. Nonetheless, if we can write almost all of a system in Cyclone,
resorting to C only where necessary (much as one resorts to assembly where neces-
sary in C applications), we can reduce the code that is subject to safety violations.

Rich type systems, flow analyses for safety, safe programming languages, and
C-level abstractions are nothing new, but putting them together makes Cyclone a
unique point in the language-design space. Bringing safety to a language aimed
at helping develop low-level systems makes it possible to reason soundly about
these systems in terms of user-defined abstractions. By focusing on compile-time
techniques for safety, we can avoid performance costs and “hidden” run-time in-
formation. However, sound compile-time analysis is inherently conservative.
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1.4 Contributions

Language design largely involves combining and adapting well-known features,
so it can be difficult to identify original contributions beyond, “getting it all to
work together.” The related-work descriptions in subsequent chapters identify this
dissertation’s unique aspects (to the best of my knowledge); here I briefly discuss
the “highlights” and where I have published them previously.

• The adaptation of quantified types to a C-like language is mostly a straight-
forward interpolation between higher level polymorphic languages with uni-
form data representation and Typed Assembly Language [157, 155], which in
its instantiation for the IA-32 assembly language had a kind for every size of
type. However, a subtle violation of type safety caused by a natural combi-
nation of mutation, aliasing, and existential types was previously unknown.
I published the problem and the solutions explored in Chapter 3 in the 2002
European Symposium on Programming [94].

• The most novel aspects of the static type system for region-based memory
management explored in Chapter 4 involve techniques for making it palatable
in a source language without using interprocedural analysis. These aspects
include the default annotations for function prototypes and the regions(α)
operator for representing the region names of a type. Other contributions
include integrating regions with conservative garbage collection, integrating
regions with stack-allocated storage (though the Vault system [55] developed
similar ideas concurrently), and subtyping based on the “region outlives” re-
lationship (though the more dynamic RC compiler [86] has a similar notion).
With others, I published a description of Cyclone memory management in
the 2002 ACM Conference on Programming Language Design and Imple-
mentation [97].

• The type system for mutual exclusion in Chapter 5 adapts a line of work by
others [73, 72, 74, 31, 29] aimed mostly at Java [92]. Nobody had adapted
these ideas to a language with type variables before; a main contribution is
realizing a striking correspondence between the solutions in Chapter 4 for
regions and the solutions that seem natural for threads. Other contribu-
tions include a small extension that makes it easier to reuse code for thread-
local and thread-shared data even if the code uses a “callee-locks” idiom,
an integration with region-based memory management that does not require
garbage collection for all thread-shared data, and a notion of “sharability”
for enforcing that thread-local data remains thread local. I published this
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work in the 2003 ACM International Workshop on Types in Language Design
and Implementation [95].

• Using flow analysis to detect uninitialized memory or NULL-pointer derefer-
ences is an old idea. Java [92] elevated the former to part of a source-language
definition. The most interesting aspects of the analysis developed in Chap-
ter 6 are its incorporation of must points-to information and its soundness
despite under-specified order of evaluation. The definite-assignment analysis
in Java is simpler because there are no pointers to uninitialized memory and
Java completely specifies the order of evaluation.

• The singleton integer types in Chapter 7 for array bounds and discriminated
unions are straightforward given the insights of the previous chapters. Having
already provided compile-time variables of various kinds, addressed the in-
teraction between polymorphism and features like mutation and nonuniform
data representation, and developed a sound approach to flow analysis, check-
ing certain integer equalities and inequalities proved mostly straightforward.
The extensions to the flow analysis appear novel and interesting, but they
are weaker than a sophisticated compile-time arithmetic like in DML [221].

Another important contribution under-emphasized in most of this dissertation
is the Cyclone implementation, a joint effort with several others (see below). To-
gether, we have written or ported well over 100,000 lines of Cyclone code. Type
variables, regions, and definite assignment have proven crucial features in our de-
velopment and I am confident that these aspects of Cyclone are “for real.” Multi-
threading and singleton integers are more recent experimental features that remain
largely unimplemented. In other words, the material in Chapters 3, 4, and 6 has
been thoroughly exploited, unlike the material in Chapters 5 and 7.

As we will see consistently in this dissertation, potential aliasing is a primary
cause of restrictions made to maintain safety. A powerful technique is to establish
values must not be aliases, either via analysis ([158], Chapter 10) or an explicit
type system [206, 202, 186, 55]. For the most part, Cyclone as described here has
not taken this approach. Nonaliasing is an important tool for a safe expressive
language, but this dissertation focuses on “how far we can go” without it. There
is an important exception: We use the fact that when memory is allocated, there
are no aliases to the memory.

Cyclone is a collaboration with a number of fabulous colleagues. Trevor Jim
at AT&T Research and Greg Morrisett at Cornell University are Cyclone’s orig-
inal designers and they continue to be main designers and implementors as the
language evolves. Many other people have contributed significantly to the design
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and implementation, including Matthieu Baudet, James Cheney, Matthew Harris,
Michael Hicks, Frances Spalding, and Yanling Wang.

It would be impossible to identify some particular feature of Cyclone and say, “I
did that,” for at least two reasons. First, language design is often about interactions
among features, so designing a feature in isolation makes little sense. Second, the
Cyclone team typically designs features after informal conversations and refines
them after members of the team have experience with them. Nonetheless, this
dissertation presents features for which I am mostly responsible. Subject to the
above caveats, the work here is roughly my own with the following exceptions:

• Greg Morrisett designed Cyclone’s type variables. I discovered the bad in-
teraction with existential types (see Chapter 3), which (for obscure reasons)
were not a problem in early versions of Cyclone.

• The formalism for regions in Chapter 4 is joint work with Greg Morrisett
and Yanling Wang. Greg Morrisett implemented most of the type-checking
to do with regions. Michael Hicks provided some of the examples and text
in Section 4.1. Choosing the default annotations was a group effort.

• Greg Morrisett designed and implemented the compile-time arithmetic in
Chapter 7 that enables nontrivial arithmetic expressions for array subscripts
and union discrimination.

1.5 Overview

The next chapter provides a series of examples that explain the key ideas of this
dissertation informally. Readers familiar with quantified types and flow analysis
may wish to skip this description; it is not referred to explicitly in subsequent
chapters. Conversely, readers wanting just the “rough idea” may wish to read
Chapter 2 exclusively.

The next five chapters address different Cyclone features. In particular, Chap-
ter 3 discusses type variables, Chapter 4 discusses the region system for memory
management, Chapter 5 discusses multithreading, Chapter 6 discusses definite
assignment and NULL pointers, and Chapter 7 discusses array bounds and dis-
criminated unions. Chapters 3, 4, and 5 do not involve any flow analysis whereas
Chapters 6 and 7 primarily involve flow analysis. Each chapter has a similar orga-
nization, with sections devoted to the following:

• A description of the safety violations prevented

• A basic description of the Cyclone features used to maintain safety while
remaining expressive and convenient
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• A more advanced description of the features, in particular how they interact
with features from earlier chapters

• A discussion of limitations and how future work could address them

• A small formal language suitable for modeling the chapter’s most interesting
features

• A discussion of related work on the safety violations addressed

With the exception of Chapter 7, a rigorous proof establishes that each chap-
ter’s formal language has a relevant safety property. Because these proofs are long
and detailed, I have relegated them to appendices. Appendices A, B, C, and D
prove the theorems for Chapters 3, 4, 5, and 6 respectively. Each appendix begins
with an overview of its proof’s structure.

Understanding the main results of this dissertation should not require reading
the sections on formal languages and the accompanying proofs. These languages
add a level of precision not possible in English. Unlike full Cyclone, they allow us to
focus on just some interesting features. The corresponding proofs are tedious, but
they add assurance that Cyclone is safe and give insight about why Cyclone is safe.
However, because the various chapters develop separate languages (related only
informally via their similarity), it remains possible that some subtle interaction
among separately modeled features remains unknown. Unfortunately, the syntactic
proof techniques [219] that I use do not compose well because adding features often
complicates many parts of the proofs. (Other techniques are ill-equipped to handle
the complex models we consider.)

Chapter 8 discusses related work on safe C-like languages. Other projects have
focused on techniques complementary to Cyclone’s strengths, such as run-time
checking and compile-time restrictions on aliasing. There are also many tools
that sacrifice soundness in order to find bugs effectively without requiring as much
explicit information from programmers.

Finally, Chapter 9 offers conclusions. First, I reiterate the ideas this chapter
introduces about how a small set of techniques helps prevent a wide array of safety
violations. The advantage of repeating this point later is that we can speak in
terms of examples and technical details developed in the dissertation. Second, I
discuss some general limitations of the approaches taken in this dissertation. I
then briefly discuss some experience actually using Cyclone and place this work in
the larger context of producing quality software.



Chapter 2

Examples and Techniques

To explain the safety violations endemic in C programs and how we can avoid
them, we present a series of example programs. The Cyclone programs use a small
set of techniques in several ways to address different safety violations. We use very
simple examples to give the flavor of some interesting invariants and programs.

Example One: Bad Memory Access In simplest terms, this dissertation is
about preventing programs like this one:

void f1() { *((int *)0xABC) = 123; }

A C compiler should accept this program. Technically, its meaning is undefined
(implementation dependent), but programmers expect execution of f1 to write 123
to address 0xABC (or fail if the address is not writable). Because “address 0xABC”
is an assembly-language notion, understanding this program requires breaking any
higher level abstraction of memory. For this reason, no code linked against code
like f1 can protect data, maintain invariants, or enforce abstractions. We have no
desire to allow code like f1. Unfortunately, more reasonable C code can act like
f1 when it is used incorrectly.

2.1 Type Variables

Example Two: Type Equality for Parameters Many C programs assume
the types of multiple values are the same, but the type system cannot state (much
less enforce) this fact without choosing one particular type.

void f2(void **p, void *x) { *p = x; }

14
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The function f2 is a reasonable abstraction for assigning through a pointer, but
type safety requires that p points to a value with the same type as x. Without this
equality, a use of f2 can violate memory safety:

int y = 0;

int * z = &y;

f2(&z, 0xABC);

*z = 123;

The use of f2 type-checks in C even though the first argument has type int**

and the second argument has type int. C programmers would expect the call to
assign 0xABC to z.1 Other functions with the same type, such as f2ok, could allow
&z and 0xABC as arguments:

void f2ok(void **p, void *x) { if(*p==x) printf("same"); }

Cyclone solves this problem with type variables and parametric polymorphism,
much like higher-level languages including ML and Haskell. Programmers use them
to state the necessary type equalities. For example, these examples are both legal
Cyclone:

void f2(α *p, α x) { *p = x; }

void f2ok(α *p, β x) {}

Implicit in these examples is universal quantification over the free type variables
α and β: The type of f2 is roughly ∀α. void f2(α*, α). Uses of f2 implicitly
instantiate α. But in our example, no type for α would make &z and 0xABC

appropriate arguments. On the other hand, for f2ok(&z,0xABC), it suffices to
instantiate α with int* and β with int. Furthermore, we cannot give f2 the type
that f2ok has; the assignment in f2 would not type-check.

In general, type variables let function types indicate what types must be the
same while still allowing programs to apply functions to values of many types. To
avoid needing code duplication or run-time type information, there are restrictions
on what types can instantiate a type variable; we ignore this issue for now.

Example Three: Type Equality for First-Class Abstract Types To create
a first-class data object with an abstract type, polymorphic functions do not suffice.
A standard example is a call-back : A client registers with a server a call-back
function together with data to pass to the call-back when invoking it. The server
should allow different clients that use different types of data with their call-backs.
In C, a simple version of this idiom could look like this:

1Technically, C does not guarantee that sizeof(int)==sizeof(void*). We consistently
ignore this detail.
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struct IntCallback {

int (*f) (void*);

void *env;

};

struct IntCallback cb = {NULL,0};

void register_cb(void *ev, int fn(void*)) {

cb.env = ev;

cb.f = fn;

}

int invoke_cb() { return cb.f(cb.env); }

Even if clients access cb via the two functions, the type of register_cb allows
inconsistent types for the fields of cb:

int assign(int * x) {

*x = 123;

return 0;

}

void bad() {

register_cb(0xABC, assign);

invoke_cb();

}

As in the previous example, void* is too lenient to express the necessary type
equalities: invoke_cb requires the parameter type of cb.f to be the same as
the type of cb.env. The definition of struct IntCallback should express this
requirement. Cyclone uses type variables and existential quantification [151]. For
now, we present a simplified (incorrect) Cyclone program; we revise it in Chapter 4.

struct IntCallback { <α>
int (*f)(α);
α env;

};

struct IntCallback cb = {NULL,0};

void register_cb(α ev, int fn(α)) {

cb = IntCallback(fn,env);

}

int invoke_cb() {

let IntCallback{<β> fn, ev} = cb;

fn(ev);

}
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The type definition means that for any value of type struct IntCallback, there
exists a type α such that the fields have the types indicated by the definition. The
initializer for cb is well-typed by letting α be int. We call int the witness type for
the existential package cb. The function register_cb changes the witness type of
cb to the type of its parameter ev.

The bodies of register_cb and invoke_cb use special forms that make it
easier for the type-checker to ensure that the functions use cb consistently. The
expression form IntCallback(fn,env) is a “constructor expression”—it creates a
value of type struct IntCallback with the first field holding fn and the second
holding env. Initializing both fields in one expression makes it easy to check they
use the same type for α. Assigning the fields separately leaves an intermediate
state in which the necessary type equality does not hold. The declaration let

IntCallback{<β> fn,ev} = cb; is a pattern that binds the type variable β and
the term variables fn and ev in the following statement. The type variable gives
an abstract name to the unknown witness type of cb; the pattern initializes fn

and ev with cb.f and cb.ev, respectively. Extracting both fields at the same time
ensures there is no intervening change in the witness type.

Example Four: Type Equality for Container Types Our final example of
the importance of type variables is a fragment of a library for linked lists. In C,
we could write:

struct List {

void * hd;

struct List * tl;

};

struct List * map(void * f(void *), struct List *lst) {

if(lst==NULL)

return NULL;

struct List *ans = malloc(sizeof(struct List));

ans->hd = f(lst->hd);

ans->tl = map(f,lst->tl);

return ans;

}

The function map returns a list that is the application of f to each element of
lst. Type safety may require certain type equalities among the uses of void*. We
intend for all hd fields in a linked list to hold values of the same type, but different
lists may have values of different types. Furthermore, we expect f’s parameter to
have the same type as lst’s elements, and we expect f’s result to have the same
type as the elements in map’s result.
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In Cyclone, we can express all these invariants:

struct List<α> {

α hd;

struct List<α> * tl;

};

struct List<β> * map(β f(α), struct List<α> * lst) {

if(lst==NULL)

return NULL;

struct List<β> * ans = malloc(sizeof(struct List<β>));
ans->hd = f(lst->hd);

ans->tl = map(f,lst->tl);

return ans;

}

Here struct List is a type constructor (i.e., a type-level function), not a type.
So struct List<int> and struct List<int*> are different types. Nonetheless,
polymorphism we can use map at either type provided the first argument is a
function pointer of the correct type.

We have seen three common uses of void* in C, namely polymorphic func-
tions, call-back types, and container types. Type variables let programmers express
type equalities without committing to any particular type. Together with univer-
sal quantification, existential quantification, and type constructors, type variables
capture so many uses of void* that Cyclone is a powerful C-like language without
unchecked type casts.

These techniques are well-known in the theory of programming languages and
in high-level languages such as ML and Haskell. Adapting the ideas to Cyclone
was largely straightforward, but this dissertation explores some complications in
great depth. Furthermore, many of the following examples show we can use these
tools to capture static invariants beyond conventional types.

2.2 Singleton Integer Types

Oftentimes, C programs are safe only because int values are particular constants.
By adding singleton int types and associated constructs, Cyclone lets programmers
encode such invariants.

Example Five: Array-Bounds Parameters This C function is supposed to
write v to the first sz elements of the array to which arr points:
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void write_v(int v, unsigned sz, int *arr) {

for(int i=0; i < sz; ++i)

arr[i] = v;

}

To violate safety, clients can pass a value for sz greater than the length of arr. In
Cyclone, pointer types include the bounds for the underlying array, but unlike lan-
guages such as Pascal, universal quantification lets us write functions that operate
on arrays that have a length unknown to the callee:

void write_v(int v, tag_t<α> sz, int @{α} arr) {

for(int i=0; i < sz; ++i)

arr[i] = v;

}

In this example, α stands for an unknown compile-time integer, not a conventional
type. The type of arr is now int @{α}, i.e., a not-NULL (that is what the @ means)
pointer to α many elements. The type tag_t<α> has only one value, the int that
has the value of α. The distinction is a bit subtle: In this example, α is not a type;
tag_t<α> is a type. In the following code, the type-checker accepts the first call,
but rejects the second:

void f() {

int x[256];

write_v(0, 256, x);

write_v(0, 257, x); // rejected

}

Example Six: Array-Bounds Fields When data structures refer to arrays, C
programmers often use other fields to hold the array’s size. In Cyclone, existential
quantification captures this data-structure invariant, which we need to prevent
bounds violations when using the elts field:

struct IntArr { <α>
tag_t<α> sz;

int @{α} elts;

};

void write_v_struct(int v, struct IntArr arr) {

let IntArr{<β> s,e} = arr;

write_v(v, s, e);

}
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Another important idiom is discriminated unions: C programs that use the
same memory for different types of data need casts or union types, but both
are notoriously unsafe. However, it is common to use an int (or enum) field to
record the type of data currently in the memory; this field discriminates which
variant occupies the memory. Of course, programmers must correctly maintain
and check the tag. By using singleton-int types (instead of int) and a richer form
of union types, we can encode this idiom much like we encode array-bounds fields.
Section 7.3 has examples.

We have not discussed how Cyclone ensures functions like write_v have safe
implementations; that discussion is in Section 2.8. What we have discussed is how
many of the same techniques—universal quantification, existential quantification,
and type constructors—are useful for conventional types and integer constants. In
higher level languages, language mechanisms such as bounded arrays and built-
in discriminated unions make these advanced typing constructs less useful. By
providing them in Cyclone, we impose fewer restrictions on data representation.

2.3 Region Variables

Another way to violate safety in C is to dereference a dangling pointer, i.e., access
a data object after it has been deallocated. The access could cause a memory
error (“segmentation fault”). More insidious, if the memory is reused (perhaps for
a different type), the access could violate invariants of the new data object.

Example Seven: Dangling Stack Pointers The C compiler on my computer
compiles this example such that a call to g attempts to write 123 to address 0xABC.

int * f1() {

int x = 0;

return &x;

}

int ** f2() {

int * y = 0;

return &y;

}

void g() {

int * p1 = f1();

int ** p2 = f2();

*p1 = 0xABC;

**p2 = 123;

}



21

The function g accesses the local storage for the calls to f1 and f2 after the
storage is deallocated. Both calls use the same storage, so p1 and p2 become aliases
even though they have different types. A C compiler can warn about such obvious
examples as directly returning &x, but we can easily create equivalent examples
that evade an implementation-dependent analysis.

In higher level languages, the standard solution to this safety violation is to
give all (addressable) objects infinite lifetimes, conceptually. To avoid memory
exhaustion, a garbage collector reclaims memory implicitly. In Cyclone, we want
to manage memory like conventional C implementations (e.g., stack allocation of
local variables) while preserving safety. Toward this goal, we partition memory
into regions ; all objects in a region have the same conceptual lifetime. Constructs
that allocate memory (such as local-declaration blocks) have compile-time region
names and pointer types include region names. The region name restricts where
values of the type can point.

In our example, we cannot modify f1 and f2 to appease the type-checker be-
cause the return types would need to mention region names not in scope. (Chap-
ter 4 describes this cryptic reason in detail. The point is that we use standard
techniques—variables and scope—to help prohibit dangling-pointer dereferences.)

Requiring region names on all pointer types is not as restrictive or onerous as
it seems due to universal quantification, type constructors, inference, and default
annotations.

Example Eight: Region-Polymorphic Functions

int add_ps(int *ρ1 p1, int *ρ2 p2) { return *p1 + *p2; }

void assign(int *ρ1* pp, int *ρ1 p) { *pp = p; }

The function add_ps universally quantifies over region names ρ1 and ρ2; any
two non-dangling pointers to int values are valid arguments. In fact, the type-
checker fills in omitted region names on pointers in function parameters with fresh
region names, so ρ1 and ρ2 are optional. Within function bodies, Cyclone infers
region names. For these reasons, the earlier examples are correct (except as noted)
despite omitted region names. In the function assign, we use the default rule
to omit one region name, but we need the other two to establish that p has the
type to which pp points. Without knowing this type equality, the assignment
might later cause a dangling-pointer dereference after p is deallocated. For both
functions, region polymorphism allows clients to call them with stack pointers,
heap pointers, or a combination thereof.
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Example Nine: Type Constructors With Region-Name Parameters

struct List<α,ρ> {

α hd;

struct List<α,ρ> *ρ tl;

};

The type constructor struct List now has two parameters, a type α for the
elements and a region name ρ that describes where the “spine” of a list is allo-
cated. Our earlier definition is legal Cyclone because unannotated pointers in type
definitions default to a special heap region that conceptually lives forever. We can
use our revised definition to describe lists with ever-living spines (by instantiating
ρ with ρH , the name for the heap region) as well as lists that have shorter lifetimes
(by instantiating ρ with some other region name).

We have not yet explained many other idioms, such as functions that return
newly allocated memory. We have explained just enough to show how quantified
types and type constructors help prove that programs do not dereference dangling
pointers. Chapter 4 explains more advanced features and problems arising from
the combination of regions and existential types.

2.4 Lock Variables

Multithreaded programs can use unsynchronized access to shared memory to vi-
olate safety. To discuss the problems, we assume a built-in function spawn that
creates a thread that runs in parallel with the caller. The C prototype is:

void spawn(void (*f)(void *), void * arg, int sz);

The function f executes in a new thread of control. It is passed a pointer to a copy
of *arg (or NULL). The third argument should be the size of *arg, which spawn

needs to make a copy. The copy is shallow ; the spawning and spawned thread
share any memory reachable from *arg.

In Cyclone we write:

void spawn<α::AS>(void (@f)(α*), α* arg, sizeof_t<α> sz);

The ::AS annotation indicates that it must be safe for multiple threads to share
values of type α.
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Example Ten: Pointer Race Condition On some architectures, concurrent
access of the same memory location produces undefined results. This simple C
program has such a potential data race:

int g1 = 0;

int g2 = 0;

int * gp = &g1;

void f1(int **x) { *x = &g2; }

int f2() { spawn(f1,&gp,sizeof(int*)); return *gp; }

If an invocation of f2 reads gp while an invocation of f1 writes gp, the read could
produce an unpredictable bit-string. As we demonstrate below, Cyclone requires
mutual exclusion—a well-known but sometimes too simplistic way to avoid data
races—for accessing all thread-shared data (such as global variables).

Example Eleven: Existential-Package Race Condition On many architec-
tures, we can assume that reads and writes of pointers are atomic; even without
explicit synchronization, programs cannot corrupt pointer values. Even under this
assumption, synchronization helps maintain user-defined data-structure invariants.
Furthermore, it is necessary for safe mutable existential types, as this Cyclone code,
which continues Example Three, demonstrates:2

void do_invoke(int *ignore) { invoke_cb(); }

int id(int x) { return x; }

void race(int * p) {

register_cb(p,assign);

spawn(do_invoke,NULL,sizeof(int));

register_cb(0xABC,id);

}

The spawned thread invokes the call-back cb, which reads the two fields and
calls one field on the other. Meanwhile, race uses register_cb to change cb to
hold an int and a function expecting an int. A bad interleaving could have the
spawned thread read the f field, then have the other thread change cb, and then
have the spawned thread read the env field. In this case, we would expect the
program to write to address OxABC. This situation arises because the two threads
share the existential package.

Because of race conditions, multithreaded Cyclone requires all thread-shared
data to be protected by a mutual-exclusion lock, or mutex. In order to let pro-
grammers describe which lock protects a particular thread-shared data object, we

2Recall that the code in Example Three is slightly incorrect because of memory management.
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introduce singleton lock types and annotate pointer types with the lock that a
thread must hold to dereference the pointer.

Example Twelve: Synchronized Access Universal quantification lets func-
tions take locks and data that the locks guard, as this simple example shows:

int read(lock_t<`> lk, int *` x; {}) {

sync lk { return x; }

}

The lock name ` is like a type variable, except it describes a lock instead of a type.
The pointer type indicates that a thread must hold the lock named ` to dereference
the pointer. The explicit effect ;{} is necessary because the default effect for this
function (see Chapter 5) would otherwise require the caller to hold the lock named
`. The term sync e s means, “acquire the lock e (blocking if another thread holds
it), execute s, and release the lock.”

Existential quantification allows storing locks in data structures along with
data guarded by the locks. Type constructors with lock-name parameters allow a
single lock to guard an aggregate data structure.

As shown above, pointer types for thread-shared data include a lock name; if
the name is α, then a thread must hold a lock with type lock_t<α> to dereference
the pointer. Thread-local pointers have a special annotation, much like ever-living
data has a special region annotation. Thread-local data does not require synchro-
nization.

In short, the basic system for ensuring mutual exclusion uses typing constructs
very much like the memory-management system. Chapter 5 explains many issues
regarding threads and locks, including:

• How to ensure code acquires a lock before accessing data guarded by the lock

• How to ensure thread-local data does not escape a single thread

• How to write libraries that can operate on thread-local or thread-shared data

• How to allow global variables in multithreaded programs

2.5 Summary of Type-Level Variables

C programs are often safe only because they maintain a collection of invariants
that the C type system does not express. These invariants include type equalities
among values of type void*, int values holding the lengths of arrays, int values
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indicating the current variant of a union type, pointers not referring to deallocated
storage, and mutual exclusion on thread-shared data. We have seen why these
invariants are essential for safety.

To capture these idioms, Cyclone significantly enriches the C type system. In
particular, we have added conventional type variables, singleton int constants,
region names, and singleton lock names. Pointer types carry annotations that
restrict the values of the type.

The important point is that these additions are uniform in the following sense.
For each, we allow universal quantification, existential quantification, and type
constructors parameterized by the addition. There are other similarities, such as
how the type system approximates the set of live regions and the set of held locks,
that we explain in Chapter 5.

However, these additions all enforce invariants ; the type checker ensures some
property always holds in a given, well-structured context. For local data, invariants
are often too strong. We now give examples in which invariants are too strong.
We use dataflow analysis in many such cases.

2.6 Definite Assignment

In C, we can allocate memory for a value of some type without putting a value in
the memory. Using the memory as though a valid value were there violates safety.

Example Thirteen: Uninitialized Memory In this example, both assign-
ment statements cause unpredictable behavior because of uninitialized memory.

void f() {

int * p1;

int ** p2 = malloc(sizeof(int*));

*p1 = 123;

**p2 = 123;

}

One simple solution requires programmers to specify initial values when allo-
cating memory. For local declarations, initializers suffice. For heap memory, we
provide the form new e, which is like malloc except that it initializes the new
memory with the result of evaluating e. Another solution inserts initial values im-
plicitly whenever programmers omit them. Doing so is difficult because of abstract
types and separate compilation. It also violates the spirit of “acting like C.”

These solutions, which make uninitialized memory impossible, ignore the fact
that separating allocation from initialization is useful:
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• Omitting an initializer serves as “self-documentation” that subsequent exe-
cution will initialize the value before using it.

• Correct C code is full of uninitialized memory because there is no new e; we
would like to port such code to Cyclone without unnecessary modification.

• A common idiom is to stack-allocate storage for a value of an abstract type
and then pass a local variable’s address to an initializer (also known as a
constructor) function. This idiom requires pointers to uninitialized memory.

• Initializing memory with values that the program will not use incurs unnec-
essary run-time cost.

In Cyclone, we allow uninitialized memory but check at compile-time that the
program definitely assigns to the memory before using it. (The term definite as-
signment is from Java [92], which has a similar but less sophisticated flow analysis.)
To do so, we maintain a conservative approximation of the possibly uninitialized
memory locations for each program point.

Example Fourteen: Definite Assignment This simple example is correct
Cyclone code:

int * f(bool b) {

int *p1;

if(b)

p1 = new 17;

else

p1 = new 76;

return p1;

}

This code is correct because no control-flow path to the return statement exists
along which p1 remains uninitialized. This example is simple for several reasons:

• The control flow is structured. In general, features like goto require us to
analyze code iteratively.

• We have no pointers to uninitialized memory, such as with malloc.

• We have no under-specified order of evaluation (such as the order that ar-
guments to a function are evaluated), which complicates having a sound,
tractable analysis.
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• We do not pass uninitialized memory to another function.

These complications (jumps, pointers, evaluation order, and function calls) are
orthogonal to the actual problem (uninitialized memory), so we use one approach
for all the problems we address with flow analysis. The essence of the approach
is to incorporate must points-to information (e.g., “this pointer must hold the
value returned by that call to malloc”) into the analysis, and to require explicit
annotations for interprocedural idioms like initializer functions.

2.7 NULL Pointers

The Cyclone type system distinguishes pointers that might be NULL (written τ* as
in C) from those that are definitely not NULL (written τ@). Blithely dereferencing
a τ* pointer with the * or -> operators can violate safety.3 One solution is for the
compiler to insert an explicit check for NULL (throwing an exception on failure),
but this check is often redundant, in which case the mandatory check introduces
a performance cost.

Instead, we introduce checks only when our flow analysis cannot prove they are
redundant. We can warn the user about inserted checks.

Example Fifteen: NULL Checks The compiler inserts only one check into
this code:

int f(int *p, int *q, int **r) {

int ans = 0;

if(p == NULL) return 0;

ans += *p;

ans += *q; // inserted check

*r = NULL;

ans += *q;

}

The first addition needs no check because if p were NULL, the return statement
would have executed. The last addition needs no check because if q were NULL,
the second addition would have thrown an exception.

For sound reasoning about redundant checks, aliasing is crucial. For example,
the last addition would need a check if r could be &q. The must points-to in-
formation addresses this need: A check involving some memory location is never
eliminated if unknown pointers to the location may exist.

3Trapping access of address 0 (the normal implementation of NULL) is insufficient because
x->f could access a large address.
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2.8 Checking Against Tag Variables

Null-checks are easy to insert because the check needs only the pointer. For a
subscript e1[e2] where e1 has type τ@{α}, we must check that e2 is (unsigned) less
than α. To do so at run-time, we need a value of type tag_t<α>.4 Implementations
of safe high-level languages typically implement bounds-checking by storing such
values in “hidden” locations. Doing so dictates data representation; it is a hallmark
of high-level languages.

In Cyclone, we could pursue several alternatives. First, the implementation
could try to find a value of type tag_t<α> in scope at the subscript. Doing so
is awkward. Second, we could make subscript a ternary operator, forcing the
programmer to provide the correct bound. This solution makes porting code more
difficult and does not eliminate redundant tests.

The solution we actually pursue is to use the flow analysis in conjunction with
the type system to prove that subscripts are safe. The main limitation is a re-
stricted notion of mathematical equalities and inequalities. In this dissertation,
I use only very limited notions (essentially equalities and inequalities between
constants and variables) because the choice of a decidable arithmetic appears or-
thogonal to other issues.

Example Sixteen: Array-Bounds Checking In this example, the compiler
accepts the first loop because the bound properly guards subscript. More formally,
there is no control-flow path to arr[i] along which i might not be less than α.
The compiler rejects the second loop because Cyclone includes no sophisticated
compile-time arithmetic reasoning:

int twice_sum(tag_t<α> sz, int @{α} arr) {

int ans=0;

for(int i=0; i < sz; ++i)

ans += arr[i];

for(int j=1; j <= sz; ++j)

ans += arr[j-1]; // rejected

return ans;

}

Note that aliasing is still important. For example, if i were a global variable and
the body of the first loop included a function call, the first loop might not be safe.

4Or something we know is smaller.
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Example Seventeen: Implicit Checking Programmers who prefer the con-
venience of implicit checking can encode it with an auxiliary function:

struct MyArr<α> { <β>
tag_t<β> sz;

α @{β} elts;

}

α my_subscript(struct MyArr<α> arr, int ind) {

let MyArr{<β> s, e } = arr;

if(ind < s) return e[ind];

throw ArrayBounds;

}

We can use the same techniques to check discriminated unions. In fact, the
limited arithmetic is less draconian for union tags because the typical idioms (e.g.,
a switch statement) are easier to support.

2.9 Interprocedural Flow

We have seen how flow analysis can go beyond invariants to provide an expressive
system for initializing memory, checking NULL pointers, checking array bounds, and
checking union variants. But for scalability and separate compilation, we use in-
traprocedural flow analysis: For a function call, we make conservative assumptions
based only on the function’s type. We enrich function types with annotations that
express flow properties. The compiler uses these properties to check the callee and
the caller.

For example, if a function parameter is a pointer, we can say the function
initializes the parameter. We check the function assuming the parameter points
to uninitialized memory and we ensure that the function initializes the memory
before it returns. At the call site, we allow passing a pointer to uninitialized
memory and assume the function call initializes the memory.

For tag variables, we can express relations such as α ≤ β. Doing so shifts the
burden of establishing the inequality to the caller (else the function call is rejected),
allowing the callee to assume the relation. We can also introduce relations in type
definitions: The creator of a value of the type must establish the relations. The
user of a value can assume them.

Finally, we can consider not-null (@) types as shorthand for a property of
possibly-NULL pointer types.
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2.10 Summary of Flow-Analysis Applications

For properties that require multiple steps (e.g., allocation then initialization) or
run-time checking (e.g., array bounds), a flow analysis proves valuable. It interacts
with the type system synergistically: If the type system ensures that e1 has type
tag_t<α> and e2 has type tag_t<β>, then given if(e1<=e2) s, the flow analysis
can use α ≤ β when checking s. Conversely, if s calls a function with a type
requiring that one tag is less than another, then we can use the flow analysis to
check the call.

Besides function calls and unstructured control flow, two features of Cyclone
(and C) make a sound, tractable flow analysis technically interesting. The first is
under-specified evaluation order. The second is rampant potential aliasing, even of
local variables. The analysis in Chapter 6 makes conservative assumptions about
these features. To remain effective, it incorporates must points-to information.
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Type Variables

Cyclone uses type variables, quantified types, and type constructors to eliminate
the need for many potentially unsafe type casts in C while still allowing code to
operate over values of different types. To begin, we review C’s facility for casts
and various idioms that are safe but require casts in C because of its impoverished
type system. This discussion identifies the idioms that type variables capture.

Given an expression e of type t1, the C expression (t2)e casts e to type t2.
At compile time, the expression (t2)e has type t2. At run time, it means the
result of evaluating e is converted to a value type t2. The conversion that occurs
depends on t1 and t2.

If t2 is a numeric type (int, float, char, etc.), the conversion produces some
bit sequence that the program can then use as a number. The Cyclone type-checker
allows such casts by conservatively assuming that any bit sequence might be the
result. Casts to numeric types pose no problem for safety, so we have little more
to say about them.

In C and Cyclone, neither t1 nor t2 can be an aggregate (struct or union)
type1 because it is not clear, in general, what conversion makes sense.

In C, programmers can cast an integral type (int, char, etc.) to a pointer
type, but doing so is almost always bad practice. If a pointer of type t1 is cast to
integral type t2 and sizeof(t2)>=sizeof(t1) and the resulting value is cast back
to type t1, then we can expect to get the value of the original pointer. However,
using void* is better practice, and Cyclone uses type variables in place of void*.
So Cyclone forbids casting an integral type to a pointer type.

The only remaining casts are between two pointer types. One safe use of such
casts is overcoming C’s lack of subtyping. For example, given these type definitions,
casting from struct T1* to struct T2* is safe:

1A gcc extension allows casting to union U if a field of union U has exactly type t1. This
extension is not technically interesting.

31
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struct T2 { int z; };

struct T1 { struct T2 x; int y; };

In C’s implicit low-level view of memory, this cast makes sense because pointers
are machine addresses and the first field of a struct begins at the same address as
the struct. Cyclone allows these casts by defining the subtyping that is implicit
in the C memory model and allowing casts only to supertypes. This dissertation
does not describe subtyping in detail.

Another source of pointer-to-pointer casts is code reuse. If code manipulates
only pointers and not the values pointed to, the code should work correctly for all
pointer types. In C, the sanctioned way to write such polymorphic code is to use
the type void* for the pointer types. To use polymorphic code, pointers are cast
to void*. Presumably, some other code will eventually use the values pointed to.
Doing so requires casting from void* back to the original pointer type. The safety
problem is that nothing checks that this second cast is correct; a pointer of type
void* could point to a value of any type. Cyclone forbids casting from void* to
another pointer type, but does allow casting to void*.

The rest of this chapter explains how Cyclone’s type variables eliminate most
of the need for using void* by capturing the important idioms for code reuse.
Another common use of void* is in user-defined discriminated unions; Chapter 7
explores that idiom in detail. Of course, determining if a C program casts from
void* correctly is undecidable, so there exist correct C programs using void* that
do not map naturally to Cyclone programs.

Section 3.1 presents how we use type variables and related features to describe
programming idioms such as polymorphic code, first-class abstract types (e.g.,
function closures and call-backs), and libraries for container types. The material
adapts well-known ideas to a C-like language; knowledgable readers willing to en-
dure unusual syntax might skip it. Section 3.2 discusses how C’s low-level memory
model (particularly values having different sizes) complicates the addition of type
variables. Section 3.3 discusses how type variables are safe in Cyclone despite
mutation. It describes a newly discovered unsoundness involving aliased muta-
ble existential types and Cyclone’s solution. This section is the most novel in the
chapter (although I previously published the idea [94]); it is important for language
designers considering mutable existential types. Section 3.4 evaluates the type sys-
tem mostly by describing its limitations. Section 3.5 presents a formal language
for reasoning about the soundness of Cyclone’s type variables, which is particu-
larly important in light of Section 3.3’s somewhat surprising result. Section 3.6
discusses related work. Appendix A proves type safety for the formal language.



33

3.1 Basic Constructs

One form of type in Cyclone is a type variable (written α, β, etc.). Certain con-
structs introduce type variables in a particular scope. Within that scope, the type
variable describes values of an unknown type. The power of type variables (as op-
posed to void*) is that a type variable always describes the same unknown type,
within some scope. We present each of the constructs that introduce type variables,
motivate their inclusion, and explain their usage. We then present some techniques
that render optional much of the cumbersome notation in the explanations. We
defer complications such as nonuniform data representation to Section 3.2.

3.1.1 Universal Quantification

The simplest example of universal quantification is this function:

α id<α>(α x) { return x; }

This function is polymorphic because callers can instantiate α with different
types to use the function for values of different types. For example, if x has type
int and y has type int*, then id<int>(x) has type int and id<int*>(y) has
type int*.

In general, a function can introduce universally bound type variables α1, α2, . . .
by writing <α1, α2, . . .> after the function name. The type variables’ scope is the
parameters, return type, and function body. The type of the function is a universal
type. For example, the type of id is α id<α>(α), pronounced, “for all α, id takes
an α and returns an α.” Using more conventional notation for universal types and
function types, we would write ∀α.α → α. As Section 3.2 explains, id cannot
actually be used for all types.

To use a polymorphic function (i.e., a value of universal type), we must instan-
tiate the type variables with types. For example, id<int> has type int id(int).

More interesting examples of polymorphic functions take function pointers as
arguments. This code applies the same function to every element of an array of 10
elements.

void app10<α>(void f(α), α arr[10]) {

for(int i=0; i < 10; ++i)

f(arr[i]);

}

The function call type-checks because the argument has the type the function
expects, namely α. To show that the code is reusable, we use it at two types:
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int g; // global variable that functions modify

void add_int(int x) { g += x; }

void add_ptr(int *p) { g += *p; }

void add_intarr(int arr[10]) { app10<int >(add_int, arr); }

void add_ptrarr(int* arr[10]) { app10<int*>(add_ptr, arr); }

We resorted to global variables only because the type of app10’s first argument
let us pass only one argument (and, unlike in functional languages, we do not have
function closures). A better approach passes another value to the function pointer.
Because the type of this value is irrelevant to the implementation of app10, we
make app10 polymorphic over it.

void app10<α,β>(void f(β, α), β env, α arr[10]) {

for(int i=0; i < 10; ++i)

f(env,arr[i]);

}

int g; // global variable that functions modify

void add_int(int *p, int x) { *p += x; }

void add_ptr(int *p1, int *p2) { *p1 += *p2; }

void add_intarr(int arr[10]) { app10<int*,int >(add_int,&g,arr) }

void add_ptrarr(int* arr[10]) { app10<int*,int*>(add_ptr,&g,arr) }

Now users of app10 can use any pointer for identifying the value to modify, even
one chosen based on run-time values.

In short, universal quantification over type variables is a powerful tool for
encoding idioms in which code does not need to know certain types, but it does
need to relate the types of multiple arguments (e.g., the array elements and the
function-pointer’s argument of app10) or arguments and results (e.g., the argument
and return type of id). In C, we conflate all such types with void*, sacrificing the
ability to detect inconsistencies with the type system.

In Cyclone, the refined information from polymorphism induces no run-time
cost. Type instantiation is just a compile-time operation. The compiler does not
duplicate code; there is one compiled version of app10 regardless of the number of
types for which the program uses it. Similarly, instantiation does not require the
function body, so we can compile uses of app10 separately from the implementation
of app10.

We also do not use any run-time type information: We pass app10 exactly the
same information as we would in C. There are no “secret arguments” describing
the type instantiation, which is important for two reasons. First, it meets our
goal of “acting like C” and not introducing extra data and run-time cost. Writing
reusable code is good practice; we do not want to penalize such code. Second, it
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becomes complicated to compile polymorphic code differently than monomorphic
code, as this example suggests:

α id<α>(α x) { return x; }

int f(int x) { return x+1; }

void g(bool b) {

int (*g)(int) = (b ? id<int> : f);

// use g

}

Because id<int> and f have the same type, we need to support (indirect) function
calls where we do not know until run-time which we are calling. To do so without
extra run-time cost, the two functions must have the same calling convention,
which precludes one taking secret arguments and not the other.

Cyclone also supports first-class polymorphism and polymorphic recursion. The
former means universal types can appear anywhere function types appear, not just
in the types of top-level functions. This silly example requires this feature:

void f(void g<α>(α), int x, int *y) {

g<int> (x);

g<int*>(y);

}

Polymorphic recursion lets recursive function calls instantiate type variables dif-
ferently than the outer call. Without this feature, within a function f quantifying
over α1, α2, . . ., all instantiations of f must be f<α1, α2, . . .>. This silly example
uses polymorphic recursion:

α slow_id<α>(α x, int n) {

if(n >= 0)

return *slow_id<α*>(&x, n-1);

return x;

}

First-class polymorphism and polymorphic recursion are natural features. We
emphasize their inclusion because they are often absent from languages, most no-
tably ML, because they usually make full type inference undecidable [216, 114, 133].
Cyclone provides convenient mechanisms for eliding type information, but it does
not support full inference. Therefore, it easily supports these more expressive
features. We will find them more important in Chapters 4 and 5.
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3.1.2 Existential Quantification

Cyclone struct types can existentially quantify over type variables, as in this
example:

struct T { <α>
α env;

int (*f)(α);
};

In English, “given a value of type struct T, there exists a type α such that the
env field has type α and the f field is a function expecting an argument of type
α.” The scope of α is the field definitions. A common use of such types is a library
interface that lets clients register call-backs to execute when some event occurs.
Different clients can register call-backs that use different types for α, which is more
flexible than the library writer choosing a type that all call-backs process. When
the library calls the f field of a struct T value, the only argument it can use is
the env field of the same struct because it is the only value known to have the
type the function expects. In short, we have a much stronger interface than using
void* for the type of env and the argument type of f.

Existential types describe first-class abstract types [151]. For example, we can
describe a simple abstraction for sets of integers with this type:

struct IntSet { <α>
α elts;

void (*add)(α,int);
void (*remove)(α,int);
bool (*is_member)(α,int);

}

The elts field stores the data necessary for implementing the operations. Abstrac-
tion demands that clients not assume any particular storage technique for elts;
existential quantification ensures they do not. For example, we can create sets
that store the elements in a linked list and other sets that store the elements in
an array. The abstract types are first-class in the sense that we can choose which
sort of set to make at run-time. We can even put sets using lists and sets using
arrays together, such as in an array where each element has type struct IntSet.
One cannot encode such data structures with universal quantification (and closed
functions).

Most strongly typed languages do not have existential types per se. Rather,
they have first-class function closures or first-class objects (in the sense of object-
oriented programming). These features have well-known similarities with exis-
tential types. They all have types that do not constrain private state (fields of
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existentially bound types, free variables of a first-class function, private fields of
an object), which we can use to enforce strong abstractions. Indeed, a language
without any such first-class data-hiding construct is impoverished, but any one
suffices for encoding simple forms of the others. For example, we can use existen-
tial types to encode closures [150] and some forms of objects [33]. Many of the
most difficult complications in Cyclone arise from existential types (we will have to
modify the examples of this section in Chapter 4 and 5), but the problems would
not disappear if we replaced them with another data-hiding feature. Providing no
such feature would impoverish the language.

Cyclone provides existential types rather than closures or objects because they
give programmers more control over data representation, which is one of our pri-
mary goals. Compiling closures or objects requires deciding how to represent the
private state. Doing so involves space and time trade-offs that can depend on the
program [7, 1], but programmers do not see the decisions. We prefer to provide a
powerful type system in which programmers decide for themselves.

We now present the term-level constructs for creating and using values of exis-
tential types. We call such values existential packages. When creating an existen-
tial package, we must choose types for the existentially bound type variables, and
the fields must have the right types for our choice. We call the types the witness
types for the existential package. They serve a similar purpose to the types used
to instantiate a polymorphic function. Witness types do not exist at run-time.

To simplify checking that programs create packages correctly, we require creat-
ing a package with a constructor expression, as in this example, which uses struct
T as defined above:

int deref(int * x) { return *x; }

int twice(int x) { return 2*x; }

int g;

struct T makeT(bool b) {

if(b)

return T{<int*> .env=&g, .f=deref};

return T{<int> .env=g, .f=twice};

}

If the code executes the body of the if-statement, we use int* for the witness
type of the returned value, else we use int. The return type is just struct T; the
witness type is not part of it. We never allow inconsistent fields: There is no τ
such that T{<τ> .env=g, .f=deref} is well-typed.

To use an existential package, Cyclone provides pattern matching to unpack
(often called open) the package, as in this example:
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int useT(struct T pkg) {

let T{<β> .env=e, .f=fn} = pkg;

return fn(e);

}

The pattern binds e and fn to (copies of) the env and f fields of pkg. It also
introduces the type variable β. The scope of β, e, and fn is the rest of the code
block (in the example, the rest of the function). The types of e and fn are β and
int (*f)(β), respectively, so the call fn(e) type-checks. Within its scope, we
can use β like any other type. For example, we could write β x = id<β>(e);.

We require reading the fields of a package with pattern matching (instead of
using individual field projections), much as we require building a package all at
once. For the most part, not allowing the “.” and “->” operators for existential
types simplifies type-checking. When creating a package, we can check for the cor-
rect witness types. When using a package, it clearly defines the types of the fields
and the scope of the introduced type variables. We can unpack a package more
than once, but the unpacks will use different type variables (using the same name
is irrelevant; the type system properly distinguishes each binding occurrence), so
we could not use, for example, the function pointer from one unpack with the
environment from the other.

3.1.3 Type Constructors

Type constructors with type parameters let us concisely describe families of types.
Applying a type constructor produces a type. For example, we can use this type
constructor to describe linked lists:

struct List<α> {

α hd;

struct List<α> * tl;

};

The type constructor struct List is a type-level function: Given a type, it pro-
duces a type. So the types struct List<int>, struct List<int*>, and struct

List<struct List<int>*> are different. The type α is the formal parameter; its
scope is the field definitions. Because the type of the tl field is struct List<α>*,
all types that struct List produces describe homogeneous lists (i.e., all elements
have the same type).

Type constructors can encode more sophisticated idioms. We can use this type
constructor to describe lists where the elements alternate between two types:
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struct ListAlt<α,β> {

α hd;

struct ListAlt<β,α> * tl;

};

Building and using values of types that type constructors produce is no different
than for other types. For example, to make a struct List<int>, we put an
int in the hd field and a struct List<int>* in the tl field. If x has type
struct List<int>, then x.hd and x.tl have types int and struct List<int>*,
respectively.

The conventional use of type constructors is to describe a “container type” and
then write a library of polymorphic functions for the type. For example, these
prototypes describe general routines for linked lists:

int length<α>(struct List<α>*);
bool cmp<α,β>(bool f(α,β), struct List<α>*, struct List<β>*);
struct List<α>* append<α>(struct List<α>*, struct List<α>*);
struct List<β>* map<α,β>(β f(α), struct List<α>*);

Compared to C, in which we would write just struct List and the hd field
would have type void*, these prototypes express exactly what callers and callees
need to know to ensure that list elements have the correct type. For example, for
append (which we presume appends its inputs) to return a list where all elements
have some type α, both inputs should be lists where all elements have this type.
After calling append instantiated with type τ , the caller can process the result
knowing that all elements have type τ .

Type constructors and existential quantification also interact well. For example,
struct Fn is a type constructor for encoding function closures:

struct Fn<α,β> { <γ>
β (*f)(γ, α);
γ env;

};

This constructor describes functions from α to β with an environment of some
abstract type γ. Of course, different values of type struct Fn<τ1,τ2> can have
environments of different types. A library can provide polymorphic functions for
operations on closures, such as creation, application, composition, currying, un-
currying, and so on.

Type constructors are extremely useful, but they cause few technical challenges
in Cyclone. Therefore, the formalisms in this dissertation do not model them.
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Parameters for typedef provide a related convenience. The parameters to a
typedef are bound in the type definition. We must apply such a typedef to
produce a type, as in this example:

typedef struct List<α> * list_t<α>;

The α to the right is the binding occurrence. Like in C, typedef is transparent:
each use is completely equivalent to its definition. So writing list_t<int> is just
an abbreviation for struct List<int>*.

3.1.4 Default Annotations

We have added universal quantification, existential quantification, and type con-
structors so that programmers can encode a large class of idioms for reusable code
without resorting to unchecked casts. So far, we have focused on the type sys-
tem’s expressiveness without describing the features that reduce the burden on
programmers. We now present these techniques and show how some of our exam-
ples require much less syntax. As we add more features in subsequent chapters,
we revise these default rules to accommodate them.

First, in function definitions and function prototypes at the top-level (i.e., not
within a function body or type definition), the outermost function implicitly uni-
versally quantifies over any free type variables. So instead of writing:

α id<α>(α x);

list_t<β> map<α,β>(β f(α), list_t<α>);

we can write:

α id(α x);

list_t<β> map(β f(α), list_t<α>);

Explicit quantification is still necessary for first-class polymorphism:

void f(void g<α>(α), int x, int *y);

Omitting the quantification would make f polymorphic instead of g.
Second, instantiation of polymorphic functions and selection of witness types

can be implicit. The type-checker infers the correct instantiation or witness from
the types of the arguments or field initializers, respectively. Some examples are:

struct T { <α> α env; int (*f)(α); };

struct T f(list_t<α> lst) {

id(7);

map(id,lst);

return T{.env=7, .f=id};

}
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Polymorphic recursion poses no problem because function types are explicit. In-
ference does not require immediately applying a function, as this example shows:

void f() {

int (*idint)(int) = id;

idint(7);

}

In fact, type inference uses unification, a well-known technique (see, e.g., [166])
not described in this dissertation, within function bodies such that all explicit type
annotations are optional. Chapter 9 discusses some problems with type inference
in Cyclone, but in practice we can omit most explicit types in function bodies.
Every occurrence of a polymorphic function is implicitly instantiated; to delay the
instantiation requires explicit syntax, as in this example:

void f(int x) {

α (*idvar)<α>(α) = id<>; // do not instantiate yet

idvar(x); // instantiate with int

idvar(&x); // instantiate with int*

}

Third, an unpack does not need to give explicit type variables. The type-checker
can create the correct number of type variables and gives terms the appropriate
types. We can write:

int useT(struct T pkg) {

let T{.env=e, .f=fn} = pkg;

return fn(e);

}

The type-checker creates a type variable β with the same scope that a user-provided
type variable would have.

Fourth, we can omit explicit applications of type constructors or apply them to
too few types. In function bodies, unification infers omitted arguments. In other
cases (function prototypes, function argument types, etc.) the type-checker fills in
omitted arguments with fresh type variables. So instead of writing:

int length(list_t<α>);

we can write:

int length(list_t);
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In practice, we need explicit type variables only to express equalities (two or more
terms have the same unknown type). There is no reason for the programmer to
create type variables for types that occur only once, such as the element type for
length, so the type-checker creates names and fills them in. We do not mean that
type constructors are types, just that application can be implicit.

None of the rules for omitting explicit type annotations require the type-checker
to perform interprocedural analysis. Every function has a complete type deter-
mined only from its prototype, not its body, so the type-checker can process each
function body without reference to any other.

3.2 Size and Calling Convention

Different values in C and Cyclone can have different sizes, meaning they occupy
different amounts of memory. For example, we expect a struct with three int

fields to be larger than a struct with two int fields. Conventionally, all values of
the same type have the same size, and we call the size of values of a type the size
of the type. C implementations have some flexibility in choosing types’ sizes (in
order to accommodate architecture restrictions like native-word size and alignment
constraints), but sizes are compile-time constants.

However, not all sizes are known everywhere because C has abstract struct

declarations (also known as incomplete structs), such as “struct T;”. To enable
efficient code generation, C greatly restricts where such types can appear. For
example, if struct T is abstract, C forbids this declaration:

struct T2 {

struct T x;

int y;

};

The implementation would not know how much room to allocate for a variable
of type struct T2 (or struct T). If s has type struct T2*, there is no simple,
efficient way to compile s->y. In short, because the size of abstract types is not
known, C permits only pointers to them.

In Cyclone, type variables are abstract types, so we confront the same problems.
Cyclone provides two solutions, which we explain after introducing the kind system
that describes them. Kinds classify types just like types classify terms. In this
chapter, we have only two kinds, A (for “any”) and B (for “boxed”).2 Every type
has kind A. Pointer types and int also have kind B. We consistently assume, unlike

2I consider the term “boxed” a strange historical accident. In this dissertation, it means,
“pointers and things represented just like them.”
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C, that int has the same size and calling convention as void*. Saying int is just
more concise than saying, “an integral type represented like void*.”

The two solutions for type variables correspond to type variables of kind B and
type variables of kind A. A type variable’s binding occurrence usually specifies its
kind with α:B or α:A, and the default is B.3 All of the examples in Section 3.1 used
type variables of kind B. Simple rules dictate how the type-checker uses kinds to
restrict programs:

• A universally quantified type variable of kind B can be instantiated only with
a type of kind B.

• An existentially quantified type variable of kind B can have witness types
only of kind B.

• If α has kind A, then α is subject to the same restrictions as abstract struct
types in C. Essentially, it must occur directly under pointers and programs
cannot dereference pointers of type α*.

• The type variables introduced in an existential unpack do not specify kinds.
Instead, the ith type variable has the same kind as the ith existentially quan-
tified type variable in the type of the package unpacked.

Less formally, type variables of kind B stand for types that we can convert to
void* in C. That makes sense because all of the examples in Section 3.1 use type
variables in place of void*. We forbid instantiating such an α with a struct type
for the same reasons C forbids casting a struct type to void*. Type variables of
kind A are less common because of the restrictions on their use, but here is a silly
example:

struct T1<α:A> { α **x; α **y; };

void swap<α:A>(struct T1<α> *p) {

α * tmp = *x;

*x = *y;

*y = tmp;

}

Because swap quantifies over a type of kind A, we can instantiate swap with any
type.

A final addition makes type variables of kind A more useful. We use the unary
type constructor sizeof_t to describe the size of a type: The only value of type

3In Cyclone, the default kind is sometimes A, depending on how the type variable is used, but
we use simpler default rules in this dissertation.
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sizeof_t<τ> is sizeof(τ). As in C, we allow sizeof(τ) only where the compiler
knows the size of τ , i.e., all abstract types are under pointers.

The purpose of sizeof_t is to give Cyclone types to some primitive library
routines we can write in C, such as this function for copying memory:

void mem_copy<α:A>(α* dest, α* src, sizeof_t<α> sz);

Disappointingly, it is not possible to implement this function in Cyclone, but we
can provide a safe interface to a C implementation. A more sophisticated version
of this example appears in Chapter 7.

Not giving float kind B deserves explanation because we could assume that
float has the same size as void*, as we did with int. Many architectures use
a different calling convention for floating-point function arguments. If float had
kind B, then we could not have one implementation of a polymorphic function
while using native calling conventions, as this example demonstrates:

float f1(float x) { return x; }

α f2(α x) { return x; }

void f3(bool b) {

float (*f)(float) = b ? f1 : f2;

f(0.0);

}

As discussed in Section 3.6, the ML community has explored all reasonable solu-
tions for giving float kind B. None preserve data representation (a float being
just a floating-point number and a function being just a code pointer) without se-
cret arguments or a possibly exponential increase in the amount of compiled code.
In Cyclone, we prefer to expose this problem to programmers; they can encode
any of the solutions manually.

3.3 Mutation

Type safety demands that the expressiveness gained with type variables not allow
a program to view a data object at the wrong type. Mutable locations (as are
common in Cyclone) are a notorious source of mistakes in safe-language design. In
this section, we describe the potential pitfalls and how Cyclone avoids them.

3.3.1 Polymorphic References

Cyclone does not have so-called polymorphic references, which would allow pro-
grams like the following:
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void bad(int *p) {

∀α.(α*) x = NULL<>; // not legal Cyclone

x<int*> = &p;

*(x<int>) = 0xABC;

*p = 123;

}

We can give NULL any pointer type, so it is tempting to give it type ∀α.(α∗). By not
instantiating it, we can give x the same type. But by assigning to an instantiation
of x (i.e., x<int*> = &p), we put a nonpolymorphic value in x. Hence, the second
instantiation (x<int>) is wrong and leads to a violation of memory safety.

To avoid this problem, it suffices to disallow type instantiation as a form of
“left expression.” (In C and Cyclone, the left side of an assignment and the
argument to the address-of operator must be valid left expressions.) The formal
languages in this dissertation use precisely this solution: e[τ ] (the formal syntax
for instantiation) is never a left expression. In fact, there are no values of types like
∀α(α∗) because the only terms with universal types are functions and functions
are not left expressions. Most of the formal languages do not have NULL.

The solution in the actual Cyclone implementation is more convoluted because
C does not have first-class functions (a function definition is not an expression
form). Instead, using a function designator (some f where f is the name of a func-
tion) implicitly means &f and a function call implicitly dereferences the function
pointer. In Cyclone, that means we must allow &(f<τ>) because that is what f<τ>
actually means. No unsoundness results because code is immutable. Having code
pointers of different types refer to the same code is no problem because none of
the pointer types can become wrong. Expressions like f<τ> = g make no sense.

Another quirk allows the implementation not to check explicitly that left ex-
pressions of the form e<τ> have only function designators (or more type instan-
tiations) for e: there is no syntax (concrete or abstract) for writing a universal
type like ∀α.τ unless τ is a universal type or a function type. Hence all type
instantiations are ultimately applied to function designators.

In our formal languages, we do not use this quirk. The type syntax is orthog-
onal (e.g., ∀α.(α∗) is a well-formed type) even though all polymorphic values are
functions. We also disallow &f where f is a function (definition). Instead, we
must assign a function to a location and take the location’s address. If we had a
notion of immutability, we could allow &(e[τ ]) as a left expression when e was a
valid immutable left expression.

Section 3.6 briefly describes how other safe polymorphic languages prevent
polymorphic references.
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3.3.2 Mutable Existential Packages

It does not appear that other researchers have carefully studied the interaction
of existential types with features like mutation and C’s address-of (&) operator.
Orthogonality suggests that existential types in Cyclone should permit mutation
and acquiring the address of fields, just as ordinary struct types do. Moreover,
such abilities are genuinely useful. For example, a server accepting call-backs can
use mutation to reuse the same memory for different call-backs that expect data of
different types. Using & to introduce aliasing is also useful. As a small example,
given a value v of type struct T {<α> α x; α y;}; and a polymorphic function
void swap(β*, β*) for swapping two locations’ contents, we would like to permit
a call like swap(&v.x, &v.y). Unfortunately, these features can create a subtle
unsoundness.

The first feature—mutating a location holding a package to hold a different
package with a different witness type—is supported naturally. After all, if p1 and
p2 both have type struct T, then, as in C, p1=p2 copies the fields of p1 into the
fields of p2. Note that the assignment can change p2’s witness type, as in this
example:

struct T {<α> void (*f)(int, α); α env;};

void ignore(int x, int y) {}

void assign(int x, int *y) { *y = x; }

void f(int* ptr) {

struct T p1 = T(ignore, 0xABC);

struct T p2 = T(assign, ptr);

p2 = p1;

}

Because we forbid access to existential-package fields with the “.” or “->”
operators, we do not yet have a way to acquire the address of a package field. We
need this feature for the swap example above. To use pattern matching to acquire
field addresses, Cyclone provides reference patterns : The pattern *id matches any
location and binds id to the location’s address.4 Continuing our example, we could
use a reference pattern pointlessly:

let T{<β> .f=g, .env=*arg} = p2;

g(37,*arg);

Here arg is an alias for &p2.env, but arg has the opened type, in this case β*.

4Reference patterns also allow mutating fields of discriminated-union variants, which is why
we originally added them to Cyclone.
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At this point, we have created existential packages, used assignment to modify
memory that has an existential type, and used reference patterns to get aliases of
fields. It appears that we have a smooth integration of several features that are
natural for a language at the C level of abstraction. Unfortunately, these features
conspire to violate type safety:

void f(int* ptr) {

struct T p1 = T(ignore, 0xABC);

struct T p2 = T(assign, ptr);

let T{<β> .f=g, .env=*arg} = p2;

p2 = p1;

g(37,*arg);

}

The call g(37,*arg) executes assign with 37 and 0xABC—we are passing an int

where we expect an int*, allowing us to write to an arbitrary address.
What went wrong in the type system? We used β to express an equality

between one of g’s parameter types and the type of value at which arg points.
But after the assignment, which changes p2’s witness type, this equality is false.

We have developed two solutions. The first solution forbids using reference
patterns to match against fields of existential packages. Other uses of reference
patterns are sound because assignment to a package mutates only the fields of
the package. We call this solution, “no aliases at the opened type.” The second
solution forbids assigning to an existential package (or an aggregate value that has
an existential package as a field). We call this solution, “no witness changes.”

These solutions are independent : Either suffices and we could use different
solutions for different existential packages. That is, for each existential-type decla-
ration we could let the programmer decide which restriction the compiler enforces.
The current implementation supports only “no aliases at the opened type” because
we believe it is more useful, but both solutions are easy to enforce.

To emphasize the exact source of the problem, we mention some aspects that are
not problematic. First, pointers to witness types are not a problem. For example,
given struct T2 {<α> void f(int, α); α* env;}; and the pattern T2{<β>
.f=g,.env=arg}, an intervening assignment changes a package’s witness type but
does not change the type of the value at which arg points. Second, assignment
to a pointer to an existential package is not a problem because it changes which
package a pointer refers to, but does not change any package’s witness type. Third,
it is well-known that the typing rule for opening an existential package must forbid
the introduced type variable from occurring in the type assigned to the term in
which the type variable is in scope. In our case, this term is a statement, which
has no type (or a unit type if you prefer), so this condition is trivially satisfied.
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Multithreading introduces a similar problem that Chapter 5 addresses: The
existential unpack is unsound if the witness can change in-between the binding of
g and arg. We must exclude a witness change while binding a package’s fields.

3.3.3 Informal Comparison of Problems

The potential problems discussed above both result from quantified types, alias-
ing, and mutation, so it is natural to suppose they are logical duals of the same
problem. I have not found the correspondence between the two issues particularly
illuminating, but I nonetheless point out similarities that may suggest a duality.
Related work on polymorphic references is discussed in more detail in Section 3.6.

The polymorphic-reference example assigns to a variable at an instantiated
type and then instantiates the same variable at a different type. In contrast,
the existential-package example assigns to a value at an unopened type only after
creating an alias at the opened type.

The ML “value restriction” is a very clever way to prevent types like ∀α.(α∗)
by exploiting that expressions of such types cannot be values in ML. It effectively
prevents certain types for a mutable locations’ contents. In contrast, the “no
witness changes” solution prevents certain types for a mutation’s location.

With the exception of linear type systems, I know of no treatment of universal
types that actually permits the types of values at mutable locations to change, as
the “no aliases at the opened type” solution does. It is unclear what an invariant
along these lines would look like for polymorphic references.

3.4 Evaluation

To evaluate the Cyclone features presented in this chapter qualitatively, we start
with an optimistic assessment of what the features provide. We then describe some
disappointing limitations and how future work might address them.

3.4.1 Good News

Type variables provide compile-time equalities of unknown types. Compared to C,
they describe interfaces for polymorphic code and abstract types more precisely
than void*. Compared to safe languages without them, they provide more code
reuse.

Existential types give programmers first-class abstract data types without sac-
rificing C-like control over data representation. Building and using existential
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packages does not “look” much like C code, but the difference is local. Put an-
other way, porting C code that used a struct that converts easily to an existential
type would require changing only function bodies that access fields of the struct.
No restructuring of the code should be necessary. However, the existential types
in this chapter “hide too much”—Chapters 4 and 5 will modify them to “leak”
more information.

Type constructors provide an elegant way to describe container types (lists,
dictionaries, hashtables, etc.) and universal quantification describes polymorphic
routines over the types. The Cyclone implementation includes a powerful col-
lection of container-type libraries that applications have used extensively. Using
the libraries requires no more notation or overhead than in C, but we gain the
advantage that we cannot use void* to confuse types.

In general, default annotations and intraprocedural type inference allow pro-
grammers to write little more than what is necessary for type safety. Writing,
“void swap(α*, α*)” does not feel burdensome, and there could hardly exist a
more concise way to express the important type equality.

Type constructors and abstract types also allow clever programmers to use the
type system to encode restrictions on how clients can use a library. One fairly
well-known trick is to use so-called phantom types [79] (type variables that are not
used in the type’s implementation), as in this example interface:

struct Read;

struct Write;

struct MyFile<α>;
struct MyFile<struct Read*>* open_read(char*);

struct MyFile<struct Write*>* open_write(char*);

char read(struct MyFile<struct Read*>*);

void write(struct MyFile<struct Write*>*, char);

void reset(struct MyFile<α>*);
void close(struct MyFile<α>*);

This interface prevents reading a MyFile that was opened for writing or writing
a MyFile that was opened for reading. Yet polymorphism allows closing or reset-
ting any MyFile. The implementation of struct MyFile does not need run-time
information indicating “read” or “write.” Phantom types have their limits, how-
ever. We cannot soundly provide a function that changes a MyFile from “read”
to “write” because a client can keep an alias with the “old” type. Similarly, the
interface does not require that clients call close only once for each MyFile.

Cyclone’s kind distinction is no more burdensome than in C, where abstract
types must occur under pointers and struct types cannot be converted to void*.
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Some of the inconvenience is inherent to exposing data representation; it is infea-
sible to support polymorphism over types of different sizes and calling conventions
without imposing run-time cost or duplicating code. Nonetheless, C provides little
support for abstract types, so it is a bit too easy to accept being “as good as C.”
Section 3.4.2 explores some possible improvements.

Restricting where programmers can introduce type quantifiers (universal quan-
tification only on function types and existential quantification only on struct

types) is usually not too restrictive. To see why, consider this small formal gram-
mar for types:

τ ::= α | int | τ → τ | τ × τ | τ∗ | ∃α.τ | ∀α.τ

Types can be type variables, int, function types, pair types (i.e., anonymous struct
types), pointer types, existential types, or universal types. Unlike the Cyclone
implementation, this grammar does not restrict the form of quantified types. We
argue informally why the generality is not very useful:

• ∀α.α should not describe any value; nothing should have every type. ∃α.α
could describe any value (ignoring kind distinctions), but expressions of this
type are unusable. For ∀α.β and ∃α.β, we can just use β.

• For ∀α.int and ∃α.int, we can just use int.

• Cyclone provides ∀α.τ1 → τ2. For ∃α.τ1 → τ2, if α appears in τ1, expressions
of this type are unusable because we cannot call the function. Otherwise, we
can just use τ1 → ∃α.τ2.

• Cyclone provides the analogue of ∃α.τ1 × τ2. For ∀α.τ1 × τ2, a similar value
of type (∀α.τ1)× (∀α.τ2) is strictly more useful. Constructing such a similar
value is easy because type-checking expressions of type τ1 (respectively τ2)
does not exploit the type of τ2 (respectively τ1).

• For ∀α.(τ∗) and ∃α.(τ∗), we can just use (∀α.τ)∗ and (∃α.τ)∗, respectively.
Note that ∀α.(τ∗) should not describe mutable values.

However, it would be useful to allow ∀α.τ1 + τ2, where τ1+τ2 is a (disjoint) sum
type, especially in conjunction with abstract types. We return to Cyclone notation
for an example. Suppose we want to implement an abstract list library. We can
write the following (recalling that τ@ describes pointers that cannot be NULL and
new allocates new memory):
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struct L1<α> {

α hd;

struct L1<α> *tl;

};

struct L<α> { struct L1<α> * x; };

struct L<α>@ empty() { return new L{.x=NULL}; }

struct L<α>@ cons(α x, struct L<α>@ l) { ... }

...

We can keep the implementation abstract from clients by declaring just struct

L<α>;. Lists (struct L<α>@) are really a sum type because the x field is either
NULL or a pointer. Because all empty lists have the same representation—regardless
of the element type—it wastes space to allocate memory on each call to empty. To
avoid this waste, we need something like:

(∀α struct L<α>) mt = L{.x=NULL};

struct L<α>@ empty() { return &(mt<α>); }

Of course, the type of the variable mt uses universal quantification. It also suffers
from the polymorphic-reference problem (note that a type instantiation appears
in a left-side expression), so we need to prohibit mutation for all types constructed
from struct L. Without these additions, clients can share empty lists for each
element type, but they cannot share empty lists for different element types.

3.4.2 Bad News

Cyclone provides no compile-time refinement of abstract types. As a simple ex-
ample, it is tempting to allow programs like this one:

void swap(α*, α*);
void f(α* x, β* y) {

if(*x == *y)

swap(x,y);

}

The idea assumes that if two values are the same, then their types are the same. In
the true-branch of the if-statement, the type-checker could include the constraint
α = β. Although this addition has questionable utility, it is tempting because we
have constraints describing equalities and inequalities for the type-level variables
we introduce in subsequent chapters. In particular, in Chapter 7 we use term-level
tests to introduce type-level constraints. Because a primary goal of this dissertation
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is to demonstrate that the same tools are useful and meaningful for a variety of
problems, constraints for type variables merit consideration.

Unfortunately, the refinement in the above example is unsound because the
assumption underlying it does not hold. Suppose α is int and β is int*. The
condition *x == *y might still hold, allowing swap to put an int where we expect
a pointer.

Subtyping also makes it unsound to use pointer-equality checks to introduce
equality constraints. If α and β obey a strict subtype relationship, values of the
types could be equal, but it is unsound to introduce a type-equality constraint.

However, there are sound ways for term-level tests (other than pointer equality)
to introduce type-level constraints. For example, the type system in Chapter 7 can
express roughly, “if some constant integer is 0, then α is τ .” However, that system
works only for constant integers; safe C programs may check more complex prop-
erties to determine a value’s type. A more principled approach provides explicit
“representation-type” terms for describing the types of other terms [215]. Because
these terms are separate from the terms of the types they describe, they should
work well in a language that exposes data representation. They are important for
writing certain generic functions like marshallers and garbage collectors.

An easier and more justifiable addition is explicit subtyping constraints of the
form τ1<τ2. Adding such constraints as preconditions for polymorphic functions
achieves bounded quantification, as in this example:

α f(void g(τ), α x : α<τ) {

g(x);

return x;

}

The constraint α<τ requires any instantiation of f’s type to use a subtype of
τ . In the body of f, we can soundly assume the constraint holds, so we use
subsumption to type-check the function call. Without bounded quantification, the
most permissive type for f would give x and the result the type τ . But then callers
of f using a strict subtype of τ could not assume that the result of the call had the
subtype. Section 3.6 discusses some known problems with bounded quantification.

As for the kind system, the information about type variables of kind A is ex-
tremely coarse, just like abstract struct types in C. One cannot, for example,
write a function that works for all arrays with elements that are eight bytes long.
Adding more descriptive kinds is straightforward. For example, A8 could describe
all types τ such that sizeof(τ)==8 so long as the types have the same alignment
constraints, calling convention, etc. Subkinding would make A8 a subkind of A.
However, sizeof(τ) is implementation-dependent, so portable code cannot as-
sume its value. We could consider refining kind information within the program.
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For example, for if(sizeof(τ)==8) s, we could give τ kind A8 in s. Typed as-
sembly languages can have such kinds because all sizes are known [155, 51].

I believe a better solution is to recognize that C-level tasks inherently include
nonportable parts that can still benefit from language support. Most of an appli-
cation should not make implementation-dependent assumptions, and the language
implementation should check this property automatically. But when real bit-level
data representation and calling convention matter, an application should be able to
specify its assumptions about the implementation and have the compiler check the
code accordingly. In terms of our example, the code for manipulating arrays with
8-byte elements remains portable, but an implementation-dependent assumption
guards the use of it for type τ . Similar assumptions could allow other reasonable
operations, such as casting between struct T1 { int x; }; and struct T2 {

char y[4]; }; on appropriate architectures. Instead, Cyclone is like C, a strange
hybrid that exposes data representation in terms of field order, levels of indirection,
etc., but without committing to the size of types or the alignment of fields.

As mentioned previously, we could relax the rules about where abstract types
appear by duplicating code for every type at which it is instantiated. This approach
is closer to C++ templates [193]. It is a valuable alternative for widely used,
performance-critical libraries, such as hashtables, where a level of indirection can
prove costly. However, it is difficult to maintain separate compilation. Polymorphic
recursion is also a problem because it takes care to bound the amount of generated
code. For example, this program would need an infinite amount of code.

struct T<α:A> {α x; α y; }; // not legal Cyclone

void f<α:A>(struct T<α> t) {

struct T<struct T<α>> bigger = T{.x=t, .y=t};

f(bigger);

}

We have avoided this design path in Cyclone, largely because the C++ designers
have explored it extensively.

The inability of the Cyclone type system to express restrictions on aliases to lo-
cations causes Cyclone to forbid some safe programs. For example, given a pointer
to an α, it is safe to store a β at the pointed-to location “temporarily,” provided
that no code expecting an α reads the location before it again holds an α. If no
aliases to the location exist, this property is much easier to check statically. As
another example, we can allow reference patterns for fields of mutable existen-
tial packages, provided no (witness-changing) mutation occurs before the variable
bound with the reference pattern is dereferenced. Restricted aliasing makes it
possible to check that no such mutation occurs.
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Finally, some small problems in Cyclone’s design of type variables and casts
deserve brief mention. First, like in C, a cast’s meaning is type-dependent. For
example, casting a float to an int does not treat the same bit-sequence as an
integer. A cleaner design would distinguish coercive casts (which have run-time
effect) from other ones. Similar distinctions exist in C++.

Second, forbidding direct access to existential-package fields is inconvenient.
Perhaps a simple flow analysis could infer the unpacking implicit in field access
without violating soundness.

Third, partial instantiation of type constructors and polymorphic functions is
sometimes less convenient than I have suggested. The instantiation is in order,
which means the type-constructor and function creator determines what partial
applicatons are allowed. (The same shortcoming exists at the term level in func-
tional languages with currying.) Moreover, the partial applications described in
this chapter are just shorthand for implicit full applications. But sometimes it
is necessary to partially instantiate a universal type and delay the rest of the in-
stantiation. (I have extended the Cyclone implementation to support such a true
partial instantiation. The example where I found it necessary involves memory
management; see Chapter 4.)

Fourth, Cyclone does not have higher-order type constructors. There is no way
to parameterize one type constructor by another type constructor. To date, there
has not been sufficient demand to implement this feature.

3.5 Formalism

To investigate the soundness of the features presented in this chapter, especially
in the presence of the complications described in Sections 3.2 and Section 3.3, we
develop a formal abstract machine and a type system for it. This machine defines
programs that manipulate a heap of mutable locations. Locations can hold integers
or pointers. The machine gets “stuck” if a program tries to dereference an integer.
The type system has universal quantification and existential quantification (with
both solutions from Section 3.3). The theorem in Section 3.5.4 ensures well-typed
programs never lead to stuck machines.

As usual, a formal model lets us give precise meaning to our language-design
ideas, ignore issues orthogonal to safety (e.g., concrete syntax and floating-point
numbers), and prove a rigorous result. To keep the model and proof tractable,
we make further simplifications, such as omitting type constructors and memory
management. An inherent trade-off exists between simplifying to focus on relevant
issues and potentially missing an actual unsoundness due to a subtle interaction.

Section 3.5.1 defines the syntax of programs and program states. Section 3.5.2
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presents the rules for how the machine executes. Section 3.5.3 presents the type
system. In practice, we use the static semantics only for source programs, but the
type-safety proof requires extending the type system to type-check program states.
Before proceeding, we emphasize the most novel aspects of our formalism:

1. Like Cyclone and C, we distinguish left-expressions, right-expressions, and
statements. The definitions for these classes of terms are mutually inductive,
so the dynamic and static semantics comprise interdependent judgments.

2. Functions must execute return statements. (Our formalism does not have
void; Cyclone does.) A separate judgment encodes a simple syntax-directed
analysis to ensure a function cannot terminate without returning. (The ac-
tual Cyclone implementation uses a flow analysis.)

3. We allow aliasing of mutable fields (e.g., &x.i.j) and assignment to aggregate
values (e.g., x.i=e where x.i is itself an aggregate). This feature complicates
the rules for accessing, mutating, and type-checking aggregates.

4. We classify types with kinds B and A. The type system prohibits programs
that would need to know the size of a type variable of kind A.

5. To support both our solutions for mutable existential packages, the syntax
distinguishes two styles of existential types. The type system defines the
set of “assignable” types to disallow some witness changes. Moreover, the
type-safety proof requires the type system to maintain the witness types for
packages used in reference patterns. Otherwise, the induction hypothesis
would not be strong enough to show that evaluation preserves typing.

The formalisms in subsequent chapters also include the first two features, so we
describe them in some detail in this chapter’s simpler setting. Without them, the
abstract machine would “look” much less like C. The third feature also models an
important part of C. However, it is cumbersome, so after Chapter 4, we further
restrict left-expressions to prevent taking the address of fields. This later restriction
is only for simplicity. The last two features capture this chapter’s most interesting
aspects. Subsequent formalisms avoid the complications these features introduce
by disallowing type variables of kind A and eliminating reference patterns. Such
expediency in this chapter would be too simple.

3.5.1 Syntax

Figure 3.1 presents the language’s syntax. We model execution with a program
state consisting of a heap (for the data) and a statement (for the control). For
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the heap, we reuse variables to represent addresses, so the heap maps variables to
values. We write · for the empty heap. We allow implicit reordering of heaps, so
they act as partial maps.

Terms include expressions and statements. Statements include expressions (e)
executed for effect, return statements (return e), sequential composition (s; s),
conditionals (if e s s), and loops (while e s). A variable binding (let x = e; s)
extends the heap with a binding for x, which we can assume is unique because
the binding is α-convertible. Because memory management is not our present
concern, the dynamic semantics never contracts the heap. There are two forms
for destructing existential packages. The form open e as α, x; s binds x to a copy
of the contents of the evaluation of e, whereas open e as α, ∗x; s binds x to a
pointer to the contents of the evaluation of e. The latter form corresponds to
reference patterns. For simplicity, it produces a pointer to the entire contents, not
a particular field.

Expressions include integers (i); function definitions ((τ x) → τ e) with explicit
type parameters (Λα:κ.f); pointer creations (&e); pointer dereferences (∗e); pairs
((e1, e2)); field accesses (e.i); assignments (e1=e2); function calls (e1(e2)); type in-
stantiations (e[τ ]); and existential packages (pack τ ′, e as ∃φα:κ.τ). In this package
creation, τ ′ is the witness type. Its explicit mention is a technical convenience.

Two stranger expression forms remain. The call form (call s) maintains the
call stack in the term syntax: A function call is rewritten with this form and the
function’s return eliminates it. Instead of variables (x), we write variables with
paths (p), so the expression form is xp. If p is the empty path (·), then xp is
like a variable x, and we often write x as short-hand for x·. There is no need for
nonempty paths in source programs. Because values may be pairs or packages,
we use paths to refer to parts of values. A path is just a sequence of 0, 1, and u.
As defined in the next section, 0 and 1 refer to pair components and u refers to
the value inside an existential package. We write p1p2 for the sequence that is p1

followed by p2. We blur the distinction between sequences and sequence elements
as convenient. So 0p means the path beginning with 0 and continuing with p and
p0 means the path ending with 0 after p.

The valid left-expressions are a subset of the valid right-expressions. The type
system enforces the restriction. Invalid left-expressions do not type-check when
they occur under the & operator or on the left side of an assignment.

Types include type variables (α), a base type (int), products (τ1 × τ2), point-
ers (τ∗), existentials (∃φα:κ.τ), and universals (∀α:κ.τ). We consider quantified
types equal up to systematic renaming of the bound type variable (α-conversion).
Compared to Cyclone, we have replaced struct types with “anonymous” product
types (pairs) and eliminated user-defined type constructors. Type-variable bind-
ings include an explicit kind, κ. Because aliasing is relevant, all uses of pointers
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kinds κ ::= B | A
types τ ::= α | int | τ × τ | τ → τ | τ∗ | ∀α:κ.τ | ∃φα:κ.τ

φ ::= δ | &
terms s ::= e | return e | s; s | if e s s | while e s | let x = e; s

| open e as α, x; s | open e as α, ∗x; s
e ::= xp | i | f | &e | ∗e | (e, e) | e.i | e=e | e(e) | call s

| e[τ ] | pack τ, e as τ
f ::= (τ x) → τ s | Λα:κ.f
p ::= · | ip | up

values v ::= i | &xp | f | (v, v) | pack τ, v as τ
heaps H ::= · | H, x 7→ v
states P ::= H; s

contexts ∆ ::= · | α:κ
Γ ::= · | Γ, x:τ
Υ ::= · | Υ, xp:τ
C ::= ∆; Υ; Γ

Figure 3.1: Chapter 3 Formal Syntax

are explicit. In particular, a value of a product type is a record, not a pointer to
a record. To distinguish our two approaches to existential types, we annotate ∃
with δ (allowing witness changes) or & (allowing aliases at the opened type).

As technical points, we treat the parts of a typing context (∆, Γ, and Υ) as
implicitly reorderable (and as partial maps) where convenient. When we write
Γ, x:τ , we assume x 6∈ Dom(Γ). We write ΓΓ′ (and similarly for ∆ and Υ) for the
union of two contexts with disjoint domains, implicitly assuming disjointedness.

3.5.2 Dynamic Semantics

Six deterministic relations define the (small-step, operational) dynamic semantics.
A program state H; s becomes H ′; s′ if the rules in Figure 3.2 establish H; s

s→
H ′; s′. This relation and the related relations for expressions (H; e

r→ H ′; e′ and

H; e
l→ H ′; e′ in Figure 3.3) are interdependent because statements and expressions

can contain each other. The relations in Figure 3.4 describe how paths direct the
access and mutation of values. Type substitution (Figure 3.5) gives operational
meaning to e[τ ] and open. Types play no essential run-time role, so we can view
substitution as an effectless operation useful for proving type preservation. We
now describe the six definitions in more detail.
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x 6∈ Dom(H)

H; let x = v; s
s→ H, x 7→ v; s

DS3.1

H; (v; s)
s→ H; s

DS3.2
H; (return v; s)

s→ H; return v
DS3.3

H; if 0 s1 s2
s→ H; s2

DS3.4
i 6= 0

H; if i s1 s2
s→ H; s1

DS3.5

H; while e s
s→ H; if e (s; while e s) 0

DS3.6

H; open (pack τ ′, v as ∃φα:κ.τ) as α, x; s
s→ H; let x = v; s[τ ′/α]

DS3.7

get(H(x), p, pack τ ′, v as ∃φα:κ.τ)

H; open xp as α, ∗x′; s
s→ H; let x′ = &xpu; s[τ ′/α]

DS3.8

H; e
r→ H ′; e′

H; e
s→ H ′; e′

H; return e
s→ H ′; return e′

H; if e s1 s2
s→ H ′; if e′ s1 s2

H; let x = e; s
s→ H ′; let x = e′; s

H; open e as α, x; s
s→ H ′; open e′ as α, x; s

DS3.9

H; s
s→ H ′; s′

H; s; s2
s→ H ′; s′; s2

DS3.10

H; e
l→ H ′; e′

H; open e as α, ∗x; s
s→ H ′; open e′ as α, ∗x; s

DS3.11

Figure 3.2: Chapter 3 Dynamic Semantics, Statements

Rule DS3.1 is the only rule that extends the heap. Because let x = v; s is α-
convertible, we can assume x does not already name a heap location. Bindings exist
forever, so a statement like let x = v; return &x is reasonable. Rules DS3.2–6 are
unsurprising rules for simplifying sequences, conditionals, and loops. Rule DS3.7
uses a let to simplify the results of opening an existential package. In the result, α
is not in scope, so we substitute the package’s witness type for α in s. Rule DS3.8
also uses let, but it binds the variable to the address of the package’s contents. To
keep type-checking syntax-directed, we append u to the path. That way, we refer to
the package’s contents, not the package. The get relation, described below, is used
here only to acquire the witness type we need for substitution. Rules DS3.9–11 are
congruence rules, which evaluate terms contained in larger terms. Putting multiple
conclusions in one rule is just for conciseness. The interesting distinction is that in
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get(H(x), p, v)

H; xp
r→ H; v

DR3.1
set(v′, p, v, v′′)

H, x 7→ v′, H ′; xp=v
r→ H, x 7→ v′′, H ′; v

DR3.2

H; ∗&xp
r→ H; xp

DR3.3
H; (v0, v1).i

r→ H; vi

DR3.4

H; ((τ x) → τ ′ s)(v)
r→ H; call (let x = v; s)

DR3.5

H; call return v
r→ H; v

DR3.6
H; (Λα:κ.f)[τ ]

r→ H; f [τ/α]
DR3.7

H; s
s→ H ′; s′

H; call s
r→ H ′; call s′

DR3.8

H; e
l→ H ′; e′

H; &e
r→ H ′; &e′

H; e=e2
r→ H ′; e′=e2

DR3.9

H; e
r→ H ′; e′

H; ∗e r→ H ′; ∗e′
H; e.i

r→ H ′; e′.i
H; xp=e

r→ H ′; xp=e′

H; e[τ ]
r→ H ′; e′[τ ]

H; (e, e2)
r→ H ′; (e′, e2)

H; (v, e)
r→ H ′; (v, e′)

H; e(e2)
r→ H ′; e′(e2)

H; v(e)
r→ H ′; v(e′)

H; pack τ ′, e as ∃φα:κ.τ
r→ H ′; pack τ ′, e′ as ∃φα:κ.τ

DR3.10

H; (xp).i
l→ H; xpi

DL3.1
H; ∗&xp

l→ H; xp
DL3.2

H; e
r→ H ′; e′

H; ∗e l→ H ′; ∗e′
DL3.3

H; e
l→ H ′; e′

H; e.i
l→ H ′; e′.i

DL3.4

Figure 3.3: Chapter 3 Dynamic Semantics, Expressions
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get(v, ·, v)

get(v0, p, v)

get((v0, v1), 0p, v)

get(v1, p, v)

get((v0, v1), 1p, v)

get(v1, p, v)

get(pack τ ′, v1 as ∃&α:κ.τ , up, v)

set(v′, ·, v, v)

set(v0, p, v, v′)

set((v0, v1), 0p, v, (v′, v1))

set(v1, p, v, v′)

set((v0, v1), 1p, v, (v0, v
′))

set(v1, p, v, v′)

set(pack τ ′, v1 as ∃φα:κ.τ , up, v, pack τ ′, v′ as ∃φα:κ.τ)

Figure 3.4: Chapter 3 Dynamic Semantics, Heap Objects

open e as α, x; s, the expression e is a right-expression, but in open e as α, ∗x; s,
it is a left-expression.

Right-expressions evaluate to values using rules DR3.1–10. The get and set
relations handle the details of reading and mutating heap locations (DR3.1 and
DR3.2). Rules DR3.3 and DR3.4 eliminate pointers and pairs, respectively. Rules
DR3.5 and DR3.6 introduce and eliminate function calls, using a let to pass the
function argument. Rule DR3.7 uses type substitution for instantiation. Rules
DR3.8–10 are the congruence rules. Note that the evaluation order is left-to-right
and that DR3.9 indicates the left-expression positions.

Left-expressions evaluate to something of the form xp. We need few rules
because the type system restricts the form of left-expressions. The only inter-
esting rule is DL3.1, which appends a field projection to the path. To contrast
left-expressions and right-expressions, compare the results of DL3.2 and DR3.3.
For left-expressions, the result is a terminal form (no rule applies), but for right-
expressions, rule DR3.1 applies.

The get relation defines the use of paths to destruct values. As examples,
get((v0, v1), 1, v1) and get(pack τ ′, v as ∃&α:κ.τ , u, v). That is, we use u to get
a package’s contents, which we never do if the witness might change. The set
relation defines the use of paths to update parts of values: set(v1, p, v2, v3) means
updating the part of v1 corresponding to p with v2 produces v3. For example,
set((v1, ((v2, v3), v4)), 10, (v5, v6), (v1, ((v5, v6), v4))).

Type substitution is completely straightforward. We replace free occurrences
of the type variable with the type. Subsequent chapters omit the uninteresting
cases of the definition. In this chapter, no cases are interesting.

As an example of the dynamic semantics, here is a variation of the previous
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types: α[τ/α] = τ
β[τ/α] = β

int[τ/α] = int
(τ0 × τ1)[τ/α] = τ0[τ/α]× τ1[τ/α]

(τ1 → τ2)[τ/α] = τ1[τ/α] → τ2[τ/α]
(τ ′∗)[τ/α] = τ ′[τ/α]∗

(∀β:κ.τ ′)[τ/α] = ∀β:κ.τ ′[τ/α]
(∃φβ:κ.τ ′)[τ/α] = ∃φβ:κ.τ ′[τ/α]

contexts: ·[τ/α] = ·
(Γ, x:τ ′)[τ/α] = Γ[τ/α], x:τ ′[τ/α]

expressions: xp[τ/α] = xp
i[τ/α] = i

(&e)[τ/α] = &(e[τ/α])
(∗e)[τ/α] = ∗(e[τ/α])

(e0, e1)[τ/α] = (e0[τ/α], e1[τ/α])
(e.i)[τ/α] = (e[τ/α]).i

(e1=e2)[τ/α] = (e1[τ/α]=e2[τ/α])
(e1(e2))[τ/α] = e1[τ/α](e2[τ/α])
(call s)[τ/α] = call (s[τ/α])
(e[τ ′])[τ/α] = (e[τ/α])[τ ′[τ/α]]

(pack τ1, e as ∃φβ:κ.τ2)[τ/α] = pack τ1[τ/α], e[τ/α] as ∃φβ:κ.τ2[τ/α]
((τ1 x) → τ2 s)[τ/α] = (τ1[τ/α] x) → τ2[τ/α] s[τ/α]

(Λβ:κ.f)[τ/α] = Λβ:κ.f [τ/α]
statements: e[τ/α] = e[τ/α] (right side is an expression)

(return e)[τ/α] = return e[τ/α]
(s1; s2)[τ/α] = s1[τ/α]; s2[τ/α]

(while e s)[τ/α] = while e[τ/α] s[τ/α]
(if e s1 s2)[τ/α] = if e[τ/α] s1[τ/α] s2[τ/α]

(let x = e; s)[τ/α] = let x = e[τ/α]; s[τ/α]
(open e as β, x; s)[τ/α] = open e[τ/α] as β, x; s[τ/α]

(open e as β, ∗x; s)[τ/α] = open e[τ/α] as β, ∗x; s[τ/α]

Note: Throughout, we mean β 6= α and implicitly rename to avoid capture.

Figure 3.5: Chapter 3 Dynamic Semantics, Type Substitution
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unsoundness example. We use assignment instead of function pointers, but the
idea is the same. For now, we do not specify the style of the existential types.

(1) let xzero = 0;
(2) let xpzero = &xzero ;
(3) let xpkg = pack int∗, (&xpzero , xpzero) as ∃φα:B.α∗ × α;
(4) open xpkg as β, ∗xpr ;
(5) let xfst = (∗xpr).0;
(6) xpkg=pack int, (xpzero , xzero) as ∃φα:B.α∗ × α ;
(7) ∗xfst=(∗xpr).1 ;
(8) ∗xpzero=xzero

Lines (1)–(5) allocate values in the heap. After line (3), location xpkg contains
pack int∗, (&xpzero·, &xzero·) as ∃φα:B.α∗ × α. Line (4) substitutes int∗ for β and
location xpr contains &xpkgu. After line (6), xfst contains &xpzero· and xpkg contains
pack int, (&xzero , 0) as ∃φα:B.α∗ × α. Hence line (7) assigns 0 to xpzero , which causes

line (8) to be stuck because there is no H, H ′, and e′ for which H; ∗0 l→ H ′; e′.
To complete the example, we need to choose δ or & for each φ. Fortunately, as

the next section explains, no choice produces a well-typed program.
The type information associated with packages and paths keeps type-checking

syntax-directed. We could define an erasure function over heaps that replaces
pack τ ′, v as ∃φα:κ.τ with v and removes u from paths. It should be straightforward
to prove that erasure and evaluation commute (for a semantics that treats open
like let).

3.5.3 Static Semantics

Because program execution begins with an empty heap, a source program is just a
statement s. To allow s, we require ·; ·; ·; τ s̀typ s (for some type τ) and r̀et s, using
the rules in Figures 3.7 and 3.10, respectively. The former ensures conventional
type-checking; terms are never used with inappropriate operations and never refer
to undefined variables. The latter ensures that s does not terminate without
executing a return statement.

The s̀typ judgment and the type-checking judgments for right-expressions and
left-expressions ( r̀typ and l̀typ in Figure 3.8) are interdependent, just like the corre-
sponding run-time relations. The strangest part of these judgments is Υ, which is
irrelevant in source programs. As described below, it captures the invariant that
packages used in terms of the form open e as α, ∗x; s are never mutated. The
gettype relation (Figure 3.9) is the static analogue of the get relation. We use it
to type-check paths.
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∆ k̀ int : B ∆, α:B k̀ α : B ∆, α:A k̀ α∗ : B
∆ k̀ τ : B
∆ k̀ τ : A

∆ k̀ τ0 : A ∆ k̀ τ1 : A

∆ k̀ τ0 × τ1 : A
∆ k̀ τ0 → τ1 : A

∆ k̀ τ : A
∆ k̀ τ∗ : B

∆, α:κ k̀ τ : A α 6∈ Dom(∆)

∆ k̀ ∀α:κ.τ : A
∆ k̀ ∃φα:κ.τ : A

∆ k̀ τ : κ
∆ àk τ : κ ∆, α:A àk α : A

∆ àsgn int ∆, α:B àsgn α ∆ àsgn τ∗
∆ àsgn τ0 ∆ àsgn τ1

∆ àsgn τ0 × τ1

∆ àsgn τ0 → τ1

∆, α:κ àsgn τ

∆ àsgn ∀α:κ.τ
∆ àsgn ∃δα:κ.τ

∆ ẁf ·
∆ ẁf Γ ∆ k̀ τ : A

∆ ẁf Γ, x:τ ẁf ·
ẁf Υ · k̀ τ : A

ẁf Υ, xp:τ

∆ ẁf Γ ẁf Υ

ẁf ∆; Υ; Γ

Figure 3.6: Chapter 3 Kinding and Context Well-Formedness

C r̀typ e : τ ′

C; τ s̀typ e
SS3.1

C r̀typ e : τ

C; τ s̀typ return e
SS3.2

C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ s1; s2
SS3.3

C r̀typ e : int C; τ s̀typ s

C; τ s̀typ while e s
SS3.4

C r̀typ e : int C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ if e s1 s2
SS3.5

∆; Υ; Γ, x:τ ′; τ s̀typ s ∆; Υ; Γ r̀typ e : τ ′ x 6∈ Dom(Γ)

∆; Υ; Γ; τ s̀typ let x = e; s
SS3.6

∆; Υ; Γ r̀typ e : ∃φα:κ.τ ′

∆, α:κ; Υ; Γ, x:τ ′; τ s̀typ s
α 6∈ Dom(∆) x 6∈ Dom(Γ)
∆ k̀ τ : A

∆; Υ; Γ; τ s̀typ open e as α, x; s
SS3.7

∆; Υ; Γ l̀typ e : ∃&α:κ.τ ′

∆, α:κ; Υ; Γ, x:τ ′∗; τ s̀typ s
α 6∈ Dom(∆) x 6∈ Dom(Γ)
∆ k̀ τ : A

∆; Υ; Γ; τ s̀typ open e as α, ∗x; s
SS3.8

Figure 3.7: Chapter 3 Typing, Statements



64

Υ; x· ` gettype(Γ(x), p, τ) ∆ k̀ Γ(x) : A ẁf ∆; Υ; Γ

∆; Υ; Γ l̀typ xp : τ
SL3.1

C r̀typ e : τ∗ ∆ k̀ τ : A

C l̀typ ∗e : τ
SL3.2

C l̀typ e : τ0 × τ1

C l̀typ e.0 : τ0
SL3.3

C l̀typ e : τ0 × τ1

C l̀typ e.1 : τ1
SL3.4

Υ; x· ` gettype(Γ(x), p, τ) ∆ k̀ Γ(x) : A ẁf ∆; Υ; Γ

∆; Υ; Γ r̀typ xp : τ
SR3.1

C r̀typ e : τ∗ ∆ k̀ τ : A

C r̀typ ∗e : τ
SR3.2

C r̀typ e : τ0 × τ1

C r̀typ e.0 : τ0
SR3.3

C r̀typ e : τ0 × τ1

C r̀typ e.1 : τ1
SR3.4

ẁf C
C r̀typ i : int

SR3.5
C l̀typ e : τ

C r̀typ &e : τ∗ SR3.6
C r̀typ e0 : τ0 C r̀typ e1 : τ1

C r̀typ (e0, e1) : τ0 × τ1
SR3.7

∆; Υ; Γ l̀typ e1 : τ ∆; Υ; Γ r̀typ e2 : τ ∆ àsgn τ

∆; Υ; Γ r̀typ e1=e2 : τ
SR3.8

C r̀typ e1 : τ ′ → τ C r̀typ e2 : τ ′

C r̀typ e1(e2) : τ
SR3.9

C; τ s̀typ s r̀et s

C r̀typ call s : τ
SR3.10

∆; Υ; Γ r̀typ e : ∀α:κ.τ ′ ∆ àk τ : κ

∆; Υ; Γ r̀typ e[τ ] : τ ′[τ/α]
SR3.11

∆; Υ; Γ r̀typ e : τ [τ ′/α] ∆ àk τ ′ : κ ∆ k̀ ∃φα:κ.τ : A

∆; Υ; Γ r̀typ pack τ ′, e as ∃φα:κ.τ : ∃φα:κ.τ
SR3.12

∆; Υ; Γ, x:τ ; τ ′
s̀typ s r̀et s x 6∈ Dom(Γ)

∆; Υ; Γ r̀typ (τ x) → τ ′ s : τ → τ ′ SR3.13

∆, α:κ; Υ; Γ r̀typ f : τ ẁf ∆; Υ; Γ α 6∈ Dom(∆)

∆; Υ; Γ r̀typ Λα:κ.f : ∀α:κ.τ
SR3.14

Figure 3.8: Chapter 3 Typing, Expressions

Υ; xp ` gettype(τ, ·, τ)

Υ; xpu ` gettype(τ ′[Υ(xp)/α], p′, τ)

Υ; xp ` gettype(∃&α:κ.τ ′, up′, τ)

Υ; xp0 ` gettype(τ0, p
′, τ)

Υ; xp ` gettype(τ0 × τ1, 0p
′, τ)

Υ; xp1 ` gettype(τ1, p
′, τ)

Υ; xp ` gettype(τ0 × τ1, 1p
′, τ)

Figure 3.9: Chapter 3 Typing, Heap Objects
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r̀et return e
r̀et s1 r̀et s2

r̀et if e s1 s2

r̀et s

r̀et s; s′ r̀et let x = e; s

r̀et s′; s r̀et open e as α, x; s

r̀et open e as α, ∗x; s

Figure 3.10: Chapter 3 Must-Return

Υ; Γ h̀typ · : ·
Υ; Γ h̀typ H : Γ′ ·; Υ; Γ r̀typ v : τ

Υ; Γ h̀typ H, x 7→ v : Γ′, x:τ

H r̀efp ·
H r̀efp Υ get(H(x), p, pack τ ′, v as ∃&α:κ.τ)

H r̀efp Υ, xp:τ ′

Υ; Γ h̀typ H : Γ H r̀efp Υ ·; Υ; Γ; τ s̀typ s r̀et s

p̀rog H; s

Figure 3.11: Chapter 3 Typing, States

Type-checking also restricts what types can appear where, using the judgments
in Figure 3.6. The àk and ẁf judgments primarily ensure that type variables are in
scope. The k̀ kinding judgment forbids abstract types except under pointers. We
use it to prevent manipulating terms of unknown size, although formalizing this
restriction is somewhat contrived because the dynamic semantics for the formal
machine would have no trouble allowing terms of unknown size. The àsgn judgment
describes types of mutable expressions.

We do not need the judgments in Figure 3.11 to check source programs. They
describe the invariant we need to prove type safety in the next section. If s is
allowed as a source program, then p̀rog ·; s.

We now describe the judgments in more detail.
If ∆ k̀ τ : κ, then given the type variables in ∆, type τ has kind κ and its size is

known. To prevent types of unknown size, we cannot derive ∆, α:A k̀ α : κ, but we
can derive ∆, α:A k̀ α∗ : B. For simplicity, we assume function types have known
size, unlike in Cyclone. We can imagine implementing all function definitions with
values of the same size (e.g., pointers to code), so this simplification is justifiable.
Some types are not subject to the known-size restriction, such as τ in e[τ ]. But we
still require ∆ àk τ : κ; we can derive ∆, α:A àk α : κ. The types for which ∆ àsgn τ
have known size and any types of the form ∃&α:κ′.τ occur under pointers.

We cannot give quantified types kind B, but we argued earlier that doing so
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is not useful. We exploit this fact in the rules for àsgn: It is too lenient to allow
∆, α:B àsgn α if we might instantiate α with a type of the form ∃&α:κ′.τ . We could
enrich the kind system to distinguish assignable box kinds and unassignable box
kinds (the former being a subkind of the latter), but again it is not useful.

Well-formed contexts (the ẁf judgments) have only known-size types without
free type variables. Because Υ is used only to describe heaps, no ∆ is necessary.

The typing rules for statements are unsurprising, so we describe only some of
them. Rule SS3.2 uses the τ in the context to ensure functions do not return values
of the wrong type. In rule SS3.6, the body of the binding is checked in an extended
context, as usual. Rules SS3.7 and SS3.8 allow the two forms of existential unpacks.
As expected, they extend ∆ and Γ and the type of the bound term variable depends
on the form of the unpack (τ ′ in SS3.7 and τ ′∗ in SS3.8). The reuse of α in the
type of e is not a restriction because existential types α-convert. The e in SS3.8
must be a valid left-expression, so we type-check it with l̀typ, as opposed to r̀typ in
SS3.7. The type of e in SS3.8 cannot have the form ∃δα:κ.τ ; this is the essence of
the restriction on such types. Finally, the kinding assumption in SS3.7 and SS3.8
is a technical point to ensure that τ does not have a free occurrence of α, which is
always possible by α-conversion of the open statement.

Note that my previous work [94, 93] has a minor error: It does not enforce
that e in open e as α, ∗x; s is a valid left expression. In terms of that work, the
accidentally omitted assumption (assumed in the type-safety proof) is ` e lval.

The rules for l̀typ are a subset of the rules for r̀typ. We could have restricted the
form of left-expressions more directly and used just one conventional type-checking
judgment for all expressions. In subsequent chapters, the rules for valid left ex-
pressions are more lenient than a syntactic restriction of valid right expressions,
so for uniformity this chapter uses a separate judgment. A syntactic restriction
suffices in this chapter because programs always have “read access” of all data. In
subsequent chapters, we reject e as a right-expression if the program does not have
access to e, but we allow it as a left-expression because &e does not access e.

We now describe the type-checking rules for right-expressions. To type-check
xp, SR3.1 uses the gettype relation to derive a type from the type of x and the
form of p. We can use u to acquire the contents of an existential package only
if the package has a type of the form ∃&α:κ.τ . Such types are not assignable, so
no mutation can interfere. Furthermore, to use u, the path to the package must
be in Υ. We use Υ to remember the witness types of all packages that have been
unpacked with a statement of the form open e as α, ∗x; s. These witnesses cannot
change, so it is sound to use Υ(xp). Before a program executes, no packages have
been unpacked, so Υ is ·. In fact, there is no need for gettype at all in source
programs because we can forbid nonempty paths. SR3.2 prevents dereferencing a
pointer to a value of unknown size. SR3.3–7 hold no surprises. SR3.8 ensures that
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e1 is a valid left-expression and its type is assignable. SR3.9 is the normal rule for
function call. SR3.10 requires r̀et s, so we can prove that execution cannot produce
stuck terms of the form call v. SR3.11 and SR3.12 are conventional for quantified
types. We use the àk judgment because types for instantiations and witnesses can
have unknown size. SR3.13 and SR3.14 ensure functions return and assume the
correct kinds for quantified types. Unlike C and Cyclone, we do not require that
functions are closed (modulo global variables) nor do we require that they appear
at top-level.

The rules for r̀et s are all straightforward. All terminating statements become
either v or return v for some v. The r̀et s judgment is a conservative analysis that
forbids the former possibility.

The judgment p̀rog H; s describes the invariant we use to establish type safety.
First, the heap must type-check without reference to any free variables or any type
variables. By checking Γ; Υ h̀typ H : Γ, we allow mutually recursive functions in
the heap. (Mutually recursive data has to be encoded with functions because we
do not have recursive types.) Second, if Υ(xp) = τ , then the value in the heap
location that xp describes has to be an existential package with witness type τ ,
and the package’s type must indicate that the witness will not change. Third, s
has to type-check under the Γ and Υ that describe the heap. Finally, we require

r̀et s, though it does not really matter.

3.5.4 Type Safety

Appendix A proves this result:

Definition 3.1. State H; s is stuck if s is not of the form return v and there are
no H ′ and s′ such that H; s

s→ H ′; s′.

Theorem 3.2 (Type Safety). If ·; ·; ·; τ s̀typ s, r̀et s, and ·; s s→∗
H ′; s′ (where

s→∗
is the reflexive, transitive closure of

s→), then H ′; s′ is not stuck.

Informally, well-typed programs can continue evaluating until they terminate
(though they may not terminate).

3.6 Related Work

The seminal theoretical foundation for quantified types in programming languages
is the polymorphic lambda calculus, also called System F, which Girard [87] and
Reynolds [177] invented independently. Many general-purpose programming lan-
guages, most notably Standard ML [149], OCaml [40, 141], and Haskell [130] use
quantified types and type constructors to allow code reuse.
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Higher level languages generally do not restrict the types that a type variable
can represent. A polymorphic function can be instantiated at any type, including
records and floating-point types. Simpler implementations add a level of indirection
for all records and floating-point numbers to avoid code duplication. Sophisticated
analyses and compiler intermediate languages can avoid some unnecessary levels
of indirection [154, 195, 139, 140, 217]. In the extreme, ML’s lack of polymorphic
recursion lets whole-program compilers monomorphize the code, essentially dupli-
cating polymorphic functions for each type at which they are instantiated [152, 21].
The amount of generated code appears tolerable in practice. C++ [193] defines
template instantiation in terms of code duplication, making template functions
closer to advanced macros than parametric polymorphism.

An example of a simple compromise is the current OCaml implementation [220]:
Records and arrays of floating-point numbers do not add a level of indirection
for the numbers. Polymorphic code for accessing an array (in Cyclone terms,
something of type α[]), must check at run-time whether the array holds floating-
point numbers or not, so run-time type information is necessary.

Without first-class polymorphism or polymorphic recursion, ML and Haskell
enjoy full type inference: Programs never need explicit type information. Type
inference is undecidable (it is uncomputable whether a term without explicit types
can type-check) if we add first-class polymorphism or polymorphic recursion [216,
114, 133]. Haskell 98 [130] includes polymorphic recursion, but requires explicit
types for functions that use it. Because these languages encourage using many func-
tions, conventional wisdom considers Cyclone’s approach of requiring explicit types
for all function definitions intolerable. However, room for compromise between in-
ference and more powerful type systems exists, as proposals for ML extensions and
additions to Haskell implementations demonstrate [83, 174, 197, 196].

Section 3.4.2 described how bounded quantification for types could increase the
Cyclone type system’s expressiveness. The type theory for bounded quantification
has received considerable attention, particularly because of its role in encoding
some object-oriented idioms [33]. An important negative result concerns bounded
quantification’s interaction with subtyping: It is sound to consider ∀α ≤ τ1.τ2 a
subtype of ∀α ≤ τ3.τ4 if τ3 is a subtype of τ1 and τ2 is a subtype of τ4. However,
together with other conventional subtyping rules, this rule for subtyping universal
types makes the subtyping question (i.e., given two types, is one a subtype of
the other) undecidable [172]. A common compromise is to require equal bounds
(τ1 = τ3 in our example) [37]. Another possibility is to require explicit subtyping
proofs (or hints about proofs) in source programs.

The problem with polymorphic references discussed in Section 3.3 has received
much attention from the ML community [198, 219, 108]. In ML, a commitment to



69

full type inference and an advanced module system with abstract types complicate
the problem. So-called “weak type variable” solutions, which make a kind distinc-
tion with respect to mutation, have fallen out of favor. Instead, a simple “value
restriction” suffices. Essentially, a binding cannot receive a universal type unless
it is initialized with a syntactic value, such as a variable (which is immutable)
or a function definition. This solution interacts well with type inference and ap-
pears tolerable in practice. In Cyclone, more explicit typing makes the solution of
forbidding type instantiation in left-expressions seem natural.

Explicit existential types have not been used as much in designing program-
ming languages. Mitchell and Plotkin’s seminal work [151] showed how constructs
for abstract types, such as the rep types in CLU clusters [144] and the abstype

declarations in Standard ML [149] are really existential types. Encodings of clo-
sures [150] and objects [33] using existential types suggest that the lack of explicit
existential types in many languages is in some sense an issue of terminology. Cur-
rent Haskell implementations [197, 196] include existential types for “first-class”
values, as suggested by Läufer [137]. In all the above work, existential packages
are immutable, so the problem from Section 3.3 is irrelevant.

Other lower-level typed languages have included existential types, but have
not encountered the same unsoundness problem. For example, Typed Assembly
Language [157] does not have a way to create an alias of an opened type, as with
Cyclone’s reference patterns. There is also no way to change the type of a value in
the heap—assigning to an existential package means making a pointer refer to a
different heap record. Xanadu [222], a C-like language with compile-time reasoning
about integer values, also does not have aliases at the opened type. Roughly, int
is short-hand for ∃α:I.α and uses of int values implicitly include the necessary
open expressions. This expression copies the value, so aliasing is not a problem.
It appears that witness types can change because mutating a heap-allocated int

would change its witness.
Languages with linear existential types can provide a solution different than

the ones presented in this work. In these systems, there is only one reference
to an existential package, so a fortiori there are no aliases at the opened type.
Walker and Morrisett [212] exploit this invariant to define open such that it does
not introduce any new bindings. Instead, it mutates the location holding the
package to hold the package’s contents. Without run-time type information, such
an open has no actual effect. The Vault system [55] also has linear existential
types. Formally, opening a Vault existential package introduces a new binding. In
practice, the Vault type-checker infers where to put open and pack terms and how
to rewrite terms using the bindings that open statements introduce. This inference
may make Vault’s existential types more convenient.
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Section 3.4 suggested extending Cyclone with a way for programs to use run-
time tests to refine information about an unknown type safely. An apparent disad-
vantage of such an extension is that it would violate parametricity, a well-known
concept for reasoning about the behavior of polymorphic functions [192, 178, 146,
205]. As a simple example, in the polymorphic lambda calculus, a term with
the type ∀α∀β.(α × β) → (β × α) must behave equivalently to the function that
given (e0, e1) returns (e1, e0). However, Pierce and Sangiorgi [173] presented a very
clever trick showing that languages with mutable references (such as ML) can vio-
late parametricity. Morrisett, Zdancewic, and I [99] argued that the true source of
the ability to violate parametricity is aliasing of values at more and less abstract
types (e.g., a value available at types α* and int*). Recent work by Naumann
and Banerjee [18] has restricted aliasing to establish parametricity in a setting with
mutation. Because Cyclone does not restrict aliasing, the type system does not
ensure parametricity. Instead, it ensures only basic memory safety.

The Typed Assembly Language implementation [155] for the IA-32 architecture
has a more powerful kind system than Cyclone, though the details are not widely
known. For each number i, there is a kind Mi describes types of memory objects
consuming i bytes. These kinds are subkinds of M, which corresponds to kind A in
Cyclone. At the assembly level, padding and alignment are explicit, so giving types
these more descriptive kinds is more appropriate. However, the fine granularity of
assembly-language instructions make it difficult for the type system to allow safe
use of an abstract value. For example, given a pointer to a value of type α of kind
M12, we might like to push a copy of the pointed to value onto the stack. Doing
so requires adjusting the stack pointer by 12 bytes and executing multiple move
instructions for the parts of the abstract value. I do not believe the details for
allowing such an operations were ever implemented.

The GHC [196] Haskell implementation provides alternate forms of floating-
point numbers and records that do not have extra levels of indirection. Their uses
are even more restricted than in Cyclone. Not only do values of these types es-
sentially have kind A in a language without type variables of kind A, but unboxed
records can appear only in certain syntactic positions. Nonetheless, these exten-
sions let programmers control data representation enough to improve performance
for certain applications.

There has been remarkably little work on quantified types for C-like languages.
Smith and Volpano [187, 188] describe an integration of universal types with C.
Their formal development has some similarities with my work, but they do not
consider struct types. Therefore, they have no need for existential types.

Type quantification is not the only way to prohibit unsafe casts from void*.
Chapter 8 discusses other approaches.



Chapter 4

Region-Based Memory
Management

Cyclone uses region-based memory-management to prevent dangling-pointer deref-
erences. Every memory object is in exactly one region and all of a region’s ob-
jects are deallocated simultaneously. To avoid run-time overhead, the system en-
codes lifetime information in the type system. Despite imposing more memory-
management structure than C, the system allows many important idioms. It inte-
grates C-style stack allocation, last-in-first-out regions of unbounded size, and an
immortal heap that allows implicit conservative garbage collection. Usually the
same code can operate on objects regardless of where they are allocated.

This range of options is an important step toward Cyclone’s goals. We provide
more control over memory management than safe high-level languages, without
sacrificing safety, resorting to hidden run-time sate, or requiring code duplication.
More specifically, the system for preventing dangling-pointer dereferences is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-time error. We do not
use run-time checks to determine if memory has been deallocated.

• Convenient: We minimize the need for explicit programmer annotations
while supporting many C idioms. In particular, many uses of the addresses
of local variables require no modification.

• Exposed: Programmers control where objects are allocated and how long
they live. As usual, all local variables are stack-allocated.

• Comprehensive: We treat all memory uniformly, including the stack, the
heap (which can optionally be garbage-collected), and “growable” regions.
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• Scalable: The system supports separate compilation because all analyses are
intraprocedural.

Section 4.1 describes the basic techniques used to achieve these design goals.
Section 4.2 describes the interaction between the region system and quantified
types. The critical issue is interacting with data-hiding constructs (existential
packages) that might have dangling pointers not reflected in their type. The Cy-
clone solution makes existential types a bit less convenient, but the type informa-
tion for code not using existential types remains simple. Section 4.3 describes the
simple run-time support necessary for the region system.

Compared to C, the language imposes more restrictions (e.g., one cannot call
the free function) and requires more explicit type information. Section 4.4 de-
scribes informally the strengths of the region system and what extensions would
be needed to capture additional idioms. Many of these extensions are already ex-
perimental parts of Cyclone, but this dissertation does not cover them in depth.
The region system presented here is a relatively mature aspect of Cyclone that has
been used extensively. Previously published work [97] (from which this chapter
borrows heavily) measures the programmer burden and performance cost relative
to C code. These measurements corroborate my subjective evaluation.

Section 4.5 and Appendix B present a formal abstract machine with region-
based memory management and prove that its type system is safe. For this
machine, safety implies that objects are not accessed after they are deallocated.
Compared with the abstract machine in Chapter 3, the heap has more structure
precisely because objects are in regions.

As discussed in Section 4.6, Cyclone is not the first system to include region
information in its type system. However, as an explicitly typed, low-level language
designed for human programmers, it does make several technical contributions
explained in this chapter:

• Region subtyping: A last-in-first-out discipline on region lifetimes induces an
“outlives” relationship on regions, which lets us provide a useful subtyping
discipline on pointer types.

• Simple effects: We eliminate the need for effect variables (which complicate
interfaces) by using the novel “regions(τ)” type operator.

• Default annotations: We combine a local inference algorithm with a system
of defaults to reduce the need for explicit region annotations.

• Integration of existential types: The combination of region subtyping and
simple effects makes the integration of first-class abstract types relatively
simple.
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Readers familiar with previous work on Cyclone’s regions [97] may wish to focus
on Sections 4.4, 4.5, and Appendix B because the other sections are just revisions.
However, Section 4.6 gives a more detailed description of related work.

4.1 Basic Constructs

This section presents the basic features of Cyclone’s memory-management sys-
tem. It starts with the constructs for creating regions, allocating objects, and so
on—this part is simple because the departure from C is small. We next present
the corresponding type system, which is more involved because every pointer type
carries a region annotation. We exploit quantified types and type constructors to
avoid committing to particular regions, just as terms in Chapter 3 avoid commit-
ting to particular types. Then we show how regions’ lifetimes induce subtyping on
pointer types. At that point, the type syntax is quite verbose, so we explain the
features that, in practice, eliminate most region annotations.

4.1.1 Region Terms

In Cyclone, all memory is in some region, of which there are three flavors:

• A single heap region, which conceptually lives forever

• Stack regions, which correspond to local-declaration blocks, as in C

• Dynamic regions, which have lexically scoped lifetimes but permit unlimited
allocation into them

Static data objects reside in the heap. Primitives malloc and new create new
heap objects. The new operation is like malloc except that it takes an expression
and initializes the memory with it. There is no explicit mechanism for reclaiming
heap-allocated objects (e.g., free). However, Cyclone programs can link against
the Boehm-Demers-Weiser conservative garbage collector [26] to reclaim unreach-
able heap-allocated objects. Section 4.3 discusses the interaction between the
collector and regions.

Stack regions correspond to C’s local-declaration blocks: entering a block with
local declarations creates storage with a lifetime corresponding to the lexical scope
of the block. Function parameters are in a stack region corresponding to the
function’s lifetime. In short, Cyclone local declarations and function parameters
have the same layout and lifetime as in C.

Dynamic regions are created with the construct region r; s, where r is an
identifier and s is a statement. The region’s lifetime is the execution of s. In s,
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r is bound to a region handle, which primitives rmalloc and rnew use to allocate
objects into the associated region. For example, rnew(r) 3 returns a pointer to an
int allocated in the region of handle r and initialized to 3. Handles are first-class
values; a caller may pass a handle to a function so it can allocate into the associated
region. A predefined constant heap_region is a handle for the heap, so new and
malloc are just short-hand for using heap_region with rnew and rmalloc.

Like a declaration block, a dynamic region is deallocated when execution leaves
the body of the enclosed statement. Execution can leave due to unstructured jumps
(continue, goto, etc.), a return, or via an exception. Section 4.3 explains how
we compile dynamic-region deallocation.

The region system imposes no changes on the representation of pointers or the
meaning of operators such as & and *. There are no hidden fields or reference counts
for maintaining region information at run-time. The infrastructure for preventing
dangling-pointer dereferences is in the type system, making such dereferences a
compile-time error.

4.1.2 Region Names

Ignoring subtyping, all pointers always point into exactly one region. Pointer types
include the region name of the region they point into. For example, int*ρ describes
a pointer to an int that is in the region named is ρ. The invariant that pointers
have a particular region is the basic restriction we impose to make the undecidable
problem of detecting dangling-pointer dereferences tractable. Pointer types with
different region names are different types. A handle for a region corresponding to
ρ has the type region_t<ρ>. Were it not for subtyping, handle types would be
singletons : two handles with the same type would be the same handle.

Region names fall into three flavors, corresponding to the three region flavors.
The region name for the heap is ρH . A block labeled L (e.g., L:{int x=0;s})
has name ρL and refers to the stack region that the block creates. Considering a
function definition a labeled block, a function named f has a region named ρf in
which the parameters are allocated. Finally, the statement region r; s defines
region name ρr for the created region. So r has type region_t<ρr>. In all cases,
the scope of a region name corresponds to the lifetime of the corresponding region.

We can now give types to some examples. If e1 has type region_t<ρ> and e2

has type τ , then rnew (e1) e2 has type τ*ρ. If int x is declared in block L, then
&x has type int*ρL. Similarly, if e has type τ*ρ, then &*e has type τ*ρ.

To dereference a pointer, safety demands that its region be live. Our goal is to
determine at compile-time that no code follows a dangling pointer. It often suffices
to ensure that pointer types’ region names are in scope. For example, this code is
ill-typed:
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int*ρL p;

L:{ int x = 0;

p = &x; }

*p = 42;

The code creates storage for x that is deallocated before the last line, so the assign-
ment of &x to p creates a dangling pointer that the last assignment dereferences.
Cyclone rejects this code because ρL is not in scope when p is declared. If we
change the declaration of p to use another region name, then the assignment p =

&x fails to type-check because &x has type int*ρL.
However, Cyclone’s existential types allow pointers to escape the scope of their

regions, just as closures do in functional languages [201]. Therefore, in general, we
cannot rely on simple scoping mechanisms to ensure soundness. Instead, we must
track the set of live region names at each control-flow point. To keep the analysis
intraprocedural, we use a novel type-and-effects system to track interprocedural
liveness requirements. We delay the full discussion of effects until Section 4.2.

To understand the correct region name for a pointer type, it helps to emphasize
that left-expressions have types and region names. In the example above, &x has
type int*ρL because the left-expression x has type x and region name ρL. Similarly,
if e is a right-expression with type τ ∗ ρ, then ∗e is a left-expression with region
name ρ and an assignment of the form ∗e = e′ is safe only if the region named ρ
is live. Section 4.5 describes the type-checking rules for left-expressions precisely.

4.1.3 Quantified Types and Type Constructors

Region names are type variables that describe regions instead of terms. The kind
system distinguishes region names from other type variables: A region name has
kind R, which is incomparable to the kinds B and A that describe ordinary types.
Because region names are type variables, we can define region-polymorphic func-
tions, abstract types that hide region names, and type constructors with region-
name parameters. This section demonstrates that these natural features are ex-
tremely important for the expressiveness of the Cyclone region system. In partic-
ular, region polymorphism is much more common than type polymorphism.

Universal Quantification Functions in Cyclone are region-polymorphic; they
can abstract the actual regions of their arguments or results. That way, functions
can manipulate pointers regardless of whether they point into the stack, the heap,
or a dynamic region. For example, in this contrived program, fact abstracts a
region name ρ and takes a pointer into the region named ρ:
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void fact<ρ>(int*ρ result, int n) {

L: { int x = 1;

if(n > 1) fact<ρL>(&x,n-1);

*result = x*n; }

}

int g = 0;

int main() { fact<ρH>(&g,6); return g; }

When executed, the program returns the value 720. In main, we pass fact a heap
pointer (&g), so the type of fact is instantiated with ρH for ρ. Each recursive
call instantiates ρ with ρL, the name of the local stack region. This polymorphic
recursion allows us to pass a pointer to the locally declared variable x. At run
time, the first instance of fact modifies g; each recursive call modifies its caller’s
stack frame. Alternatively, we could have written the function as:

void fact2<ρ>(int*ρ result, int n) {

if(n > 1) fact2<ρ>(result,n-1);
*result *= n;

}

Here is a third version that uses a dynamic region to hold all of the intermediate
results:

void fact3<ρ>(region_t<ρ> r,int*ρ result,int n) {

int*ρ x = rnew(r) 1;

if(n > 1) fact3<ρ>(r,x,n-1);
*result = (*x)*n;

}

int main() {

region r;

int*ρr g = rnew(r) 0;

return fact3<ρr>(r, g, 6);

}

The function main creates a dynamic region with handle r and uses rnew(r) 0 to
allocate an initial result pointer. Next, it calls fact3, instantiating ρ with ρr and
passing the handle. Instead of stack-allocation, fact3 uses the dynamic region
to hold each recursive result, consuming space proportional to n. The space is
reclaimed when control returns to main.

By using the same region name, function prototypes can assume and guarantee
region equalities of unknown regions. In the examples below, f1 does not type-
check because it might assign a pointer into the wrong region:
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void f1<ρ1, ρ2, ρ3>(int*ρ1*ρ2 pp, int*ρ3 p) { *pp = p; } // rejected

void f2<ρ1, ρ2>(int*ρ1*ρ2 pp, int*ρ1 p) { *pp = p; } // accepted

Region equalities are crucial for return types, particularly when the return value
is placed in a caller-specified region:

int*ρ identity<ρ>(int*ρ p) { return p; }

int*ρ newzero<ρ>(region_t<ρ> h) { return rnew(h) 0; }

For example, newzero<ρH>(heap_region) has type int*ρH , which ensures the
caller that the pointed-to object will conceptually live forever.

More realistic code also uses region polymorphism. For example, ignoring array-
bounds, nul-terminators (strings ending with ’\0’), and NULL pointers, the Cy-
clone string library provides prototypes like these:

char*ρ strcpy<ρ, ρ2>(char*ρ d, const char*ρ2 s);

char*ρH strdup<ρ>(const char*ρ s);

char*ρ rstrdup<ρ, ρ2>(region_t<ρ>,const char*ρ2 s);

int strlen<ρ>(const char*ρ s);

Parametricity ensures strcpy returns a pointer somewhere into its first argument.
Of course, not all functions are region polymorphic, as this example shows:

int*ρH g = NULL;

void set_g(int*ρH x) { g = x; }

Existential Quantification We can use existential quantification over region
names to relate the regions for pointers and handles, as this example demonstrates:

struct T1 { <ρ1>

int *ρ1*ρH p1;

int *ρ1*ρH p2;

region_t<ρ1> r;

};

Given a value of type struct T1, we might like to swap the contents of what p1 and
p2 point to or mutate them to fresh locations allocated with r. However, struct
T1 is actually useless in the sense that no Cyclone program can use r, **p1, or **p2.
As explained in Section 4.2, the region named ρ1 may have been deallocated in
which case such accesses are unsound. We will strengthen the definition of struct
T1 and the existential-type definitions from Chapter 3 to make them useful.
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Type Constructors Because struct definitions can contain pointers, Cyclone
allows these definitions to take region-name parameters. For example, here is a
declaration for lists of pointers to ints:

struct RLst<ρ1,ρ2> {

int*ρ1 hd;

struct RLst<ρ1,ρ2> *ρ2 tl;

};

Ignoring subtyping, a value of type struct RLst<ρ1,ρ2> is a list with hd fields
that point into ρ1 and tl fields that point into ρ2. Other invariants are possible:
If the type of tl were struct RLst<ρ2,ρ1>* ρ2, the declaration would describe
lists where the regions for hd and tl alternated at each element.

Type abbreviations using typedef can also have region parameters. For exam-
ple, we can define region-allocated lists of heap-allocated pointers with:

typedef struct RLst<ρH,ρ> *ρ list_t<ρ>;

4.1.4 Subtyping

If the region corresponding to ρ1 outlives the region corresponding to ρ2, then it is
sound to cast from type τ*ρ1 to type τ*ρ2. The last-in-first-out region discipline
makes such outlives relationships common: when we create a region, we know
every region currently live will outlive it. For example, a local variable can hold
different function arguments:

void f<ρ1, ρ2>(int b, int*ρ1 p1, int*ρ2 p2) {

L: { int*ρL p;

if(b) p=p1; else p=p2;

/* ... use p ... */ }

}

Without subtyping, the program fails to type-check because neither p1 nor p2 has
type int*ρL. If we change the type of p to int*ρ1 or int*ρ2, then one of the
assignments is illegal. With subtyping, both assignments use subtyping to cast
(implicitly) to τ*ρL.

To ensure soundness, we do not allow casting τ1*ρ to τ2*ρ, even if τ1 is a subtype
of τ2, as this cast would allow putting a τ2 in a location where other code expects
a τ1. (This problem is the usual one with covariant subtyping on references.)
However, we can allow casts from τ1*ρ to const τ2*ρ when τ1 is a subtype of
τ2, if we enforce read-only access for const values (unlike C). This support for
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“deep” subtyping, when combined with polymorphic recursion, is powerful enough
to allow stack allocation of some structures of arbitrary size.

Intraprocedurally, the “created region outlives all live regions” rule suffices
to establish outlives relationships. If the safety of a function requires that some
arguments have an outlives relationship, then the function must have an explicit
constraint that expresses a partial order on region lifetimes. The constraint, which
is part of the function’s type, is assumed when type-checking the function body
and is a precondition for calling the function. Here is a simple example:

void set<ρ1,ρ2>(int*ρ1*ρH x, int*ρ2*ρH y : ρ1<ρ2) { *y=*x; }

The constraint ρ1<ρ2 indicates that the region named ρ1 outlives the region named
ρ2.

4.1.5 Default Annotations

Cyclone employs a combination of carefully chosen defaults and intraprocedural
inference to reduce dramatically the amount of necessary explicit type information.
Because region names are type variables, many of the rules in Section 3.1.4 apply
to them. Every pointer type includes a (possibly implicit) region name, so these
rules gain importance compared to Chapter 3. The rules are slightly different for
region names, as this section explains.

Due to type inference within function bodies, implicit type instantiation of
polymorphic functions, and implicit subtyping, Cyclone programmers rarely write
region names within function bodies. In particular, region names for local decla-
ration blocks are almost never used explicitly. Given a block without an explicit
label, the type-checker just creates a region name. The explicit labels and type
instantiations in previous examples were for expository purposes only.

Because function definitions and function prototypes at the top-level implicitly
universally quantify over free type variables (including region names), all of the
explicit bindings in previous examples in this chapter are unnecessary. As before,
explicit bindings are necessary only for first-class polymorphism. Even when ex-
plicitly bound, the type-checker infers the kind of a type variable based on its uses
in the argument and result types.

Furthermore, the type-checker fills in omitted region names in function argu-
ment types with fresh type variables of region kind. For function result types, a
fresh type variable is not a good default because a region-polymorphic function
that could return a pointer into any region could return only NULL. Therefore, in
function return types, the default region name is ρH .

Given these rules, programs like our first fact example need no region anno-
tations:
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void fact(int* result, int n) {

int x = 1;

if(n > 1) fact(&x,n-1);

*result = x*n;

}

int g = 0;

int main() { fact(&g,6); return g; }

In other words, the code is a C program that ports to Cyclone without modification.
More generally, explicit annotations are necessary only to express region equal-

ities on which safety relies. For example, if we write:

void f2(int** pp, int* p) {*pp=p;}

then the code elaborates to:

void f2<ρ1, ρ2, ρ3>(int *ρ1*ρ2 pp, int *ρ3 p) {*pp=p;}

which fails to type-check because int*ρ1 6= int*ρ3. The programmer must insert
an explicit region annotation to assert an appropriate equality relation on the
parameters:

void f2(int*ρ* pp, int*ρ p) { *pp = p; }

For more realistic examples, here are the string-library prototypes presented
earlier but without unnecessary annotations:

char*ρ strcpy(char*ρ d, const char* s);

char* strdup(const char* s);

char*ρ rstrdup(region_t<ρ>,const char* s);

int strlen(const char* s);

The default rules for type definitions are not as convenient. The type-checker
uses ρH in place of omitted region names. Type variables (including region names)
must be explicitly bound. For example, the struct Lst example above cannot
have any annotations removed. Fortunately, type definitions usually account for a
small portion of a program’s text.

Abstract and recursive struct definitions make it difficult to take a struct

definition with omitted region annotations and implicitly make it a type construc-
tor taking arguments for automatically filled in region names. First, for abstract
types such rules make no sense because the field definitions are not available.
Hence when providing an abstract interface, programmers would have to give ex-
plicit type-constructor parameter names and kinds anyway. Second, with recursive
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(or mutually recursive) types it is not clear how many parameters a type construc-
tor should have. Naively generating a fresh region name everywhere one is omitted
would require an infinite number of region names for a definition like struct Lst

{ int* hd; struct Lst *tl; };. Another complication is that type construc-
tors sometimes require explicit instantiation, so we would need rules on the order
of the inferred parameters. However, default rules such as regularity (assuming re-
cursive instances are instantiated with the same arguments) are a recent addition
to Cyclone.

Although defining type constructors requires explicit region names, using them
often does not. We can partially apply parameterized type definitions; elided
arguments are filled in via the same rules used for pointer types. Here is an
aggressive use of this feature:

typedef struct Lst<ρ1,ρ2> *ρ2 l_t<ρ1,ρ2>;

l_t heap_copy(l_t l) {

l_t ans = NULL;

for(l_t l2 = l; l2 != NULL; l2 = l2->tl)

ans = new Lst(new *l2->hd,ans);

return ans;

}

Because of defaults, the parameter type is l_t<ρ1,ρ2> and the return type is
l_t<ρH,ρH>. Because of inference, the compiler gives ans the type l_t<ρH,ρH>

(the return statement requires ans to have the function’s return type) and l2 the
type l_t<ρ1,ρ2> (l2’s initializer has this type).

4.2 Interaction With Type Variables

Section 4.1.2 suggested that scope restrictions on region names prevent pointers
from escaping the scope of their region. In particular, a function or block cannot
return or assign a value of type τ*ρ outside the scope of ρ’s definition, simply
because you cannot write down a (well-formed) type for the result. Indeed, if
Cyclone had no mechanism for type abstraction, this property would hold.

But if there is some way to hide a pointer’s type in a result, then the pointer
could escape the scope of its region. Existential types provide exactly this ability.
(Closures and objects provide a similar ability in other languages, so the essential
problem is first-class abstract types, which are crucial in safe strongly typed lan-
guages.) Hence Cyclone programs can create dangling pointers; safety demands
that programs not dereference such pointers.
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To address this problem, the type system keeps track of the set of region names
that are considered live at each program point. Following Walker, Crary, and Mor-
risett [211], we call the set of live regions the capability. To allow dereferencing a
pointer, the type system ensures that the associated region name is in the capabil-
ity. Similarly, to allow a function call, Cyclone ensures that regions the function
might access are all live. To this end, function types carry an effect that records
the set of regions the function might access. The capability for a program point is
the enclosed function’s effect and the region names for all declaration blocks and
dynamic-region statements containing the program point. The idea of using effects
to ensure soundness is due to Tofte and Talpin [201]. However, Cyclone’s effect
system differs substantially from previous work.

Our first departure from Tofte and Talpin’s system is that we calculate default
effects from the function prototype alone (instead of inferring them from the func-
tion body) to preserve separate compilation. The default effect includes the set of
region names that appear in the argument or result types. For instance, given the
prototype:

int*ρ1 f(int*, int*ρ1*);

which elaborates to:

int*ρ1 f<ρ1, ρ2, ρ3>(int*ρ2, int*ρ1*ρ3);

the default effect is {ρ1, ρ2, ρ3}.
In the absence of polymorphism, this default effect is a conservative bound on

the regions the function might access. The programmer can override the default
with an explicit effect. For example, if f never dereferences its first argument, we
can strengthen its prototype by adding an explicit effect as follows:

int*ρ1 f(int*ρ2, int*ρ1*ρ3; {ρ1, ρ3});

Given this stronger type, callers could instantiate ρ2 with the name of a (possibly)
deallocated region, and therefore pass a dangling pointer. Unsurprisingly, using
nondefault effects is exceedingly rare.

Our second departure from Tofte and Talpin’s system is that we do not have
effect variables (i.e., type variables with an effect kind). Effect variables serve
three purposes: First, they simulate subtyping in a unification-based inference
framework. Second, they abstract the set of regions a data-hiding construct might
need to access. Third, they abstract the set of regions an abstract type hides.

Cyclone used effect variables at first, but we abandoned the approach for two
reasons. First, to support effect subtyping correctly, the Tofte-Talpin inference
algorithm requires that all effect variables are prenex quantified and each function
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type has a unique effect variable in its effect [199]. Without these invariants,
unification can fail. In an explicitly typed language like Cyclone, it is awkward
to enforce these invariants. Furthermore, prenex quantification prevents first-class
polymorphism, which Cyclone otherwise supports.

Second, effect variables appear in some library interfaces, making the libraries
harder to understand and use. Consider a type for polymorphic sets (where ε is
an effect variable):

struct Set<α,ρ,ε> {

list_t<α,ρ> elts;

int (*cmp)(α,α; ε);
};

A Set consists of a list of α elements, with the spine of the list in region ρ. We do
not know where the elements are allocated until we instantiate α. The comparison
function cmp determines set membership. Because the elements’ type is not yet
known, the type of cmp must use an effect variable ε to abstract the set of regions
that it might access when comparing the two α values. This effect variable, like
the type and region variable, must be abstracted by the Set structure.

Suppose the library exports Set to clients abstractly:

struct Set<α,ρ::R,ε::E>; // R for region kind, E for effect kind

The client must discern the connection between α and ε, namely that ε abstracts
the set of regions within α that the hidden comparison function might access.

4.2.1 Avoiding Effect Variables

To simplify the system while retaining the benefit of effect variables, we use a type
operator, regions(τ). This novel operator is just part of the type system; it does
not exist at run time. Intuitively, regions(τ) represents the set of region names
that occur free in τ . In particular:

regions(int) = ∅
regions(τ∗ρ) = {ρ} ∪ regions(τ)

regions(τ (∗f)(τ1, . . . , τn)) = regions(τ) ∪ regions(τ1) ∪ . . . ∪ regions(τn)

For type variables, regions(α) is treated as an abstract set of region variables,
much like an effect variable. For example, regions(α∗ρ) = {ρ} ∪ regions(α). The
default effect of a function that has α in its type simply includes regions(α). That
way, when we instantiate α with τ , the resulting function type has an effect that
includes the free region names in τ .

We can now rewrite the Set example as follows:
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struct Set<α,ρ> {

list_t<α,ρ> elts;

int (*cmp)(α,α; regions(α));
};

Now the connection between the type parameter α and the function’s effect
is apparent, and the data structure no longer needs an effect-variable parameter.
Moreover, regions(α) is the default effect for int (*cmp)(α,α), so we need not
write it.

Now suppose we wish to build a Set<int*ρ1,ρ2> value using a particular com-
parison function (with unnecessary annotations for expository purposes):

int cmp_ptr<ρ3,ρ4>(int*ρ3 p1, int*ρ4 p2) {

return (*p1) == (*p2);

}

Set<int*ρ1,ρ2> build_set(list_t<int*ρ1,ρ2> e) {

return Set{.elts = e, .cmp = cmp_ptr<ρ1,ρ1>};

}

The default effect for cmp_ptr is {ρ1}. After instantiating α with int*ρ1, the effect
of cmp becomes regions_of(int*ρ1), which equals {ρ1}. As a result, build_set
type-checks. In fact, using any function with a default effect will always succeed.
Consequently, programmers need not explicitly mention effects when designing or
using libraries.

Our particular choice for the definition of regions(τ) is what ensures that pro-
grams with default effects and without dangling pointers never fail to type-check
because of effects. (I do not prove this conjecture.) In essence, the definition is the
most permissive for programs without dangling pointers, so it is a natural choice.
Interestingly, any definition of regions(τ) that does not introduce type variables
(i.e., regions(τ) must not include any type variable or region name not already
free in τ) is sound. All that matters is that we substitute the same set for all
occurrences of regions(α) so that we maintain any effect equalities that were as-
sumed when type-checking the code for which α is in scope. For proof that any
well-formed definition of regions(τ) is sound, observe that the proof in Appendix B
uses no property of regions(τ) except that it does not introduce type variables.

4.2.2 Using Existential Types

As mentioned above, existential types allow Cyclone programs to create dangling
pointers, as this example demonstrates:



85

struct IntFn {<α> int (*func)(α env); α env;};

int read<ρ>(int*ρ x) { return *x; }

struct IntFn dangle() {

L:{int x = 0;

struct IntFn ans =

{<int*ρL> .func = read<ρL>, .env = &x};

return ans; }

}

The witness type int*ρL does not appear in the result type struct IntFn, so
dangle is well-typed. Therefore, the type-checker rejects any attempted call to
the func field of a struct IntFn:

int apply_intfn(struct IntFn pkg) {

let IntFn{<β> .func = f,.env = y} = pkg;

return f(y); // rejected

}

The effect of f is regions(β), but the pattern match does not add the bound type
variables to the current capability because doing so is unsound. Every use of an
existential package so far in this dissertation is ill-typed for this reason. To make
existential packages usable in conjunction with the region system, we must “leak”
enough information to prove a call is safe, without leaking so much information
that we no longer hide data. Effect variables offer one solution. Instead, we enrich
constraints, which we used above to indicate one region outlived another, to have
the form ε1<ε2 where ε1 and ε2 are effects. The constraint holds if for all variables
α in ε1 there exists a variable β in ε2 such that α outlives β. For example, we can
revise struct IntFn like this:

struct IntFn<ρ> {< α: α<ρ > int (*func)(α env); α env;};

The constraint defines a region bound: For any struct IntFn<ρ>, regions(α) out-
live ρ, so having ρ in the current capability is sufficient to call func. For example,
we can always use struct IntFn<ρH>, but the witness type cannot mention re-
gions other than the heap. By allowing bounds other than ρH , we provide more
flexibility than requiring all abstract types to live forever, but programmers un-
concerned with memory management can just add a ρH bound for all existentially
bound type variables. Doing so fixes our earlier examples.

4.3 Run-Time Support

The code-generation and run-time support for Cyclone regions is very simple. Heap
and stack manipulation are exactly as in C. Dynamic regions are represented as
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linked lists of “pages” where each page is twice the size of the previous one. A region
handle points to the beginning of the list and the current “allocation point” on
the last page, where rnew or rmalloc place the next object. If there is insufficient
space for an object, a new page is allocated. Region deallocation frees each page.

When the garbage collector is included, dynamic-region list pages are acquired
from the collector. The collector supports explicit deallocation, which we use to
free regions. Note that the collector simply treats the region pages as large ob-
jects. They are always reachable from the stack, so they are scanned and any
pointers to heap-allocated objects are found, ensuring that these objects are pre-
served. The advantage of this interface is its simplicity, but at some cost: At
collection time, every object in every dynamic region appears reachable, and thus
all (live) dynamic regions must be scanned, and no objects within (or reachable
from) dynamic regions are reclaimed.

The code generator ensures that regions are deallocated even when their life-
times end due to unstructured control flow. For each intraprocedural jump or
return, it is easy to determine statically how many regions should be deallocated
before transferring control. When throwing an exception, the number of regions to
deallocate is not known statically. Therefore, we store region handles and excep-
tion handlers in an integrated list that operates in a last-in-first-out manner. When
an exception is thrown, we traverse the list deallocating regions until we reach an
exception handler. We then transfer control with longjmp. In this fashion, we
ensure that a region is always deallocated when control returns.

4.4 Evaluation

This section informally evaluates the region system’s strengths (the idioms it con-
veniently captures) and weaknesses (inconvenient restrictions and how we might
lift them). The last section presents some advanced examples I encountered in
practice and how the system supports them.

4.4.1 Good News

Cyclone’s approach to memory management meets its primary goals. It preserves
safety without resigning all addressable objects to a garbage-collected heap. There
is no per-access run-time cost; the generated code for pointer dereferences is exactly
the same as C. By grouping objects into regions, types of the form τ*ρ capture
lifetime information in the type system without being so fine-grained that every
pointer has a different type.

The lexically scoped lifetimes of Cyclone regions restricts coding idioms, as
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described in Section 4.4.2, but it captures some of the most common idioms and
contributes to eliminating explicit region annotations. C’s local-declaration blocks
already have lexically scoped lifetimes, so Cyclone’s system describes them natu-
rally. Functions that do not cause their parameters to “escape” (e.g., be stored
in a data structure that outlives the function call) can always take the address of
local variables. In C, passing the address of local variables is dangerous practice.
In Cyclone, programmers are less hesitant to use this technique because the type
system ensures it is safe.

Cyclone’s dynamic regions capture the idiom where the caller determines a
function result’s lifetime but the callee determines the result’s size. This division
of responsibility is common: The result’s size may depend on computation that
only the callee should know about, but only the caller knows how the result will
be used. In C, this idiom is more awkward to implement. If the callee allocates
the result with malloc, the caller can use free, but it is difficult not to call free
twice for the same memory. All too often, programs resort to a simpler interface
in which the caller allocates space for the result that is “hopefully” large enough.
The functions gets and sprintf in the C library are notorious examples. When
the caller guesses wrong, the callee usually fails or commits a buffer overrun. Of
course, C programs could implement dynamic regions.

Last-in-first-out lifetimes make Cyclone’s region subtyping more useful: A re-
gion that is live on function entry always outlives regions that the function creates.
We also need not worry about region-name aliasing. If a function could free a re-
gion named ρ before ρ left scope, then allowing access to a region named ρ′ after
the free is safe only if a caller cannot instantiate ρ and ρ′ with the same region.

The integration with garbage collection lets programmers avoid the burden
of manual memory management when their application does not need it. It also
allows a convenient program-evolution path: Prototypes can rely on garbage collec-
tion and then use profiling to guide manual optimizations, such as using dynamic
regions, to reduce memory consumption.

The default effects and region annotations work extremely well. Previously
published work measured that it was possible to port some C applications to
Cyclone by writing, on average, one explicit region annotation about every 200
lines [97]. A key to this result is that implicit instantiation of quantified types
ensures callers write no extra information to use region-polymorphic functions.

Effects of the form regions(α) avoid effect variables for abstract container types.
As a result, Cyclone programmers do not need to know about effects until they
use existential types. Even then, simple region-bound constraints usually suffice.

The system actually has the full power of effect variables: If one uses regions(α)
in an effect and α does not occur except in effects, then regions(α) imposes no
more restrictions than an effect variable. However, inferring correct instantiations
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for α is not guaranteed to succeed, so programs may need explicit instantiations.
Nonetheless, this simulation of effect variables indicates that the Cyclone system,
at least in its fully explicit form, is no less powerful due to its lack of effect variables.

4.4.2 Bad News

The biggest restriction we have imposed is that all regions have lexically scoped
lifetimes. Hence garbage-collected heap objects are the only objects that can be re-
claimed before their region leaves scope. We present some shortcomings of lexically
scoped lifetimes before sketching an extension that safely allows programmers to
deallocate regions at any program point and avoids per-access run-time cost. Greg
Morrisett, my advisor, designed this extension, but its importance as a complement
to more static regions warrants a brief description.

To understand the limits of lexical scope, consider the scheme of copying
garbage collection couched in region-like terms: Create a region r and allocate
all objects into it. When it becomes “too big,” create a region r2, copy live data
from r to r2, free r, and continue, using r2 in place of r. With lexically scoped
regions, we cannot reclaim r unless we create r2 before r. But if we need to collect
again, we must have already created an r3, and so on. Unless we can bound the
number of garbage collections at compile-time, this scheme will not work. It is a
common structure for long-running numerical calculations and event-based servers.

Another problem with lexical scope is that a global variable cannot point to
nonheap memory unless the pointer is hidden by an existential type. (After all, ρH

is the only region name with global scope.) If the pointer is hidden, the existential
package cannot actually be used unless there is a region bound. But the bound
would have to be ρH , which is true only for heap pointers. Hence garbage collection
is the only way to reclaim memory accessible from global variables.

A third shortcoming is that a program’s control structure can force regions to
live longer than necessary. Here is an extreme example:

void f(int *x) {

int y = *x;

// ...run for a long time...

}

void g() {

region r;

// ...allocate a lot in r...

int *p = rnew(r) 37;

f(p);

}
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It is safe to free the region that g creates as soon as the call to f initializes y.
To address these problems, we can add a new flavor of region that can be cre-

ated and deallocated with an expression. Handles for such regions have types of
the form dynregion_t<ρ,ρ′>, which means the region is named ρ and the handle
is in ρ′. If the region named ρ′ is deallocated, the region named ρ will also be deal-
located, but ρ can be deallocated sooner. Primitive functions can allow creation
and deallocation:

struct NewRegion<ρ′> {<ρ> dynregion_t<ρ,ρ′> d; };

struct NewRegion<ρ′> rnew_dynregion(region_t<ρ′>);
void free_dynregion(dynregion_t);

Because rnew_dynregion returns a new region, its name is existentially bound.
As usual, unpacking the existential does not add ρ to the current capability. To
use dynregion_t<ρ,ρ′>, we add the construct region r = open e; s where e
has type dynregion_t<ρ,ρ′>. This construct throws an exception if e has been
deallocated, else it binds r to a handle for the region, gives r the type region_t<ρ>,
and adds ρ to the capability for s. Within s, any attempt to free the region (e.g.,
free_dynregion(e)) raises an exception. Hence we avoid any run-time cost for
accessing objects in the region (in s), but opening and deallocating these regions
require run-time checks and potential exceptions.

With this region flavor, we can mostly avoid the problems with lexical scope.
However, for very long-running loops using the copying-collection technique, we
still have the problem that the handles for the deallocated regions are not re-
claimed. Support for restricted aliasing (of the handle) can avoid this shortcoming.

Turning to the type system, the rule that every pointer type has one region
name can prove inconvenient. For example, consider this incorrect code:

int *ρ? f(bool b, int *ρ1 x, int *ρ2 y) {

return b ? x : y;

}

No region name makes the return type correct because the function might return
a pointer into the region named ρ1 or a pointer into the region named ρ2. We can
use constraints to give this function a type:

int *ρ3 f(bool b, int *ρ1 x, int *ρ2 y: ρ1<ρ3, ρ2<ρ3) {

return b ? x : y;

}

For data structures with pointers that could point into a variety of regions, we can
use constraints on struct definitions in an analogous way. However, this technique
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can be unnecessarily restrictive if part of the program does not know that can serve
the purpose of ρ3 in our example.

Another solution would annotate pointers with effects (including effect vari-
ables) instead of region names. For example, if ε1 and ε2 are effect variables, we
could give f the type int *ε1 ∪ ε2 f(bool, int*ε1, int*ε2). To access τ ∗ ε, the
effect ε must be a subeffect of the current capability. The disadvantage of this
extension is that it makes type inference more difficult. I believe it would require
solving arbitrary abstract-set inequalities. For a language designed for humans, it
is not clear that the added expressiveness justifies the added complications.

Another obvious limitation is that Cyclone programs cannot deallocate indi-
vidual objects. Putting each object in its own region is not always an option. For
example, one could not make a list of such objects because each list element would
have a different type. Systems that restrict aliasing can allow such idioms. For
example, if it is known that an acyclic list’s elements are reachable only from the
spine of the list, it is safe to deallocate the list’s elements provided that the list is
not used subsequently [212].

The region system suffers from some other less significant blemishes. First, the
interface for dynamic regions is too coarse for resource-conscious programming.
A wider interface could allow programs to set the initial page size, determine a
policy for growing the region when the current page is full, set a maximum size
for the region (beyond which allocation into it fails), and so on. Similarly,the
interface to the garbage collector is so coarse that all objects in a dynamic region
appear live and all fields of all objects are potentially pointers. More sophisticated
interfaces are possible. For example, some regions could disallow pointers in them,
so the collector would not need to scan them. Another possibility is setting a
maximum object size (say n bytes) for a region and informing the collector. That
way, a pointer to address p in such a region would cause the collector to scan only
addresses p− n to p + n.

Second, there is no way to keep a callee from allocating into the heap region, so
the type system does little to prevent space leaks. Perhaps we should revisit the
decision to make the heap region always accessible and outliving all other regions,
but it is probably still the correct default for many applications.

Third, it is inconvenient to parameterize many struct definitions by the same
region names. It is common to have a collection of interdependent (sometimes
mutually recursive) type constructors where it suffices to parameterize all of them
by a region name ρ and use ρ as the region name for all pointer types and type-
constructor applications with the definitions.

On a different note, it is sound to allow subtyping on constraints, but the
formalism in this chapter does not. For example, given two polymorphic functions
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with different constraints, one may have a type that is a subtype of the other’s type
provided that its constraints imply the constraints of the other. Such subtyping
amounts to bounded quantification over constraints. Chapter 3 referred to known
results that bounded quantification over types makes subtyping undecidable. For
constraints, the problem appears simpler because constraints just relate sets of
type variables, but I have not carefully investigated decidability.

4.4.3 Advanced Examples

This section describes two sophisticated uses of existential types and their inter-
action with the region system. These examples help demonstrate Cyclone’s power
and the limitations of eliminating effect variables. They impose much more pro-
grammer burden than almost all other Cyclone code.

Closure Library The Cyclone closure library provides a collection of routines
for manipulating closures (i.e., functions with hidden environments of abstract
type), which we represent with this type:

struct Fn<α1,α2,ρ> { <α3> : regions(α3)<ρ
α2 (*f)(α3,α1);

α3 env;

};

typedef struct Fn<α1,α2,ρ> fn_t<α1,α2,ρ>;

The type fn_t<τ0,τ1,ρ> describes closures that produce a τ1 given a τ0. To call a
closure’s f, the capability must include regions(α1), regions(α2), and regions(α3).
The region bound means having ρ in a capability establishes regions(α3). We can
write routines to create and use closures:

fn_t<α1,α2,ρ> make_fn(α2 (*ρHf)(α3,α1), α3 x : regions(α3)<ρ) {

return Fn{.f=f, .env=x};

}

α2 apply(fn_t<α1,α2> f, α1 x) {

let Fn{<β> .f=code,.env=env} = f;

return code(env,x);

}

In apply, the type-checker fills in the region bound for the type of f. Routines
for other tasks, such as composing two closures or converting a function pointer to
a closure, are also easy to write. More interesting are functions for currying and
uncurrying. In languages in which all functions are closures, these functions have
these types:
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curry : ∀α1, α2, α3.((α1 × α2) → α3) → (α1 → (α2 → α3))
uncurry: ∀α1, α2, α3.(α1 → (α2 → α3)) → ((α1 × α2) → α3)

In Cyclone, we write $(τ0,τ1) for τ0 × τ1, $(e0,e1) for tuple construction, and
e[i] for tuple-field access. Implementing uncurry is straightforward:

α3 lambda(fn_t<α1,fn_t<α2,α3>> f, $(α1,α2)* arg) {

return apply(apply(f,(*arg)[0]),(*arg)[1]);

}

fn_t<$(α1,α2)*ρ
′,α3,ρ> uncurry(fn_t<α1,fn_t<α2,α3,ρ>,ρ> f

: regions($(α1, α2, α3))<ρ) {

return make_fn(lambda,f);

}

As usual, we build a closure that takes a pair and applies the two original closures
appropriately. The explicit constraint in the type of uncurry seems redundant
given the argument types, but Cyclone does not infer constraints from argument
types. The only unnatural restriction is that the two original closures must have
the same region bound. More lenient but even harder-to-read solutions exist:
The two original closures could have bounds ρ1 and ρ2 and uncurry could have
the additional constraints ρ1<ρ and ρ2<ρ. Another possibility is to change the
definition of struct Fn so that the bound is regions(β) for a type parameter β.
Doing so simulates effect variables. Then uncurry could take closures with bounds
β1 and β2 and return a closure with bound $(β1,β2).

We can implement curry like this:

α3 inner($(fn_t<$(α1,α2)*,α3>,α1)* env, α2 second) {

return apply((*env)[0],new $((*env)[1],second));

}

fn_t<α2,α3,ρ> outer(fn_t<$(α1,α2)*ρH,α3,ρ> f, α1 first

: regions($(α1, α2, α3))<ρ) {

return make_fn(inner, new $(f,first));

}

fn_t<α1,fn_t<α2,α3,ρ>,ρ> curry(fn_t<$(α1,α2)*ρH,α3,ρ>
: regions($(α1, α2, α3))<ρ) {

return make_fn(outer, f);

}

As usual, applying the first closure creates a second closure holding the first ar-
gument and the original closure in its environment. Applying the second closure
applies the original closure to a newly created pair. The interesting point is that
this solution type-checks only because the constraints for outer are discharged
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when outer is instantiated in curry. Otherwise, the call to make_fn in curry

would not type-check because its first parameter has a constraint-free function
type. In fact, if the type-checker discharges constraints when a function is called,
then it is impossible to implement curry given our definition of struct Fn.

Abstract Iterators Another example of an abstract data type is an iterator
that returns successive elements from a hidden structure. We can define this type
constructor:

struct Iter<α,ρ> {<β> : regions(β)<ρ
β env;

bool (*next)<ρ′>(β env, α*ρ′ dest);

};

typedef struct Iter<α,ρ> iter_t<α,ρ>;

An iterator creator should provide a function for the next field that returns false
when there are no more elements. When there is a next element, the function
should store it in *dest. The existential type allows an iterator to maintain state
to remember what elements remain. The first-class polymorphism for next (the
universal quantification over ρ′) allows each call to next to select where the next
element is stored. For example, an iterator client could store some results on the
stack and others in the heap. If ρ′ were a parameter to struct Iter, all elements
would have to be stored in one region (up to subtyping) and this region would
have to be specified when creating the iterator.

The iterator library provides only one function:

bool next(iter_t<α> iter, α *dest) {

let Iter{.env=env,.next=f} = iter;

return f(env,dest);

}

The real work is in creating iterators. A representative example is an iterator
for linked lists.
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struct List<α,ρ> { α hd; struct List<α,ρ> *ρ tl; };

typedef struct List<α,ρ> *ρ list_t<α,ρ>;
bool iter_f<α,ρ1,ρ2,ρ3>(list_t<α,ρ1> *ρ2 elts_left, α *ρ3 dest) {

if(!*elts_left)

return false;

*dest = (*elts_left)->hd;

*elts_left = (*elts_left)->tl;

return true;

}

iter_t<α,ρ> make_iter(region_t<ρ2> rgn, list_t<α,ρ1> lst

: regions(α)<ρ, {ρ1, ρ2}<ρ) {

return Iter{.env=rnew(rgn) lst,

.next = iter_f<α,ρ1,ρ2><>};

}

In make_iter, the witness type is list_t<α,ρ1>*ρ2: the private state is a pointer
in ρ2 to a list in ρ1 with the remaining elements. To use iter_f for the next field
we must delay the instantiation of its last type parameter, which is the purpose of
the <> syntax. A minor point is that iter_f does not read the list elements, so
we could give it an explicit effect omitting regions(α), which in turn should avoid
needing the constraint regions(α)<ρ in make_iter.

I have also implemented a more complicated iterator over red-black trees.

4.5 Formalism

This section defines a formal abstract machine that models most of the interesting
aspects of the region system. In the machine, all objects are allocated into some
region and regions obey a last-in-first-out discipline. Hence the run-time heap has
more structure than a simple partial map (as in Chapter 3). We do not distinguish
a heap region or model garbage collection. Type safety implies that programs
do not access objects in deallocated regions. Furthermore, terminating programs
deallocate all regions they allocate.

Although we have stack regions and dynamic regions, we do not prove that
programs cannot allocate into stack regions after they are created. In fact, tech-
nically the static semantics allows handles for stack regions, but to prevent them
it suffices to forbid explicit handles in source programs.

The type system is a combination of the type system for the formal machine in
Chapter 3 and the additions necessary for modeling region types (type variables
of kind R, effects on function types, constraints on quantified types, and singleton
types for region handles). We provide subtyping for pointer types using the outlives
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kinds κ ::= B | A | R
effects ε ::= ∅ | α | i | ε ∪ ε

constraints γ ::= · | γ, ε<ε

types τ, r ::= α | int | τ × τ | τ ε→ τ | τ∗r | ∀α:κ[γ].τ | ∃α:κ[γ].τ
| region(r) | S(i)

terms s ::= e | return e | s; s | if e s s | while e s | let ρ, x = e; s
| open e as ρ, α, x; s | region ρ, x s | s; pop i

e ::= xp | i | f | &e | ∗e | (e, e) | e.i | e=e | e(e) | call s
| e[τ ] | pack τ, e as τ | rnew e e | rgn i

f ::= (τ, ρ x)
ε→ τ s | Λα:κ[γ].f

p ::= · | ip
values v ::= i | &xp | f | (v, v) | pack τ, v as τ | rgn i
heaps H ::= · | H, x 7→ v

S ::= · | S, i:H
states P ::= S; S; s

contexts R ::= · | R, i
∆ ::= · | ∆, α:κ
Γ ::= · | Γ, x:(τ, r)
C ::= R; ∆; Γ; γ; ε

Figure 4.1: Chapter 4 Formal Syntax

relationship. For simplicity, we do not have subtyping on other types, though
adding more subtyping would probably not be difficult.

The machine and proof are similar to those in an earlier technical report [98],
but the version presented here makes some small improvements (and corrections)
and is more like the formalisms in other chapters. In particular, the treatment of
paths is like in Chapter 3, constraints allow ε1<ε2 instead of just ε<ρ, and run-time
regions are named with integers i instead of type variables ρ. This last difference is
a matter of taste: It makes it clear that we do not use run-time type information,
but it means we cannot use the type-variable context ∆ to describe the regions
that have been created. There is no difference for source programs. The formalism
in Chapter 5 similarly uses integers for run-time locks instead of type variables.

4.5.1 Syntax

Figure 4.1 presents the language’s syntax. Compared to the language in Chapter 3,
we eliminate reference patterns and add the constructs necessary to reason about
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Cyclone’s region system. We focus on the additions.
Kinds include R for types that are region names. In source programs, only type

variables α can have kind R. If we know α has kind R, we often write ρ to remind
us, but α and ρ are in the same syntactic class. At run-time, we name actual
regions with integers. If i names a region, then S(i) is a (singleton) type of kind
R. If we know a type has kind R, we often write r instead of τ to remind us.

As in actual Cyclone, handles have types of the form region(r), and pointer
types (τ∗r) include region names describing where the pointed-to value resides.

Function types include an explicit effect (ε) to describe regions that must be live
before calling a function. In source programs, an effect is a set of type variables.
For α ∈ ε, if α has kind R, we mean the region named α is live. More generally, for
any α, we mean all region names mentioned in the type for which α stands are live.
(It simplifies matters to allow α as an effect regardless of its kind.) At run-time,
region names are integers, so effects include i. We assume effects are identical up
to the usual notions of set equality (associativity, commutativity, idempotence). It
is clear that our definition of substitution is identical for equal sets in this sense.

Quantified types can introduce constraints (γ). The constraint ε1<ε2 means
that if ε2 describes only live regions, then ε1 describes only live regions. Put another
way, assuming ε2 is live, we can conclude ε1 is live. To instantiate a universal type,
the constraints must hold after instantiation. Similarly, for an existential package
to have an existential type, the type’s constraints must hold given the package’s
witness type. The constraint ε1<ε2 holds if for all type variables α ∈ ε1, there
exists a type variable β ∈ ε2 such that α<β. The last-in-first-out nature of regions
introduces constraints: When allocating a region named ρ, we know ε<ρ where ε
is the current capability.

Most term forms are similar to terms in Chapter 3. The let and open constructs
allocate one location in a “stack region” (a region that is deallocated after the
enclosed statement terminates and for which there is no handle). The compile-
time region name for this region is the ρ following the variable name; ρ is bound
in the enclosed statement. The term region ρ, x s corresponds to region r s in
Cyclone: It creates a region, binds its handle to x (placing x in the region itself),
executes s, and deallocates the region. The explicit ρ is like ρr in Cyclone. The
statement form s; pop i does not appear in source programs. It is a placeholder in
the term syntax so that the machine deallocates region i after executing s.

The expression forms are from Chapter 3 except rnew e1 e2 and rgn i. The
former is exactly like rnew(e1) e2 in Cyclone. The latter is an actual region handle
for region i. Region handles are values. Function definitions include explicit effects
and constraints to keep type-checking syntax-directed, and an explicit region name
for the parameter (instead of inducing a region name from the function name).

The heap has structure corresponding to regions. S is a stack of regions, each
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of which maps locations to values, with the most recently allocated region on the
right. We assume the regions i in S are distinct and that their domains are unique
(i.e., a variable in one H is not repeated in any other H). By abuse of notation,
we write x 6∈ S1S2 to mean there is no H in S1 or S2 such that x ∈ Dom(H).

A program state SG; S; s includes garbage data SG, live data S, and current
code s. The machine becomes stuck if it tries to access SG, so SG does not effect
program behavior. It contains the deallocated regions that, in practice, we would
not keep at run-time. An explicit SG is just a technical device to keep program
states from referring to free variables, even if they have dangling pointers.

To type-check terms, we use a context (C) to specify the run-time region names
in scope (R), the kinds of type variables (∆), the types and regions of locations (Γ),
the known constraints (γ), and the current capability (ε). For source programs,
R is empty or perhaps contains a predefined “heap region.” Given program state
SG; S; s, we use SG and S to induce an R and a γ. Section 4.5.3 presents the details
of how the heap affects the typing context. As convenient, given C = R; ∆; Γ; γ; ε,
we write CR, C∆, CΓ, Cγ, and Cε for R, ∆, Γ, γ, and ε, respectively.

When juxtaposing two partial maps (e.g., Γ1Γ2), we mean their union and im-
plicitly require that their domains are disjoint. Similarly, R1R2 means R1 followed
by R2. We do not implicitly consider an R reorderable. In particular, the s̀pop

and èpop judgments use R to restrict the order that a program deallocates regions.
When order is unimportant, we may treat R as a set, writing i ∈ R to mean R has
the form R1, i, R2 and R ⊆ R′ to mean that if i ∈ R then i ∈ R′.

4.5.2 Dynamic Semantics

As in Chapter 3, the rules for rewriting P to P ′ are defined in terms of inter-
dependent judgments for statements, left-expressions, and right-expressions (Fig-
ures 4.2); accessing and mutating parts of aggregate objects are defined using
auxiliary judgments (Figure 4.4); and type instantiation involves type substitu-
tion (Figure 4.5), which has no essential run-time effect. We now describe these
judgments in more detail.

Rule DS4.1 creates a new region to hold the (stack) object v. It puts the region
to the right of S because it will be deallocated before the regions in S. The region’s
run-time name is some fresh i, so we substitute S(i) for ρ in s. If we used type
variables for run-time region names, we could rely on α-conversion to ensure ρ was
fresh and avoid type substitution. To deallocate i at the right time, we insert the
appropriate pop statement. Rules DS4.2–7 are just like rules DS3.2–7 in Chapter 3.
Rule DS4.8 creates a new dynamic region. It is just like DS4.1 except x holds a
handle (rgn i) for the new region. Rules DS4.9 and DS4.10 are elimination rules for
pop; they deallocate regions. They apply only if the region i is the rightmost live
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x 6∈ SGS i 6∈ Dom(SGS)

SG; S; let ρ, x = v; s
s→ SG; S, i:x 7→ v; (s; pop i)[S(i)/ρ]

DS4.1

SG; S; (v; s)
s→ SG; S; s

DS4.2
SG; S; (return v; s)

s→ SG; S; return v
DS4.3

SG; S; if 0 s1 s2
s→ SG; S; s2

DS4.4
i 6= 0

SG; S; if i s1 s2
s→ SG; S; s1

DS4.5

SG; S; while e s
s→ SG; S; if e (s; while e s) 0

DS4.6

SG; S; open(pack τ ′, v as ∃α:κ[γ].τ) as ρ, α, x; s
s→ SG; S; let ρ, x = v; s[τ ′/α]

DS4.7

x 6∈ SGS i 6∈ Dom(SGS)

SG; S; region ρ, x s
s→ SG; S, i:x 7→ rgn i; (s; pop i)[S(i)/ρ]

DS4.8

SG; S, i:H; (v; pop i)
s→ SG, i:H; S; v

DS4.9

SG; S, i:H; (return v; pop i)
s→ SG, i:H; S; return v

DS4.10

SG; S; e
r→ S ′

G; S ′; e′

SG; S; e
s→ S ′

G; S ′; e′

SG; S; return e
s→ S ′

G; S ′; return e′

SG; S; if e s1 s2
s→ S ′

G; S ′; if e′ s1 s2

SG; S; let ρ, x = e; s
s→ S ′

G; S ′; let ρ, x = e′; s
SG; S; open e as ρ, α, x; s

s→ S ′
G; S ′; open e′ as ρ, α, x; s

DS4.11

SG; S; s
s→ S ′

G; S ′; s′

SG; S; (s; s2)
s→ S ′

G; S ′; (s′; s2)
SG; S; (s; pop i)

s→ S ′
G; S ′; (s′; pop i)

DS4.12

Figure 4.2: Chapter 4 Dynamic Semantics, Statements
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get(H(x), p, v)

SG; S, i:H, S ′; xp
r→ SG; S, i:H, S ′; v

DR4.1

set(v′, p, v, v′′)

SG; S, i:H, x 7→ v′, H ′, S ′; xp=v
r→ SG; S, i:H, x 7→ v′′, H ′, S ′; v

DR4.2

SG; S; ∗&xp
r→ SG; S; xp

DR4.3
SG; S; (v0, v1).i

r→ SG; S; vi

DR4.4

SG; S; ((τ, ρ x)
ε→ τ ′ s)(v)

r→ SG; S; call (let ρ, x = v; s)
DR4.5

SG; S; call return v
r→ SG; S;v

DR4.6
SG; S; (Λα:κ[γ].f)[τ ]

r→ SG; S;f [τ/α]
DR4.7

x 6∈ SGSS ′ x 6∈ Dom(H)

SG; S, i:H, S ′; rnew rgn i v
r→ SG; S, i:H, x 7→ v, S ′; &x·

DR4.8

SG; S; s
s→ S ′

G; S ′; s′

SG; S; call s
r→ S ′

G; S ′; call s′
DR4.9

SG; S; e
l→ S ′

G; S ′; e′

SG; S; &e
r→ S ′

G; S ′; &e′

SG; S; e=e2
r→ S ′

G; S ′; e′=e2

DR4.10

SG; S; e
r→ S ′

G; S ′; e′

SG; S; ∗e r→ S ′
G; S ′; ∗e′

SG; S; e.i
r→ S ′

G; S ′; e′.i
SG; S; xp=e

r→ S ′
G; S ′; xp=e′

SG; S; e[τ ]
r→ S ′

G; S ′; e′[τ ]

SG; S; (e, e2)
r→ S ′

G; S ′; (e′, e2)
SG; S; (v, e)

r→ S ′
G; S ′; (v, e′)

SG; S; e(e2)
r→ S ′

G; S ′; e′(e2)
SG; S; v(e)

r→ S ′
G; S ′; v(e′)

SG; S; rnew e e2
r→ S ′

G; S ′; rnew e′ e2

SG; S; rnew v e
r→ S ′

G; S ′; rnew v e′

SG; S; pack τ ′, e as ∃α:κ[γ].τ
r→ S ′

G; S ′; pack τ ′, e′ as ∃α:κ[γ].τ

DR4.11

SG; S; (xp).i
l→ SG; S; xpi

DL4.1
SG; S; ∗&xp

l→ SG; S; xp
DL4.2

SG; S; e
r→ S ′

G; S ′; e′

SG; S; ∗e l→ S ′
G; S; ∗e′

DL4.3
SG; S; e

l→ S ′
G; S ′; e′

SG; S; e.i
l→ S ′

G; S ′; e′.i
DL4.4

Figure 4.3: Chapter 4 Dynamic Semantics, Expressions
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get(v, ·, v)

get(v0, p, v)

get((v0, v1), 0p, v)

get(v1, p, v)

get((v0, v1), 1p, v)

set(v′, ·, v, v)

set(v0, p, v, v′)

set((v0, v1), 0p, v, (v′, v1))

set(v1, p, v, v′)

set((v0, v1), 1p, v, (v0, v
′))

Figure 4.4: Chapter 4 Dynamic Semantics, Heap Objects

region, else the machine is stuck. The rules add the region to the garbage stack.
The region’s position in the garbage stack is irrelevant because this stack is never
accessed. The congruence rules DS4.11–12 hold no surprises. As in Chapter 3,
putting multiple conclusions in one rule is just for conciseness.

Rules DR4.1 and DR4.2 use the get and set relations (which are simpler than
in Chapter 3 because we eliminated reference patterns) to access or update the
live data. They are complicated only because of the extra structure in S. Most
importantly, they do not use SG; the machine is stuck if the active term is xp
and x ∈ SG. All of the other rules are analogues of rules in Chapter 3, except
for DR4.8. This rule defines allocation into a dynamic region. It creates a new
location x, puts v in it, and returns a pointer to x.

Unlike Cyclone, regions(τ) is not a syntactic effect. Rather, effects are the
union of “primitive effects,” which have the form α or i. This decision simplifies
the static judgments regarding effects and constraints, but it slightly complicates
the definition of type substitution through effects: For effect α, we define α[τ/α]
to be regions(τ), where regions is a metafunction from types to effects defined
in Figure 4.5. The type-safety proof uses the fact that regions(τ) produces an
effect that is well-formed so long as τ is well-formed. The rest of the definition of
substitution is conventional.

4.5.3 Static Semantics

A valid source program is a statement s that type-checks under an empty context
(·; ·; ·; ·; ∅; τ s̀typ s), does not terminate without returning ( r̀et s), and does not con-
tain any pop statements (· s̀pop s). As in Chapter 3, the type-checking judgments
for statements, left-expressions, and right-expressions (Figures 4.8 and 4.9) are
interdependent and the gettype relation (Figure 4.10) destructs the types of aggre-
gate objects. The most interesting change is that type-checking a left-expression
determines its type and the region name describing its location.

Expressions that access memory (e.g., assignment and the right-expression xp)
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effect substitution: ∅[τ/α] = ∅
α[τ/α] = regions(τ)
β[τ/α] = β
i[τ/α] = i

(ε1 ∪ ε2)[τ/α] = (ε1[τ/α]) ∪ (ε2[τ/α])
constraint substitution: ·[τ/α] = ·

(γ, ε1<ε2)[τ/α] = γ[τ/α], ε1[τ/α]<ε2[τ/α]
type substitution: α[τ/α] = τ

β[τ/α] = β
int[τ/α] = int

(τ0 × τ1)[τ/α] = τ0[τ/α]× τ1[τ/α]

(τ1
ε→ τ2)[τ/α] = τ1[τ/α]

ε[τ/α]→ τ2[τ/α]
(τ ′∗r)[τ/α] = (τ ′[τ/α])∗(r[τ/α])

(∀β:κ[γ].τ ′)[τ/α] = ∀β:κ[γ[τ/α]].τ ′[τ/α]
(∃β:κ[γ].τ ′)[τ/α] = ∃β:κ[γ[τ/α]].τ ′[τ/α]
(region(r))[τ/α] = region(r[τ/α])

S(i)[τ/α] = S(i)

constraint regions: regions(·) = ∅
regions(γ, ε1<ε2) = regions(γ) ∪ ε1 ∪ ε2

type regions: regions(α) = α
regions(int) = ∅

regions(τ0 × τ1) = regions(τ0) ∪ regions(τ1)

regions(τ1
ε→ τ2) = ε

regions(τ∗r) = regions(τ) ∪ regions(r)
regions(∀α:κ[γ].τ) = (regions(γ) ∪ regions(τ))− α
regions(∃α:κ[γ].τ) = (regions(γ) ∪ regions(τ))− α
regions(region(r)) = regions(r)

regions(S(i)) = i

Notes: Throughout, we mean β 6= α and implicitly rename to avoid capture. We
omit the formal definition for terms and contexts; we simply substitute through
all contained terms, types, constraints, and effects.

Figure 4.5: Chapter 4 Dynamic Semantics, Type Substitution
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R; ∆ ẁf ∅
α ∈ Dom(∆)

R; ∆ ẁf α
i ∈ R

R; ∆ ẁf i

R; ∆ ẁf ε1 R; ∆ ẁf ε2

R; ∆ ẁf ε1 ∪ ε2

R; ∆ ẁf ·
R; ∆ ẁf γ R; ∆ ẁf ε1 R; ∆ ẁf ε2

R; ∆ ẁf γ, ε1<ε2

R; ∆ k̀ int : B

α ∈ Dom(∆)

R; ∆ k̀ α : κ
i ∈ R

R; ∆ k̀ S(i) : R

R; ∆ k̀ τ : B

R; ∆ k̀ τ : A

R; ∆ k̀ τ0 : A R; ∆ k̀ τ1 : A

R; ∆ k̀ τ0 × τ1 : A

R; ∆ k̀ τ0 : A R; ∆ k̀ τ1 : A R; ∆ ẁf ε

R; ∆ k̀ τ0
ε→ τ1 : A

R; ∆ k̀ τ : A R; ∆ k̀ r : R

R; ∆ k̀ τ∗r : B

R; ∆ k̀ r : R

R; ∆ k̀ region(r) : B

R; ∆, α:κ k̀ τ : A R; ∆, α:κ ẁf γ κ 6= A α 6∈ Dom(∆)

R; ∆ k̀ ∀α:κ[γ].τ : A
R; ∆ k̀ ∃α:κ[γ].τ : A

R; ∆ ẁf ·
R; ∆ ẁf Γ R; ∆ k̀ τ : A R; ∆ k̀ r : R

R; ∆ ẁf Γ, x:(τ, r)

R; ∆ ẁf Γ R; ∆ ẁf γ R; ∆ ẁf ε

ẁf R; ∆; Γ; γ; ε

Figure 4.6: Chapter 4 Kinding and Well-Formedness

type-check only if the current capability and constraints establish that the memory
has not been deallocated. The judgment γ; ε àcc r defines this notion using the
more general notion of subeffecting that γ èff ε1<ε2 defines. We also use the
latter judgment to type-check a function call because the current capability must
establish the function’s effect. Finally, we need to lift this notion of implication to
constraints (γ èff γ′) to check the introduction of quantified types with constraints.
Figure 4.7 defines these judgments.

Figure 4.6 defines the judgments for ensuring types have the correct kinds and
typing contexts are well-formed. Constraints, effects, and types may not have free
occurrences of type variables and regions not in the R and ∆ provided as context.

The judgments in Figures 4.12 and 4.13 are more sophisticated than is necessary
for source programs. The judgments R s̀pop s and R èpop e relax the requirement
that programs have no pop statements while still imposing enough structure to
ensure that programs deallocate regions in the correct order and do not access
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γ èff i ⇐ ε

γ; ε àcc S(i)

γ èff ρ ⇐ ε

γ; ε àcc ρ

γ èff ε ⇐ ε γ1, ε1<ε2, γ2 èff ε1 ⇐ ε2

γ èff ε1 ⇐ ε γ èff ε2 ⇐ ε

γ èff ε1 ∪ ε2 ⇐ ε

γ èff ε ⇐ ε1

γ èff ε ⇐ ε1 ∪ ε2

γ èff ε1 ⇐ ε3 γ èff ε3 ⇐ ε2

γ èff ε1 ⇐ ε2

γ èff ·
γ èff γ′ γ èff ε1 ⇐ ε2

γ èff γ′, ε1<ε2

Figure 4.7: Chapter 4 Effect and Constraint Containment

C r̀typ e : τ ′

C; τ s̀typ e
SS4.1

C r̀typ e : τ

C; τ s̀typ return e
SS4.2

C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ s1; s2
SS4.3

C r̀typ e : int C; τ s̀typ s

C; τ s̀typ while e s
SS4.4

C r̀typ e : int C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ if e s1 s2
SS4.5

R; ∆; Γ; γ; ε r̀typ e : τ ′ ρ 6∈ Dom(∆) x 6∈ Dom(Γ)
R; ∆, ρ:R; Γ, x:(τ ′, ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s R; ∆ k̀ τ : A

R; ∆; Γ; γ; ε; τ s̀typ let ρ, x = e; s
SS4.6

R; ∆; Γ; γ; ε r̀typ e : ∃α:κ[γ′].τ ′ α, ρ 6∈ Dom(∆) x 6∈ Dom(Γ)
R; ∆, ρ:R, α:κ; Γ, x:(τ ′, ρ); γ, ε<ρ, γ′; ε ∪ ρ; τ s̀typ s R; ∆ k̀ τ : A

R; ∆; Γ; γ; ε; τ s̀typ open e as ρ, α, x; s
SS4.7

ẁf R; ∆; Γ; γ; ε ρ 6∈ Dom(∆) x 6∈ Dom(Γ)
R; ∆, ρ:R; Γ, x:(region(ρ), ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s R; ∆ k̀ τ : A

R; ∆; Γ; γ; ε; τ s̀typ region ρ, x s
SS4.8

R; ∆; Γ; γ; ε ∪ i; τ s̀typ s

R; ∆; Γ; γ; ε; τ s̀typ s; pop i
SS4.9

Figure 4.8: Chapter 4 Typing, Statements
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CΓ(x) = (τ ′, r) ` gettype(τ ′, p, τ) ẁf C

C l̀typ xp : τ, r
SL4.1

C r̀typ e : τ∗r
C l̀typ ∗e : τ, r

SL4.2
C l̀typ e : τ0 × τ1, r

C l̀typ e.0 : τ0, r
SL4.3

C l̀typ e : τ0 × τ1, r

C l̀typ e.1 : τ1, r
SL4.4

C l̀typ e : τ, r′ Cγ; regions(r) àcc r′ CR; C∆ k̀ r : R

C l̀typ e : τ, r
SL4.5

CΓ(x) = (τ ′, r) ` gettype(τ ′, p, τ) Cγ; Cε àcc r ẁf C

C r̀typ xp : τ
SR4.1

C r̀typ e : τ∗r Cγ; Cε àcc r

C r̀typ ∗e : τ
SR4.2

C r̀typ e : τ0 × τ1

C r̀typ e.0 : τ0
SR4.3

C r̀typ e : τ0 × τ1

C r̀typ e.1 : τ1
SR4.4

ẁf C
C r̀typ i : int

SR4.5
C l̀typ e : τ, r

C r̀typ &e : τ∗r SR4.6
C r̀typ e0 : τ0 C r̀typ e1 : τ1

C r̀typ (e0, e1) : τ0 × τ1
SR4.7

C l̀typ e1 : τ, r C r̀typ e2 : τ Cγ; Cε àcc r

C r̀typ e1=e2 : τ
SR4.8

C r̀typ e1 : τ ′ ε′
→ τ C r̀typ e2 : τ ′ Cγ èff ε′ ⇐ Cε

C r̀typ e1(e2) : τ
SR4.9

C; τ s̀typ s r̀et s

C r̀typ call s : τ
SR4.10

C r̀typ e : ∀α:κ[γ′].τ ′ CR; C∆ k̀ τ : κ Cγ èff γ′[τ/α]

C r̀typ e[τ ] : τ ′[τ/α]
SR4.11

C r̀typ e : τ [τ ′/α] CR; C∆ k̀ τ ′ : κ Cγ èff γ′[τ ′/α] CR; C∆ k̀ ∃α:κ[γ′].τ : A

C r̀typ pack τ ′, e as ∃α:κ[γ′].τ : ∃α:κ[γ′].τ
SR4.12

ẁf R; ∆; Γ; γ; ε ρ 6∈ Dom(∆) x 6∈ Dom(Γ)

R; ∆, ρ:R; Γ, x:(τ, ρ); γ, ε′<ρ; ε′ ∪ ρ; τ ′
s̀typ s r̀et s R; ∆ k̀ τ

ε′
→ τ ′ : A

R; ∆; Γ; γ; ε r̀typ (τ, ρ x)
ε′
→ τ ′ s : τ

ε′
→ τ ′

SR4.13

R; ∆, α:κ; Γ; γγ′; ε r̀typ f : τ ẁf R; ∆; Γ; γ; ε R; ∆ k̀ ∀α:κ[γ′].τ : A

R; ∆; Γ; γ; ε r̀typ Λα:κ[γ′].f : ∀α:κ[γ′].τ
SR4.14

C r̀typ e2 : τ
C r̀typ e1 : region(r) Cγ; Cε àcc r

C r̀typ rnew e1 e2 : τ∗r SR4.15
i ∈ CR ẁf C

C r̀typ rgn i : region(S(i))
SR4.16

C r̀typ e : τ∗r′ Cγ; regions(r) àcc r′ CR; C∆ k̀ r : R

C r̀typ e : τ∗r SR4.17

Figure 4.9: Chapter 4 Typing, Expressions
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` gettype(τ, ·, τ)

` gettype(τ0, p, τ)

` gettype(τ0 × τ1, 0p, τ)

` gettype(τ1, p, τ)

` gettype(τ0 × τ1, 1p, τ)

Figure 4.10: Chapter 4 Typing, Heap Objects

r̀et return e
r̀et s1 r̀et s2

r̀et if e s1 s2

r̀et s

r̀et s; s′ r̀et let ρ, x = e; s

r̀et s′; s r̀et open e as ρ, α, x; s

r̀et s; pop i r̀et region ρ, x s

Figure 4.11: Chapter 4 Must-Return

R s̀pop s

i, R s̀pop s; pop i

R s̀pop s1 · s̀pop s2

R s̀pop s1; s2

R èpop e · s̀pop s1 · s̀pop s2

R s̀pop if e s1 s2

· èpop e · èpop s

· s̀pop while e s

R èpop e · s̀pop s

R s̀pop let ρ, x = e; s
R s̀pop open e as ρ, α, x; s

· s̀pop s

· s̀pop region ρ, x s

R èpop e

R s̀pop e
R s̀pop return e

· èpop xp
· èpop i
· èpop rgn i

R èpop e

R èpop &e
R èpop ∗e
R èpop e.i
R èpop xp=e
R èpop e[τ ]
R èpop pack τ, e as τ ′

R èpop e0 · èpop e1

R èpop (e0, e1)
R èpop e0=e1

R èpop e0(e1)
R èpop rnew e0 e1

· èpop v R èpop e

R èpop (v, e)
R èpop v(e)
R èpop rnew v e

· s̀pop s

· èpop (τ, ρ x)
ε→ τ ′ s

· èpop f

· èpop Λα:κ[γ].f

R s̀pop s

R èpop call s

Figure 4.12: Chapter 4 Typing, Deallocation
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R; Γ; γ; i h̀typ · : ·
R; Γ; γ; i h̀typ H : Γ′ R; ·; Γ; γ; ∅ r̀typ v : τ · èpop v

R; Γ; γ; i h̀typ H, x 7→ v : Γ′, x:(τ, S(i))

R; Γ; γ h̀typ · : ·
R; Γ; γ h̀typ S : Γ1 R; Γ; γ; i h̀typ H : Γ2

R; Γ; γ h̀typ S, i:H : Γ1Γ2

S = i1:H1, . . . , in:Hn R = i1, . . . , in γ = i1<i2, i2<i3, . . . , in−1<in
SG = i′1:, H

′
1 . . . , i′m:H ′

m RG = i′1, . . . , i
′
m γG = ε1<i′1, . . . , εm<i′m

RGR; Γ; γγG h̀typ SGS : Γ RGR; ·; Γ; γγG; ∅; τ s̀typ s r̀et s R s̀pop s

p̀rog SG; S; s

Figure 4.13: Chapter 4 Typing, States

deallocated regions. The two h̀typ judgments derive a context Γ for an S. Finally,
the judgment p̀rog type-checks entire program states.

We now describe the judgments in more detail, omitting descriptions of the
more straightforward type-checking rules.

Except for R; ∆ k̀ τ : κ, the judgments in Figure 4.6 just ensure that constraints
and effects do not refer to meaningless free type variables or regions. The kinding
judgment is simpler than in Chapter 3 because all types are mutable and have
known size. To ensure the latter, the rule for quantified types forbids a type
variable of kind A. The most interesting aspect of the judgment is the use of kind
R: The rules require that r in τ∗r, region(r), and (τ, r) (where Γ(x) = (τ, r))
should have kind R. No other types should have kind R.

The àcc and èff judgments are mostly straightforward. Given implicit set equal-
ities such as associativity, commutativity, and ε = ε ∪ ∅, the rules for γ èff ε1<ε2

amount to showing that given the constraints γ, for all α in ε1 there exists a β in
ε2 such that α outlives β.

Rules SS4.6–8 are complicated because they concern terms that create regions.
For each, to type-check the contained statement s, we extend ∆ with the compile-
time name for the created region (ρ), extend Γ with x having the appropriate type
and region-name ρ, extend the current capability with ε (because the region is
live while s executes), and extend γ with ε<ρ (because the region lifetimes are
last-in-first-out). If our language did not have composite operations (allocate a
region, allocate an object into it, execute a statement, deallocate the region), we
would not have such complicated rules. The other hypotheses in these rules are
straightforward. Note that in SS4.8 the handle has type region(ρ). Rule SS4.9 just
adds i to the current capability to check the s in s; pop i. It is important that we
not include i in other capabilities (e.g., to check s′ in (s; pop i); s′) even though
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i is live because doing so would make it impossible for the type-safety proof to
establish that s′ could still type-check after i was deallocated.

The rules for C l̀typ e : τ, r are quite simple. The region name for e.i is the same
as the region name for e because an aggregate object resides in one region. None of
the rules use the àcc judgment explicitly because evaluation of left-expressions does
not access memory unless evaluation of a contained right-expression does so. Not
requiring left-expressions to refer to live memory allows dangling pointers (e.g.,
&xp) to type-check even if the pointed-to memory has been deallocated.

On the other hand, the rules for type-checking right expressions do use the àcc

and èff judgments. For example, if SR4.1 did not have its àcc hypothesis, then
we could not prove that the expression xp was not stuck. (As we will see, Cε will
not include deallocated regions.) Rule SR4.6 is one reason l̀typ includes a region
name; we need it for the type of &e. The other reason is rule SR4.8, where we
need the region name to forbid mutating deallocated memory. Rule SR4.9 forbids
function calls unless the current capability establishes the function’s effect. Rules
SR4.10 and SR4.11 ensure that constraints introduced with quantified types are
provable from the known constraints in the context. Constraints never “become
false,” so these rules make it sound to assume a quantified type’s constraints in
rules SR4.14 and SS4.7. Rules SL4.5 and SR4.17 allow subtyping of pointer types.
(Earlier work [98] erroneously omitted SL4.5. The language is safe without it, but
type preservation does not hold.)

The r̀et judgment, defined in Figure 4.11, is used for rules SR4.10 and SR4.13,
much like in Chapter 3.

The intuition behind R s̀pop s is that s should deallocate the regions in R
in right-to-left order and deallocate no region twice. (Because s; pop i executes
s before deallocating i, it is correct that i should be the left-most region in R.)
Furthermore, if s terminates, it should deallocate all the region in R. The actual
definition is slightly more restrictive. For example, it requires all of the pop state-
ments in s to be nested inside each other. More technically, the abstract-syntax
path from the root of s to the active redex must include all pop statements.

The h̀typ judgments add x:(τ, S(i)) to Γ if region i maps x to a value v of type τ .
Values never need a nonempty capability to type-check (they do not execute), so
we can type-check v with ∅ for ε. We must require · èpop v to ensure that function
bodies in the heap do not have pop statements.

Finally, there is one rule for p̀rog SG; S; s. As usual, the heap must type-check
(allowing cyclic references) and s must type-check under the heap’s context. There
should be no free occurrences of type variables (∆ = ·) and only regions in SG or
S should be used. We type-check the heap and s using the constraints γ and γG.
It is sound to assume γ because R s̀pop s ensures s will deallocate the regions in
S in the order consistent with γ. As for γG, given i ∈ RG, it is sound to use any
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constraint of the form ε<i. This constraint means, “if i describes a live region,
then ε describes only live regions,” which holds vacuously because i is not live.

4.5.4 Type Safety

Appendix B proves this result:

Definition 4.1. State SG; S; s is stuck if s is not of the form return v and there
are no S ′

G, S ′, and s′ such that SG; S; s
s→ S ′

G; S ′; s′.

Theorem 4.2 (Type Safety). If ·; ·; ·; ·; ∅; τ s̀typ s, r̀et s, s contains no pop
statements, and ·; ·; s s→∗

S ′
G; S ′; s′ (where

s→∗
is the reflexive, transitive closure of

s→), then S ′
G; S ′; s′ is not stuck.

Note that any “attempt” to access an object in the garbage heap (SG) would
lead to a stuck state.

4.6 Related Work

As a safe polymorphic C-like language with static region-based memory man-
agement, Cyclone represents a unique and promising point in the programming-
language design-space, but many other systems share some of its features. This
section describes some of these systems’ approaches to memory management.

Making C Safe Many systems aim to make C code safe, as Chapter 8 describes.
Some static bug-finding tools, such as LCLint and its successor Splint [63, 189],
perform unsound but useful analyses to find potential dangling-pointer dereferences
and space leaks. Annotations can describe invariants such as reference counting
and pointer uniqueness. Like Cyclone, avoiding analysis errors requires restricted
coding idioms or additional annotations, but unlike Cyclone, soundness is not
guaranteed. In this way, static tools reduce false positives without rewriting code.

Other systems, such as Safe-C [12], change data representation and insert run-
time checks to detect dangling-pointer dereferences at run-time. For example,
C pointers can be compiled to machine addresses plus integers representing the
object pointed to and code manipulating pointers can maintain the integers as
well. The run-time system maintains a table of “live” integers and dereferences
require checking the table. (Integers are never reused.) Performance overhead
is substantial. To allow stack pointers, activation records also need associated
integers. Because this approach requires changing data representation, it becomes
difficult to link against legacy object code. Therefore, some systems keep the
integers in a separate table indexed by the pointer values [129].
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The CCured system [164, 38] takes a hybrid approach to recover most of the
performance. When an object is freed, the (entire) storage is not immediately
reclaimed, but rather marked as inaccessible. Subsequent accesses check the mark
and signal an error when the object is dereferenced. Ultimately, the mark is re-
claimed with a garbage collector to avoid leaks. A whole-program static analysis
ensures that dangling stack pointers do not exist. When the analysis is too con-
servative, programmers must rewrite their code.

The main advantage of all these systems is that they require less modification
of legacy C code. However, none soundly preserve data representation and object
lifetimes, which are common reasons for using C.

Static Regions Tofte and Talpin’s seminal work [201] on implementing ML with
regions provides the foundation for regions in the ML Kit [200]. Programming with
the Kit is convenient, as the compiler automatically infers all region annotations.
However, small changes to a program can have drastic, unintuitive effects on ob-
ject lifetimes. Thus, to program effectively, one must understand the analysis and
try to control it indirectly by using certain idioms [200]. More recent work for
the ML Kit includes optional support for accurate garbage collection within re-
gions [103]. Doing so requires changing region inference so that it never creates
dangling pointers.

A number of extensions to the basic Tofte-Talpin framework can avoid the
constraints of last-in-first-out region lifetimes. As examples, the ML Kit includes
a reset-region primitive [200] (Cyclone has experimented with this feature); Aiken
et al. provide an analysis to free some regions early [3]; and Walker et al. [210,
211, 213] propose general systems for freeing regions based on linear types. These
systems are more expressive than our framework. For instance, the ideas in the
Capability Calculus were used to implement type-safe garbage collectors within
a language [214, 153]. However, these systems were not designed for source-level
programming. They were designed as compiler intermediate languages or analyses,
so they can ignore issues such as minimizing annotations or providing control to
the user.

Two other recent projects, Vault [55] and the work of Henglein et al. [115]
aim to provide safe source-level control over memory management using regions.
Vault’s powerful type system allows a region to be freed before it leaves scope
and its types can enforce that code must free a region. To do so, Vault restricts
region aliasing and tracks more fine-grained effects. As a result, programming
in Vault can require more annotations. Henglein et al. [115] have designed a
flexible region system that does not require last-in-first-out behavior. However, the
system is monomorphic and first-order; it is unclear how to extend it to support
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polymorphism or existential types, the key difficulties in this chapter.
Finally, both Typed Assembly Language [156] and the Microsoft CIL [91] pro-

vide some support for type-safe stack allocation. But neither system allows pro-
grammers to mix stack and heap pointers, and both systems place strong restric-
tions on how stack pointers can be used. For instance, the Microsoft CIL prevents
such pointers from being placed in data structures or returned as results.

Regions in C Perhaps the most closely related work is Gay and Aiken’s RC [85,
84] compiler and their earlier system, C@ [86]. They provide language support for
efficient reference counting to detect if a region is deallocated while there remain
pointers to it (that are not within it). This dynamic system has no a priori
restrictions on regions’ lifetimes and a pointer can point anywhere, so the RC
approach can encode more memory-management idioms. RC is less eager in that
it does not detect errors at compile-time, but more eager in that it fails when
dangling references exist, rather than when they are followed. RC is not a safe
language, but its approach to regions is sound.

Three pointer qualifiers keep RC’s overhead low by imposing invariants that
make reference-counting unnecessary. In general, the invariants are checked at
run-time, but static analysis removes most checks. First, traditional pointers
always point into the heap or stack. Because RC does not include these areas in its
region system, using traditional pointers involves no reference-counting. Second,
sameregion pointers always point into the region of the containing object. Because
reference counts track only pointers from outside the region, RC can again avoid
reference counting. Cyclone uses region-name equalities to capture the same-region
idiom; without reference counting, the fact that a pointer points into its container’s
region is unimportant at run time. Third, RC’s region-creation construct can take
a “parent” region. The run-time checks that the parent region is freed after the
new region. The parentptr qualifier is like sameregion except it allows pointers
into ancestor regions. Parent pointers are like Cyclone’s region subtyping.

Reference counting forces two restrictions not in Cyclone. First, RC forbids
casts from int to void* (in Cyclone terms, instantiating α with int) because it
leads to code that does not know if it is manipulating a pointer into a region.
Cyclone’s region system does not need to know this information, nor does the
conservative garbage collector. Second, RC forbids longjmp (or in Cyclone terms,
exceptions) because code that decrements reference counts due to local variables
would not be executed. (Finalizers for activation records could avoid this problem.)

Other Regions Because the general idea of region-based memory management
(allocating object into regions for which all objects are deallocated simultaneously)
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is an old one, it is not possible to document all its uses. Gay and Aiken [86] nicely
summarize many systems that use regions, including many that do not require
simultaneous deallocation. Regions are sometimes called arenas [105] or zones.

In some sense, optimizing compilers that use analyses to stack-allocate objects
are related. Essentially, Cyclone provides programmers this technique and the type
system verifies that it is used soundly.

Because most garbage collectors are inappropriate for real-time tasks, the Real-
Time Specification for Java [20] extends Java with “ScopedMemory” objects, which
are essentially regions. In Cyclone terms, the creation of such an object (essentially
a handle) is separate from a lexically scoped use of the region. The default location
for allocated objects is the most recently used ScopedMemory object (or the heap
if none are in use). Users can allocate objects elsewhere explicitly or set a new
default. As in Cyclone, this scheme creates an implicit stack of regions and a
region’s objects are deallocated when control leaves the appropriate scope.

Unlike in Cyclone, the lifetime of a Real-Time Java object is not part of its type.
Instead, attempting to create a reference from an older region to a younger one
causes a run-time exception. Hence every assignment statement must include this
lifetime check (though static analysis could eliminate some checks) and dangling
pointers never exist. It is also incorrect for a ScopedMemory object to occur twice
in a region stack; an exception occurs at the second attempted use. This error is
impossible in Cyclone because we do not separate the creation of handles from the
use of regions.

In summary, some systems are more convenient to use than Cyclone (e.g.,
CCured and the MLKit) but take away control over memory management. Some
of the static systems (e.g., the Capability Calculus) provide more powerful region
constructs, but were designed as intermediate languages and do not have the pro-
gramming convenience of Cyclone. Other systems (e.g., RC, Safe-C) are more
flexible but offer no static guarantees.



Chapter 5

Type-Safe Multithreading

This chapter extends Cyclone with locks and threads. Programs can create, ac-
quire, and release locks, as well as spawn new threads. Threads communicate via
shared mutable heap locations. To enforce safety, we extend the type system to
enforce mutual exclusion on shared data, but we allow unsynchronized access to
thread-local data. The extensions interact smoothly with the parametric polymor-
phism and region-based memory management that preceding chapters develop. To
begin, we motivate safe multithreading and mutual exclusion. We then sketch this
chapter’s structure and highlight the technical contributions.

Writing multithreaded programs is more difficult than writing single-threaded
programs because there are typically far too many possible execution sequences
for human reasoning or even automated testing. In particular, it is easy for an
unintended data race—one thread accessing data while another thread mutates
the data—to leave program data in an inconsistent state. Because there are many
multithreaded applications where C-style data representation and resource man-
agement are important (e.g., operating systems), extending Cyclone with multi-
threading makes it useful for important application domains.

Programmers often intend for their programs not to have race conditions. For
this reason alone, extending the type system to guarantee that data races cannot
occur is useful. It eliminates a potential source of errors and allows a thread to
violate an invariant temporarily (e.g., to update a shared data structure) with the
assurance that other threads cannot view data in a state violating the invariant.

In fact, preventing data races in multithreaded Cyclone is essential: In the
presence of such races, Cyclone is not type-safe. The Cyclone implementation
does not ensure that reads and writes of words in memory are atomic. After all,
the system just uses a conventional C compiler (gcc) and a native thread library.
If the underlying architecture, such as a shared-memory multiprocessor, does not
prevent data races from corrupting memory, then a race condition on a pointer
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could yield an arbitrary result, which of course violates memory safety.
Moreover, a system enforcing atomic access for words is insufficient because

safety can require writing multiple words without an intervening access. When
mutating an existential package such that its witness type changes, it is unsafe
to allow access while some fields use the old witness type and some use the new.
A common example is a struct with a field holding the length of an array that
another field points to. Allowing updates of such records (to refer to shorter or
longer arrays) is desirable, but we must forbid access while the length field is wrong.

In short, we have three reasons to enrich Cyclone’s type system to guarantee
the absence of data races:

1. Most programs are not supposed to have races, so static assurances increase
reliability.

2. Updating references may not be atomic in the implementation, so races might
corrupt pointers.

3. Type safety can require writes to multiple memory locations before another
thread reads any of them.

These reasons should apply in some form to any expressive, safe, low-level, mul-
tithreaded language. From the perspective of designing a type-safe language, the
first is “optional,” but the others are “mandatory.”

Section 5.1 describes Cyclone’s basic techniques for making potential data races
a compile-time error. The approach is strikingly similar to the approach for making
dangling-pointer dereferences a compile-time error. We have compile-time lock
names for run-time locks. Each lock type and pointer type includes a lock name.
Two lock types with the same lock name describe the same run-time lock. A pointer
type’s lock name indicates a lock that mediates access to the pointed-to data. The
type system ensures a thread accesses data only if it holds the appropriate lock.

The crucial complication is a notion of thread-local data. Such memory does
not need a lock, but the type system must enforce that only one thread uses the
memory. Thread-local data is often the rule, not the exception. Such data makes
programs easier to write and more efficient. The kind system distinguishes sharable
and unsharable types, but one library can let clients pass thread-local or shared
data to it.

Section 5.2 describes the interaction between type variables representing locks
and type variables representing types. As in Chapter 4, we need a way to describe
the access rights necessary for using a value of an unknown type. As before, we use
a novel type constructor and compile-time constraints. Unlike with last-in-first-out
regions, we do not have a natural notion of subtyping.
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Section 5.3 describes the interaction between multithreading and the region
system. (Earlier sections ignore deallocation.) Mostly the systems are analogous
but orthogonal. The interesting interaction comes from allowing threads to share
data that does not live forever. We must prevent one thread from accessing data
that another has deallocated.

Section 5.4 describes the necessary run-time support for multithreading. Be-
cause Cyclone’s multithreading operations are quite conventional, it is easy to
implement them on top of a native thread system. However, the interaction with
regions requires some interesting run-time data structures.

Section 5.5 evaluates the system. The main strengths are uniformity with the
region system and efficient access to shared data structures. The main weakness is
the lack of support for synchronization idioms besides lock-based mutual exclusion.

Sections 5.6 and Appendix C model many interesting aspects of multithreaded
Cyclone and prove a type-safety result. Because the abstract machine requires
mutation to take two steps, type safety implies the absence of data races. This
semantics models the difficulty of ensuring safety in the presence of nonatomic
operations, but it significantly complicates the safety proof. To regain some sim-
plicity, the model omits memory deallocation and left-expressions of the form e.i.

Finally, Section 5.7 describes related work. This chapter largely adapts closely
related work on race-detection type systems for higher-level languages. In particu-
lar, Flanagan, Abadi, and Freund developed the idea of using singleton lock-types
and effects [73, 72, 74]. They also applied their ideas to large Java programs.
Furthermore, Boyapati, Lee, and Rinard’s approach to thread-local data [31, 29]
is very similar to mine. Nonetheless, this chapter makes the following technical
contributions beyond adapting others’ ideas:

• We integrate parametric polymorphism, which complicates the effect lan-
guage as with regions. The result works particularly well for “caller locks”
idioms.

• Callers can pass a special “nonlock” with thread-local data to callees that use
a “callee locks” idiom. This addition allows more code reuse than Boyapati
et al.’s system while incurring essentially no unnecessary overhead in the
thread-local case.

• The integration with regions allows shared data objects that do not live
forever.

• The kind system collects the above additions into a coherent type language
that clearly describes what types are sharable.



115

• The type-safety proof is the first for a formal machine with thread-local data.
Furthermore, previous formal work has prevented data races only for abstract
machines in which races cannot actually violate type safety.

5.1 Basic Constructs

In this section, we present the extensions for Cyclone multithreading. Our design
goals include the following:

• Statically enforce mutual exclusion on shared data.

• Make all synchronization explicit to the programmer.

• Allow libraries to operate on shared and local data.

• Represent data and access memory exactly as single-threaded programs do.

• Allow accessing local data without synchronization.

• Avoid interprocedural analysis.

5.1.1 Multithreading Terms

To support multithreading, we add three primitives and one statement form to
Cyclone. The primitives have Cyclone types, so we can implement them entirely
with a library written in C.

The spawn function takes a function pointer, a pointer to a value, and the size
of the value. Executing spawn(e1,e2,e3) evaluates e1, e2, and e3 to some f,
p, and sz respectively; copies *p into fresh memory pointed to by some new p2

(doing the copy requires sz); and executes f(p2) in a new thread. The spawned
thread terminates when f returns; the spawning thread continues execution. Note
that everything *p2 points to is shared (the copy is shallow), but *p2 is local to
the new thread.

The newlock function takes no arguments and returns a fresh lock. Locks
mediate access to shared data: for each shared object, there is a lock that a thread
must hold when accessing the object. As explained below, the type system makes
the connection between objects and locks.

The nonlock constant serves as a pseudolock. Acquiring nonlock has no run-
time effect. Its purpose is to provide a value when a real lock is unnecessary
because the corresponding data is local.
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void inc(int* p) {

*p = *p + 1;

}

void inc2(lock_t plk, int* p) {

sync(plk) inc(p);

}

struct LkInt { lock_t plk; int* p; };

void g(struct LkInt* s) {

inc2(s->plk, s->p);

}

void f() {

lock_t lk = newlock();

int* p1 = new 0;

int* p2 = new 0;

struct LkInt* s = new LkInt{.plk=lk, .p=p1};

spawn(g, s, sizeof(struct LkInt));

inc2(lk, p1);

inc2(nonlock, p2);

}

Figure 5.1: Example: Multithreading Terms with C-Like Type Information

Finally, the statement sync(e)s evaluates e to a lock (or nonlock), acquires
the lock, executes s, and releases the lock. Only one thread can hold a lock at
a time, so the acquisition may block until another thread releases the lock. Note
that nothing in Cyclone prevents deadlock.

Figure 5.1 uses these constructs but includes only the type information we
might expect in C; it is not legal Cyclone. Because inc accesses *p, callers of inc
should hold the appropriate lock if *p is shared. No lock is needed to call inc2
so long as plk is the lock for *p. The function f spawns a thread with function
g, lock lk, and pointer p1. Both threads increment *p1, but lk mediates access.
Finally, p2 is thread-local, so it is safe to pass it to inc2 with nonlock. (We could
also just call inc(p2).)

5.1.2 Multithreading Types

The key extension to the Cyclone type system is lock names, which are, with one
exception, type-level variables that describe run-time locks. Lock names do not
exist at run-time. A lock has type lock_t<`> where ` is a lock name. The key
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void inc<`::LU>(int*` p ;{`}) {

*p = *p + 1;

}

void inc2<`::LU>(lock_t<`> plk, int*` p ;{}) {

sync(plk) inc(p);

}

struct LkInt {<`::LS> lock_t<`> plk; int*` p; };

void g<`::LU>(struct LkInt*` s ;{`}) {

let LkInt{<`′> .plk=lk, .p=ptr} = *s;

inc2(lk, ptr);

}

void f(;{}) {

let lk<`> = newlock();

int*` p1 = new 0;

int*loc p2 = new 0;

struct LkInt*loc s = new LkInt{.plk=lk, .p=p1};

spawn(g, s, sizeof(struct LkInt));

inc2(lk, p1);

inc2(nonlock, p2);

}

Figure 5.2: Example: Correct Multithreaded Cyclone Program

restriction is to include lock names in pointer types, for example int*`. We allow
dereferencing a pointer of this type only where the type-checker can ensure that
the thread holds a lock with type lock_t<`>. The absence of data races relies on
only one such lock existing.

Thread-local data fits in this system by having a special lock name loc. We give
nonlock the type lock_t<loc> and annotate pointers to thread-local data with loc.
We always allow dereferencing such pointers; we never let them be reachable from
an argument to spawn.

Like type variables, lock names other than loc must be in scope. We can
introduce lock names via universal quantification, existential quantification, or type
constructors, all of which capture important idioms.

Functions universally quantify over lock names so callers can pass pointers
with different lock names. For example, Figure 5.2 has all the type information
omitted from Figure 5.1, including several annotations that are unnecessary due
to defaults. We can instantiate the inc and inc2 functions using any lock name
for `. (Section 5.1.3 explains the kind annotations LS and LU.) Instantiation is
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implicit. As examples, the first use of inc2 in f instantiates ` with the ` in the
type of p1 whereas the second instantiates ` with loc.

Each function type has an effect, a set of lock names (written after the param-
eters) that callers must hold. In our example, each function has the empty effect
({}, which really means {loc}), except inc and g. Effects are the key to enforcing
the locking discipline: Each program point is assigned an effect—the current ca-
pability. A function-entry point has the function’s effect. Every other statement
inherits the effect of its enclosing statement except for sync (e) s: If e has type
lock_t<`>, then sync (e) s adds ` to the current capability for s. If e has type
τ∗`, then we allow ∗e only where ` is in the current capability. Similarly, a function
call type-checks only if the current capability (after instantiation) is a superset of
the callee’s effect. For example, the call to inc in inc2 type-checks because the
caller holds the necessary lock.

The type of newlock() is ∃`:LS.lock_t<`>; there exists a lock name such
that the lock has that name. As usual, we unpack a value of existential type
before using it. The declaration let lk<`> = newlock(); in f is an unpack. It
introduces variable lk and lock name `. Their scope is the rest of the code block.
lk is bound to the new lock and has type lock_t<`>. We could unpack a lock
multiple times (e.g., with names `1 and `2), but acquiring the lock via a term with
type lock_t<`1> would not permit dereferencing pointers with lock name `2.

Existentials are important for user-defined types too. The type struct LkInt

is an example: Pointer p has the same lock name as lock plk. This name is
existentially bound in the type definition. As with newlock(), using a struct

LkInt value requires an unpack, as in g. This pattern form binds lk to s->plk

(giving lk type lock_t<`′>) and ptr to s->p (giving ptr type int*`′). To form a
struct LkInt value, such as in f, the fields’ types must be consistent with respect
to their (implicit) instantiation of `.

As noted earlier, existential types are a good example of the need for mutual
exclusion. Suppose two threads share a location of type struct LkInt. As in C,
one thread could mutate the struct by assigning a different struct LkInt value,
which could hold a different lock. This mutation is safe only if no thread uses the
shared struct during the mutation (at which point perhaps plk has changed but
p has not).

Finally, type definitions can have lock-name parameters. For example, for a
list of int* values, we could use:

struct Lst<`1::LU,`2::LU> {

int*`1 hd;

struct Lst<`1,`2> *`2 tl;

};
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This defines a type constructor that, when applied to two lock names, pro-
duces a type. For thread-local data, struct Lst<loc,loc> is a good choice. With
universal quantification, functions for lists can operate over thread-local or thread-
shared data. They can also use different locking idioms. Here are some example
prototypes:

int length<`1::LU,`2::LU>(struct Lst<`1,`2> ;{`2});

int sum<`1::LU,`2::LU>(struct Lst<`1,`2> ;{`1,`2});

int sum2<`1::LU,`2::LU>(struct Lst<`1,`2>, lock_t<`2> ;{`1});

void append<`1::LU,`2::LU,`3::LU>(struct Lst<`1,`2>, struct Lst<`1,`3>

;{`2,`3});

For length (which we suppose computes a list’s length), the caller acquires
the lock for the list spine and length does not access the list’s elements. We
also use a caller-locks idiom for sum, whereas sum2 uses a hybrid idiom in which
the caller acquires the elements’ lock and sum2 (presumably) acquires the spine’s
lock. Finally, we suppose append mutates its first argument by appending a copy
of the second argument’s spine. The two lists can have different lock names for
their spines precisely because append copies the second spine. Like length, the
elements are not accessed.

5.1.3 Multithreading Kinds

We have used several now-familiar typing technologies to ameliorate the restrictions
that lock names impose. These techniques apply naturally because we treat lock
names as types that describe locks instead of values. We use kinds to distinguish
“ordinary” types from lock names. In this sense, lock names have kind L and other
types have kind A.

Kinds also have sharabilities, either S (for sharable) or U (for possibly un-
sharable). The lock name for the lock newlock creates has kind LS whereas loc
has kind LU. Kind LS is a subkind of LU, so every lock name has kind LU. We use
subsumption to check the calls inc2(lk, ptr) and inc2(lk, p1) in our example.

We use sharabilities to prevent thread-local data from being reachable from an
argument passed to spawn: Memory kinds also have sharabilities. For example,
τ*` has kind AS only if τ has kind AS and ` has kind LS. In general, a type of kind
AS cannot contain anything of kind LU. As expected, AS is a subkind of AU.

With a bit of polymorphism, we can give spawn the type:

void spawn<α::AS,`::LU>(void f(α*loc; {}), α*`, sizeof_t<α>; {`});

Kinding ensures all shared data uses locking. The effect of f is {} because new
threads hold no locks. The effect of spawn is {`} because it copies what the second
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argument points to. As Section 3.2 explains, the only value of type sizeof_t<α>
is sizeof(α), so the type system ensures callers pass the correct size.

In our example, we instantiate the α in spawn’s type with struct LkInt, which
has type AS only because the existentially bound lock name in its definition has
kind LS. A term like LkInt{.plk=nonlock, .p=p2} is ill-formed because nonlock
has type lock_t<loc>, but struct LkInt requires a lock name of kind LS.

5.1.4 Default Annotations

The type system so far requires a lock name for every pointer type and lock type,
and an effect for every function. We can extend our simple techniques for omitted
type information to make the vast majority of these annotations optional.

First, when a function’s effect is omitted, it implicitly includes all lock names
appearing in the parameters’ types. Hence the default idiom is “caller locks.”
Second, lock names are always optional. How they are filled in depends on context:

• Within function bodies, a unification engine can infer lock names.

• Within type definitions, we use loc.

• For function parameter and return types, we can generate fresh lock names
(and include them in default effects). We discuss below several options for
how many lock names to generate. Top-level functions implicitly universally
quantify over free lock names.

Third, the default sharability for kinds is U.
All inference remains intraprocedural. The other techniques fill in defaults

without reference to function bodies. Hence we can maintain separate compilation.
Different strategies for generating omitted lock names in function prototypes

have different benefits. First, we could generate a different lock name for each
unannotated pointer type. This strategy makes the most function calls type-check.
However, if the prototype has no explicit locking annotations, the function body
will not type-check if it returns a parameter, assigns one parameter to another, has
a local variable that might hold different parameters, etc. We had similar problems
in Chapter 4, but we could use region subtyping to give region annotations to local
variables. Second, we could exploit region annotations in the prototype by using
the same lock name for pointer types with the same (explicit) region name. This
refinement of the first strategy takes care of function bodies that do things like
return parameters. It does not always suffice for bodies that use region subtyping
because lock names do not enjoy subtyping. Furthermore, callers cannot pass
objects that are in the same region but guarded by different locks. Third, we
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could just use loc for omitted lock names. This solution has the advantage that
single-threaded programs type-check as multithreaded programs, unless they use
global variables. (As Section 5.5 discusses, global variables require locks.) However,
it means programmers must use extra annotations to write code that is safe for
multithreading, even when callers acquire locks.

Because these strategies are all useful, Cyclone should support convenient syn-
tax for them. One possibility is a pragma that changes the strategy, but pragmas
that change the meaning of prototypes can make programs more difficult for hu-
mans to understand. We could make a similar argument for a pragma to make the
default region annotation ρH in prototypes.

In our example, the first or second strategy and the other techniques allow the
following abbreviated prototypes:

void inc(int* p);

void inc2(lock_t<`> plk, int*` p; {});

struct LkInt {<`:LS> lock_t<`> plk; int*` p; };

void g(struct LkInt* s);

void f();

The lock names for variables p1, p2, and s are also optional.

5.2 Interaction With Type Variables

We must resolve two issues to use type variables in multithreaded Cyclone:

1. How do we prevent thread-local data (data guarded by loc) from becoming
thread-shared?

2. How do we extend effects to ensure that polymorphic code uses proper syn-
chronization?

We sketched our solution to the first issue in the previous section: A type’s
kind includes a sharability (S or U) in addition to B versus A. Sharability S means
a type cannot describe thread-local data. The actual definition is inductive over
the type syntax: Sharability S means no part of the type has kind BU, AU, or LU.
Combining the two parts of a type’s kind, we have richer subkinding on types:
BS ≤ BU, AS ≤ AU, BS ≤ AS, BU ≤ AU, BS ≤ AU, and LS ≤ LU. Sharability S is
necessary only for using spawn, so almost all code uses sharability U.

To extend effects, consider the function app that calls parameter f with pa-
rameter x of type α: Its effect should be the same as the effect for f, but how can
we describe the effect for f when all we know is that it takes some α? If we give
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f and app the effect {}, then app is unusable for thread-shared data: f cannot
assume it holds any locks, and the caller passes it none to acquire.

Our solution introduces locks(τ), a new form of effect that represents the
effect consisting of all lock names and type variables occurring in τ . We can write
a polymorphic app function like this:

void app<α::BU>(void f(α; locks(α)), α x; locks(α)) { f(x); }

If we instantiate α with int*`1*`2, then the effect means we can call app only if we
hold locks(int*`1*`2)={`1,`2}. As another example, if a polymorphic function
calls app using β*` for α, the current capability must include locks(β) and `.

Including locks(α) in the effect of a function type that universally quantifies
over α describes a “caller locks” idiom. As described in Section 5.1.4, this idiom
is what we want if programmers omit explicit effects. Hence the default effect for
a polymorphic function includes locks(α) for all type parameters α. In our app

example, we can omit both effects. In fact, by making B and A short-hand for BU

and AU, polymorphism poses no problem for type-checking single-threaded code as
multithreaded code.

However, we cannot yet write polymorphic code using a “callee locks” idiom,
such as in this wrong example:

void app2<α::BU,`::LU>(void f(α; locks(α)), α x, lock_t<`> lk; {}){

sync lk { f(x); }

}

We want to call app2 with no locks held because it acquires lk before calling f.
But nothing expresses any connection between {`} (the capability where app2 calls
f) and locks(α) (the effect of f).

Our solution enriches function preconditions with constraints of the form ε1 ⊆
ε2 where ε1 and ε2 are effects. As in Chapter 4, the constraint means, “if ε2 is in
the current capability, then it is sound to include ε1 in the current capability.”

For example, we can write:

void app2<α::BU,`::LU>(void f(α; locks(α)), α x, lock_t<`> lk; {}

: locks(α)⊆{`}) {

sync lk { f(x); }

}

At the call to f, we use the current capability ({`}) and the constraint to cover
the effect of f (locks(α), which we can omit). Callers of app2 must establish the
constraint by instantiating α and ` with some τ and `′ respectively such that we
know locks(τ)={} or locks(τ)={`′}. To support instantiating α with some τ
that needs more (caller-held) locks, we can use this more sophisticated type:
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void app2<α::BU,`::LU,β::AU>(void f(α), α x, lock_t<`> lk; locks(β)
: locks(α) ⊆ {`}∪locks(β));

In summary, polymorphism compelled us to add a way to describe the lock
names of an unknown type (locks(α)) and a way to constrain such lock names
(locks(α)⊆ ε). With these features, we can express what locks a thread should
hold to use a value of unknown type. By our choice of default effect, programmers
can usually ignore these additions. They are needed for polymorphic code using
“callee locks” idioms. Dually (though we did not show an example), we need them
to use existential types with “caller locks” idioms.

5.3 Interaction With Regions

So far, we have described multithreaded Cyclone as if data were never deallocated.
Garbage collection can maintain this illusion, but the region system presented in
Chapter 4 gives programmers finer control. In this section, we describe how the
region system is analogous to the locking system and how combining the systems
allows threads to share reclaimable data.

5.3.1 Comparing Locks and Regions

The correspondence between the static type systems for regions and locking is
striking and fascinating. We use singleton types for locks and handles, type vari-
ables (of different kinds) for decorating pointer types, locks(α) and regions(α)
for describing requirements for abstract types, sync and region for gaining access
rights, loc and ρH for always available resources, constraints for revealing partial
information about abstract types, and so on.

There are compelling reasons for the depth of the analogy. Accessing memory
safely requires that the appropriate region is live and the appropriate lock is held.
Type variables, pointer-type annotations, and effects capture both aspects of access
rights in the same way: It is safe to dereference a pointer of type τ ∗ ρ` if the
current capability includes ρ and `. At this level, the type system is oblivious to
the fact that ρ names a region and ` names a lock; the notion of access rights is
more abstract. For both systems, the constructs for amplifying rights (region and
sync) increase the current capability for a lexically scoped statement. Lexical scope
simplifies the rules for determining the current capability, but it is not essential.

Most differences between the region and locking systems are by-products of a
natural distinction: A region can be allocated and deallocated at most once, but a
lock can be acquired and released multiple times. Therefore, there is little reason to
separate region creation from the right to access the region. On the other hand, the
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locking system separates newlock from sync. The region lifetime orderings induce
a natural notion of subtyping, so the region construct introduces a compile-time
constraint. Because we can acquire locks multiple times, the locking system has no
such subtyping. Put another way, regions have a fixed ordering that locks do not,
so we allow programs of the form sync lk1 {sync lk2 {s1;}}; sync lk2 {sync

lk1 {s2;}}. (However, well-known techniques for preventing deadlock impose a
partial order on locks [73, 31].)

The more complicated kind system for locks arises from the difference between
loc and ρH . For both, it is always safe to access memory guarded by them. How-
ever, there are no restrictions on using ρH whereas loc must actually describe
thread-local data. If we restricted ρH , for example to prevent some space leaks
when not using a garbage collector, the kind system for regions might become more
sophisticated.

5.3.2 Combining Locks and Regions

The basic constructs for regions and locking compose well: Pointer types carry
region names and lock names. Accessing memory requires its region is live and its
lock is held. Continuing an earlier example, app could have this type:

void app(void f(α; regions(α),locks(α))), α; regions(α),locks(α));

Moreover, by combining the rules for default annotations, it suffices to write:

void app(void f(α), α);

The only interesting interaction is ensuring that one thread does not access a
region after another thread deallocates it.

First, we impose a stricter type for spawn. To prevent the spawned thread
from accessing memory the spawning thread deallocates, we use a region bound to
ensure that the shared data can reach only the heap: For spawn (which we recall
uses α to quantify over the type its second argument points to), we add the region-
bound precondition regions(α)< ρH . This solution is sound, but it relegates all
thread-shared data to the heap.

To add expressiveness, we introduce the construct rspawn. We type-check
rspawn(e1,e2,e3,e4) like spawn(e1,e2,e3) except we quantify over a region
name ρ, change the precondition to regions(α)< ρ, and require e4 to have type
region_t<ρ>. In other words, the new argument is a handle indicating the shared
value’s region bound. There is still no way to share a stack pointer between
threads. Doing so safely would impose overhead on using local variables, which C
and Cyclone programmers expect to be very fast.
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If a handle is used in a call to rspawn, then the corresponding region will
live until the spawning thread would have deallocated it and the spawned thread
terminates. The next section explains how the run-time system maintains this
invariant. The remaining complication is subtyping: As Section 4.1.4 explains,
Cyclone allows casting τ ∗ ρ1 to τ ∗ ρ2 so long as ρ1 outlives ρ2. But that means
we also cannot deallocate the region named ρ1 until all threads spawned with the
handle for ρ2 have terminated. If ρ1 is a dynamic region, the run-time system can
support this added complication efficiently, but ρ1 should not be a stack region.

To prevent casting stack pointers to dynamic-region pointers used in calls to
rspawn, we enrich region kinds with sharabilities S and U (as with other kinds), as
well as a sharability D for “definitely not sharable.” Both RS and RD are subkinds
of RU. A stack-region name always has kind RD. The programmer chooses RS or RU
for a dynamic-region name. If region name ρ1 describes a live region at the point
the region named ρ2 is created, we introduce ρ1 < ρ2 only if ρ2 has kind RD or ρ1

has kind RS. The handle passed to rspawn must have a region name of kind RS.
Single-threaded programs can choose RD for all dynamic-region names.

5.4 Run-Time Support

The run-time support for Cyclone’s basic thread operations is simple. If garbage
collection is used for the heap region, then the collector must, of course, support
multithreading. The newlock, sync, and spawn operations are easy to translate
into operations common in thread packages such as POSIX Threads [35]. We
translate nonlock to a distinguished value that sync checks for before trying to
acquire a lock. The cost of this check is small, less than the check required for
reentrant locks. (We could add a kind LD that does not describe loc and use this
kind to omit checks for nonlock, but the complication seems unnecessary.)

Non-local control (jumps, return statements, and exceptions) are a minor com-
plication because a thread should release the lock that a sync acquired when
control transfers outside the scope of the sync. For jumps and return statements,
the compiler can insert the correct lock releases (with checks for nonlock). For
exceptions, we must maintain a per-thread run-time list of locks acquired after
installing an exception handler.

The interesting run-time support is the implementation of rspawn because we
must not deallocate a region until every thread is done with it. To have the
necessary information, every dynamic-region handle contains a list of live threads
using it (including the thread that created it). Also, each thread has a list of the
live dynamic-region handles it has created. The list is sorted by lifetime. These
lists are (internally) thread-shared, so the run-time system uses locks for mediating
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access to them. We maintain the lists as follows:

1. rspawn: Before starting the spawned thread, add it to the handle’s thread
list. After the spawned thread terminates, remove it from the handle’s thread
list. If the handle’s thread list is now empty and the handle is last (youngest)
in its handle list, deallocate the region, remove the handle from its handle
list, and recur on the next (older) handle in the handle list.

2. region r s: Before executing s, create a region, add its handle to the
(young) end of the thread’s handle list, and add the executing thread to
the handle’s thread list. When control leaves s, remove the executing thread
from the handle’s thread list. If the handle’s thread list is now empty and the
handle is last (youngest) in its handle list, deallocate the region and remove
the handle from its handle list.

The dynamic regions that a thread creates continue to have last-in-first-out life-
times. However, stack regions might be deallocated before some dynamic regions
created after them, which is why sharabilities restrict region subtyping. Note that
if the lists are doubly linked, we add only O(1) amortized cost to rspawn and
region.

5.5 Evaluation

This section informally evaluates the strengths and weaknesses of Cyclone’s sup-
port for multithreading. Most of the strengths have already been mentioned, but it
is still useful to summarize them together. Some of the weaknesses are analogous
to region-system weaknesses, but others amount to a lack of support for sound
synchronization idioms other than lock-based mutual exclusion.

5.5.1 Good News

Because data races could compromise Cyclone’s safety, the type system prevents
them. Because race-prevention is mostly static, it does not hurt run-time per-
formance. Most importantly, multithreaded programs read and write memory
locations just like single-threaded programs. An alternative safe design would be
to generate code for memory access that acquired the lock, performed the access,
and released the lock. Performance could suffer, and any optimizations to reduce
the number of lock operations would be beyond programmers’ control. One way
to describe Cyclone’s sync operation and effect system is to say that program-
mers do their own optimizations by hoisting lock acquisitions and assigning locks
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to memory locations. The type system prevents errors, but disallows some safe
optimizations.

Explicit function effects keep analysis intraprocedural while allowing caller-
locks, callee-locks, and hybrid idioms. Because caller-locks idioms produce the
simplest, most efficient single-threaded code (there are fewer lock acquisitions and
less lock passing), the default effects encode this idiom. However, this decision
means functions that acquire locks they are passed invariably need explicit effects.
They would type-check with the default effect, but then they could only be called
in contexts where they are likely to deadlock. (If locks are reentrant, they would
not deadlock, but acquiring locks would then be useless.)

The notion of thread-local data supports the “special case” where a memory
location is never reachable to any thread except the one that creates it. Because
race conditions on such memory are impossible, no lock is necessary. In many
multithreaded applications, most memory remains thread-local, so Cyclone aims
to impose as little burden as possible for this case. One solution would be to make
the default lock name always be loc. For function parameters, this solution is less
burdensome than fresh lock names that are in the implicit effect, so we would
only be restricting functions’ usefulness. Within function bodies, intraprocedural
inference can require fewer annotations than assuming loc. Its design should ensure
that it never requires more annotations. Ultimately, an objective evaluation is that
single-threaded programs type-check as multithreaded code.

The kind system remains simple enough that there are only a few kinds, but
powerful enough that we can give spawn a Cyclone type. Moreover, subkinding lets
programmers write code once and use it for thread-local and thread-shared data.
Because thread-local data is the common case, by default we assume function
parameters might be thread-local. Therefore, kind annotations are necessary for
terms that might become reachable from arguments to spawn. The nonlock term
is a simple trick for allowing clients to use callee-locks code with thread-local data.

Finally, we have already explained in detail how the thread system interacts
smoothly with parametric polymorphism and region-based memory management.
A small disadvantage is that sharable regions may outlive the construct that cre-
ates them. Nonetheless, programmers desiring stronger memory-reclamation as-
surances can declare dynamic regions to be unsharable. Another disadvantage is
that the run-time system must maintain more region information and use synchro-
nization on it. However, we should expect the run-time system for a multithreaded
language to incur some synchronization overhead.
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5.5.2 Bad News

As a sound, decidable type system, Cyclone’s data-race prevention is necessarily
conservative, forbidding some race-free programs. Here we describe a few of the
more egregious limitations and how we might address them.

Thread-shared data that is immutable (never mutated) does not need locking.
Expressing this read-only invariant is straightforward if we “take const seriously”
(unlike C), but qualifier polymorphism [81] becomes important for code reuse. Sim-
ilarly, reader/writer locks allow mutation and concurrent read access. Annotating
pointer types with read and write locks should pose no technical problems. In
short, the type system assumes any read of thread-shared data requires exclusive
access, but immutability and reader/writer locks are safe alternatives.

Global variables are thread-shared, so they require lock-name annotations. But
that means we need locks and lock names with global scope. Worse, single-threaded
programs with global variables do not type-check as multithreaded programs be-
cause they need lock names. Note that thread-local variables with thread-wide
scope are no problem.

Oftentimes, thread-shared data has an initialization phase before it becomes
thread-shared. During this phase, locking is unnecessary. A simple flow analysis
will probably suffice to allow access without locking so long as an object could not
yet have become shared. We can support a trivial but very common case: When
allocating and initializing data (e.g., with new) guarded by `, it is not necessary to
hold `. Incorporating a flow analysis obtains the flexibility that Chapter 6 provides
for initialization.

Data objects sometimes migrate among threads without needing locking. An
example is a producer/consumer pattern: a producer thread puts objects in a
shared queue and a consumer thread removes them. If the producer does not use
objects after enqueuing them, the objects do not need locks. This idiom is safe
because of restricted aliasing (the producer does not use other retained references
to the object), so the type system presented here is ill-equipped to support it. The
analogy with memory management continues here: It is safe to call free precisely
when subsequent computation does not use other retained references. Therefore,
any technology suitable for supporting safe uses of free should be suitable for
supporting object migration. Indeed, related work that permits object migration
generally distinguish “unique pointers,” which the type system ensures are the
only pointers to the object to which they point.

Synchronization mechanisms other than mutual-exclusion locks often prove use-
ful. Examples include semaphores and signals. It is also important to expose some
implementation details, such as whether a lock is a spin-lock or not. In general,
Cyclone should support the mechanisms that a well-designed threads library for
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C (such as POSIX Threads [35]) provides. Libraries do not require changing the
language, but the compiler cannot enforce that clients use such libraries safely.

The thread system has many of the same limitations as the region system, but
the limitations may be less onerous in practice. For example, locks are held during
execution that corresponds to lexical scope. Therefore, there is no way for a callee
to release a lock that a caller acquires (which could reduce parallelism because
other threads are blocked) or for a callee to acquire locks that a caller releases
(which could allow more flexible library interfaces). Java has the same restriction;
I have not encountered substantial criticism of this design decision.

The type system also suffers the same lack of principal typing as Chapter 4
describes. Possible solutions are analogous. For example, pointer types could
carry effects. Dereferencing pointers would require the current capability implied
the entire effect.

Some other shortcomings deserve brief mention. First, the annotation burden
for reusable type constructors increases with threads. To ameliorate the problem,
we could support type-level variables that stood for a region name and a lock name.
That is, we could write τ*α where α abstracted a region and a lock, rather than
τ*ρ`. A similar combination might prove useful at the term level: We could have
regions for which all objects in the region had the same lock and allow the region
handle to serve as the lock also. Separating regions and locks is more powerful,
but merging them is often convenient.

Second, the type system does not support guarding different fields of the same
struct with different locks. Here, the analogy with regions breaks down because
it makes no sense for different fields of the same struct to have different lifetimes.
The main problem with supporting different locks for different fields is how to
annotate pointer types.

Third, abstract types (e.g., struct Foo;) need explicit sharability annotations
unless we assume they are all unsharable. The problem is more pronounced for
abstract type constructors: For struct Bar<α::κ>, an explicit annotation should
mean an application of the type constructor is sharable if all the arguments to it
are sharable. Essentially, we need to leak whether the implementation has any
unsharable fields (i.e., any uses of loc). In Chapter 4, we did not have this problem
because hidden uses of ρH do not restrict how a client can use an abstract type.

Finally, it bears repeating that we do not prevent deadlock (although the type
system is compatible with reentrant locks, which help a bit). Deadlock is undesir-
able, but it does not violate type safety.
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5.6 Formalism

This section defines a formal abstract machine and a type system for it that capture
most of Cyclone’s support for multithreading. The formalism is very much like the
formalisms in earlier chapters, which supports the claim that similar techniques
prevent different safety violations. As such, we focus on how this chapter’s abstract
machine differs from earlier ones, beginning with a summary of the most essential
differences.

First, to compensate for the complications that threads introduce, we make
some simplifications. We do not integrate memory management, so all objects live
forever, as in Chapter 3. We forbid quantification over types of unknown size, as
in Chapter 4. We do not allow e.i as a left-expression, so it is not possible to take
the address of a field or assign to part of an aggregate object. However, if x holds
a pair, it is easy to simulate assigning to a field via x=(v, x.1) or x=(x.0, v).

Second, a machine state includes multiple threads. Thread scheduling is non-
deterministic: Any thread capable of taking a step might do so. Each thread
comprises a statement (for its control) and a set of locks that it currently holds.
The machine also has a set of available locks (held by no thread) and a single
shared heap. The type-safety proof uses a type system that partitions the heap
into thread-local portions for each thread and a thread-shared portion that is fur-
ther divided to distinguish portions guarded by locks held by different threads.
This partitioning is purely a proof technique. The abstract machine has one “flat”
heap and there is no run-time information ascribing locks to locations. To contrast,
in Chapter 4, regions existed at run-time.

Third, the assignment x=v takes two steps, and x holds the expression junkv

after the first step. If a thread reads this junk value, it might later become stuck
because the dynamic semantics does not allow destructing junkv. Because the type
system prevents data races, reading junk is impossible.

Fourth, the kind system includes sharabilities for reasons explained earlier in
this chapter. Because the formalism does not include regions, we do not include a
“definitely not sharable” sharability.

Finally, despite striking similarities between the constructs for regions in Chap-
ter 4 and locks in this chapter, the creation of locks and the scope of lock names
is different. In Chapter 4, statements that created locations or regions included a
binding occurrence of a region name that was in scope for a subsequent statement.
In this chapter, statements that create locations include a bound occurrence of a
lock name (that is already in scope, of course). Similarly, a sync statement acquires
a lock that already exists. Given the discussion in Section 5.3.1, these differences
are exactly what we should expect.
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kinds σ ::= S | U
θ ::= B | A | L
κ ::= θσ

effects ε ::= ∅ | α | i | ε ∪ ε
constraints γ ::= · | γ, ε ⊆ ε

types τ, ` ::= α | int | τ × τ | τ ε→ τ | τ∗` | ∀α:κ[γ].τ | ∃α:κ[γ].τ
| lock(`) | S(i) | loc

terms s ::= e | return e | s; s | if e s s | while e s | let `, x=e; s
| open e as `, α, x; s | sync e s | s; release i | spawn e(e)

e ::= x | i | f | &e | ∗e | (e, e) | e.i | e=e | e(e) | call s
| e[τ ] | pack τ, e as τ | nonlock | newlock() | lock i | junkv

f ::= (τ, ` x)
ε→ τ s | Λα:κ[γ].f

values v ::= i | &x | f | (v, v) | pack τ, v as τ | nonlock | lock i
heaps H ::= · | H, x 7→ v | H, x 7→ junkv

locks L ::= · | L, i
L ::= L; L; L

threads T ::= L; s
states P ::= L; L; H; T1 · · ·Tn

contexts ∆ ::= · | ∆, α:κ
Γ ::= · | Γ, x:(τ, `)
C ::= L; ∆; Γ; γ; ε

Figure 5.3: Chapter 5 Formal Syntax

5.6.1 Syntax

Figure 5.3 presents the language’s syntax. We focus on the constructs most relevant
to multithreading.

Kinds include a θ for distinguishing types of known size (B), types of unknown
size (A), and lock names (L). Kinds also include sharabilities: sharability S indi-
cates that no part of the type describes thread-local data. In source programs,
only type variables and loc can have kinds of the form Lσ. In particular, loc has
kind LU. At run-time, we name actual locks with integers. To describe the lock i,
we use the lock name S(i), which has kind LS. The term lock i is how programs
refer to the lock i. The type of lock i is lock(S(i)), which has kind AS. If we know
a type has kind LS or LU, we often write ` instead of τ to remind us.

Effects and constraints are exactly like in Chapter 4, except they represent lock
sets and inequalities among them instead of regions sets and outlives relationships.
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In particular, the only way i ⊆ i′ can hold is if i = i′. As such, constraints are
useful only with type variables (e.g., α ⊆ ε). As in Chapter 4, we implicitly identify
effects up to set equality, including associativity, commutativity, and idempotence.

As expected, quantified types can introduce constraints, function types include
explicit effects, and types for pointers and locks include lock names.

Most statement forms are just like in earlier chapters. The let and open forms
specify a lock name ` that guards the location x these statements allocate. The
lock name must already be in scope. Access to x requires the current capability
and constraints imply the executing thread holds `. The term sync e s evaluates
e to a lock, acquires the lock (potentially remaining stuck until another thread
releases the lock), executes s, and releases the lock. To remember which lock to
release, sync (lock i) s evaluates to s; release i (provided i is available).

The last statement form, spawn e1(e2) evaluates e1 and e2 to a function and
a value and creates a new thread to evaluate the function called with the value.
Unlike actual Cyclone, we do not require that the size of the passed value is known.
This version of spawn is not implementable as a C function, but it is simpler.

The novel expression forms include nonlock (a pseudolock for thread-local data),
newlock() (for creating a fresh lock), and lock i (a form inappropriate for source
programs that describes a lock). The form junkv is also inappropriate for source
programs. The machine uses it when mutating a heap location to v. We include v
so the machine knows what value should be written when the thread performing
the mutation takes another step.

A lock set L is implicitly reorderable. (Unlike the region sets R in Chapter 4,
we do not use lock sets to encode orderings because locks have no outlives-like
relationship.) When a thread takes a step, it might use or modify three lock sets:
the set of all locks the program has created, the set of locks held by no thread,
and the set of locks held by the thread itself. When the form of these three sets
is unimportant, we abbreviate them with L. The thread L; s holds exactly the
locks in L and executes s. A program state L; L0; H; T1 · · ·Tn includes the set of
all created locks (L), the set of available locks (L0), one heap (H), and n threads.
The explicit L is redundant because it should always be the union of L0 and the
lock sets in each thread, but it is technically convenient to maintain it separately.

Some final technical considerations are analogous to similar ones in Chapter 4:
A type context includes a set of created locks (L, always empty for source pro-
grams), the kinds of type variables (∆), the types and lock names for term variables
(Γ), the current capability (ε), and a collection of assumed constraints (γ). Given
C = L; ∆; Γ; γ; ε, we write CL, C∆, CΓ, Cγ, and Cε for L, ∆, Γ, γ, and ε, respec-
tively. Heaps are implicitly reorderable (unlike in Chapter 4), as are contexts ∆
and Γ. We use juxtaposition (e.g. HH ′) for the union of two maps that we assume
have disjoint domains. We write L ⊆ L′ to mean every i in L is in L′.
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H; (L; L0; Li); si
s→ H ′; (L′; L′

0; L
′
i); ·; s′i

L; L0; H; T1 · · · (Li; si) · · ·Tn → L′; L′
0; H

′; T1 · · · (L′
i; s

′
i) · · ·Tn

DP5.1

H; (L; L0; Li); si
s→ H ′; (L′; L′

0; L
′
i); s; s

′
i

L; L0; H; T1 · · · (Li; si) · · ·Tn → L′; L′
0; H

′; T1 · · · (L′
i, s

′
i) · · ·Tn(·; s) DP5.2

L; L0; H; T1 · · ·Tj(·; return v)Tk · · ·Tn → L; L0; H; T1 · · ·TjTk · · ·Tn
DP5.3

Figure 5.4: Chapter 5 Dynamic Semantics, Programs

5.6.2 Dynamic Semantics

The rules for rewriting P to P ′ (Figure 5.4) are nondeterministic because they
allow any thread that can take a step (as defined by the

s→ rules, which we describe
below) to do so. Rule DP5.1 is for a thread that takes a step and does not spawn
a new thread. Rule DP5.2 is for a thread that spawns a new thread when it takes
a step. Rule DP5.3 is a “clean-up” rule to remove terminated threads that hold
no locks. It is not necessary for type safety.

A thread can create a new lock, acquire or release a lock, change the (shared)
heap, and create a new thread. Hence the single-thread evaluation rules (Fig-
ure 5.5) have the form H; (L; L0; Lh); s

s→ H ′; (L′; L′
0; L

′
h); sopt; s

′ meaning the
thread Lh; s becomes L′

h; s
′ while changing the heap from H to H ′, the set of

created locks from L to L′, and the set of available locks from L0 to L′
0. If sopt is

·, then no thread is spawned, else sopt is some s′′ and the new thread is ·; s′′. (It
starts with no threads held.)

We mention only some interesting aspects of the statement-rewriting rules.
Rule DS5.1 allocates and initializes a fresh heap location. It would be more in
the spirit of the abstract machine to require two steps to initialize the location,
but immediate initialization is simpler because we do not need to prove that fresh
locations can be accessed without synchronization. (See the discussion of initial-
ization in Section 5.5.) Rule DS5.9 encodes the fact that acquiring nonlock has
no run-time effect whereas DS5.8 applies only if the necessary lock is available.
Conversely, rules DS5.10 and DS5.11 make the appropriate lock available. Rule
DS5.12 is the only noninductive rule that creates a new thread. The spawned
thread starts with the statement return v1(v2).

Figure 5.6 has the evaluation rules for right-expressions and left-expressions.
The latter are simpler than in previous chapters because we do not allow left-
expressions of the form e.i. The interesting rules are DR5.2A, DR5.2B, and DR5.8.
The first two are for the two steps that mutation takes. The result of DR5.2A is a
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x 6∈ Dom(H)

H; L; let `, x=v; s
s→ H, x 7→ v; L; ·; s

DS5.1

H; L; (v; s)
s→ H; L; ·; s

DS5.2
H; L; (return v; s)

s→ H; L; ·; return v
DS5.3

H; L; if 0 s1 s2
s→ H; L; ·; s2

DS5.4
i 6= 0

H; L; if i s1 s2
s→ H; L; ·; s1

DS5.5

H; L; while e s
s→ H; L; ·; if e (s; while e s) 0

DS5.6

H; L; (open(pack τ, v as ∃α:κ[γ].τ ′) as `, α, x; s)
s→H; L; ·; let ,̀ x=v; s[τ/α]

DS5.7

H; (L; L0, i; Lh); sync lock i s
s→ H; (L; L0; Lh, i); ·; (s; release i)

DS5.8

H; L; sync nonlock s
s→ H; L; ·; s

DS5.9

H; (L; L0; Lh, i); (v; release i)
s→ H; (L; L0, i; Lh); ·; v

DS5.10

H; (L; L0; Lh, i); (return v; release i)
s→ H; (L; L0, i; Lh); ·; return v

DS5.11

H; L; spawn v1(v2)
s→ H; L; return v1(v2); 0

DS5.12

H; L; e
r→ H ′; L

′
; sopt; e

′

H; L; e
s→ H ′; L

′
; sopt; e

′

H; L; return e
s→ H ′; L

′
; sopt; return e′

H; L; if e s1 s2
s→ H ′; L

′
; sopt; if e′ s1 s2

H; L; let `, x=e; s
s→ H ′; L

′
; sopt; let `, x=e′; s

H; L; open e as `, α, x; s
s→ H ′; L

′
; sopt; open e′ as `, α, x; s

H; L; sync e s
s→ H ′; L

′
; sopt; sync e′ s

H; L; spawn e(e2)
s→ H ′; L

′
; sopt; spawn e′(e2)

H; L; spawn v(e)
s→ H ′; L

′
; sopt; spawn v(e′)

DS5.13

H; L; s
s→ H ′; L

′
; sopt; s

′

H; L; (s; s2)
s→ H ′; L

′
; sopt; (s

′; s2)

H; L; (s; release i)
s→ H ′; L

′
; sopt; (s

′; release i)

DS5.14

Figure 5.5: Chapter 5 Dynamic Semantics, Statements
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H; L; x
r→ H; L; ·; H(x)

DR5.1

H, x 7→ v′; L; x=v
r→ H, x 7→ junkv; L; ·; x=junkv

DR5.2A

H, x 7→ junkv; L; x=junkv
r→ H, x 7→ v; L; ·; v

DR5.2B

H; L; ∗&x
r→ H; L; ·; x

DR5.3
H; L; (v0, v1).i

r→ H; L; ·; vi

DR5.4

H; L; ((τ1, ` x)
ε→ τ2 s)(v)

r→ H; L; ·; call (let `, x=v; s)
DR5.5

H; L; call return v
r→H; L; ·;v

DR5.6
H; L; (Λα:κ[γ].f)[τ ]

r→H; L; ·;f [τ/α]
DR5.7

i 6∈ L

H; (L; L0; Lh); newlock()
r→

H; (L, i; L0, i; Lh); ·; pack S(i), lock i as ∃α:LS[·].lock(α)

DR5.8

H; L; s
s→ H ′; L

′
; sopt; s

′

H; L; call s
r→ H ′; L

′
; sopt; call s′

DR5.9

H; L; e
l→ H ′; L

′
; sopt; e

′

H; L; &e
r→ H ′; L

′
; sopt; &e′

H; L; e=e2
r→ H ′; L

′
; sopt; e

′=e2

DR5.10

H; L; e
r→ H ′; L

′
; sopt; e

′

H; L; ∗e r→ H ′; L
′
; sopt; ∗e′

H; L; e.i
r→ H ′; L

′
; sopt; e

′.i

H; L; x=e
r→ H ′; L

′
; sopt; x=e′

H; L; e[τ ]
r→ H ′; L

′
; sopt; e

′[τ ]

H; L; (e, e2)
r→ H ′; L

′
; sopt; (e

′, e2)

H; L; (v, e)
r→ H ′; L

′
; sopt; (v, e′)

H; L; e(e2)
r→ H ′; L

′
; sopt; e

′(e2)

H; L; v(e)
r→ H ′; L

′
; sopt; v(e′)

H; L; pack τ ′, e as τ
r→ H ′; L

′
; sopt; pack τ ′, e′ as τ

DR5.11

H; L; ∗&x
l→ H; L; ·; x

DL5.1
H; L; e

r→ H ′; L
′
; sopt; e

′

H; L; ∗e l→ H ′; L
′
; sopt; e

′
DL5.2

Figure 5.6: Chapter 5 Dynamic Semantics, Expressions
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constraint locks: locks(·) = ∅
locks(γ, ε1 ⊆ ε2) = locks(γ) ∪ ε1 ∪ ε2

type locks: locks(α) = α
locks(int) = ∅

locks(τ0 × τ1) = locks(τ0) ∪ locks(τ1)

locks(τ1
ε→ τ2) = ε

locks(τ∗`) = locks(τ) ∪ locks(`)
locks(∀α:κ[γ].τ) = (locks(γ) ∪ locks(τ))− α
locks(∃α:κ[γ].τ) = (locks(γ) ∪ locks(τ))− α

locks(lock(`)) = ∅
locks(S(i)) = i
locks(loc) = ∅

Notes: We omit the formal definition of substitution because it is almost identical
to the Chapter 4 definition (Figure 4.5). The changes are: (1) α[τ/α] = locks(τ)
where α is an effect, (2) lock(`)[τ/α] = lock(`[τ/α]), and (3) loc[τ/α] = loc.

Figure 5.7: Chapter 5 Dynamic Semantics, Type Substitution

state in which DR5.2B applies, but the machine might evaluate other threads in-
between. Note that DR5.2A does not apply if the location x holds some junkv′ . If
we relaxed the rule in this way, a write-write data race could go undetected. With
this precondition, the type-safety theorem in the next section precludes write-write
races because it implies that a thread cannot be stuck because x holds some junkv′ .
Rule DR5.8 creates a new lock. It uses L to ensure the new lock is uniquely
identified. The result is an existential package with the same type as newlock().

Rules DS5.7 and DR5.7 use substitution to eliminate type variables. Figure 5.7
describes the definition of substitution. The interesting part is replacing α with
locks(τ) in effects when substituting τ for α. The definition of locks(τ) is almost
all free lock names in τ (omitting loc), just as regions(τ) in Chapter 4 is all free
region names in τ . However, locks(lock(`)) = ∅. We do not need to hold a lock to
acquire it (in fact we should not hold it), so choosing locks(lock(`)) = locks(`) is a
less sensible choice. Nonetheless, any definition of locks(τ) that does not introduce
free type variables is safe.

It is straightforward to check that types have no essential run-time effect. We
do not prove a type-erasure result, but we expect doing so is straightforward.
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5.6.3 Static Semantics

A valid source program is a statement (leading to a program state of the form
·; ·; ·; (·; s)) that type-checks under an empty context (·; ·; ·; ·; ∅; τ s̀typ s), does not
terminate without returning ( r̀et s), does not contain any release statements (· s̀rel

s), and does not contain any junk expressions ( j̀f s).
Many judgments are very similar to those in Chapter 4. Three interdepen-

dent judgments define type-checking for statements, right-expressions, and left-
expressions (Figures 5.10 and 5.11). Expressions that access memory type-check
only if the current capability and constraints establish that the thread holds the
lock that guards the location or the location is thread-local. We use the judg-
ments γ; ε àcc `, γ èff ε1 ⊆ ε2, and γ èff γ′ (Figure 5.9) to ensure threads hold the
necessary locks to access memory, call functions, eliminate universal types, and
introduce existential types.

The judgments in Figure 5.8 define various properties of type-level and kind-
level constructs. The k̀ and ẁf judgments ensure types have the correct kinds and
there are no references to free type variables. Kinding has a subsumption rule for
the subkinding that s̀k defines. The s̀hr and l̀oc judgments help partition a heap’s
type into shared and local portions. If L s̀hr Γ, then every location in Γ is sharable
(its type and lock name have sharable kind). If L l̀oc Γ, then no location in Γ is
sharable. Assuming L; · ẁf Γ, there are unique Γ1 and Γ2 such that Γ = Γ1Γ2,
L s̀hr Γ1, and L l̀oc Γ2.

For nonsource programs, we must relax the ban on release statements and junk
expressions. For the former, the judgments s̀rel and èrel (Figure 5.13) work like s̀pop

and èpop in Chapter 4. More specifically, L s̀rel s ensures s releases only locks from
L, releases no lock more than once, and does not need to hold some lock after
the lock is released. For the former, we use the judgments in Figure 5.14, which
formalize the intuition that junk should only appear if a thread is in the process of
mutating a heap location. More specifically, j̀ H; s if either H and s are junk-free
or else H = H ′x 7→ junkv, H ′ is junk-free, and s is junk-free except that its “active
redex” is x=junkv.

The judgments in Figure 5.15 type-check heaps and program states. The h̀typ

ensures heap values have appropriate types and consistent assumptions about what
locks guard what locations. We use h̀lk to partition the heap according to the
locks that different threads hold. Finally, p̀rog partitions the heap appropriately
and ensures the entire state is well-formed. More specifically, L should describe
exactly the locks that are available or held by some thread, and none of the other
lock sets should share elements. Given the one heap H, we can divide it into a
shared heap HS and thread-local heaps H1U , . . . , HnU . The shared heap is closed
and well-typed. The thread-local heaps are well-typed, but each may refer to
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L; ∆ ẁf ∅
α ∈ Dom(∆)

L; ∆ ẁf α
i ∈ L

L; ∆ ẁf i

L; ∆ ẁf ε1 L; ∆ ẁf ε2

L; ∆ ẁf ε1 ∪ ε2

L; ∆ ẁf ·
L; ∆ ẁf γ L; ∆ ẁf ε1 L; ∆ ẁf ε2

L; ∆ ẁf γ, ε1 ⊆ ε2

s̀k Bσ ≤ Aσ s̀k θS ≤ θU
s̀k κ1 ≤ κ3 s̀k κ3 ≤ κ2

s̀k κ1 ≤ κ2

L; ∆ k̀ τ : κ′
s̀k κ′ ≤ κ

L; ∆ k̀ τ : κ

L; ∆ k̀ int : BS

α ∈ Dom(∆)

L; ∆ k̀ α : ∆(α)
i ∈ L

L; ∆ k̀ S(i) : LS L; ∆ k̀ loc : LU

L; ∆ k̀ τ0 : Aσ L; ∆ k̀ τ1 : Aσ

L; ∆ k̀ τ0 × τ1 : Aσ

L; ∆ k̀ τ1 : AU L; ∆ k̀ τ2 : AU L; ∆ ẁf ε

L; ∆ k̀ τ1
ε→ τ2 : AS

L; ∆ k̀ τ : Aσ L; ∆ k̀ ` : Lσ

L; ∆ k̀ τ∗` : Bσ

L; ∆ k̀ ` : Lσ

L; ∆ k̀ lock(`) : Aσ

L; ∆, α:θσ k̀ τ : Aσ′ L; ∆, α:θσ ẁf γ θ 6= A α 6∈ Dom(∆)

L; ∆ k̀ ∀α:θσ[γ].τ : Aσ′

L; ∆ k̀ ∃α:θσ[γ].τ : Aσ′

L; ∆ ẁf ·
L; ∆ ẁf Γ L; ∆ k̀ τ : AU L; ∆ k̀ ` : LU

L; ∆ ẁf Γ, x:(τ, `)

L; ∆ ẁf Γ L; ∆ ẁf γ L; ∆ ẁf ε

ẁf L; ∆; Γ; γ; ε

L s̀hr ·
L s̀hr Γ L; · k̀ τ : AS L; · k̀ ` : LS

L s̀hr Γ, x:(τ, `)

L l̀oc ·
L l̀oc Γ L; · 6 k̀ τ : AS

L l̀oc Γ, x:(τ, `)

L l̀oc Γ L; · 6 k̀ ` : LS

L l̀oc Γ, x:(τ, `)

Figure 5.8: Chapter 5 Kinding, Well-Formedness, and Context Sharability



139

γ; ε àcc loc

γ èff i ⊆ ε

γ; ε àcc S(i)

γ èff α ⊆ ε

γ; ε àcc α

γ èff ε ⊆ ε γ1, ε1 ⊆ ε2, γ2 èff ε1 ⊆ ε2

γ èff ε1 ⊆ ε γ èff ε2 ⊆ ε

γ èff ε1 ∪ ε2 ⊆ ε

γ èff ε ⊆ ε1

γ èff ε ⊆ ε1 ∪ ε2

γ èff ε1 ⊆ ε3 γ èff ε3 ⊆ ε2

γ èff ε1 ⊆ ε2

γ èff ·
γ èff γ′ γ èff ε1 ⊆ ε2

γ èff γ′, ε1 ⊆ ε2

Figure 5.9: Chapter 5 Effect and Constraint Containment

C r̀typ e : τ ′

C; τ s̀typ e
SS5.1

C r̀typ e : τ

C; τ s̀typ return e
SS5.2

C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ s1; s2
SS5.3

C r̀typ e : int C; τ s̀typ s

C; τ s̀typ while e s
SS5.4

C r̀typ e : int C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ if e s1 s2
SS5.5

L; ∆; Γ; γ; ε r̀typ e : τ ′ L; ∆; Γ, x:(τ ′, `); γ; ε; τ s̀typ s x 6∈ Dom(Γ)

L; ∆; Γ; γ; ε; τ s̀typ let `, x=e; s
SS5.6

L; ∆; Γ; γ; ε r̀typ e : ∃α:κ[γ′].τ ′ α 6∈ Dom(∆) x 6∈ Dom(Γ)
L; ∆, α:κ; Γ, x:(τ ′, `); γγ′; ε; τ s̀typ s L; ∆ k̀ ` : LU L; ∆ k̀ τ : AU

L; ∆; Γ; γ; ε; τ s̀typ open e as `, α, x; s
SS5.7

L; ∆; Γ; γ; ε r̀typ e : lock(`) L; ∆; Γ; γ; ε ∪ locks(`); τ s̀typ s

L; ∆; Γ; γ; ε; τ s̀typ sync e s
SS5.8

L; ∆; Γ; γ; ε ∪ i; τ s̀typ s

L; ∆; Γ; γ; ε; τ s̀typ s; release i
SS5.9

C r̀typ e1 : τ1
∅→ τ2 C r̀typ e2 : τ1 CL; C∆ k̀ τ1 : AS

C; τ s̀typ spawn e1(e2)
SS5.10

Figure 5.10: Chapter 5 Typing, Statements



140

CΓ(x) = τ, ` ẁf C

C l̀typ x : τ, `
SL5.1

C r̀typ e : τ∗`
C l̀typ ∗e : τ, `

SL5.2

CΓ(x) = τ, ` Cγ; Cε àcc ` ẁf C

C r̀typ x : τ
SR5.1

C r̀typ e : τ∗` Cγ; Cε àcc `

C r̀typ ∗e : τ
SR5.2

C r̀typ e : τ0 × τ1

C r̀typ e.0 : τ0
SR5.3

C r̀typ e : τ0 × τ1

C r̀typ e.1 : τ1
SR5.4

ẁf C
C r̀typ i : int

SR5.5

C l̀typ e : τ, `

C r̀typ &e : τ∗` SR5.6
C r̀typ e0 : τ0 C r̀typ e1 : τ1

C r̀typ (e0, e1) : τ0 × τ1
SR5.7

C l̀typ e1 : τ, ` C r̀typ e2 : τ Cγ; Cε àcc `

C r̀typ e1=e2 : τ
SR5.8

C r̀typ e1 : τ ′ ε′
→ τ C r̀typ e2 : τ ′ Cγ èff ε′ ⊆ Cε

C r̀typ e1(e2) : τ
SR5.9

C; τ s̀typ s r̀et s

C r̀typ call s : τ
SR5.10

C r̀typ e : ∀α:κ[γ′].τ ′ CL; C∆ k̀ τ : κ Cγ èff γ′[τ/α]

C r̀typ e[τ ] : τ ′[τ/α]
SR5.11

C r̀typ e : τ [τ ′/α] CL; C∆ k̀ τ ′ :κ Cγ èff γ′[τ ′/α] CL; C∆ k̀ ∃α:κ[γ′].τ :AU

C r̀typ pack τ ′, e as ∃α:κ[γ′].τ : ∃α:κ[γ′].τ
SR5.12

L; ∆; Γ1, x:(τ1, `); γ; ε′; τ2 s̀typ s r̀et s x 6∈ Dom(Γ)
Γ = Γ1Γ2 L s̀hr Γ1 L; · ẁf Γ1 ẁf L; ∆; Γ; γ; ε

L; ∆; Γ; γ; ε r̀typ (τ1, ` x)
ε′
→ τ2 s : τ1

ε′
→ τ2

SR5.13

L; ∆, α:κ; Γ; γγ′; ε r̀typ f : τ ẁf L; ∆; Γ; γ; ε L; ∆ k̀ ∀α:κ[γ′].τ : AU

L; ∆; Γ; γ; ε r̀typ Λα:κ[γ′].f : ∀α:κ[γ′].τ
SR5.14

i ∈ CL ẁf C

C r̀typ lock i : lock(S(i))
SR5.15

C r̀typ v : τ

C r̀typ junkv : τ
SR5.16

ẁf C

C r̀typ nonlock : lock(loc)
SR5.17

ẁf C

C r̀typ newlock() : ∃α:LS[·].lock(α)
SR5.18

Figure 5.11: Chapter 5 Typing, Expressions
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r̀et return e
r̀et s1 r̀et s2

r̀et if e s1 s2

r̀et s

r̀et s; s′ r̀et let `, x=e; s

r̀et s′; s r̀et open e as `, α, x; s

r̀et s; release i r̀et sync e s

Figure 5.12: Chapter 5 Must-Return

L s̀rel s
i, L s̀rel s; release i

L s̀rel s1 · s̀rel s2

L s̀rel s1; s2

L èrel e · s̀rel s1 · s̀rel s2

L s̀rel if e s1 s2

· èrel e · èrel s
· s̀rel while e s

L èrel e · s̀rel s

L s̀rel let `, x=e; s
L s̀rel open e as `, α, x; s
L s̀rel sync e s

L èrel e

L s̀rel e
L s̀rel return e

L èrel e1 · èrel e2

L s̀rel spawn e1(e2)

· èrel v L èrel e

L s̀rel spawn v(e)

· èrel x
· èrel i
· èrel lock i
· èrel nonlock
· èrel newlock()

L èrel e

L èrel &e
L èrel ∗e
L èrel e.i
L èrel x=e
L èrel e[τ ]
L èrel pack τ, e as τ ′

L èrel e0 · èrel e1

L èrel (e0, e1)
L èrel e0=e1

L èrel e0(e1)

· èrel v L èrel e

L èrel (v, e)
L èrel v(e)

· s̀rel s

· èrel (τ, ` x)
ε→ τ ′ s

· èrel f

· èrel Λα:κ[γ].f
L s̀rel s

L èrel call s
· èrel v

· èrel junkv

Figure 5.13: Chapter 5 Typing, Release
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x, v j̀s s

x, v j̀s s; release i

x, v j̀s s1 j̀f s2

x, v j̀s s1; s2

x, v j̀e e j̀f s1 j̀f s2

x, v j̀s if e s1 s2

x, v j̀e e

x, v j̀s e
x, v j̀s return e

x, v j̀e e j̀f s

x, v j̀s let `, x=e; s
x, v j̀s open e as `, α, x; s
x, v j̀s sync e s

x, v j̀e e1 j̀f e2

x, v j̀s spawn e1(e2)

j̀f v′ x, v j̀e e2

x, v j̀s spawn v′(e2)

j̀f v

x, v j̀e x=junkv

x, v j̀s s

x, v j̀e call s

x, v j̀e e

x, v j̀e &e
x, v j̀e ∗e
x, v j̀e e.i
x, v j̀e x=e
x, v j̀e e[τ ]
x, v j̀e pack τ, e as τ ′

x, v j̀e e1 j̀f e2

x, v j̀e (e1, e2)
x, v j̀e e1=e2

x, v j̀e e1(e2)

j̀f v′ x, v j̀e e

x, v j̀e (v′, e)
x, v j̀e v′(e)

j̀f H j̀f s

j̀ H; s
j̀f H x, v j̀ s

j̀ H, x 7→ junkv; s
j̀f H j̀f e

j̀ H; e
j̀f H x, v j̀e e

j̀ H, x 7→ junkv; e

Note: We omit the formal definition of j̀f e (respectively j̀f s and j̀f H), which
means that no term in e, (respectively s and H) has the form junkv.

Figure 5.14: Chapter 5 Typing, Junk
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L; Γ h̀typ · : ·
L; Γ h̀typ H : Γ′ L; ·; Γ; ·; ∅ r̀typ e : τ · èrel e i ∈ L

L; Γ h̀typ H, x 7→ e : Γ′, x:(τ, S(i))

Γ; L h̀lk ·
Γ; L h̀lk H Γ(x) = (τ, S(i)) i ∈ L

Γ; L h̀lk H, x 7→ e

L = L0L1 · · ·Ln

H = HSH1U · · ·HnU

HS = H0SH1S · · ·HnS

L; ΓS h̀typ HS : ΓS L s̀hr ΓS

ΓS; L0 h̀lk H0S j̀f H0S

for all 1 ≤ i ≤ n
L; ΓSΓiU h̀typ HiU : ΓiU L l̀oc ΓiU ΓS; Li h̀lk HiS

L; ·; ΓSΓiU ; ·; ∅; τi s̀typ si r̀et si Li s̀rel si j̀ HiSHiU ; si

p̀rog L; L0; H; (L1; s1) · · · (Ln; sn)

Figure 5.15: Chapter 5 Typing, States

locations in HS. We can further divide HS into H0SH1SHnS where H0S holds
locations guarded by available locks and the other HiS hold locations guarded by
locks that thread i holds. Given all this structure on the heap, the statement si

should type-check without reference to other threads’ local heaps, should return,
should release exactly the locks Li, and should be junk-free except for possibly
mutating one location in HiSHiU .

Having described the overall structure of the type system, we now highlight
some of the more interesting rules.

The kinding rules for S(i) and loc encode the essence of thread-locality. The
kinding rule for pair types can require the same sharability for both components
without loss of expressiveness because of subkinding. We do not allow quantified
types to have kinds of the form Lσ or Bσ because it is not useful to do so.

Function types are always sharable. This decision requires us to forbid functions
to refer to unsharable free variables (see SR5.13). In actual Cyclone, this restric-
tion is rather simple because free variables can refer only to functions (which are
immutable) or global variables. A simpler restriction in the formalism would be
to require that functions not have free variables, but then it would be impossible
to use mutable references to encode recursive functions.

The definition of l̀oc is a bit unsettling because it uses the absence of a kinding
derivation. A more rigorous approach would be to include a “definitely unsharable”
sharability, adjust the kinding rules accordingly, and use this sharability for l̀oc.
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The rules for effect and constraint containment are exactly like in Chapter 4
except we have γ; ε àcc loc.

Turning to the typing rules, SS5.8 and SS5.9 amplify the current capability as
expected. For the former, we use locks(`) because effects do not include loc and e
might have the type lock(loc). In rule SS5.10, the spawned function must have the
effect ∅ because threads begin holding no locks. The function’s argument must be
sharable because the spawned and spawning threads can access it. Unlike actual
Cyclone, we allow any sharable type for the argument. Rule SR5.13 is complicated
because we use s̀hr to allow free references only to sharable locations. Rule SR5.16
is simple because we use j̀, not the typing judgments, to restrict where junkv can
occur. Rules SR5.17 and SR5.18 give the types we would expect. In particular,
newlock() has the same type as the existential package to which it evaluates.

Turning to Figure 5.14, we use j̀s and j̀e to establish that a term is junk-
free except its next evaluation step will rewrite x=junkv to v. As such, the only
noninductive rule is for e = x=junkv. Also note that x, v 6 j̀e v′ for any v′.

5.6.4 Type Safety

Appendix C proves this result:

Definition 5.1. A program P = (H; L; L0; T1 · · ·Tn) is badly stuck if it has a badly
stuck thread. A badly stuck thread is a thread (L′, s) in P such that there is no v
such that s = return v and L = ·; and there is no i such that H; (L; L0, i; L

′); s
s→

H ′; L
′
; sopt; s

′ for some H ′, L
′
, sopt, and s′.

Theorem 5.2 (Type Safety). If ·; ·; ·; ·; ∅; τ s̀typ s, r̀et s, s is junk-free, s has no
release statements, and ·; (·; ·; ·); (·; s) →∗ P (where →∗ is the reflexive transitive
closure of →), then P is not badly stuck.

This theorem is in ways stronger and in ways weaker than theorems in earlier
chapters. It is stronger because it establishes that each thread is sound, not just
that some thread is not badly stuck. It is weaker because the type system allows
deadlock. A thread can be stuck because a lock i is unavailable. In fact, the
entire machine can be stuck if all threads are waiting for locks. So by definition, a
thread is not badly stuck so long as it could take a step if one additional lock were
available. (The definition includes threads that do not need an unavailable lock.)

5.7 Related Work

Synchronization idioms, techniques for detecting synchronization errors, and lan-
guage support for multithreading are far too numerous to fully describe. This
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section focuses only on the most closely related work and work that could improve
Cyclone multithreading.

The Cyclone system for preventing data races is most similar to a line of work
that Flanagan and Abadi began [73]. Their seminal publication used singleton
lock types, lock-type annotations on mutable references, and explicit effects (they
called them permissions) on function types to prevent data races for a small formal
language. Their term-level constructs correspond closely to spawn, sync, and
newlock. They present a semantics and prove that programs do not have data
races, but a race could not actually make their machine stuck. They allow universal
and existential quantification over lock types, but not over ordinary types. They
extend the type system with a partial order that prevents deadlock.

In adapting their work to object-oriented languages [72], Flanagan and Abadi
chose to use term-level variables for lock names instead of type-level variables.
This change introduces a very limited form of dependent type because types now
mention terms. Avoiding type variables may be more palatable to programmers,
but it introduces complications. First, the variables should not stand for mutable
locations, else the language is unsound because x does not always contain the
same lock. (If the type of x restricts its type sufficiently, e.g., by saying it has
type lock_t<y>, the result is sound, but then mutation is useless.) Second, the
rules for type equivalence must use some notion of term equivalence. Determining
if two terms evaluate to the same lock is trivially undecidable, so more restrictive
rules are necessary. Because the programmer cannot control these restrictions,
Cyclone’s approach is more flexible by letting programmers gives compile-time
names to locks, independent of where the locks are stored or how they are accessed.

Using term variables also affords Flanagan and Abadi some advantages. First,
as in Java, all objects are (also) locks, so reusing term variables as lock names is
economical. Second, using the “self variable” (this in Java) as a lock name better
integrates their system with common notions of object subtyping. Term equality
takes self variables into account. For example, if a method result is locked by
the method’s self variable, this variable is not in scope at the call site, but it is
equivalent to say the result is locked by the variable in scope at the call site that
names the object whose method is invoked.

Flanagan and Freund then adapted these ideas to Java, implemented the re-
sult, and found a number of previously unknown synchronization errors [74]. The
Java system provides type constructors (classes parameterized by locks) and some
support for thread-local data. Lock names are final (immutable) term variables.
To support thread-local data, a class declaration can indicate that instances of the
class cannot be thread-shared. All other classes are thread-shared; such classes
cannot have mutable fields that are not guarded by locks, nor can they have fields
holding thread-local objects. A thread-local class can have a thread-shared super-
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class, but downcasts from a thread-shared type to a thread-local type (including
the thread-local class overriding methods declared in the thread-shared class) are
forbidden. Otherwise, it is not clear how the type system would enforce that data
is thread-local. The focus of the work was minimizing explicit annotations and
finding potential data races; it does not appear that race-freedom proofs exist.

Boyapati and Rinard developed a similar system that allows more code reuse
by, in Cyclone terms, allowing loc to instantiate a lock-name parameter [31]. Hence
whether an object is thread-local or thread-shared can depend on its class and the
instantiation of the lock-name parameters of the class. The result allows just about
as much code reuse as Cyclone, but they do not have an analogue of nonlock.
The system also supports extensions described in Section 5.5, including object
migration (by using unique pointers, i.e., pointers to data that cannot be aliased)
and unsynchronized sharing of immutable data. However, it does not (safely)
support downcasts when the target type has more lock-name parameters than the
source type. In general, per-object run-time type information is necessary to check
that the target type instantiates its class correctly.

Subsequent work by Boyapati, Lee, and Rinard extends the system with dead-
lock prevention [29]. This work also resorts to (implicit) run-time type passing as
necessary to support safe downcasts. An associated report [30] explains how to
avoid run-time type passing in the most common cases and how to implement the
scheme on an unmodified Java Virtual Machine. Boyapati et al.’s systems do not
have accompanying formalisms with type-safety proofs.

Guava [15] is another Java dialect with static data-race prevention. The class
hierarchy makes a rigid distinction between thread-local and sharable objects. The
latter allows only synchronized access to methods and fields. A “move operator”
soundly allows object migration.

There are many other race-detection systems, some of which are dynamic [44,
46, 182, 204]. As usual, dynamic and static approaches are complementary with dif-
ferent expressiveness, performance, and convenience trade-offs. Because Cyclone’s
type safety needs data-race prevention, a static approach feels more appropriate.
It is also easier to implement because there is no change to code generation.

The Cyclone system does not prove that programs are deterministic. For do-
mains such as parallel numerical computations, such stronger guarantees help de-
tect errors. In open systems like operating systems and servers, determinism is
impossible. Nonetheless, preventing data races (on individual memory locations
or objects) is insufficient for preventing application-level races. That is, an appli-
cation may intend to keep several objects synchronized. If procedural abstraction
controls access to such objects, then it suffices for the relevant procedures to appear
atomic. Flanagan and Qadeer develop a type system for enforcing atomicity [77].
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They also note that if the underlying memory model ensures atomic access of
words, then some functions are atomic even without explicit synchronization.

Static analyses that find thread-local data can eliminate unnecessary locking in
Java [4, 23, 45]. Adapting such interprocedural escape analyses to Cyclone would
reduce annotations but complicate the language definition.

Other work on safe languages for low-level applications, described in more
detail in Chapter 8, has not allowed threads. In Vault [55, 66], a type system
that restricts aliases can track stateful properties about data at compile time.
Mechanisms termed adoption and focus allow tracking state within a lexical scope
without knowing all aliases of the data. This scoping technique relies crucially on
the absence of concurrent access.

In CCured [164], unmodified legacy C applications are compiled unconven-
tionally to detect all memory-safety violations. The key to good performance is
a whole-program static analysis to eliminate many unnecessary run-time checks.
The analysis assumes the program is single-threaded. With arbitrary thread inter-
leavings, we would expect much more conservative results. Moreover, the run-time
checks themselves are not thread-safe. Making them so would require expensive
synchronization or precise control of thread scheduling.

The Warlock system [191] is an older, unsound approach to static race detection
for C programs. Two factors violate soundness. First, it analyzes C programs and
simply assumes they are memory safe. Second, it uses mutable variables for lock
names. Hence it will wrongly conclude that a program is race-free if two threads
acquire the lock at x before reading y even though the lock at x has been changed
in-between the two acquisitions. For a bug-finding tool, this unsoundness may be
bearable because nonmalicious programs might rarely have this sort of mistake.

The only work I am aware that combines multithreading with safe memory
management is the Real-Time Specification for Java [20]. As described in Chap-
ter 4, this Java extension has regions with lexically scoped lifetimes and attempting
to create a reference from an older region to a younger one is a run-time error.
As in Cyclone, one thread’s oldest region can appear in another thread’s stack
of regions. The region is not deallocated until every thread is done with it. In
other words, Cyclone and Real-Time Java support thread-shared regions the same
way. Because the Real-Time Java type system has no notion of lifetime, thread-
shared regions cause no complications whereas in Cyclone they lead to subtyping
restrictions.



Chapter 6

Uninitialized Memory and NULL
Pointers

This chapter describes how Cyclone prevents reading uninitialized memory and
dereferencing NULL pointers.

Allowing such operations can easily compromise safety. When allocating mem-
ory for a pointer, (e.g., int* x; *x=123;), C and Cyclone do not specify an
initial value for x. In practice, implementations often leave the value that the
memory contained when it was used previously, possibly an arbitrary int. When
dereferencing a NULL pointer, C has unspecified behavior. Most implementations
implement NULL as 0, so if x is NULL and has type struct T*, we expect x->f=123
to write to an address corresponding to the size of the fields preceding f. (Because
this size may be large, it may not suffice to make low addresses inaccessible.) We
could insert a check for NULL and raise an exception, but performance and relia-
bility encourage the elimination of redundant checks. For simplicity, this chapter
usually assumes the implementation does not insert implicit checks, so programs
that might dereference NULL pointers are rejected at compile-time.

To solve these two problems, we use techniques that differ substantially from
those used to solve problems in earlier chapters. For types, regions, and locks,
our solutions relied on invariance: Throughout an object’s lifetime, we require it
has the same type, region, and lock. Although some safe programs do not main-
tain such invariants, these restrictions seem reasonable and help make undecidable
problems tractable.

For the problems in this chapter, invariance is too restrictive. It amounts to
requiring immediate initialization (e.g., forbidding declarations that omit initial-
izers), which can hurt performance and makes porting C code more difficult. For
pointers, it is often sensible to enforce a “not-NULL” invariant and Cyclone pro-
vides this option. However, many idioms, such as linked lists, use NULL. Given a
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possibly-NULL pointer, we must allow programs to test at run-time whether it is
actually NULL and, if not, dereference it. Hence, both problems warrant solutions
that determine program-point specific (i.e., flow-sensitive) information. A variable
that is possibly uninitialized at one point can be initialized after an assignment.
A variable that is possibly NULL at one point can be assumed not-NULL after an
appropriate test, subject to caveats due to aliasing.

Therefore, this chapter develops a sound intraprocedural flow analysis. Be-
cause flow analysis is a mainstay of modern language implementations, Section 6.1
describes the novel issues that arise with Cyclone, particularly under-specified
evaluation order and pointers to uninitialized data. Section 6.2 presents the anal-
ysis informally, focusing on how it interprets code as transforming an abstract
state. Section 6.3 evaluates the approach and describes two sophisticated exam-
ples. Section 6.4 defines a formal abstract machine and a declarative type-theoretic
formulation of the flow analysis. This precision is valuable given the sophistica-
tion of the analysis, but the connection between the declarative formulation and
the analysis algorithm remains informal. Because of the machine’s dynamic se-
mantics, soundness (proven in Appendix D) implies well-typed programs cannot
attempt to dereference NULL pointers or destruct “junk” values that result from
reading uninitialized memory. Section 6.5 discusses related work on source-level
flow analysis.

6.1 Background and Contributions

A simple dataflow analysis that approximates whether local variables are initialized
or (not) NULL is a straightforward application of well-known techniques. However,
several important issues complicate the analysis in Cyclone:

• The analysis is for a general-purpose source language and is part of the
language’s definition, so it is inappropriate to define the analysis in terms of
a simplified intermediate representation.

• The analysis is for a language with under-specified evaluation order.

• The analysis reasons about pointers to particular locations, including unini-
tialized ones.

• The analysis is for a language with exceptions and exception handlers, which
increases the number of possible control transfers.

• The analysis reasons about struct fields separately. Doing so significantly
complicates the implementation, but turns out to be an orthogonal and less
interesting issue.
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Section 6.1.1 describes a simple flow analysis as background and to introduce
some Cyclone terminology. It is purposely unoriginal. Sections 6.1.2 and 6.1.3
describe the problems surrounding pointers and evaluation order, respectively. The
solutions in Section 6.2 are the important technical aspects of this work.

6.1.1 A Basic Analysis

An intraprocedural dataflow analysis can assign each local variable an abstract
value (which we will call an abstract rvalue for reasons explained in Section 6.2) at
each program point in a function body. For NULL pointers and initialization, this
domain of abstract rvalues makes sense:

• none: A possibly uninitialized variable

• all∗: An initialized variable that may be NULL

• all@: An initialized variable that is definitely not NULL

• 0: An initialized variable that is definitely NULL

This domain forms a lattice where r1 ≤ r2 means r2 is more approximate than
r1. This partial order is the reflexive, transitive closure of the relation holding
0 ≤ all∗, all@ ≤ all∗, and all∗ ≤ none.

A map from variables to abstract rvalues is an abstract state. We can interpret
statements as transforming abstract states. For example, if the abstract state at
the program point before the assignment x=y maps y to all∗ and x to none, then
the abstract state after the assignment is like the one before except x maps to
all∗. Declaring a variable z extends the abstract state by mapping z to none.
Statements can make the analysis fail, such as *x if x does not map to all@ or
f(x) if x maps to none. Finally, tests can refine an abstract state. For example,
if x maps to all∗ before if(x) s1 else s2, we can sometimes map x to all@
before s1 and to 0 before s2.

A program point’s abstract state should approximate the abstract state of all
its control-flow predecessors. For example, if after one branch of a conditional
statement x maps to all@ and after the other branch x maps to all∗, then the
abstract state for after the conditional should map x to all∗.

Control-flow cycles (e.g., loops) require the analysis to iterate because we can-
not always compute the abstract states for a program point’s control-flow prede-
cessors prior to analyzing the statement at the program point. For example, for
while(e)s, if we have abstract state Γ before the loop and Γ′ after the loop body s,
we must reanalyze the loop with an abstract state before the loop approximating
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Γ and Γ′. If Γ is such an abstract state, we are done. The analysis always termi-
nates because there is no infinite sequence of abstract states where each element
is strictly more approximate than the previous one.

By giving an appropriate abstract meaning to each statement as just sketched,
if the analysis does not fail, then we know executing the function cannot dereference
a NULL pointer or use uninitialized memory.

6.1.2 Reasoning About Pointers

The description above ignored the analysis of code that creates, initializes, and uses
non-NULL pointers. If x maps to all∗, we can say y=&x transforms the abstract
state so y maps to all@, but this ignores the fact that we create an alias for x

(namely *y). For example, this code is not safe:

void f(int *x) {

int **y;

y = &x;

if(x) {

*y = NULL;

*x = 123;

}

}

One solution involves making worst-case assumptions for variables after their ad-
dress is taken. Indeed, our analysis will enrich abstract states with escapedness
information to track if unknown aliases to a memory location exist. However, in
the example above, this conservatism is unnecessary because at each program point
our analysis can determine exactly the aliases of x.

In fact, tracking aliases appears crucial for supporting malloc in a principled
way. Consider this simple safe example:

void f(int *p) {

int ** x;

x = malloc(sizeof(int*));

// **x = 123;

*x = p;

**x = 123;

}

The assignment to x makes x point to uninitialized memory. So accessing **x

is unsafe before the assignment to *x. The abstract rvalues presented so far are
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ill-equipped to analyze code using malloc. After the assignment to x, the only
safe choice would be none, but this choice renders malloc useless, rejecting the
ensuing assignment to *x.

Our solution adds abstract rvalues describing points to named abstract lo-
cations. This solution significantly complicates the notion of one abstract state
approximating another. However, it leads to a more powerful system than conven-
tional flow analyses for preventing safety violations.

Finally, an intraprocedural analysis with limited alias information is ill-suited
to track properties of large data structures such as lists. For safety, it suffices to
require all such data to be initialized and have abstract rvalue all∗. However, if a
data structure has an invariant that some data is never NULL, this solution cannot
check or exploit this invariant. Therefore, we enrich the type system with types of
the form τ@ to describe not-NULL pointers. Section 6.2 explains how the types τ@
and τ∗ interact with the abstract rvalues all@ and all∗.

In summary, our analysis adds escapedness information, points-to information,
and interaction with not-NULL types. Together, these additions add significant
expressiveness. For example, Section 6.3 presents code to create circular doubly-
linked lists using this type:

struct CLst {

int val;

struct CLst @ prev;

struct CLst @ next;

};

Most safe languages do not have a way to create circular data structures with such
invariants.

6.1.3 Evaluation Order

Cyclone and C do not fully specify the order of evaluation of expressions: Given
f(e1,e2), we cannot assume e1 evaluates before e2. This flexibility complicates
defining a sound flow analysis. For example, we must reject if(x) f(*x,x=NULL).
This section defines several variations of the problem because different solutions
in the next section work for different variations. For example, only some of the
variations consider f(x && *x, x=NULL) a safe expression.

As the most lenient, the “actual C semantics” does not require any order be-
tween so-called sequence points. For example, given e1(e2(e3),e4), there are
more than 24 (i.e., 4!) legitimate evaluation orders. (Even after evaluating e2

and e3, we can do the inner function call at various times with respect to e1 and
e4.) Certain expressions do restrict evaluation order. For example, for e1,e2,
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the comma operator ensures all of e1 is executed before any of e2. Given e1

+ (e2,e3), there remain at least 3 legitimate evaluation orders. To make mat-
ters worse, C forbids expressions that are nondeterministic because of evaluation
order. Specifically, if a read and a write (or two writes) to the same location
are not separated by a sequence point, then the program is illegal and the result
is implementation-dependent (unless the read is to determine the value for the
write). That is, in such cases, a standards-compliant implementation can perform
arbitrary computation.

A safer alternative is “C ordering semantics.” We allow all the evaluation orders
as C, but we do not deem reads and writes (or two writes) to the same location
between sequence points illegal. Put another way, an implementation cannot use
the “actual C semantics” to assume (lack of) aliasing that may not hold. It must
execute all expressions correctly, but the order of evaluation remains very lenient.
This alternative is what Section 6.4 formalizes, but the formalism has no sequence
points within expressions.

A less lenient alternative is “permutation semantics.” Given a function call
e1(e2,...,en), an implementation can execute the n expressions in any order,
but it cannot execute part of one and then part of another. Similarly, assign-
ment statements and operators like addition would allow left-then-right or right-
then-left. Although this semantics is not C, it is the rule for languages such as
Scheme [179] and OCaml [40], so it is a problem worth investigating.

We could eliminate the issue entirely with a “deterministic semantics.” Like
Java [92], we could define the language such that expressions like function calls
evaluate subexpressions left-to-right (or another fixed order).

Another less lenient approach is to enforce a “purity semantics” by forbidding
expressions that write to memory. Making assignments statements instead of ex-
pressions is insufficient because a function call could include assignment statements
(and could mutate the caller’s local variables if passed pointers to them).

In general, less lenient approaches transfer the obligation of proving optimiza-
tions safe from the programmer to the implementation. As examples, fixing evalu-
ation order can increase register pressure, and allowing writes to aliased locations
can restrict instruction selection. Because conventional compilers perform such
optimizations after the compiler has chosen an evaluation order, these issues are
cleanly separated. In the actual Cyclone implementation, the compiler produces
C code and then invokes a C compiler. As such, Cyclone must preserve safety
even though its target language does not have a fixed evaluation order. Although
technically incorrect, the implementation assumes “C ordering semantics.”
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6.2 The Analysis

This section presents the essential aspects of Cyclone’s flow analysis. We begin with
a description of abstract states, explaining how they capture escapedness, must
points-to information, and not-NULL invariants. We then explain the analysis of
expressions, where the key ideas are the use of not-NULL types and the evaluation-
order problems. Next we explain the analysis of statements, focusing on how
to join two abstract states and how tests can refine information. We delay the
description of some relevant language features (aggregates, recursive types, goto,
and exceptions) until the end.

6.2.1 Abstract States

An abstract state maps each abstract location to a type, an escapedness, and an
abstract rvalue. Abstract locations are allocation sites, which include (local) vari-
ables and occurrences of malloc. (Because dangling pointers are not our present
concern, we can think of malloc as declaring a local variable and evaluating to its
address. We just “make up a distinct variable” for each malloc occurrence.)

For now we consider only types of the form int, τ∗ and τ@ where τ is a type
and τ@ cannot describe NULL. An escapedness is either esc (escaped) or unesc
(unescaped); the former means the aliases for the location may not be known
exactly. For example, the abstract state for the program point after if(flip())

x=&y; else x=NULL; must consider y escaped. Abstract rvalues are either none,
all@, all∗, 0, or &x where x is an abstract location. We explained all but
the last form previously. The abstract rvalue &x describes only values that must
point to the location (most recently) produced by the allocation site x. Hence,
pointer information is an inherent part of our abstract domain. When a location
is allocated, its escapedness is unesc, its abstract rvalue is none, and its type is
provided by the programmer (even for malloc).

If a location is escaped, it becomes difficult for the analysis to track its contents
soundly because it is not known which assignment statements mutate it. Therefore,
an abstract state is ill-formed if an escaped location does not have the abstract
rvalue appropriate for escaped locations of its type. In particular, it must have
all∗ unless the type is τ@, in which case it must have all@. The analysis fails if
no well-formed abstract state describes a program point. For example, it rejects:

void f(int x) {

int *p1, **p2;

if(x)

p2 = &p1;

}
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This function is safe, but at the end, p1 is escaped but uninitialized, so no well-
formed abstract state suffices.1

Given abstract states Γ and Γ′, we need an appropriate definition of Γ′ being
more abstract than Γ, written Γ ≤ Γ′. They must have the same domains and map
each abstract location to the same type because the allocation sites and types are
invariant. For each x, we require Γ′ map x to a more approximate escapedness
(unesc ≤ esc) and a more approximate abstract rvalue. In addition to the
approximations in Section 6.1, we can add &x ≤ all@, but only if Γ′ considers
x escaped. After all, this approximation “forgets” an alias of x. As defined,
Γ ≤ Γ′ does not imply Γ′ is well-formed, even if Γ is well-formed. The section on
statements describes a join operation that either fails or produces a well-formed
approximation of two well-formed abstract states.

6.2.2 Expressions

As in previous chapters, we analyze left-expressions and right-expressions differ-
ently. In each case, given an abstract state and an expression, we produce an
abstract state describing how the expression transforms the input state (due to
effects like assignments). For right-expressions, we also produce an abstract rvalue
describing the expression’s result. For left-expressions, we produce an abstract
lvalue, which is either some location x or ?, representing an unknown location.
We describe some of the more interesting cases before discussing evaluation-order
complications.

The only left-expressions we consider here have the form x or *e where e is a
right-expression. The former produces the abstract lvalue x and does not change
the abstract state. For the latter, we analyze e to produce an abstract rvalue r
and an abstract state that is our result. If r is all@, then our abstract lvalue is
?—we do not know the location. If r is &x for some x, then the abstract lvalue is
x. Else we fail because we might dereference NULL or an uninitialized pointer.

The analysis of many right-expressions is similar. For example, NULL abstractly
evaluates to 0 and does not transform the abstract state. For a variable x, we look
up its abstract rvalue in the abstract state. The resulting abstract rvalue for &e is
either &x for some x or all@, depending on the analysis of the left-expression e.
A function call fails if an argument has abstract rvalue none.

The analysis of the right-expression ∗e is more interesting because the resulting
abstract rvalue might depend on the type of e: If e has abstract rvalue &x, then
we look up the abstract rvalue of x in the context. Else if ∗e has some type τ@,

1Giving p1 and p2 abstract rvalue none (instead of giving p2 abstract rvalue &p1) suffices,
but our analysis fails instead.
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we can conclude all@ even if we all we know about e is that it is initialized. If e
is uninitialized, we fail. Else the result is all∗.

The other interesting case is assignment e1=e2. If e1 abstractly evaluates to a
location x that is unescaped, then we can change the abstract rvalue for x to the
resulting abstract rvalue for e2. If the abstract lvalue is ? or an escaped x, then
the abstract rvalue for e2 must be the “correct” one for the type of e1 (either all∗
or all@). Note that this rule still lets an escaped e1 have type τ@ and e2 have
type τ∗ if e2 abstractly evaluates to all@.

Our descriptions of function calls and assignments have ignored their under-
specified evaluation order. For example, it is unsound to analyze f(*x,x=NULL)

assuming left-to-right evaluation because the abstract state used to analyze *x

is too permissive. We discuss several alternatives and determine their soundness
under the various semantics defined in Section 6.1.

Determinization: It is easy to translate Cyclone to C (or C to C) in a way that
gives a “deterministic semantics” (e.g., left-to-right). However, the translation
must introduce many local variables to hold temporary results. For example, f()
+ g(); would become something like int x=f(); int y=g(); x+y;. In this par-
ticular example, the original expression is safe, even under “actual C semantics,”
so it is necessary to introduce local variables only if we define Cyclone to have a
deterministic semantics. The obvious advantage of determinizing the code is that
it makes any problems with under-specified evaluation order irrelevant. However,
many languages continue to have more lenient semantics, so rather than resort to
determinization, we investigate other options. Also, when using a target language
such as C, maintaining a “deterministic semantics” can lead to longer compile
times and slower generated code. These effects may be tolerable in practice.

Exhaustive Enumeration: A simple way to analyze an expression soundly is
to analyze it under every possible evaluation order, ensure it is safe under all of
them, and take the join over each resulting typing context (and abstract rvalue)
to produce the overall result. However, this approach can be computationally
intractable. For example, under “permutation semantics,” analyzing a function call
with n arguments requires n! permutations. Furthermore, some of the n arguments
may themselves suffer from a combinatorial explosion that would manifest itself
in each of the outer context’s n! checks. Under “C ordering semantics” even more
possibilities exist. The approach is insufficient for “actual C semantics” because
ill-defined C programs have an infinite number of possible evaluations.

Perhaps a compiler could use heuristics to achieve the precision of the com-
binatorial approach in practice without suffering intolerable compile times. For
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example, many expressions with huge numbers of potential evaluation orders are
probably pure in the sense of the next approach.

Purity: If an expression does not write to memory, then evaluation order affects
neither safety nor an expression’s result. Ignoring function calls, prohibiting writes
within expressions with under-specified evaluation order is probably reasonable.
However, it does prevent common idioms including x=y=z and a[i++]. Except
under “actual C semantics,” we do not need to prohibit all writes. It suffices to
prohibit writes that change the abstract state.

Prohibiting even these writes is more restrictive than requiring the analysis of
an expression like a function argument to conclude the same abstract state with
which it started. We explain why with the next approach. Furthermore, it is
useful to allow expressions to change the typing context if doing so does not make
other expressions (that may execute before or after) unsafe. Our final approach
(“changed sets”) addresses this issue.

Taking Joins: Given an expression like f(e1,e2,. . .,en), suppose we analyzed
e1 under an abstract state Γ to produce Γ1, e2 under Γ to produce Γ2, and so on.
We could then use the join operation described with the analysis of statements to
produce an abstract state Γ′ that is more abstract than Γ and each Γi. If Γ′ were
strictly more approximate than Γ, we could iterate with Γ′ in place of Γ, else we
could use Γ′ (i.e., Γ) as the resulting abstract state.

Because we keep iterating with more approximate abstract states until no ex-
pression causes a change, this procedure essentially analyzes the n expressions as
though they might each execute any number of times. This interpretation is more
approximate than exploiting that, in fact, each expression executes exactly once,
so it is clearly sound under a “permutation semantics.” Less obviously, it is sound
under a “C ordering semantics” if and only if we do not have expressions with
sequence points (namely C’s &&, ||, ?:, and comma operators). In other words, it
is not sound.

For example, consider the expression f(x=NULL,(x=&y,*x)). With the join
approach, we can conclude an abstract state where x has abstract rvalue all∗.
But with “C ordering semantics,” the code is unsafe because it might assign NULL

to x just before dereferencing it. Under “permutation semantics,” the code is safe.
To restore soundness, we have several options. First, we could use the purity

approach instead. In other words, we would type-check expressions with sequence
points more strictly when they appeared in positions where they may not execute
without interruption. Second, we can try to allow a sequence expression to change
the flow information if no other expression might invalidate the change. This



158

approach would reject f(x=NULL,x=&y,*x), but would allow f(37,(x=&y,*x)).
The next approach describes how we might do so soundly.

Changed Sets: Under the join approach (and the purity approach), there is no
way for the subexpression of an expression with under-specified evaluation order
to affect the typing context after the expression. Hence we do not consider int x;

f(37,x=3); to initialize x because the abstract rvalue for x must remain none.
In actual Cyclone, one common result of this shortcoming is unnecessary im-

plicit checks for NULL: With a command-line option, programmers can permit deref-
erencing possibly-NULL pointers. In this case, the implementation may insert an
implicit check for NULL and potentially raise an exception. However, we can still
use the flow analysis to avoid inserting checks where necessary. For example,
given *x=1;*x=2, the second assignment does not need a check (assuming x has
escapedness unesc) because if x is NULL, the first assignment would have thrown
an exception. In practice, code of the form f(x->a); g(x->b); is quite common.
To use the flow analysis to avoid checking for NULL before x->b, we must use the
earlier check x->a, but it appears in an under-specified evaluation-order position.

A small enhancement achieves the necessary expressiveness: We iterate as in the
“taking joins” approach, but we also maintain a “changed set” for each expression.
This set has the unescaped locations for which the expression changes their abstract
rvalue. If a location appears in only one changed set, it is safe to use the abstract
rvalue it had after the corresponding expression executed. (We can use the change
even if other expressions changed the location provided that they all changed the
expression to the same abstract rvalue.)

Compared to the join approach (or the purity approach), this enhancement
acknowledges that all the expressions do execute (“at least once” if you will), so
we can incorporate their effects in the resulting abstract state. Because we use
such changes only in the final result—not in the abstract state with which we
iterate—we still reject expressions like f(*x,x=NULL).

6.2.3 Statements

The analysis takes a statement and an abstract state approximating the state after
all control-flow predecessors and produces a sound abstract state for the point after
the statement. This procedure is completely conventional: The result for s1; s2 is
the result for s2 given the result for s1, the result for if(e)s1 else s2 is the join
of the results for s1 and s2, and so on. (For a less dismissive description, see
Section 6.4.) The interesting subroutines are the analysis of test expressions and
the computing of joins.
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For test expressions (as in conditionals and loop guards), one safe approach
is to analyze the expression as described in the previous section and use the ab-
stract state produced as a result for both control-flow successors. However, this
approach does not refine the abstract state, so we endeavor to be less conservative
where possible. Specifically, if the text expression is x (e.g., while(x) s) and x is
unescaped and has abstract rvalue all∗, then we can analyze the “true” successor
(s in our example) with x having abstract rvalue all@ and the “false” successor
(after the loop in our example) with x having abstract rvalue all∗.

We do not require that the test is exactly x to refine the abstract states for
successors. After all, we would like an analysis that is robust to certain syntactic
equalities, such as writing x!=NULL or NULL==x instead of x. Fortunately, the
abstract rvalues and abstract lvalues produced by the analysis for right-expressions
and left-expressions provide exactly what we need: Given a test of the form e1==e2

or e1!=e2, if the abstract rvalue for e1 or e2 is 0, then we can act as though the
test were syntactically simpler (after accounting for any effects we are simplifying
away). Next, if a test has the form e or !e and the analysis for left-expressions could
give e the abstract lvalue x, then we can treat the test as being just x or !x (again
after accounting for effects). Together, these techniques provide a reasonable level
of support for tests.

More pathologically, if the entire test has abstract rvalue 0 or all@, then the
analysis determines the control flow at compile-time and can choose any abstract
state for the impossible branch. (As usual with iterative analysis, we propagate
an explicit ⊥ that every abstract state approximates.) Although this addition has
dubious value in source programs, it simplifies the iterative analysis, it is natural,
and it is analogous to similar support in Java (as discussed in Section 6.5).

We now turn to computing a (well-formed) join for two (well-formed) abstract
states, which we must do when a program point has multiple control-flow pre-
decessors. The key issue is that locations may escape as a result of a join. For
example, if x and y have escapedness unesc and abstract rvalue all∗ before
if(flip()) x=&y;, then y is escaped after the conditional (and x has abstract
rvalue all@). Furthermore, if y had had abstract rvalue &z, then z must also be
escaped afterward. We now describe the algorithm that ensures these properties.

The two input abstract states should have the same domain and the same type
for each location. For each x, we compute a “preliminary” escapedness k and
abstract rvalue r as follows: Let k1 and k2 be the escapednesses and r1 and r2 be
the abstract rvalues for x in the inputs. Then the preliminary k is esc if and only
if one of k1 and k2 is esc. As for r:

• If r1 or r2 is none, then r is none.

• Else if r1 or r2 is all∗, then r is all∗.
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• Else if exactly one of r1 and r2 is 0, then r is all∗.

• Else if r1 and r2 are the same, then r is r1.

• Else r is all@.

Furthermore, if r1 or r2 is some &y and r is not &y, then we put y in an “escaped
set” containing all such locations we encounter while producing the preliminary k
and r for each x. We then use the escaped set to modify our preliminary abstract
state: While the set is not empty, remove some y. If y is unescaped, change it to
escaped. If its abstract rvalue is none, fail because we cannot produce a sound
well-formed result. Else change the abstract rvalue for y to the correct one for
escaped locations of its type (either all∗ or all@). If the old abstract rvalue was
&z, add z to the escaped set.

This process terminates because each time we remove an element of the “es-
caped set” we either change a location’s escapedness from unesc to esc or we
reduce the set’s size. The result becomes only more approximate at each step.
The point of the “escaped set” is to make escaped exactly what we need to such
that the result is well-formed. Finally, note that the procedure can soundly sub-
sume a cycle of known pointers to a collection of unknown but initialized pointers.

6.2.4 Extensions

Having described the interesting features of the analysis, we now consider com-
plications (and lack thereof) encountered when extending the analysis to the full
Cyclone language.

Aggregate Values: Given an allocation site for a struct type, we track each
field separately. (If a field is itself a struct type, then we track its fields too, and so
on inductively.) To do so, we enrich our abstract rvalues with abstract aggregates.
For example, if x has type struct T{int* f1; int*f2;};, then allocating x maps
x to the abstract rvalue none× none. If the analysis of e produces r1 × r2, then
the analysis of e.f1 produces r1.

Similarly, the escapedness information for x would have the form k1 × k2. If
an alias to the aggregate x escaped, the escapedness would be esc × esc. But if
only one field escaped (e.g., due to &x.f1), an abstract state could reflect it. The
notions of k1 ≤ k2 and r1 ≤ r2 extend point-wise (covariantly) through aggregates.

Abstract lvalues can take the form x.f1.f2...fn (and abstract rvalues the
from &x.f1.f2...fn). Because of aggregate assignment, we still allow x even if
x has a struct type. So an assignment to (part of) a known, unescaped location
can change all or part of the location’s abstract rvalue. The appropriate abstract
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rvalue for an escaped location with a struct type is the natural extension of the
rules for τ@ and τ∗ to aggregates.

Recursive Types: Somewhat surprisingly, recursive types require no change to
the analysis and cannot cause it to run forever. Essentially, the “depth” of points-
to information in an abstract state is bound by the (finite) number of allocation
sites in a function. Creating a data structure of potentially unbounded size requires
a loop (or recursion), i.e., the reuse of an allocation site.

A subtle property of the analysis is that an abstract state always describes
the most recent location that an allocation site has produced. (We can prove
this property by induction on how long the iterative analysis runs. The intuition
is that at the program point before the allocation site for x, it is impossible for
the abstract state to indicate that some y has abstract rvalue &x.) So the analysis
naturally loses the ability to track multiple locations that an allocation site creates.
Section 6.3.5 describes how the analysis works for a loop that creates a list.

The analysis can even track cycles, which are impossible without recursive
types. Nothing prevents the abstract state from having a cycle of must-points-to
information. When a cycle escapes, the join operation ensures the entire cycle will
escape. We argued above that this operation terminates.

Goto: Unstructured control flow (goto,break,continue) poses little problem for
iterative flow analyses, including ours. If the abstract state before a jump is some
Γ, then the analysis must analyze the target of the jump under an abstract state
more approximate than Γ. Jumps can cause loops, so the analysis may iterate.
As usual, the implementation stores an abstract state for each “jump target” and
tracks whether another iteration is necessary.

Exceptions: Integrating exceptions is also straightforward, but the algorithm
is conservative about when an exception might occur. Cyclone has statements
of the form try s catch {case p1: s1 ...case pn: sn}. Within s, the ex-
pression throw e transfers control to si provided that e evaluates to an exception
that matches pi and no statement within s catches the exception. Given that si

executes only if an exception occurs, it seems reasonable to check it under rather
conservative flow information.

Therefore, we check si under an abstract state that is more approximate than
every abstract state used to type-check a statement or expression in s. (Section 6.5
explains why Java’s analysis can just use the abstract state before s.) Because a
function call executed within s can terminate prematurely with an exception, it is
important that our analysis soundly approximates the flow information when such
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exceptions are thrown, even though the analysis is intraprocedural. The key is to
require a location x to have escapedness esc if x is reachable from an argument
to a function. Put another way, a function argument e is checked much like an
assignment of e to an unknown location. By requiring esc, the analysis is sound
regardless of what the function call does or when it throws an exception.

Type-checking throw e is simple: We require that e safely evaluates to an
initialized exception. It is sound to produce any abstract state (we use an explicit
⊥).

6.3 Evaluation

Having informally defined the analysis, we now evaluate the result qualitatively.
The formalism argues the analysis is sound, so here we focus on how expressive it
is. We begin by admitting how the actual Cyclone implementation is more lenient
(though still safe) and considering if it would not be better just to rely on run-time
techniques for initialization and NULL pointers. We then focus on the most impor-
tant idioms that the analysis permits (Section 6.3.3) and does not (Section 6.3.4).
The next two sections present two more sophisticated examples. Finally, Sec-
tion 6.3.7 describes an extension for supporting a simple form of interprocedural
initialization.

6.3.1 Reality

The actual Cyclone implementation is more lenient than this chapter has thus far
suggested. The differences are not interesting from a technical perspective, but
they are more convenient for programmers without sacrificing safety.

First, we do not require initializing numeric values before using them. Using
“junk bits” leads to unpredictable program behavior, but it does not violate mem-
ory safety. It does allow reading values from previous uses of the memory now
used for a number, which could have security implications. The main reason for
this concession is the lack of support for arrays. It allows omitting an initializer for
a character buffer. For some text-manipulation programs, an extra pass through
a buffer to initialize it can hurt performance.

Second, if a sequence of zeros is appropriate for a type (i.e., the type has no non-
NULL components), then programmers can use calloc to initialize memory with
that type. For example, calloc(n*sizeof(int*)) creates an initialized array of
length n. Replacing int* with int@ is illegal.

Third, a compiler option allows dereferences of possibly NULL pointers. With
this option, the compiler inserts implicit checks and raising an exception upon
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encountering NULL. In terms of our formalism, we allow ∗e even if e has abstract
rvalue all∗. When e is unescaped, we can use the dereference to refine the lo-
cation’s abstract rvalue to all@, just like for tests. Intuitively, if the dereference
does not raise an exception, x is not NULL.

It is tempting to allow &x->f (i.e., &((*x).f)) without checking if x is NULL

because the expression does not actually dereference x. (By analogy, Chapter 4
allows x to point to deallocated storage.) However, allowing such expressions
makes it difficult if not impossible to check for NULL when a later dereference
occurs. Because *&x->f is not 0, we might naively not raise an exception for
*&x->f, even if x is 0. Therefore, we check for NULL even under the address-of
operator.

6.3.2 Run-Time Solutions

Considering the complexity of the flow analysis and its limitations, it is worth
asking whether Cyclone should simply initialize memory and check for NULL at run-
time. The implementation could still optimize away initializers and checks that
were provably unnecessary. While sacrificing programmer control and compile-
time error detection (two primary motivations for this dissertation), we would
gain simplicity.

Implicit initialization for Cyclone is more difficult than for C or Java precisely
because we have not-NULL types. For these languages, if NULL is implemented as
0, then a sequence of zeros is appropriate for every type. Therefore, it is trivial to
find an initializer for any type of known size.

For Cyclone, it should be possible to invent initializers, but it is not simple.
Given τ@, we would need to create initialized memory of type τ and take its
address. For recursive types, we must not create initializers of infinite size. For
function types, we must invent code. (The function body could raise an exception
for example.) For abstract types, some part of the program that knows the type’s
implementation must provide the initializer. This technique basically amounts to
having default constructors for values of abstract types and implicitly calling the
constructors at run-time.

6.3.3 Supported Idioms

Despite the complexity of the analysis, it is most often useful for simple idioms
separating the allocation and initialization of memory. For example, it accepts this
code, assuming s1 and s2 do not use x.
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int *x;

if(e) { s1; x=e1; } else { s2; x=e2; }

f(x);

One might argue that uninitialized local variables are poor style. But requiring
unused initializers just makes incorrect C programs easier to debug because run-
time errors are more predictable. With a sound analysis, it is better to omit
unnecessary initializers when possible because the analysis proves the initializer
is useless. Hence omitting the initializer better describes what the program does
and is marginally more efficient. One might argue instead that the real problem is
C’s distinction between expressions and statements. In many languages, we could
write an initializer for x that did the same computation as the if-statement, but
without function calls, C’s expression language is too weak. Restructuring the
code in this way amounts to a more functional style of programming. Given C’s
commitment to imperative features, expanding the language of initializers seems
like more trouble than it is worth.

Our next example is a straightforward use of malloc:

struct Pr { int *x; int *y; };

struct Pr* f(int *a, int *b) {

struct Pr* ans = malloc(sizeof(struct Pr));

ans->x = a;

ans->y = b;

return ans;

}

We can expect code like this example whenever porting a C application that uses
heap-allocated memory. It requires we track the fields separately and use must
points-to information. Without resorting to ad hoc restrictions such as, “heap-
allocated memory must be initialized immediately after it is created,” the analysis
naturally subsumes this common case.

Our next example uses not-NULL types:

void f(int *x, int @y, int b) {

if(b) {

x = y;

y = x;

*y = *x;

}

y = x; // illegal

*y = *x; // illegal

}



165

In the body of the if-statement, we can assign y to x because int* is a subtype
of int@; it is always safe to treat a value of the latter as a value of the former.
Moreover, the flow information after the assignment notes that x contains all@
instead of all∗. After the if-statement, these assignments may not have occurred
so both assignments are illegal.

This more interesting example uses a run-time test to determine whether a
pointer is NULL.

int f(int *x) {

if(x)

return *x;

else

return 42;

}

We can refine the abstract value of x after the test because function parameters
are initially unescaped.

The function f is a suitable auxiliary function for programmers that want to
dereference int* pointers without concern for compile-time assurances or perfor-
mance. If all programmers had these desires, the compiler could simply insert
implicit checks before every memory dereference. Instead, programmers can safely
avoid redundant checks, as this example shows:

struct List<α> { α hd; struct List<α> * tl; };

int length(struct List<α> * lst) {

int ans=0;

for(; lst != NULL; lst = lst->tl) ++ans;

return ans;

}

Before reading lst->tl, we need not check whether lst is NULL because on every
control-flow path to the dereference, the test lst != NULL has succeeded.

Finally, the must points-to information allows simple copies like the following:

struct Pr { int *x; int *y; };

struct Pr* f(int *a, int *b) {

struct Pr* ans = malloc(sizeof(struct Pr));

int ** q = &ans->x;

struct Pr* z = ans;

*q = a;

z->y = b;

return ans;

}



166

The point is that must points-to information captures certain notions of aliasing.
For example, because ans points to the allocated memory, &ans->x points to the
memory’s first field, so the initialization of q makes q point to the first field.
Therefore, *q=a initializes the first field. Such convoluted code may not deserve
specific support, but it is a by-product of a uniform set of rules not subject to
syntactic peculiarities.

6.3.4 Unsupported Idioms

This section focuses on conservatism arising from aliasing, path-insensitivity, lack
of interprocedural support, and (most importantly) lack of array support.

Aliasing and Path-Insensitivity: First, despite using must points-to informa-
tion, the analysis still treats pointers quite conservatively. This conservatism often
arises with code like the following:

void f(int *@x) {

if(*x != NULL)

**x = 123; // safe but rejected

}

We reject this program because x has abstract rvalue all@, so the analysis does
not reason precisely about *x. Although this code is safe, similar examples are not
because of aliasing:

void f(int *@x, int *@y) {

if(*x != NULL) {

*y = NULL;

**x = 123; // unsafe if x==y

}

}

Even an intervening function call is problematic because *x might refer to a global
variable.

It is also possible not to know all aliases of a local variable:

void f(int b) {

int *x;

int **y;

if(b)

y = &x;

s // rejected because uninitialized memory escapes

}
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Because the analysis is path-insensitive, the flow information for analyzing s cannot
know exactly the aliases to x. Therefore, the analysis rejects this program because
x “escapes” before it is initialized.

Another possibility is to allow escaped uninitialized data. We could add an
abstract rvalue to express that y points to uninitialized data without known exactly
where it points. Assigning through y with initialized data could change y to be
initialized. The Cyclone implementation used to have this extension, but the
complexity does not seem worthwhile.

Path-insensitivity is not the only culprit for local variables escaping. If we
assign &x to an unknown location (e.g., *y if we do not know exactly where y

points), then x escapes. Also, if we pass &x to a function, then x escapes because
the analysis is intraprocedural.

To dereference a possibly-NULL pointer in an escaped location, it is necessary
to copy the pointer to an unescaped location and then test it:

void f(int *@x) {

int *y = *x;

if(y != NULL)

*y = 123;

}

Copying is necessary so that an intervening assignment to the escaped location
cannot compromise soundness. Making a copy is a well-known idiom for defensive
programming; it is encouraging that the analysis enforces using it.

Path-insensitivity introduces approximations beyond causing locations to es-
cape in the sense described above. The canonical example is data correlation
between two if-statements, as in this example:

int f(int b, int *x) {

if(b && x==NULL) return 0;

if(b) return *x; // safe but rejected

return 0;

}

It is not possible that *x dereferences NULL in this example, but the analysis rejects
it because after the first if-statement, x might be NULL.

Interprocedural Idioms: Except for the extension described in Section 6.3.7,
we do not allow passing uninitialized data to functions. Even this extension cap-
tures only the simplest such safe idioms.

As for NULL pointers, our only support for interprocedural idioms is τ@ and
letting it be a subtype of τ∗. This subtyping does allow subtype polymorphism:
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A function taking a parameter of type τ∗ can operate over data of type τ@. In
preceding chapters, we provided parametric polymorphism for features such as
types, region names, and lock names. Indeed, subtype polymorphism has some
weaknesses, as this example demonstrates:

int* f(int *p) {

if(p != NULL)

putc(*p);

return p;

}

With “nullability polymorphism,” we could express that the return type could be
NULL if and only if the parameter could be. This equality lets callers assume the
result is not NULL when the parameter is not NULL. Adding nullability polymor-
phism would create a more uniform type system, but it is unclear if the feature is
necessary in practice.

Arrays: The shortcomings described so far are the more interesting ones from a
technical point of view, but the most serious limitations in practice concern arrays.
In short, arrays must be initialized when they are created and an array element has
abstract value all∗ unless it has some type τ@. We do allow delaying the initial-
ization of pointers to arrays; when they are initialized, they will refer to initialized
arrays. To make initialization more palatable, Cyclone supports “comprehensions”
(as in the example below and in C99 [107, 123]) and the argument to new can be
an initializer. As Chapter 7 explains, the types for arrays and pointers to arrays
include the size of the array. This silly example creates several arrays:

int f(int *x, int b) {

int * arr1[37] = {for i < 37: x};

int * arr2[23] = {for i < 23: arr1[i]};

int **{23} p;

if(b)

p = arr2;

else

p = new {for i < 23: x};

return p[14];

}

The first two declarations create stack-allocated arrays that are initialized with
comprehensions. Within the body of the comprehension, a variable (i in our
example) is bound to the index being initialized, so the second comprehension
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copies a prefix of arr1 into arr2. Comprehensions are often more convenient
than initializers of the form {e0,...,en}, and Cyclone prohibits omitting an array
initializer. In C it is common to omit the initializer and use a for-loop (or a more
complicated idiom) to initialize the array. It is also common to use malloc to
create an array, which the analysis cannot support. The example also shows that
pointers to arrays, such as p, can omit initializers.

Extending the flow analysis to reason about array indices in a useful and under-
standable way is difficult. If all index expressions (i.e., e2 in e1[e2]) were compile-
time constants, we could treat arrays just like struct values, but then there would
be no need for arrays in our language. Allowing even slightly more complicated
index expressions for uninitialized arrays is difficult. Consider this example:

int x[23];

for(int i=0; i < 23; ++i)

x[i] = 37;

s

To conclude x is initialized before s, we need the correct loop invariant. Specifically,
before entering the loop body, elements 0 . . . (i − 1) are initialized. Because the
only control-flow path to s is from the test expression when i ≥ 23, the loop
invariant implies x is initialized. Automatic synthesis of such invariants for loops
requires the analysis to incorporate a sound arithmetic. This dissertation does not
investigate such extensions further. Instead, we resort to comprehensions, a special
language construct that makes it almost trivial to ensure an array is initialized.

6.3.5 Example: Iterative List Copying

Consider this code for copying a list. (The syntax new List(e1,e2) heap-allocates
a struct List and initializes the hd and tl fields to e1 and e2, respectively.)

struct L { int hd; struct L *tl; };

struct L * copy(struct L * x) {

struct L *result, *prev; // line 1

if (x == NULL) return NULL; // line 2

result = new List(x->hd,NULL); // line 3

prev = result; // line 4

for (x=x->tl; x != NULL; x=x->tl) { // line 5

prev->tl = new List(x->hd,NULL); // line 6

prev = prev->tl; // line 7

} // line 8

return result; // line 9

}
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This example is not contrived. A polymorphic version is part of Cyclone’s list
library. It was written before Cyclone had support for static detection of NULL-
pointer dereferences.

The analysis allows the dereferences of x (lines 3, 5, and 6) because they al-
ways follow explicit tests for NULL (lines 2 and 5) and there are no intervening
assignments to x. More interestingly, the analysis does not allow the dereferences
of prev (lines 6 and 7) without inserting implicit checks. We now describe how
the iterative analysis reaches this conservative conclusion.

Let the allocation sites on lines 3 and 6 have names a3 and a6, respectively.
The abstract state (typing context) after analyzing line 4 maps a3.hd and a3.tl

to all∗ and prev and result to &a3. Therefore, after analyzing the loop body
for the first time, the abstract state after line 7 maps a3.tl and prev to &a6 and
result to &a3. (It also maps a6.hd and a6.tl to all∗.) We must iterate because
the abstract rvalues for prev before and after the loop are incomparable.

To join the two abstract states, we make prev map to all@. (Doing so requires
that the fields for a3 and a6 escape, so a3.tl maps to all@ in the joined state.)
On the second iteration, the left-hand-side of the assignment on line 6 cannot
dereference NULL (because prev maps to all@), but we are assigning &a6 to an
unknown location. Similarly, on line 7 the right-hand-side evaluates to the contents
of an unknown location. Because prev->tl has type struct L*, the resulting
abstract rvalue is all∗. So after the assignment, prev maps to all∗. Therefore,
we must iterate again and consider both dereferences of prev potentially unsafe.

We have explained why the analysis rejects this code. The code is safe, be we
can see why the analysis should reject this code: Suppose we inserted a function
call f(result) between lines 6 and 7. This function could make prev->tl on line
7 evaluate to NULL (by using result to remove the last element of the list).

The following change allows the analysis to accept the function:

struct L * copy(struct L * x) {

struct L *result, *prev; // line 1

if (x == NULL) return NULL; // line 2

result = new List(x->hd,NULL); // line 3

prev = result; // line 4

for (x=x->tl; x != NULL; x=x->tl) { // line 5

struct L *tmp = new List(x->hd,NULL);

prev->tl = tmp; // line 6

prev = tmp; // line 7

} // line 8

return result; // line 9

}
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For the analysis, the difference is that the right-hand-side of line 7 on the second
iteration abstractly evaluates to all@ instead of all∗. Intuitively, using tmp

eliminates an implicit assumption that an escaped location is not mutated between
lines 6 and 7.

6.3.6 Example: Cyclic Lists

We can use this struct type to implement nonempty doubly-linked cyclic lists of
integers (where the “last” list element points to the “first” element):

struct CLst {

int val;

struct CLst @ prev;

struct CLst @ next;

};

Because the next and prev fields cannot be NULL, code that traverses lists never
needs to check for NULL. Functions for combining two cyclic lists and inserting a
new element in a cyclic list are straightforward:

void append(struct CLst @lst1, struct CLst @lst2) {

struct CLst @ n = lst1->next;

struct CLst @ p = lst2->prev;

lst1->next = lst2;

lst2->prev = lst1;

p->next = n;

n->prev = p;

}

void insert(struct CLst @lst, int v) {

struct CLst @ p = malloc(sizeof(struct CLst));

p->val = v;

p->prev = lst->prev;

p->next = lst;

lst->prev = p;

p->prev->next = p;

}

The interesting function is the one that creates a new single-element list:
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struct CLst @ make(int v) {

struct CLst @ ans = malloc(sizeof(struct CLst));

ans->val = v;

ans->prev = ans;

ans->next = ans;

return ans;

}

Must points-to information is essential for accepting this function. Suppose our
abstract rvalues did not include &ans. Now consider the assignment to ans->prev.
The only remaining sound abstract rvalue for the right-hand side is none. Adding
abstract rvalue describing pointers to partially initialized values does not help:
ans->prev=ans makes ans->prev point to a value with an initialized prev field
only because of aliasing.

This cyclic initialization problem is fairly well-known in the ML community. In
ML, there is no way to create a cyclic list as defined above. Instead, it is necessary
to use a datatype (i.e., make the next and prev fields possibly NULL) in order to
create an initial cycle. Because the ML type system has no flow-sensitivity, every
use of the fields must check that they refer to other list elements.

An alternative to flow-sensitive static checking is a special term form for cre-
ating and initializing cyclic data.

6.3.7 Constructor Functions

Intraprocedural analysis cannot support the idiom in which a caller passes a pointer
to uninitialized data that the callee initializes. If the callee is f, we would like to
allow f(&x) even if x is uninitialized. Furthermore, we would like to assume x

is initialized after the call. I have implemented a somewhat ad hoc extension to
Cyclone to support this idiom. (Although this idiom is common, it is unnecessary.
We could change f to return an initialized object and replace f(&x) with x=f().)

Because this idiom makes different interprocedural assumptions than other
calls, we require an explicit annotation that changes the callee’s type. The at-
tribute initializes(i) indicates that a function initializes its ith parameter. We
can use this attribute only for parameters with types of the form τ@. This attribute
changes how we analyze the caller and the callee.

For the callee, a parameter that it initializes starts with abstract value &x
for some fresh x. Before any reachable control transfer to the caller (a return

statement or the end of a function with return type void), we require x has ab-
stract rvalue all∗. This level of indirection is necessary because functions like the
following must not type-check:
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void f(int @p) attribute(initializes(1)) {

int @ q = new 0;

p = q;

*p = 37; // does not initialize the correct memory

}

For the caller, it appears sound to allow abstract rvalues of the form &x or
all@ for initialized parameters. For the former, we know x is initialized after the
call. For the latter, the reinitialization is harmless.

Unfortunately, the typing rules just described have a subtle unsoundness: The
callee assumes each parameter it initializes points to distinct memory. (It chooses
a fresh variable name for each one.) Therefore, if a function initializes multiple
arguments, we must forbid callers from passing the same location for these argu-
ments. In general, the callee assumes x is unescaped, so we must enforce this fact
at the call site. Therefore, we do not allow all@ for such parameters. In fact, we
require distinct unescaped locations.

This support for constructor functions is limited. It does not support the
idiom where the callee can return a value indicating whether or not it initialized
a parameter. Another limitation is that callers cannot pass NULL for initialized
parameters (to indicate they do not want a value). Supporting this idiom would
require an abstract rvalue indicating, “NULL or &x.” Furthermore, it is unclear
how to express what the abstract state must be before returning to the caller.

6.4 Formalism

This section develops an abstract machine for which uninitialized data and NULL-
pointer dereferences make the machine stuck. A static semantics captures the key
ideas of this chapter’s flow analysis. Appendix D proves that programs well-formed
according to this (unconventional) type system do not get stuck when they execute.

The greatest difference between the actual flow analysis and this chapter’s
formalization is that the formalism takes a declarative approach. It is neither
syntax-directed nor iterative. As presented, a “type checker” would have to “guess”
how to make abstract states more approximate to check loops. Nonetheless, it
assigns an abstract state to each program point using flow-sensitive information.
In Section 6.4.4, we sketch how to adjust the type system to make it more like a
conventional flow analysis. Section 6.5 discusses advantages and disadvantages of
formalizing the analysis as a type system.
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types τ ::= int | τ∗ | τ@
terms s ::= e | return | τ x | s; s | if e s s | while e s

e ::= i | ? | x | &e | ∗e | e=e | junk | e‖e
values v ::= i | &x | junk
heaps H ::= · | H, x 7→ v

variable sets V ::= · | V, x
states P ::= V ; H; s

abstract rvalues r ::= &x | 0 | all@ | all∗ | none
abstract lvalues ` ::= x | ?

escapednesses k ::= unesc | esc
type contexts Γ ::= · | Γ, x:τ, k, r

renamings M ::= · | M, x 7→ x

Figure 6.1: Chapter 6 Formal Syntax

6.4.1 Syntax

Figure 6.1 presents the syntax for our formal language. Except for formalizing
NULL pointers and uninitialized memory, it is much simpler than the formalisms
in other chapters. In particular, there are no functions and no quantified types.
Statements include expressions executed for their effect (e), a return statement
that halts the program (return), memory allocation (τ x), sequential composition
(s; s), conditionals (if e s s), and loops (while e s). Allocation is like a variable
declaration in C except that the memory lives forever. The memory initially holds
junk; it must be initialized by an assignment expression. Because the variable can
escape its scope, even in the static semantics, there is no reason to bind it in some
enclosing statement. Rather, it is bound in the statement’s continuation, e.g., s in
τ x; s, which is just sequential composition.

Expressions include integer constants (i), a nondeterministic form for producing
an unknown integer (?), variables (x), pointer creation (&e), pointer dereference
(∗e), assignment (e=e), uninitialized data (junk), and a construct for evaluating
expressions in an unspecified order (e‖e). Including ? ensures no analysis can
fully determine program behavior even though we have neither input nor func-
tions. As in preceding chapters, we distinguish left-expressions (e in &e and e=e′)
from right-expressions. The evaluation order for e=e is unspecified as for e‖e,
but the latter treats both expressions as right-expressions. As in conventional C
implementations, we use the constant 0 for NULL pointers.

A heap maps variables to values. The junk value can have any type, but the
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If ι is an element of any syntax class defined in Figure 6.1, then rename(M, ι) is
identical to ι except that for each x ∈ Dom(M), every x contained in ι is replaced
with M(x).

V̀ e : · V̀ return : · V̀ τ x : ·, x

V̀ s1 : V1 V̀ s2 : V2 V1 ∩ V2 = ∅
V̀ s1; s2 : V1 ∪ V2

V̀ if e s1 s2 : V1 ∪ V2

V̀ s : V

V̀ while e s : V

V ẁf ·
y 6∈ V V, y ẁf M

V ẁf M, x 7→ y

Figure 6.2: Chapter 6 Semantics, Bindings and Renaming

static semantics ensures no well-typed program tries to dereference junk or use it
for the test in a conditional. We consider heaps implicitly reorderable and treat
them as partial maps as convenient.

We do not formalize aggregates, recursive types, or malloc. It is straightfor-
ward to do so, but such features significantly complicate the language and the
soundness proof in unilluminating ways. (Section 6.4.3 explains one interesting
complication malloc causes.)

Without aggregates or recursive types, the syntax for types is extremely simple.
A pointer’s type can indicate a not-NULL invariant (τ@), else it has the form τ∗.
As in preceding chapters, typing contexts (Γ) map variables to types. However,
typing contexts also have flow-sensitive information described by abstract rvalues
(r) and escapednesses (k). We consider typing contexts implicitly reorderable and
treat them as partial maps as convenient.

The typing judgment for right-expressions produces an abstract rvalue that
approximates every value to which the expression might evaluate at run-time.
Briefly, &x describes pointers that must point to x; 0 describes only 0; all@
describes values that are not 0 and from which no sequence of pointer dereferences
can produce junk; all∗ describes values that may be 0 but from which junk is
unreachable; and none describes all values, including junk.

Similarly, the typing judgment for left-expressions produces an abstract lvalue
that approximates the variable to which the expression might evaluate at run-
time. The x form means the expression must evaluate to x. Examples include the
expression x and—assuming the typing context ensures y has abstract rvalue &x—
the expression ∗y. The other form is ?, which approximates all left-expressions.

Finally, if Γ indicates that x has escapedness unesc, then all pointers to x
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are known. More precisely, if the heap-typing judgment gives heap H the type Γ
and H(y) = &x, then the abstract rvalue for y in Γ must be &x. The subtyping
judgment on typing contexts enforces this property. On the other hand, if x has
escapedness esc, then its abstract rvalue must be all∗ (or all@ if its type is some
τ@). The well-formedness judgment on typing contexts enforces this property.

Because the formal type system tracks flow-sensitive information in a way that
lets variables appear where a conventional type system would consider them out
of scope, we do not allow implicit α-conversion.2 Instead, the judgment V̀ s :
V ensures all allocations in s use distinct variables; V contains precisely these
variables. For source programs, this property is straightforward, and the actual
compiler achieves it internally by giving every allocation site a unique name. But
in our formal dynamic semantics, it means the “unrolling” of a loop must change
the bindings in one copy of the loop body. To do so, the machine state includes a
set V of “used” names and the loop rule uses a mapping M to do the renaming.
A mapping M is well-formed with respect to V (written V ẁf M) if M is injective
and does not map variables to elements of V . Figure 6.2 defines V̀ s : V and
V ẁf M .

Although the formal semantics must carefully address these renaming issues,
they are technical distractions that do not help explain the flow analysis. Readers
should consider ignoring the uses of variable sets and just accept that the formalism
handles variable clashes and systematic renaming.

6.4.2 Dynamic Semantics

The dynamic semantics is straightforward, so only a few interesting facts deserve
mention. Rule DS6.1 allocates memory by extending the heap with a variable
mapping to junk. Given return; s, the statement s is unreachable (see DS6.3), so s
is irrelevant. Rules DS6.4 and DS6.5 indicate that the machine becomes stuck if a
test expression is uninitialized. Rule DS6.6 uses renaming to ensure that the two
copies of the loop body allocate different locations. The new bindings become part
of the global set of “used” variables. In previous chapters, implicit α-conversion
accomplished the same goal.

Rules DR6.6 and DR6.7 formalize the unspecified evaluation order for e=e and
e‖e. In particular, they do not require that “all of one” expression is evaluated
before “all of the other.” For example, given (x=0‖x=1)‖x=2, the heap could map
x to 1, then to 0, and then to 2. Section 6.2 explains why this leniency would be
much more problematic if our formal language had “sequential” expressions (such

2In actual Cyclone, more traditional type-checking precedes flow analysis, so strange scoping
does not exist.
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V ; H; (τ x)
s→ V ; H, x 7→ junk; 0

DS6.1

V ; H; (v; s)
s→ V ; H; s

DS6.2
V ; H; (return; s)

s→ V ; H; return
DS6.3

V ; H; if 0 s1 s2
s→ V ; H; s2

DS6.4
v 6= junk v 6= 0

V ; H; if v s1 s2
s→ V ; H; s1

DS6.5

V̀ s : V0 Dom(M) = V0 V ẁf M s′ = rename(M, s) V̀ s′ : V1

V ; H; while e s
s→ V ∪ V1; H; if e (s′; while e s) 0

DS6.6

H; e
r→ H ′; e′

V ; H; e
s→ V ; H ′; e′

V ; H; if e s1 s2
s→ V ; H ′; if e′ s1 s2

DS6.7 V ; H; s
s→ V ′; H ′; s′

V ; H; (s; s2)
s→ V ′; H ′; (s′; s2)

DS6.8

Figure 6.3: Chapter 6 Dynamic Semantics, Statements

as C’s &&, ||, and comma operator). Rule DR6.5 makes the result of e1‖e2 be the
result of e2. The semantics of expressions does not refer to V because expressions
never allocate.

6.4.3 Static Semantics

Figure 6.5 defines several well-formedness judgments. Well-formed abstract lvalues
must mention only variables in some assumed Γ. Well-formed abstract rvalues have
the same restriction as well as restrictions regarding escapedness and types. If a
variable has escapedness esc, then its abstract rvalue is fixed: it must be all∗ (or
all@ if its type is τ@). This restriction is key for ensuring type preservation under
assignment to escaped locations. We extend these restrictions to typing contexts
with Γ ẁf Γ′. A typing context Γ is well-formed and closed if Γ ẁf Γ. Given just
Γ, it is not possible to enforce that the escapedness information is sound, i.e., that
there are no unknown pointers to variables with escapedness unesc. Therefore,
the abstract-ordering judgments enforce this property.

The judgment V1; V2 ẁf Γ is used as a technical restriction on what typing
contexts the static semantics can “make up” for unreachable code. Type-checking
unreachable code is rather pathological, but it is important for proving type preser-
vation. It is technically convenient (but unnecessary for safety) to require the
“made up” Γ to include every variable in V2 and no variable not in V1. Rules SS6.2
and ST6.1–3 use this judgment. In the actual flow-analysis algorithm, we do not
make up typing contexts.
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H; x
r→ H; H(x)

DR6.1
H, x 7→ v′; x=v

r→ H, x 7→ v; v
DR6.2

H; ∗&x
r→ H; x

DR6.3
H; ?

r→ H; i
DR6.4

H; v1‖v2
r→ H; v2

DR6.5

H; e
r→ H ′; e′

H; ∗e r→ H ′; ∗e′
H; e1‖e

r→ H ′; e1‖e′
H; e‖e2

r→ H ′; e′‖e2

H; e1=e
r→ H ′; e1=e′

DR6.6
H; e

l→ H ′; e′

H; &e
r→ H ′; &e′

H; e=e2
r→ H ′; e′=e2

DR6.7

H; ∗&x
l→ H; x

DL6.1
H; e

r→ H ′; e′

H; ∗e l→ H ′; ∗e′
DL6.2

Figure 6.4: Chapter 6 Dynamic Semantics, Expressions

x ∈ Dom(Γ)

Γ ẁf x Γ ẁf ?

Γ ẁf int, k,all∗
Γ ẁf int,unesc,all@
Γ ẁf int,unesc, 0
Γ ẁf int,unesc,none

Γ ẁf τ∗, k,all∗
Γ ẁf τ∗,unesc,all@
Γ ẁf τ∗,unesc, 0
Γ ẁf τ∗,unesc,none

Γ ẁf τ@, k,all@
Γ ẁf τ@,unesc,none

x ∈ Dom(Γ)

Γ ẁf τ∗,unesc, &x
Γ ẁf τ@,unesc, &x

Γ ẁf ·
Γ ẁf Γ′ Γ ẁf τ, k, r

Γ ẁf Γ′, x:τ, k, r

Γ ẁf Γ V2 ⊆ Dom(Γ) ⊆ V1 ∪ V2

V1; V2 ẁf Γ

Figure 6.5: Chapter 6 Well-Formedness



179

` k ≤ k ` unesc ≤ esc

Γ ` ` ≤ ` Γ, x:τ,esc, r ` x ≤ ?

Γ ` r ≤ r
Γ ` r1 ≤ r2 Γ ` r2 ≤ r3

Γ ` r1 ≤ r3

Γ, x:τ,esc, r ` &x ≤ all@

Γ ` 0 ≤ all∗ Γ ` all@ ≤ all∗ Γ ` r ≤ none

Γ ` · ≤ ·
Γ ` Γ1 ≤ Γ2 ` k1 ≤ k2 Γ ` r1 ≤ r2

Γ ` Γ1, x:τ, k1, r1 ≤ Γ2, x:τ, k2, r2

Figure 6.6: Chapter 6 Abstract Ordering

Γ r̀typ e : τ, r, Γ′

V ; Γ s̀typ e : Γ′ SS6.1
V ; Dom(Γ) ẁf Γ′

V ; Γ s̀typ return : Γ′ SS6.2

V ; Γ s̀typ s1 : Γ′′ V − V1; Γ
′′

s̀typ s2 : Γ′
V̀ s1 : V1

V ; Γ s̀typ s1; s2 : Γ′ SS6.3

V ; Γ t̀st e : Γ1; Γ2 V ; Γ1 s̀typ s : Γ

V ; Γ s̀typ while e s : Γ2
SS6.4

V ; Γ t̀st e : Γ1; Γ2 V ; Γ1 s̀typ s1 : Γ′ V ; Γ2 s̀typ s2 : Γ′

V ; Γ s̀typ if e s1 s2 : Γ′ SS6.5

V ; Γ s̀typ τ x : Γ, x:τ,unesc,none
SS6.6

V ; Γ0 s̀typ s : Γ1 Γ2 ` Γ1 ≤ Γ2 Γ2 ẁf Γ2

V ; Γ0 s̀typ s : Γ2
SS6.7

V ; Γ0 s̀typ s : Γ1Γ2 Γ2 ẁf Γ2

V ; Γ0 s̀typ s : Γ2
SS6.8

Figure 6.7: Chapter 6 Typing, Statements
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Γ r̀typ junk :τ ,none, Γ
SR6.1

Γ r̀typ 0 : τ∗, 0, Γ SR6.2
Γ r̀typ 0 : int, 0, Γ

SR6.3

i 6= 0

Γ r̀typ i : int,all@, Γ
SR6.4

Γ r̀typ ? : int,all∗, Γ SR6.5
Γ(x) = τ, k, r

Γ r̀typ x : τ, r, Γ
SR6.6

Γ l̀typ e : τ, x, Γ′

Γ r̀typ &e : τ@, &x, Γ′ SR6.7A
Γ l̀typ e : τ, ?, Γ′

Γ r̀typ &e : τ@,all@, Γ′ SR6.7B

Γ r̀typ e : τ∗, &x, Γ′ Γ′(x) = τ, k, r

Γ r̀typ ∗e : τ, r, Γ′ SR6.8A
Γ r̀typ e : τ@∗,all@, Γ′

Γ r̀typ ∗e : τ@,all@, Γ′ SR6.8B

Γ r̀typ e : τ∗∗,all@, Γ′

Γ r̀typ ∗e : τ∗,all∗, Γ′ SR6.8C
Γ r̀typ e : int∗,all@, Γ′

Γ r̀typ ∗e : int,all∗, Γ′ SR6.8D

Γ r̀typ e1 : τ ′, r′, Γ Γ r̀typ e2 : τ, r, Γ

Γ r̀typ e1‖e2 : τ, r, Γ
SR6.9

Γ l̀typ e1 : τ1, `, Γ
Γ r̀typ e2 : τ2, r, Γ
Γ àval τ1, `, r, Γ

′

àtyp τ1, τ2, r

Γ r̀typ e1=e2 : τ2, r, Γ
′ SR6.10

àtyp τ, τ, r

r 6= none

àtyp τ@, τ∗, r

Γ ẁf τ,esc, r

Γ àval τ, ?, r, Γ

Γ, x:τ, k, r ẁf τ, k, r

Γ, x:τ, k, r′ àval τ, x, r, Γ, x:τ, k, r

Γ r̀typ e : τ@, r, Γ′

Γ r̀typ e : τ∗, r, Γ′ SR6.11

Γ0 r̀typ e : τ, r, Γ1

Γ2 ` Γ1 ≤ Γ2

Γ2 ẁf Γ2

Γ0 r̀typ e : τ, r, Γ2
SR6.12

Γ0 r̀typ e : τ, r′, Γ1

Γ1 ` r′ ≤ r

Γ0 r̀typ e : τ, r, Γ1
SR6.13

Γ(x) = τ, k, r

Γ l̀typ x : τ, x, Γ
SL6.1

Γ r̀typ e : τ∗, &x, Γ′

Γ l̀typ ∗e : τ, x, Γ′ SL6.2A
Γ r̀typ e : τ∗,all@, Γ′

Γ l̀typ ∗e : τ, ?, Γ′ SL6.2B

Γ0 l̀typ e : τ, `, Γ1

Γ2 ` Γ1 ≤ Γ2

Γ2 ẁf Γ2

Γ0 l̀typ e : τ, `, Γ2
SL6.3

Γ0 l̀typ e : τ, `′, Γ1

Γ1 ` `′ ≤ `

Γ0 l̀typ e : τ, `, Γ1
SL6.4

Figure 6.8: Chapter 6 Typing, Expressions
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Γ r̀typ e : τ, 0, Γ2 V ; Dom(Γ) ẁf Γ1

V ; Γ t̀st e : Γ1; Γ2
ST6.1

Γ r̀typ e : τ, &x, Γ1 V ; Dom(Γ) ẁf Γ2

V ; Γ t̀st e : Γ1; Γ2
ST6.2

Γ r̀typ e : τ,all@, Γ1 V ; Dom(Γ) ẁf Γ2

V ; Γ t̀st e : Γ1; Γ2
ST6.3

Γ l̀typ e : τ, x, Γ′, x:τ,unesc,all∗
V ; Γ t̀st e : (Γ′, x:τ,unesc,all@); (Γ′, x:τ,unesc, 0)

ST6.4

Γ r̀typ e : τ,all∗, Γ1

V ; Γ t̀st e : Γ1; Γ1
ST6.5

Figure 6.9: Chapter 6 Typing, Tests

Γ h̀typ · : ·
Γ h̀typ H : Γ′ Γ r̀typ v : τ, r, Γ

Γ h̀typ H, x 7→ v : Γ′, x:τ, k, r

Γ h̀typ H : Γ
V ′; Γ s̀typ s : Γ′

Γ ẁf Γ

V̀ s : V ′′ V ′′ ⊆ V ′

V ′ ∩Dom(H) = ∅
V ⊇ V ′ ∪Dom(H)

p̀rog V ; H; s : Γ′

Figure 6.10: Chapter 6 Typing, Program States
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Figure 6.6 defines the abstract-ordering judgments, which formalize how we can
lose information by choosing more approximate flow information. First, ` k1 ≤ k2

indicates that locations can escape (though the associated abstract rvalue may
need to change for the result to be well-formed). The judgment Γ ` `1 ≤ `2 lets
us forget a variable (which is a left-value), but only if x has escaped. Similarly,
Γ ` r1 ≤ r2 lets us forget that a value is initialized and forget that a value is
or is not 0. We can forget must points-to information, but only if the pointed-to
location has escaped. The last judgment has the form Γ ` Γ1 ≤ Γ2, indicating
that under the assumptions in Γ, we can approximate Γ1 with Γ2. The rules let
us extend the other ordering judgments point-wise through Γ1, but they do not
imply that Γ2 is well-formed.

Statements: Figure 6.7 presents the typing rules for statements. Because typing
contexts describe flow-sensitive information, statements (and expressions) type-
check under one typing context and produce another typing context. In V ; Γ s̀typ

s : Γ′, the resulting context is Γ′. Rule SS6.1 uses the typing judgment for right-
expressions, explained below. Rule SS6.2 formalizes the notion that there is no
control flow after a return, so it is sound to produce any Γ′. We impose technical
restrictions on Γ′ that simplify the safety proof.

Rules SS6.3–SS6.5 demonstrate how we reuse typing contexts to describe con-
trol flow. For s1; s2, control flows from s1 to s2, so SS6.3 uses the same Γ′′ for the
context produced by s1 and the context assumed by s2. For the test expressions
in conditionals and loops, we use a typing judgment (explained below) that pro-
duces two typing contexts, one for when the test is not 0 and one for when it is
0. In rule SS6.5, we use one context for s1 and the other for s2. Both s1 and s2

must produce the same result context. (Rules SS6.7 and SS6.8 provides enough
subsumption that equality is not overly restrictive.) For rule SS6.4, the resulting
type context is the same as the false context from the test because only this control
flow terminates the loop.

The strange variable sets in SS6.3 ensure s2 does not make up variables that
s1 might allocate. We particularly do want to allow this behavior in SS6.5 so that
the typing context produced for statements like if e (τ x) return can mention x.

Rule SS6.6 formalizes the fact that memory allocation produces fresh, unini-
tialized memory for which all aliases are known. It does not apply if x ∈ Dom(Γ).
(This treatment differs from the algorithm in Section 6.2, which keeps all alloca-
tion sites in the abstract state. Extending Γ is simpler in a declarative system.
The implementation also extends abstract states in this way, but is equivalent to
keeping all locations in all abstract states.)

The subsumption rule SS6.7 lets us produce a more conservative typing context.
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However, this rule does not let us forget that bindings exist, which is necessary if a
loop body or conditional branch allocates memory. Rule SS6.8 lets us restrict the
domain of Γ′, if the result is well-formed. It is tempting to make domain restriction
part of abstract ordering, such as with this rule:

Γ ` Γ1 ≤ Γ2

Γ ` Γ1, x:τ, k, r ≤ Γ2

However, if Γ1 is x:τ@,unesc, &y, y:τ,unesc,all∗ and Γ2 is x:τ@,unesc,all@,
we cannot show Γ2 ` Γ1 ≤ Γ2 because y 6∈ Dom(Γ2). We lose no expressive power
by restricting the domain only after using more approximate abstract rvalues and
escapednesses.

Expressions: Figure 6.8 presents two interdependent typing judgments for ex-
pressions. The judgment for right-expressions has the form Γ r̀typ e : τ, r, Γ′ because
a right-expression has a type, an abstract rvalue approximating all values to which
e might evaluate, and an effect such that given Γ, e produces Γ′. Similarly, the
typing judgment for left-expressions concludes a type, an abstract lvalue, and a
typing context. Although it appears that the rules never make explicit use of the
escapedness information in typing contexts, well-formedness and abstract-ordering
hypotheses use this information. We have more rules than in conventional type
systems because the appropriate rule may depend on various abstract rvalues and
not just the syntax of the term being type-checked.

Rule SR6.1–SR6.6 type-check effect-free expressions, so they produce the same
Γ they consume. The constant 0 is an integer and a possibly-NULL pointer, so we
have two rules for it. In both cases, the abstract rvalue is 0. A nonzero integer has
type int and abstract rvalue all@. Similarly, ? evaluates to an initialized integer
that may be 0. For SR6.6, the type and abstract rvalue is in Γ.

Rules SR6.6A and SR6.7B type-check expressions of the form &e. Such ex-
pressions evaluate to (nonzero) pointers. If e must left-evaluate to some location
x, then &e must evaluate to &x. Otherwise, the typing rules for left-expressions
ensure all@ is appropriate.

The rules for ∗e (SR6.8A–D) let us exploit a range of information from type-
checking e. The most information we could we have is that e points to some
location x, in which case Γ′(x) holds an appropriate abstract rvalue. If we do not
know where e points, then we require that e is neither junk nor 0, so we require
that its abstract rvalue is all@. The abstract rvalue of ∗e then depends on the
type of e: It might be 0 (as all∗ indicates) unless its type indicates otherwise
(rule SR6.8B). We do not need rules where the type of e has the form τ ′@ because
rule SR6.11 provides the appropriate subtyping.
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The remaining expression forms are e1‖e2 and e1=e2, for which the dynamic
semantics does not specify the order of evaluation. For reasons we explain in
Section 6.2, it is sound to require that neither e1 nor e2 affects the abstract flow
information (but it would not be if we had sequential expressions). Therefore, we
require not only that e1 and e2 type-check, but that they produce the same Γ they
consume. For rule SR6.9, this technique is the only interesting feature.

For SR6.10, we must ensure the assignment is safe and use it to produce the
resulting flow information. We use the auxiliary àtyp and àval judgments to avoid
having four assignment rules. The purpose of àtyp is to disallow assigning integers
to pointers or vice-versa. We allow assigning τ∗ to τ@ if the value is neither
junk nor 0 ( àval ensures the latter) and vice-versa (using rule SR6.11). If ` is ?
or some escaped x, then r must be appropriate for an escaped location, as the
well-formedness hypotheses in the àval rules enforce. For any type, there is only
one such r, so the flow information cannot actually change. If ` is some unescaped
x, then the assignment can change the flow information.

Rule SR6.10 would be too weak to support malloc because assignments of
the form e=malloc(sizeof(τ)) could not add an allocation site to the context. It
suffices to add a rule for this case because the memory allocation is safe regardless of
evaluation order. A special rule is unnecessary using the “changed sets” approach
described in Section 6.2.

Rules SR6.11–13 provide subtyping. Rule SR6.11 lets us treat nonzero point-
ers as possibly-zero pointers. Such a rule is unsound for left-expressions. Rules
SR6.12 and SR6.13 let us conclude a more approximate Γ and r respectively. Such
subsumption may be necessary for expressions with undefined evaluation order (so
that the flow information does not change) and for assignment to escaped locations
(so that the Γ produced is well-formed). Because expressions do not allocate, it
is never necessary to restrict the domain of a typing context. As a result, some
lemmas in Appendix D are simpler for expressions than for statements.

The rules for typing left-expressions are straightforward adaptations of similar
rules for right-expressions. As with right-expressions, we cannot dereference values
that might be 0 or junk. Although subsumption is not useful for source programs,
it helps establish type preservation when the abstract machine takes a step using
rule DL6.1.

Tests: The typing rules for conditionals and while loops use the judgment V ; Γ t̀st

e : Γ1; Γ2, which Figure 6.9 defines. We use the judgment to ensure Γ1 and Γ2 are
sound approximations assuming e evaluates to a nonzero value and 0, respectively.
If we can determine the zeroness of e statically, then one of Γ1 or Γ2 is irrelevant
because the statements we type-check under the context will never be executed.
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This fact explains rules ST6.1–3: One typing context is “made up.” Rule ST6.4
lets us refine the abstract rvalue for an unescaped location. The rule formalizes the
intuition that if an expression with abstract rvalue all∗ is not zero (respectively,
is zero), then it can have abstract rvalue all@ (respectively, 0). Rule ST6.5
addresses the case where the test cannot affect the flow information.

States: Finally, we type-check program states with the two judgments in Fig-
ure 6.10. The rules for type-checking heaps are what we would expect. To type-
check a program state V ; H; s, we type-check s under a context Γ that describes
H. We also require that Γ is well-formed (so escaped locations have appropriate
abstract rvalues). Although it may be possible to define an algorithm that finds
the least approximate Γ such that Γ h̀typ H : Γ (or determine that no such Γ exists),
we have no reason to do so because in practice we check only source programs.
(The same is true in earlier chapters, but there the type-checking rules for heaps
are essentially syntax-directed.)

The other hypotheses for p̀rog are technical conditions to control renaming. The
allocations in s must use distinct variables that are not already in the heap. At
run-time, the dynamic semantics uses V to avoid reusing variables, so V must
subsume variables in H and in s.

For a source program, p̀rog amounts to ensuring the program type-checks under
an empty typing context and does not have name clashes.

Summary: We have used type-theoretic techniques to specify a static semantics
that incorporates flow-sensitive information including must points-to information.
Several “tricks” deserve mentioning again. First, we express possible control flow
by using the same typing context Γ multiple times in a rule. Second, we ensure the
must points-to information is sound by allowing the flow information to determine
that some location x points to another location y only when all aliases of x are
known. Third, we use subsumption on typing contexts to specify an abstract-
ordering relationship. The subsumption rules contain the part of the type system
that does not lead directly to an algorithm. Fourth, we allow appropriate test
expressions to refine flow information. Fifth, because the analysis does little to
restrict variables’ scope, we disallow implicit α-conversion.

6.4.4 Iterative Algorithm

This section describes how the formal declarative type system differs from the
iterative flow analysis and how we might reduce the differences. Most importantly,
the formal system allows more approximate abstract states “anywhere” (see rules
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SS6.7–8, SR6.11–13, SL6.3–4) whereas the iterative analysis uses a particular join
operation only when a program point has multiple control-flow predecessors. Well-
known results in flow analysis suggest that the iterative analysis does not lose
expressive power from this restriction.

It would be straightforward to enforce a similar restriction in our formal system.
Essentially, we would remove the subsumption rules from the static semantics and
modify rules for terms with multiple control-flow predecessors to use the join oper-
ator. For loops, we need a fixpoint operator (i.e., iteration) over the join. Because
our approach to under-specified evaluation order is like assuming expressions may
execute multiple times, we would use the fixpoint operator with SR6.9 and SR6.10
too.

Instead of making up typing contexts (see SS6.2 and ST6.1–3), the iterative
algorithm produces an explicit ⊥. Adding ⊥ to our formalism is straightforward.
The essential additions are the axioms Γ ẁf ⊥, Γ ` ⊥ ≤ Γ′, V ;⊥ s̀typ e : ⊥, and
V ;⊥ t̀st e : ⊥;⊥.

We can easily dismiss other sources of nondeterminism. For tests, we can use
ST6.4 only when ST6.1–3 do not apply and ST6.5 only when ST6.1–4 do not apply.
For assigning a type to 0 or subsuming τ@ to τ∗, we recall that in the Cyclone
implementation, type-checking precedes flow analysis. This earlier compiler phase
assigns types to all expressions. This dissertation does not discuss the details of
subtyping or type inference.

One technical point does make the declarative type system more powerful than
the iterative analysis: If our join operation needs to make the abstract rvalue &x
more approximate, it always chooses all@ or all∗ and makes x escaped, failing
if x is uninitialized. Our static semantics lets us replace &x with none and leave
x unescaped. As such, our type-safety result implies a join operation more flexible
in this regard remains sound.

Although the iterative flow analysis handles unstructured control flow naturally,
it is awkward to extend our declarative system for it. The static semantics for
goto L and L: s is no problem: Our context could include a map from labels to
abstract states. If L mapped to Γ, then the abstract state at goto L would have to
approximate Γ and L: s would have to check under Γ. As expected, the formalism
“guesses” the mapping that the flow analysis discovers iteratively. However, our
dynamic semantics would require substantial modification to support goto. Local
term rewriting no longer suffices. A lower-level view of execution with an explicit
“program counter” in the machine state should suffice. Some work discussed in
Chapter 8, particularly Typed Assembly Language [157], takes this approach.



187

6.4.5 Type Safety

Appendix D proves this result:

Definition 6.1. State V ; H; s is stuck if s is not some value v, s is not return,
and there are no V ′, H ′ and s′ such that V ; H; s

s→ V ′; H ′; s′.

Theorem 6.2 (Type Safety). If V ; · s̀typ s : Γ, V̀ s : V , and V ; ·; s s→∗
V ′; H ′; s′

(where
s→∗

is the reflexive transitive closure of
s→), then V ′; H ′; s′ is not stuck.

The proof is surprisingly difficult. Omitting pairs, recursive types, sequential
expressions, and unstructured control flow from our formalism allows us to focus
on the essential properties. Because the machine cannot dereference 0 or junk, the
theorem implies we prevent such operations.

6.5 Related Work

Flow-sensitive information is a mainstay of modern compilation and program anal-
ysis. Most compiler textbooks explain how to define and implement dataflow
analyses over intermediate representations of source programs [2, 158, 8]. Such
analyses enjoy well-understood mathematical foundations that support their cor-
rectness and efficient implementation [166]. In this section, we discuss only work
related to the more unusual features of this chapter’s flow analysis. These features
include the following:

• The analysis is for a general-purpose source language and is part of the
language’s definition.

• The analysis statically prevents safety violations resulting from using unini-
tialized data and dereferencing NULL pointers.

• The analysis is for a language with under-specified evaluation order.

• The analysis incorporates must points-to information.

• The formalism for the analysis uses type-theoretic techniques even though it
describes flow-sensitive information.

Source-Language Flow Analysis The Java definition [92] requires implemen-
tations to enforce a particular compile-time intramethod flow analysis. This anal-
ysis prevents reading uninitialized local variables and prevents value-returning
methods from reaching the end of the method body. The analysis interprets test-
expressions accurately enough to accept methods like the following:
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int f1() { while(true) ; }

void f2(int z) { int x; int y; if(((x=3) == z) && (y=x)) f2(x+y); }

The widespread use of Java is evidence that a general-purpose programming
language can effectively include a conservative flow analysis in its definition. If the
analysis supports enough common idioms, then programmers have little need to
learn the specific rules. For example, they can omit initializers as they wish and
use any resulting error messages to guide the introduction of initializers. I suspect
that programmers use such interaction to gain an approximate understanding of
the analysis that satisfies their needs.

The flow analyses for Java and Cyclone are quite similar because the former
served as an inspiration and a starting point for the latter. The Java analysis is
much simpler for several reasons. First, only a method’s local variables can be
uninitialized. Object fields (including array elements) and class (static) fields are
implicitly initialized with default values (0 or NULL) before the object’s construc-
tor is called or the class is initialized, respectively. This decision avoids difficult
interactions with subclassing and the order that constructors get called.

Second, there is no address-of operator. Together with the previous reason,
this fact means there are never pointers (references) to uninitialized memory. In
Cyclone terms, the form of Java’s abstract rvalues is just all and none. Possibly-
uninitialized locations cannot escape, so we do not need escapedness. The analysis
rules for left-expressions also become much simpler: a variable x has abstract lvalue
x whereas all other left-expressions have abstract lvalue ?.

Third, Java’s analysis prohibits all uses of possibly-uninitialized locations. That
is, if x has abstract rvalue none, then x can appear only an expression of the form
x=e. Cyclone is more permissive. For example, we allow y=x so long as y is
unescaped. The abstract effect is to change the abstract rvalue in y to none. In
Java, an initialized location can never become uninitialized. In terms of Cyclone’s
formalism, the typing context that a Java expression produces is never more ap-
proximate than the typing context it consumes. Allowing y=x in Cyclone where
x may be uninitialized is not very useful. However, it is important to allow y=x
where y contains abstract rvalue all@ and x contains all∗. Such an assignment
produces a more approximate typing context.

Fourth, Java does not have goto. Unlike Cyclone, if a statement s is un-
reachable, then every statement contained in s is unreachable. Therefore, we can
conservatively determine reachability in a Java method body with one top-down
pass over the code.

Fifth, evaluation order in Java is deterministic.
It turns out that the above reasons simplify Java’s analysis so much that an

algorithmic implementation has no need to iterate. Expressions have only one exe-
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cution order, so the iterative “join approach” developed in this chapter is unneces-
sary. For statements, iteration is necessary only if a control transfer’s destination
has already been analyzed under a less approximate context than the control trans-
fer’s source. For Java, if we analyze method bodies “top to bottom,” then control
transfers to already analyzed statements can arise only from continue and reach-
ing the end of the loop body. In both cases, the source’s context is less approximate
because variables cannot become uninitialized after they are initialized.

The fact that locations stay initialized also simplifies the analysis of excep-
tion handlers. In Cyclone, it is necessary to analyze a catch-clause under every
typing context encountered in the corresponding try-body (except program points
contained in a nested exception handler). In Java, it suffices to analyze the catch-
clause under the initial typing context for the try-body.

Finally, Java does not have aggregate values (only pointers to aggregate values),
so we have no need for abstract rvalues of the form r × r. Put another way, it is
impossible to initialize part of an uninitialized variable.

Static Control NULL-Pointer Checking Unlike memory initialization, Java
always considers NULL-pointer dereferences a run-time error. Implementations may
use static analysis to omit unnecessary checks for NULL, but there is no way for
programmers to express a not-NULL invariant as with Cyclone’s τ@ types.

Several research projects have explored tools and languages that provide this
ability. ESC/Java [76] and Splint [189] provide annotations indicating that a func-
tion parameter or object field has a pointer that must never be NULL. These systems
check such assertions at compile-time, subject to the soundness restrictions de-
scribed in Chapter 8. These systems can also warn about dereferences of possibly-
NULL pointers. Because these systems are tools, there is less concern about defining
(in terms of the programming language) a precise notion of what restrictions they
enforce.

Fähndrich and Leino [67] investigate retrofitting the safe object-oriented lan-
guages Java and C#, with not-NULL types. The main complication is object fields
and array elements with not-NULL types. Object fields are initialized to NULL at
run-time. To ensure they do not remain NULL, Fähndrich and Leino propose ex-
tending the flow analysis for constructors to ensure each constructor assigns to
each of the fields. But this restriction does not suffice because the constructor can
use the object it is constructing before assigning to all the fields. (This problem is
precisely why Java initializes object fields implicitly.)

Therefore, they further distinguish the types of objects whose constructors
have not completed. For non-NULL fields of objects of such types, the value may
be NULL, but only non-NULL values may be assigned. After an assignment, the
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flow analysis may assume the value is not NULL. In terms of the formalism in this
chapter, this technique essentially adds a new abstract rvalue all*’ and allows
Γ ẁf τ@,esc,all*’. If Γ(x) = τ@,esc,all*’, then we cannot dereference x,
but we can assign a pointer to it. In the analysis, such an assignment makes
Γ(x) = τ@,esc,all@. Type preservation holds because Γ ` all@ ≤ all*’.

For arrays of non-NULL, Fähndrich and Leino require a run-time check that the
program has assigned to every array element. Cyclone is even more restrictive
because it requires immediate initialization of arrays.

Another language-based approach, more popular among functional languages,
is to eliminate NULL and require programmers to use discriminated unions. Re-
trieving an actual pointer from a possible pointer requires special syntax, such as
pattern-matching. One drawback is that actual pointers are not implicit subtypes
of possible pointers.

Under-Specified Evaluation Order Given the number of languages that have
under-specified evaluation order, there has been surprisingly little work on source-
level flow analysis for such languages.

For example, Scheme [179] has a “permutation semantics” for function applica-
tion, in the sense described in Section 6.2. The Scheme community has extensively
researched approaches to control-flow analysis, i.e, statically approximating the
functions to which an expression might evaluate [11, 124, 183]. To my knowledge,
all such presentations have assumed a fixed evaluation order. (Some analyses are
flow-insensitive, in which case evaluation order is irrelevant.) This assumption is
reasonable when the purpose of the analysis is optimization because a compiler
can perform the analysis after choosing an evaluation order.

For “actual C semantics,” just the language definition has been a large source
of confusion. The ISO standards committee has considered several complicated
formalisms of what sequence points are and what is allowed between them [68,
147, 176]. Using another reasonable formalism, Norrish used a theorem prover
to show that most legal expressions are actually deterministic—evaluation order
cannot affect the result [168, 167]. In fact, they are all deterministic, but Norrish’s
formal proof does not prove this result for expressions with sequence points in
under-specified evaluation-order positions, such as (x,y)+(z=3). Interestingly,
the unsoundness of the “join approach” in this chapter results from the same class
of expressions, but this fact may be coincidence.

Norrish’s result provides an important excuse for flow analyses examining C
code: If we assume that the source program is legal, then the analysis can soundly
choose any evaluation order for expressions. If this assumption does not hold, the
program is undefined, so analyzing it is impossible anyway. This excuse does not
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work for “C ordering semantics.”
Splint [189] attempts to find expressions that are undefined because of evalua-

tion order, but this analysis is incomplete. Its other analyses assume a left-to-right
evaluation order.

CCured [164, 38] compiles C code in such a way as to ensure safety. It im-
plements C with left-to-right evaluation, which is certainly compatible with the C
standard.

Incorporating Points-To Information Cyclone’s analysis incorporates simple
must points-to information. The primary motivation is to support delayed initial-
ization of heap-allocated memory, i.e., malloc. Many compilers do not include
points-to information in other flow analyses. Instead, they precompute points-to
information with a different analysis. This analysis can provide a set of possible
abstract locations to which each expression might evaluate. Subsequent analyses
can then use these sets to approximate the effect of assignments and whether data
might be uninitialized or NULL. Because Cyclone’s use of points-to information is
rather unambitious and any analysis must be part of the language definition, hav-
ing one analysis is a good choice. Steensgaard [190] presents a particularly fast
flow-insensitive interprocedural points-to analysis. This work also describes slower
flow-sensitive approaches. More recent work has refined and extended Steens-
gaard’s basic approach. Andersen’s dissertation [6] develops a points-to analysis
for C so that his partial evaluator can avoid overly pessimistic assumptions about
pointers.

Other program analyses reason about pointers and can determine that two
pointers are the same. A particularly powerful approach is shape analysis, in which
shape graphs statically approximate the structure of a run-time heap. In earlier
work [128, 42], nodes in the graph correspond to allocation sites in the source
program, somewhat like Cyclone’s flow analysis uses allocation sites to define the
space of abstract rvalues. This approach makes it difficult for the analysis to
prove properties about data structures of unbounded size. Indeed, there is no
way in Cyclone to create a list of uninitialized data unless each list element is
allocated at a different program point. The more sophisticated shape analyses
of Sagiv, Reps, and Wilhelm [181] eschew a correspondence between shape-graph
nodes and allocation sites. The shape graphs also have a notion of unsharedness
that corresponds to linearity in type-theoretic terminology and allows the graphs
to summarize the structure of some data structures of unbounded size.

Dor, Rodeh, and Sagiv have used shape analysis and pointer analysis to find
errors in C programs that manipulate pointers [58, 59]. Their approach is con-
servative: If it reports no errors, then the program cannot leak memory, access
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deallocated storage, or attempt to dereference NULL. In a very rough sense, the
main difference between this work and Cyclone’s analysis is the technique for gen-
erating the pointer information. Their shape analysis is much more sophisticated,
which leads to the usual advantages and disadvantages with respect to perfor-
mance, accuracy, understandability, etc.

Type-Theoretic Approach Smith, Walker, and Morrisett’s work on alias types
[186] develops a type system with points-to information roughly comparable to
Cyclone’s analysis. Several differences deserve explanation. First, they distinguish
type-level location names from term-level locations whereas Cyclone uses variables
(or allocation sites) for both purposes. As a result, Cyclone rejects this code:

int **z;

if(e) z = malloc(sizeof(int*));

else z = malloc(sizeof(int*));

*z = new 17;

In the alias-types framework, the conditional’s continuation (the final assignment)
would be polymorphic over a location name and the conditional’s branches could
both jump to the continuation by instantiating this type-level name differently.

Second, their term language is an idealized assembly language with control
transfers that amount to continuation-passing style. As a result, locations and
location names never leave scope, so their system does not encounter the compli-
cations that led us to abandon α-conversion in this chapter’s formalism. Relatedly,
sequences s1; s2 in their language restrict s1 to primitive instructions such as as-
signment or memory allocation, and primitive instructions must precede some s2.
This restriction avoids the need for typing judgments to produce typing contexts.

Third, locations escape via an explicit type-level application of an unescaped
(linear) location name to a polymorphic function expecting an escaped (nonlinear)
location name. This technique replaces the escapedness and abstract-ordering
judgments in our formalism.

Fourth, they allow explicit deallocation of unescaped locations. It should be
straightforward to add a free primitive to Cyclone that takes a pointer to an
unescaped location and forbids subsequent use of the location.

Like Cyclone, the alias types work allows run-time tests to refine flow infor-
mation, such as whether a possibly-NULL is actually NULL, but only if the tested
location is unescaped. Prior to the work on alias types, Typed Assembly Lan-
guage [157] could not support cyclic lists as presented in Section 6.3.

Subsequent work [212] combined location names with recursive types to express
aliasing relationships in data structures of unbounded size. This extension sub-
sumes linear type systems [206, 202], which can express only that a pointer refers
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to a location to which no other pointer refers. Like shape analysis, this technol-
ogy could allow us to allocate a list of uninitialized data and then initialize each
element of the list.

Instead of formalizing Cyclone’s analysis as a type system, we could use abstract
interpretation [49]. In theory, abstract interpretation and type systems are both
sufficiently powerful foundations for program analysis, but the different formalisms
have different proof-engineering benefits.

The type-safety proof in Appendix D shows that the declarative formulation
of the flow analysis is strong enough to keep the dynamic semantics from get-
ting stuck. By examining the dynamic semantics, we see that it is impossible to
dereference 0 or uninitialized values, so the correctness of the analysis follows as
a metalevel corollary. It took considerable effort to revise the analysis to produce
an algorithm of similar power, and we did not prove any notion of similarity.

To contrast, an abstract-interpretation approach to the problem would define
an abstract semantics (such as how expressions manipulate abstract values) much
like our type system. But instead of using syntactic techniques to prove safety,
we would prove that the abstract semantics and the dynamic semantics are appro-
priately related by an abstraction function that maps concrete values to abstract
values [49, 166]. Having established that the abstract semantics was a valid ab-
stract interpretation, we would be guaranteed that it was correct, in the sense
that an expression that abstractly evaluates to some r must concretely evaluate
to some v such that v has abstract value r. As a result, the dynamic semantics
cannot get stuck. Furthermore, because the abstract domain does not have infinite
chains of the form r1 ≤ r2, . . . where each ri is distinct, we know an algorithm can
implement the abstract interpretation.

With our type system, proving type preservation did not require changing the
term syntax, but executing loop bodies did require systematic renaming in the
dynamic semantics. Abstract interpretation could allow implicit α-conversion of
term variables, but proving that it was a valid abstract interpretation would require
maintaining some connection between different copies of a loop body. Otherwise,
we cannot prove that an expression at some “program point” always evaluates to
a value with certain properties. A standard approach is to change the term syntax
to include labels (which do not α-convert) on all terms.

This dissertation does not determine which approach is “better.” It does show
that type systems can describe flow-sensitive compile-time information including
pointer analysis. Furthermore, the syntactic approach to soundness that Wright
and Felleisen advocate [219] can establish safety.



Chapter 7

Array Bounds and Discriminated
Unions

In preceding chapters, we developed an advanced type system and flow analysis
for preventing several flavors of safety violations in C code. In this chapter, we
sketch how to use similar techniques for preventing incorrect array indexing and
misuse of union values. Array-bounds violations violate memory safety directly:
without restricting the value of e, the expression arr[e]=123 can write 123 almost
anywhere. Misusing union values also leads to unsafe programs: Writing to a union
through one member and then reading through another member is equivalent to
an unchecked type cast.

For both problems, we shall make the simplifying assumption that some (un-
signed) integer determines the correct use of an array (by representing its length)
or union (by indicating the member most recently written to). This integer could
be known at compile-time, or it could be stored and tested at run-time. Most im-
plementations of high-level languages simply store array lengths and discriminated-
union tags with the corresponding data objects. Accessing the data objects involves
implicit checks against these integers. In Cyclone, it is more appropriate to expose
the checks and data-representation decisions to programmers.

Extending the techniques from earlier chapters is promising. By introducing
compile-time integers and type variables that stand for them, we can use quantified
types and type constructors to encode the connection between integers and the
objects they describe. We can also extend our flow analysis to approximate the
value of mutable integers (so we can use them for array indexing) and the current
type of value in a union.

This chapter sketches the extensions informally and evaluates them. We do not
present a formal semantics or a type-safety result. Moreover, these features are
quite experimental in the actual Cyclone implementation. Current applications
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make little use of them. Nonetheless, the extensions seem natural, sound, and true
to the approach taken for other problems. However, the material in this chapter
cannot support pointer arithmetic.

We also do not consider in detail how to decide nontrivial arithmetic facts at
compile-time. The specific form of arithmetic constraints and a decision procedure
over them should be orthogonal to the basic approach developed in this chapter.
We briefly describe an “interval approach” more like the abstract rvalues in the
previous chapter and a “set of constraints” approach closer to the current Cyclone
implementation. Choosing a powerful and usable arithmetic remains ongoing work.

The rest of this chapter is organized as follows. Section 7.1 describes the
extensions to the type system for describing the lengths of arrays. Section 7.2
uses these types and an extended flow analysis to enforce safe array-indexing. We
delay further discussion of union types until Section 7.3. This section presents
more sophisticated union types than C has and further extends the flow analysis
to reason about union values. Section 7.4 evaluates our extensions. Section 7.5
discusses related work.

Throughout this chapter, we use uint t as an abbreviation for unsigned int.

7.1 Compile-Time Integers

This section explain how we add known and unknown integers to the type system
to reason about array lengths. We first add tag types (often called singleton-
integer types in the literature) and modify pointer types to include lengths. These
additions suffice for type-checking the Cyclone constructs for creating arrays. We
then present examples using quantification over compile-time integers. Finally, we
describe subtyping induced by our type-system changes.

7.1.1 Types

Just as Chapter 4 introduced a kind R for region names and Chapter 5 introduced
a kind L for lock names, we introduce a kind I for integer types. We then add
types for each positive integer. For example, the type 37 has kind I. The term 37
does not have type 37 because all terms have kind A.

We can give the term 37 the type tag t <37>. That is, tag t is a type con-
structor that takes a type kind I and produces a type of kind A (in fact, B). This
constructor is analogous to the constructor region_t in Chapter 4, which pro-
duced the type for a handle given a region name. As expected, pointer types
include compile-time integers for their length. For example, int*{37} describes
pointers to arrays of 37 integers. (The braces in the type are just syntax because
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int*37 looks odd.) In general, we build a pointer type from an element type and
a type of kind I. An omitted length is short-hand for {1}.

These additional types suffice for type-checking the constructs that create ar-
rays and pointers to them. As in C, we can give a variable an array type provided
that the array size is known. For example, int x[23]; declares x to hold an array
of length 23. When x is used in C, its type is implicitly promoted to int*. In
Cyclone, we also have implicit promotion, but the resulting type is int*{23}.

To build an array with a length that depends on run-time information, C re-
quires malloc (or salloc, which we do not consider). Chapter 6 described why
Cyclone cannot determine that arrays created with malloc get initialized. There-
fore, we use special syntax for creating and initializing an array: The initializer
form {for x<e1 : e2} creates an array of length e1 where element i is initialized
to e2 (with i substituted for x in e2).

So new {for x<e1 : e2} produces a pointer to a heap-allocated array. The
type of such an expression is τ*{i} where e2 has type τ (assuming x has type
uint t) and e1 has type tag t <i>. For example, new {for x<23 : x*x} has
type uint_t*{23} and points to an array of squares.

But with the type system presented so far, the typing rules are still too restric-
tive to create an array whose length depends on run-time information. To do so,
we add type variables of kind I, i.e., unknown compile-time integers. For example,
a variable y could have type tag t <α> and new {for x<y : e2} would have a
type of the form τ*{α}. As a convention, we will use i and j to range over type
variables of kind I. We now turn to introducing and using such type variables.

7.1.2 Quantified Types

As expected, universal quantification lets functions take unknown integer con-
stants. For example, this function makes an array with a length the caller specifies:

α*{i} f(tag_t<i> len, α val) { return new {for x<len : val}; }

Clearly, the callee does not know the length. But we need one more extension
for a caller to compute a length at run-time. The key is to realize that uint t is
equivalent to ∃i.tag t <i>; an integer value is some unknown constant. Hence we
can use an existential unpack to convert from uint t to a tag type. For example,
this code truly creates an array of unknown length:

let len<i> = fgetc(stdin); // read from input and unpack

int*{i} arr = new {for x<len : 0};

The first declaration is peculiar syntax for unpacking a uint t. As usual, an
unpack introduces a type variable (here with kind I) that is in scope for the rest
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of the block. It is important that the unpack uses a fresh location for the value of
type tag t <i>. Otherwise, we can violate type safety as explained in Section 3.3.

Existential quantification is also important for user-defined types. A simple
example lets programmers store array bounds with a pointer to the array:

struct Arr<α> { <i>
tag_t<i> len;

α*{i} arr;

};

Letting users specify where bounds are is more flexible than the compiler inserting
implicit bounds for each array. For example, we could define a type where the
same tag describes two arrays:

struct TwoArr { <i>
tag_t<i> len;

int*{i} arr1;

double*{i} arr2;

};

However, this flexibility is limited. We cannot indicate that one array is 3
elements longer than another array of unknown size unless we add types of the
form i+3. In other words, our symbolic arithmetic at the type level does not have
operators like addition. We also still require all array elements to have the same
type. This restriction precludes an example where element i of an array points to
an array of length i. (Such a data structure could represent a triangular matrix.)

We can support types of unknown size to a limited extent, as in this example:

struct FlatArr { <i>
tag_t<i> len;

int arr[i];
};

C does not allow such types, but unchecked casts let programmers work around the
limitation. In Cyclone, it suffices to give kind A to type struct FlatArr because
the size of an object with this type is unknown. Programmers cannot create arrays
or have local variables of such types. We also disallow fields after arr.

7.1.3 Subtyping and Constraints

Our type-system extensions lead to two natural notions of subtyping. First,
tag t <τ> is a subtype of uint t. Second, we can treat a longer array as a shorter
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array. For example, int*{37} is a subtype of int*{36}. For known compile-time
integers, deciding subtyping is obvious. For unknown compile-time integers, we can
use subsumption only if we know certain compile-time inequalities. For example,
we can subsume int*{i} to int*{j} if we know j ≤ i.

To track such inequalities, we can use constraints much like we did in Chapters 4
and 5. Quantified types can introduce constraints of the form τ < τ ′ (or τ ≤ τ ′).
For example, this function f can access the first 37 elements of the array it is
passed, but the caller can still know that the array returned is longer:

int*{i} f(int*{i} : 37 ≤ i);

Hence, one way to introduce a constraint is for the caller to satisfy the inequality
at compile-time, such as by passing a pointer of type int*{40}. Another way is
to use run-time tests. For example, if e1 has type tag t <τ1> and e2 has type
tag t <τ2>, then if(e1<e2) s1 else s2 lets us assume τ1 < τ2 in s1 and τ2 ≤ τ1

in s2. Hence, the set of assumed constraints depends on the program point.
More sophisticated constraints lead to richer notions of arithmetic. For ex-

ample, the current Cyclone implementation accepts i − j < 37 as a constraint.
Important but conflicting design goals for a constraint language are expressiveness
and having a tractable decision procedure for determining if a set of constraints
implies another set of constraints. This procedure is necessary for eliminating
quantified types and—as discussed below—for array indexing.

7.2 Using Arrays

Having extended the type system to account for the correspondence between array
lengths and integers holding those lengths, we now turn to ensuring that array-
subscript operations (e1[e2]) stay within bounds.

A simple solution would replace C’s subscript operation with a ternary operator
sub(e1,e2,e3). This operator would be equivalent to e1[e2] if e2 evaluated to less
than e3, else it would raise an exception. It suffices to treat sub as a polymorphic
function taking arguments with types α*{i}, uint t, and tag t <i>, respectively.

This solution gives no way for programmers to ensure statically that subscript
operations do not fail, nor does it let programmers remove provably unnecessary
checks. We noticed the same disadvantages for implicit NULL checks when deref-
erencing possibly-NULL pointers in Chapter 6. We consider how to extend that
chapter’s flow-sensitive analysis to reason about values used to index arrays.

One approach uses a conjunction of intervals to approximate the value of an
expression with type uint t. In the terminology of Chapter 6, we extend abstract
rvalues with conjunctions of intervals. We can always approximate a uint t with
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[0, 232 − 1] (assuming a 32-bit machine). To be sound in the presence of aliasing,
we use this abstract rvalue for the contents of any escaped location.

For unescaped locations, we can often be more precise. For example, when
we subsume an expression of type tag t <τ> to uint t, the resulting expression
can have abstract rvalue [τ, τ ]. That is, we still know its value. The result can
then flow to other expressions. For example, because 37 has type tag t <37>, the
declaration uint_t x = 37; gives x the abstract rvalue [37, 37].

We can also use run-time tests to produce more precise intervals. For example,
consider if(x<e) s1 else s2 where x is unescaped and e has abstract rvalue [i, i].
We can type-check s1 knowing x holds a value in the range [0, i−1] and s2 knowing x

holds a value in the range [i, 232 − 1]. Allowing conjunctions is important because
we may not know the relative ordering of unknown compile-time integers. For
example, if successive run-time tests ensure x is less than i and less than j, we
have no reason to prefer the interval [0, i− 1] over [0, j − 1] or vice-versa.

The obvious purpose of these abstract rvalues is to check subscript operations.
If e1 has type τ1*{τ2}, then we allow e1[e2] only if the abstract rvalue for e2 implies
e2 is less than τ2. We do not consider the details of this decision procedure.

With run-time tests, the flow analysis could influence type-checking by intro-
ducing compile-time inequalities. Unfortunately, the current Cyclone implementa-
tion strictly phases type-checking (including constraints) before flow analysis.

The current Cyclone implementation takes an approach less similar to the pre-
vious chapter: It extends constraints with mutable integers. This approach can
track inequalities such as x < y even without other information about x and y.
However, it is more difficult to compute accurate approximations as necessary. For
example, assume we know x < y and y < z. Then if y escapes or we join with an
abstract state with x < z, we should still conclude x < z. Although we should be
able to achieve this expressiveness, the current implementation does not.

Nonetheless, both approaches accept some important idioms. First, program-
mers can write functions like sub when they wish to rely on dynamic checks:

τ sub(τ*{i} arr, uint_t elt, tag_t<i> len) {

if(elt < len)

return arr[elt];

throw ArrayException;

}

Second, we can verify straightforward loops such as in this function that adds
the elements in an array:
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int add(int*{i} arr, tag_t<i> len) {

int ans = 0;

for(int x=0; x<len; ++x)

ans += arr[x];

return ans;

}

We can also accept some more sophisticated examples. For example, this func-
tion returns an array that can hold twice as many elements:

struct Arr<α> { <i>
tag_t<i> len;

α*{i} arr;

};

struct Arr<α> double(struct Arr<α> s) {

let Arr{<i> .len=len, .arr=arr} = s;

if(len==0)

return s;

let newlen<j> = len*2;

α*{j} newarr = new {for x < newlen: (x < len ? arr[x] : arr[0])};

return Arr{.len=newlen .arr=newarr};

}

The existential type hides the correspondence between the lengths of the argument
and result. The initializer for newlen type-checks because we can subsume the type
of len from tag_t<i> to uint t. Run-time tests let the flow analysis accept the
array-subscript expressions in the initializer of newarr. First, we execute arr[x]

only if x<len. Second, the earlier test len==0 ensures 0 < i.
Note that we did not assume len*2>len. The analysis does not perform this

level of mathematical reasoning, nor is it sound if len may be greater than 2GB (on
a 32-bit machine). In general, arithmetic overflow makes soundness more difficult.

This safe example is beyond what the current implementation can support:

int acmp(int f(α,β), α*{i} a1, β*{j} a2, tag_t<i> l1, tag_t<j> l2) {

uint_t minlen = (l1 < l2) ? l1 : l2;

for(uint_t x=0; x < minlen; ++x) {

int ans = f(a1[x], a2[x]);

if(ans != 0)

return ans;

}

return l1 - l2;

}
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To accept this function, the abstract state after the initialization of minlen

must imply minlen≤l1 and minlen≤l2. As mentioned above, a join operation
with this accuracy should be possible.

It is also possible with the conjunction-of-intervals approach; the key to the
join operation is to expand the two abstract states to include intervals that are
redundant only due to the compile-time inequalities. In our example, we add
[i, j] to the intervals for minlen in the true-branch (because i < j and we have the
interval [i, i]). Similarly, we add [j, i] to the intervals for minlen in the false-branch.
Second, we produce a joined state assuming only the compile-time inequalities for
the program-point after the join. In our example, there are no such inequalities.
However, given [i, j] from the true-branch and [j, j] from the false branch, we can
conclude [0, j]. Analogously, given [i, i] from the true-branch and [j, i] from the
false-branch, we can conclude [0, i].

7.3 Using Discriminated Unions

This section explains how we can use compile-time integers to enforce the safe use
of unions. The key addition is to enrich union types such that each member has
an associated constraint. For example, we can use these declarations to encode
some arithmetic expressions:

struct Exp;

struct TwoExp {

struct Exp * exp1;

struct Exp * exp2;

};

union U<i> {

int num; @requires i==1;
struct Exp * negation; @requires i==2;
struct Exp * reciprocal; @requires i==3;
struct TwoExp plus; @requires i==4;
struct TwoExp minus; @requires i==5;
struct TwoExp times; @requires i==6;
struct TwoExp divide; @requires i==7;

};

struct Exp { <i> tag_t<i> tag; union U<i> u; };

For now, suppose the type union U<4> means only the plus member of the value
is accessible (for reading or writing). We can then use the existential quantification
in the definition of struct Exp to abstract which member is accessible. Clients
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can unpack such values and test the value that was in the tag field to regain the
information necessary to access the value in the u field. Clients can also mutate
struct Exp values to hold different variants so long as both fields are mutated
simultaneously.

In C, we could use a similar encoding, but nothing in the type system would
represent the connection between the tag field and the member of the u field that
was written. Therefore, the type-checker cannot check that code checks the tag

field and reads only through the appropriate member of u.
The different members of a union type must be “guarded” by requires clauses

that a decision procedure can prove do not overlap (i.e., no two can both hold).
Given a value of type union U<τ>, we allow accessing member f only if the guard
for f holds. Compile-time inequalities can produce such information. Continuing
our example, we can allow code like the following:

let Exp{<i> .tag=t, .u=u} = e;
switch (t) {

case 1: /* use u.num */ break;

case 2: /* use u.negation */ break;

default: break;

}

In the first branch of the switch statement, we know u has type union U<i> and i
equals 0. The other branches are similar.

Our rules for compile-time inequalities are expressive enough to accept code
that uses binary search to determine tag values. However, we still require deter-
mining the exact variant before allowing access, even if safety does not demand it.
For example, if i > 4, it is safe to cast from union U<i> to union U<6>.

Using existential types (as in struct Exp) and type constructors (as in union

U) in this way lets us encode “discriminated unions” (where the tag is present at
run-time). As desired, we let programmers choose where to put the tag and how
to test its value.

However, these techniques rely on type invariance: So far, the only way to
change which member of a union value is accessible is to mutate an existential
package that contains it. For escaped locations, we do not endeavor to do better.
There are unknown pointers to the location. To ensure that they access the correct
member after the mutation, we require either that the correct member does not
change (e.g., if the location has type union U<3>) or that a tag is updated at the
same time (by using an existential type).

For unescaped locations, we can use the flow analysis to allow changes to which
member is accessible. If x is an unescaped location of type union U<τ>, then the
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flow analysis tracks the last member that has been written to. Specifically, sup-
pose the definition of union U has members f1, . . . , fn, and r ranges over abstract
rvalues. Then the possible abstract values for x are none (the location is possibly
uninitialized) and fi(r) (the last member written was fi and it contains a value
that r approximates).

Assuming x is unescaped, we allow the right-expression x.f only if the flow
analysis determines that f is the last member written to. However, as a left-
expression, we allow any x.f. The result of assigning through a member can
change the abstract rvalue for x. To join two control-flow paths where the last
members written two are different, we can forget that x is initialized.

Essentially, we let unescaped locations “change type” (e.g., from union U<3>

to union U<2>). Nonetheless, at any point when the location escapes (i.e., any
program point where not all pointers to the location are known exactly), the last
member written to must be the one indicated by the location’s declared type.

This flexibility lets us reuse unescaped locations, as in this example:

void f(struct Exp* e1, struct Exp* e2) {

union U<7> u; /* exact type irrelevant in this example */

struct Exp e;

if(flip()) {

u.num = 42;

e = Exp{.tag=1, .u=u};

} else {

u.plus = TwoExp{.exp1=e1, .exp2=e2};

e = Exp{.tag=4, .u=u};

}

}

To check this example, the type-checker should record implicit casts from union

U<7> to union U<1> and union U<4>. The flow analysis can ensure these casts
are safe where they occur because u is unescaped. These implicit casts may not
interact well with type inference because they give the type-checker an awkward
flexibility.

Another design choice is to distinguish union types that can change members
from those that cannot. Then we would never allow the latter to escape. Instead,
it suffices to have one style of union type that has different restrictions depending
on a location’s escapedness.
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7.4 Evaluation

We have described how to ensure safe use of arrays and unions in Cyclone. The
key addition to the type system was compile-time integers, including type variables
standing for unknown constants. For the flow analysis, we extended our abstract
states to integer constraints and the accessible member of union values.

Compared to some problems in earlier chapters, two factors make arrays and
unions more difficult (and the solutions more complicated):

1. Programs often manipulate integers in ways that are safe only because of
nontrivial mathematical facts. In other words, numbers enjoy much more
interesting relations than type, locks, initialization state, etc.

2. Implementing run-time checks for NULL pointers is straightforward because
the check needs only the possible-pointer. Run-time checks for array lengths
and union members require an appropriate tag. In C, this tag is not passed
to the necessary operators.

The techniques we developed mostly address the latter point by using the type
system to connect tags to data and the flow analysis to separate run-time tests from
data access. Incorporating arithmetic in the presence of mutation and overflow
remains ongoing work. Fortunately, choosing a constraint language and decision
procedure appears largely orthogonal.

Another important aspect of our design is that it makes it explicit that data
objects like discriminated unions and arrays carrying their lengths are existential
types. Therefore, we can use the technology in Chapter 3 to ensure we use them
safely.

We now describe several specific limitations that our approach suffers. We then
consider two advanced idioms discussed earlier in the dissertation.

The most basic assumption we make is that the tag describing an array length
or union value is either known statically or held in a particular location at run-time.
However, safe C programs may have other ways to determine a value’s tag. One
example is storing an array’s length divided by 17 instead of the length. Another
example was the representation of a triangular matrix we described earlier. A far
more common example is a nul-terminated string: In C, the convention is that it
is safe to access successive string elements until encountering a 0. This convention
is a completely different way of determining an array length at run-time. Cyclone
has some experimental support for nul-terminated strings, which we do not discuss
here. A final example is programs that go through “phases” in which all union
values of some type use one member and then they all use another member.
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Another major limitation is the lack of support for pointer arithmetic. For
example, we allow code like while(++i < len) f(arr[i]);, but not code like
while(++arr < end) f(*arr);. On some architectures, C compilers can produce
much faster code for the latter. The actual Cyclone implementation allows pointer
arithmetic only for pointers that have implicit bounds fields and run-time checks.
That is, for a given pointer, programmers can control data representation or use
(relatively slow) pointer arithmetic, but not both.

A common use of union types allows convenient access to overlapping sub-
ranges of bits (that are not pointers). For example, if a value has several small bit
fields with total size less than sizeof(int), we can have one union member with
a struct type suitable for reading fields and another union member with type
int. The latter makes it easy to set all fields to 0 simultaneously, for example.
Technically, C forbids reading through one member if another member was last
written, but conventional implementations allow such idioms. Assuming a con-
ventional implementation, it is safe for Cyclone to allow reading through a union

member with a nonpointer type. The Cyclone implementation allows such access.
A final point is that prototypes of the form void f(int n, τ arr[n]); are

syntactically more pleasant than void f(tag_t<‘n> n, τ arr*{‘n});. The lat-
ter makes an important distinction: mutating n does not change the length of arr.
Nonetheless, allowing the former as syntactic sugar is straightforward.

We now consider two C idioms we encountered in earlier chapters, before we
had support for compile-time integers. The first is a generic function that makes a
copy of data. For example, the C library provides a function with this prototype:

void* memcpy(void *out, const void* in, size_t n);

The most similar prototype we can give in Cyclone is this one:

α*{i} memcpy(α*{i} out, const α*{j} in, sizeof_t<α> s, tag_t<j> n

: i ≥ j);

The Cyclone version suffers from several problems. First, it is not implementable
in Cyclone because there is no way to copy a value of unknown size. However,
we can give this type to a function implemented in C. Second, we had to rep-
resent the amount of data to copy with two arguments, the size of the element
type (α) and the number of elements (j). We could overcome this limitation
by enriching the language of compile-time arithmetic expressions enough to write
tag_t<j*sizeof_t<α>>. Third, it does not prevent the caller from passing over-
lapping memory regions (i.e., arguments where out+s*n > in or in+s*n > out).
In C, memcpy is undefined if the regions overlap. However, the similar memmove

function allows overlap. The trade-off is that memcpy may execute faster.
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Our second example proves even less successful. In Chapter 6 we described an
“initializes” attribute for function parameters. This attribute indicates that the
caller should pass a non-NULL pointer to an unescaped and possibly uninitialized
location. The callee must initialize this location before returning. This ad hoc
extension still does not allow the callee to return a value indicating whether it
initialized the location. Given the technology developed in this chapter, we would
hope to use a union type and a tag type to encode this idiom. Here is a possible
first step, exploiting that actual Cyclone does not require initializing nonpointers:

union U<i> {

int x; @requires i==0;
int *p; @requires i==1;

};

tag_t<i> f(union U<i> @u) attribute(initializes(1)) {

if(e) {

*u = new 0;

return 1;

}

return 0;

}

Unfortunately, universal quantification is incorrect for this function. It is the callee
that chooses the tag, not the caller. The correct quantification is existential: there
exists some integer i such that the callee returns the value of type tag_t<i> and
initializes *u through the appropriate union member. So at minimum, we need to
extend Cyclone with existential quantification over function types.

Moreover, the caller needs some way to unpack the existential that the function
call introduces. But no data object contains the function’s result and the location
the callee referred to as *u. Put another way, if the caller passes f some &x, the
type of x after the callee must be bound by the same existential as the function
result. To do so seems to require some special syntax for packaging the function
result with x. It is much simpler to abandon the initializes attribute and rewrite
f to return an existential type holding the tag and the union value:

struct Pr { <i> tag_t<i> t; union U u; };

struct Pr f() {

if(e)
return Pr{.t=1, .u=new 0};

return Pr{.t=0, .u=0};

}
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7.5 Related Work

This section discusses some other projects that prevent unsafe array or union
accesses, or reason about integer values at compile-time. Far too much work exists
for a thorough review. We therefore focus on systems for preventing array-bounds
violations in C, static analyses for reasoning about integer values, and languages
that express array lengths and union tags in their type systems. Considerable
overlap in the first two areas makes the distinction somewhat arbitrary.

7.5.1 Making C Arrays Safe

The simplest way to prevent array-bounds violations in C code is to compile C
such that all pointers carry the size of the pointed-to object at run-time. Run-
time checks can terminate a program as soon as a violation occurs. Obviously, this
approach loses static assurances and changes the data representation C program-
mers expect (but are not promised).

The first project I am aware of that uses this technique as part of a C implemen-
tation that ensures safety is Safe-C [12]. In Safe-C, pointers also carry information
to determine whether the pointed-to object has been deallocated. One problem
with changing data representation is that it requires recompiling the whole pro-
gram, which is impossible if some source code (e.g., for the standard library) is
unavailable. Other work [129] avoids this shortcoming by storing the auxiliary in-
formation in a table indexed by machine addresses. Of course, a pointer dereference
must now look up the information in the auxiliary table.

These systems suffer substantial performance degradation because pointers al-
ways occupy extra space and every pointer dereference requires run-time checks.
The CCured project [164, 38] uses a whole-program static analysis to avoid most
of this overhead. This analysis can avoid changing data representation when a
pointer need only point to an “array” of length 1. It can also use only an upper
bound when negative index expressions and pointer subtraction are not used. The
whole-program static analysis is linear in the size of the program. Programmers
must specify the representation for pointers that are passed to or returned from
code not compiled by CCured. It does not appear that CCured can exploit that
a user variable already holds an array-length. The project has focused on arrays;
uses of unions are treated as casts with run-time checks. Finally, CCured provides
special support for nul-terminated strings by making an implicit terminator inac-
cessible to user programs. Chapter 8 compares Cyclone and CCured in general.
The published work on CCured [164] provides an excellent description of some
commercial tools with similar goals.

Other projects have focused on the misuse of strings and buffers that hold them.
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For example, Wagner et al. [208, 207] automatically found several buffer overruns
in real code that had already been audited manually. They use integer intervals
as a primary abstraction and approximate each integer variable with an interval.
They generate interval constraints completely before solving the constraints. For
scalability, the constraint generation is flow-insensitive. They model character
buffers with the length of the string they hold (where the first nul-terminator is)
and the allocated size. (Recall Cyclone, as presented in this chapter, does not rea-
son about nul-terminators.) The analysis knows how important library routines,
such as strncpy and strlen affect and determine abstract buffer values. As a
bug-finding tool, their work is unsound with respect to aliasing. The language for
integer constraints is more sophisticated than in Cyclone because it allows opera-
tions like addition. However, its constraint solver is based on “bounding boxes,”
which are more approximate than most approaches described in Section 7.5.2.

Dor et al. [60] use a more precise analysis that can find some subtle safety
violations without generating many false positives. It also relies on integer analysis,
but it uses polyhedra that are more precise than bounding boxes. The analysis is
sound (the absence of errors guarantees the absence of bound errors), but functions
require explicit preconditions and postconditions. Moreover, the analysis does not
handle multilevel pointers and has not been applied to large programs.

7.5.2 Static Analysis

This section describes more general approaches to static reasoning about integer
values, array lengths, and union values. Compared to the work described above,
these projects have less essential connection to C.

One approach to forbidding array-bounds errors is to generate a verification
condition that implies their absence. Given e1[e2], the verification condition would
require a precondition for this expression that implied e2 evaluated to a value less
than the length of the array to which e1 evaluates. A theorem prover can try to
prove the verification condition. If the verification-condition generator and theorem
prover are sound, then such a proof establishes the absence of bounds errors. This
architecture underlies extended static checking, as in ESC/Java [76], and proof-
carrying code, as in the Touchstone certifying compiler [161, 162]. It separates the
problems of finding a mathematical fact that must hold and determining that the
fact does hold. However, theorem provers are incomplete and can be slow.

Other projects have investigated more traditional compiler-based approaches
to bounds-check elimination. For example, Gupta [101] describes a straightforward
approach to using flow analysis for reducing the number of bounds checks. The
analysis is more sophisticated than in Cyclone for at least two reasons. First,
it interprets arithmetic operators, including multiplication and division. Second,
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it determines when it is safe to hoist bounds-checks out of loops. Cyclone is
less interested in the latter because it should suffice for programmers to hoist
checks themselves and have the analysis verify that the result is safe. More recent
work by Bodik, Gupta, and Sarkar [25] eliminates bounds-checks using a demand-
driven analysis (given a check to consider for elimination, it attempts to avoid
work irrelevant to that check) over a sparse representation (it does not operate
over a full control-flow graph). Their aim is to support simple, fast bounds-check
elimination. This work also describes a wide variety of previous approaches to
bounds-check elimination.

Rugina and Rinard [180] use a symbolic analysis to approximate the values of
pointers, array indices, and accessed-memory regions. By producing a constraint
system that can be reduced to a linear program, they can avoid many limitations of
fixpoint-based flow analyses. One application of approximating the memory that
an expression might access is the static detection of array-bounds errors.

Flow-based analyses invariably need to compute the implications of integer con-
straints involving unknown integers. The literature includes some well-understood
solution procedures for restricted classes of inequalities (e.g., linear inequalities).
The Omega Calculator [175] is a popular tool that simplifies all Presburger for-
mulas (which can contain affine constraints, logical connectives, and universal and
existential quantifiers). Such formulas are intractable in theory, but the calculator
has proved efficient in practice.

Some of the work on bounds-check elimination described here claims that sim-
ple arithmetics (though more sophisticated than what Cyclone supports) suffice.
In contrast, the data-dependence community uses somewhat similar techniques
to optimize numerical applications. Rather than detect bounds violations, they
seek to reorder memory accesses. Paek et al. [169] give a recent account of ap-
proaches for representing the results of array-access analysis. Kodukula et al. [134]
use the Omega Calculator to enable transformations that better exploit memory
hierarchies. It is unclear to me if optimizing numeric applications inherently re-
quires more sophisticated arithmetic reasoning or if bounds-checks elimination has
heretofore had less ambitious goals.

Most work on eliminating redundant checks on discriminated-union tags (equiv-
alently, finding checks that might fail) has been for languages like Scheme [179]
in which all values belong to one discriminated union. Eliminating checks is im-
portant for performance because every primitive operation (e.g., addition) must
otherwise check type tags (e.g., that both operands are numbers). Wright and
Cartwright [218] developed a practical “soft typing” implementation for Scheme.
Soft typing is essentially type inference where there is enough subtyping that all
programs remain typable. More precise types lead to fewer run-time tags and
checks. Wright and Cartwright also summarize many other approaches, including
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those based on flow analysis and abstract interpretation.
Another approach to approximating values that works well in languages like

Scheme is set-based analysis. Flanagan’s dissertation [71] investigates how to use
such an analysis for a realistic language and how to avoid whole-program analysis
techniques that inhibit scalability.

7.5.3 Languages

We now turn to languages that expose either the representation of arrays and
unions or the checks associated with their safe use.

TALx86 [155, 96], an implementation of Typed Assembly Language [157] for
Intel’s IA-32 architecture, has support for using compile-time integers to describe
data representation. Its array types, singleton-integer types, quantified types, and
union types are essentially the assembly-language equivalent of the corresponding
features in Cyclone. However, published work on TAL does not describe a system in
which code producers can eliminate unnecessary bounds checks. Rather, macros
are necessary for reading and writing array elements, and these macros always
perform checks.

Unpublished work by David Walker eliminates this shortcoming to some extent.
He tracks what this chapter calls compile-time constraints. Furthermore, a small
proof logic lets programs prove results of the form i < j subject to the assumed
constraints. Compared to Cyclone, allowing proofs is more flexible than a flow
analysis that basically encodes a restricted class of proofs. However, fixed-width
arithmetic limits the collection of sound axioms. Walker’s work also requires un-
packing integers to singleton types before reasoning about their values. Though
perhaps more pleasing from a type-theoretic standpoint than our flow analysis, it
requires treating loops as polymorphic code. Cyclone’s approach is probably more
palatable for humans.

TALx86 also has union types. Annotations on conditional jumps guide the
type system to refine the possible union members at the jump’s destinations. The
annotations are not essential, so it is unsurprising Cyclone does not need them.

Necula’s proof-carrying code [161] provides a richer set of arithmetic axioms
for programs to prove array-bound lengths. The compilers producing such code
use theorem provers to eliminate checks as necessary. The instantiations of proof-
carrying code I am aware of have all dictated data representation of arrays and
discriminated unions as part of the policy. So while there is a richer language for
eliminating checks, there is a weaker language for describing data.

Most relatedly, Xi et al. have used a restricted form of dependent type to
reason about array lengths and unions in ML [224, 225, 221], a typed assembly
language [223], and an imperative language called Xanadu [222]. In full generality,
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dependent types are indexed by terms. But that means the undecidability of term
equality (does e1 equal e2) make type equality undecidable. Therefore, Xi uses a
separate language of type-index expressions and connects this language to terms
via singleton types. This chapter does essentially the same thing; I have simply
eschewed the terminology “dependent type” because I find it misleading when the
syntax of types does not actually include terms.

Terminology aside, Xi’s systems have compile-time integers, quantified types,
and type constructors like Cyclone. The constraint language is more sophisticated,
including quantification and many arithmetic operators. It is restricted to linear
equalities that a variant of Fourier variable elimination can solve, but this restric-
tion is only for compile-time efficiency. Xi has used integers to express invariants
beyond array lengths and union members. Examples include the length of a linked
list and the balance properties of red-black trees. For the former, the constraint
language is expressive enough to express that an append function takes lists of
lengths i and j and returns a list of i + j. Programmers must write some explicit
loop invariants (or tolerate run-time checks), but Xi has developed significant type-
inference techniques.

Xi’s work on imperative languages [223, 222] shares some technical similarities
with some work in this dissertation, but it is significantly less C-like. The formalism
for Xanadu has reference variables that can change type, much like unescaped
variables (as described precisely in Chapter 6) can change abstract rvalue. Indeed,
both systems have typing judgments that produce typing contexts. However, Xi
does not allow pointers to reference variables. In some sense, he treats escapedness
as an invariant—all variables are either unaliasable or type invariant. So the
technical contribution in Cyclone is support for statically tracking state changes
for aliased objects so long as they are unescaped. As in C, we eliminate any
run-time distinction between variables and heap addresses.

Another difference is that Cyclone supports mutating existential types whereas
Xi’s work has considered only pointers to existential types. Chapter 3 investigated
the ramifications of this decision in great detail. Cyclone considers the avoidance
of unnecessary levels of indirection a hallmark of C-style programming.

As a matter of emphasis, Xi has been less interested in user-defined data repre-
sentation than in proving run-time checks cannot fail. For example, the formalism
for Xanadu assumes a primitive operation for acquiring the length of an array given
only the array. His work on safe assembly language supports the common imple-
mentation trick that pointers are usually distinguishable from small integers (as
does the TALx86 implementation [155]). Supporting this trick in Cyclone should
be possible, but it requires existential quantification over a single word that is
either a small integer or a pointer.



Chapter 8

Related Languages and Systems

This dissertation describes a safe low-level programming language that has an ad-
vanced type system and a sound flow analysis. On some level, this endeavor relates
to any work on program correctness, program semantics, program analysis, or lan-
guage design. Furthermore, topics such as memory management, multithreading,
and efficient array manipulation are well-studied areas with decades of research
results. For such topics, the appropriate chapters present related work.

In contrast, this chapter takes a macroscopic view at prior and concurrent
work on safe low-level programming. We focus on just the most closely related
work and how Cyclone differs. Rather than enumerate research projects and their
contributions, we categorize the projects. Like Cyclone, many projects employ a
combination of approaches, so the categorization is only an approximation.

We begin with programming languages (other than C) that have relevant sup-
port for low-level systems. This discussion includes two “industrial-strength” lan-
guages (Ada and Modula-3) and some research prototypes. We then describe ap-
proaches for describing data representation (e.g., foreign-function interfaces). Sec-
tion 8.3 contrasts Cyclone with lower-level safe languages, such as Typed Assembly
Language. Section 8.4 describes systems that use unconventional data representa-
tion and memory management to implement C safely. Finally, Section 8.5 briefly
surveys other compile-time approaches for checking safety properties, including
theorem proving, model checking, type qualifiers, dependent types, pointer logics,
and user-defined compiler extensions.

8.1 Programming Languages

This section contrasts some safe or almost-safe programming languages with sup-
port for controlling data representation or resource management.

212
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Ada: Ada is a general-purpose programming language with substantial sup-
port for modularity, abstraction, concurrency, and user-defined data representa-
tion [194, 19]. Compared to Cyclone, it is less safe and at a higher level of abstrac-
tion. Ada is a big language with many relevant features; we do not discuss them
all.

Ada has “escape mechanisms” for performing unsafe operations, such as mem-
ory deallocation. Ada also does not enforce that memory is initialized before it
used; behavior is undefined when this error occurs. In Cyclone, the “escape mech-
anism” is to write part of the application in C.

The safe subset of Ada relies almost entirely on (optional) garbage collection
for memory management. The exception is “limited types.” In Cyclone terms,
programmers can declare that objects for some type are allocated from a fixed-size
region (the programmer picks the size). The region is deallocated when control
leaves the scope of the type declaration. A run-time failure occurs if the program
allocates too many objects of the type. Cyclone does not fix the size of regions (a
simple extension could do so) nor does it conjoin the notion of type and lifetime.

Ada’s “generics” allow polymorphic code, like ML functors, CLU clusters, or
C++ templates. Generics are second-class constructs; their instantiation occurs
at compile-time. As with C++ templates, conventional implementations gener-
ate code for each distinct instantiation. Chapter 3 explains that this technique
produces more code but avoids unnecessary levels of indirection for program data.

Ada’s “packages” are modules that support hiding code, data, and type defini-
tions. One Ada feature would prove useful in Cyclone: types can have “private”
fields. The size and alignment of these fields is exposed to other packages, but code
in other packages still cannot use the fields. This technique allows other packages
to allocate objects of the type and access other fields in the type efficiently. How-
ever, it prevents separate compilation. If the implementation of a type with private
fields changes, it is necessary to recompile packages using the type.

Ada lets programmers specify the size (in bits) and order of record fields and
numeric types. There is no support for the user specifying the location of data
necessary for safety, such as array bounds or discriminated-union tags.

Modula-3: Modula-3 is a general-purpose programming language that rigidly
distinguishes safe and unsafe modules [106]. The former cannot depend on the
latter, thus placing less trust in unsafe modules than Cyclone would place in linking
against C code. Code in unsafe modules may perform unsafe operations. Modula-3
uses an object-oriented paradigm for code reuse. The implementation controls the
data representation for objects. However, Modula-3 also has records and numeric
types of user-specified size.
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Modula-3 was the implementation language for the SPIN extensible operating
system [22], proving by example that Modula-3 is useful for writing untrusted sys-
tems extensions [185]. The SPIN implementors identified three language extensions
they considered essential for their task [121]. First, they allowed casting arrays of
bits to appropriate record types that contain no pointers. Cyclone has this ability.
Second, they require some untrusted code to be ephemeral, meaning the system
can safely terminate such code at any time. The compiler checks that ephemeral
code does not perform inappropriate operations, such as allocate memory. Cy-
clone has no such notion; there is no language support for systems conventions like
transactions. Third, they have first-class modules for dynamic linking and system
reconfiguration. Cyclone has no intralanguage support for linking.

The SPIN project reports tolerable overhead from garbage collection, but they
resort to coding conventions such as explicit buffers to reduce reliance on the collec-
tor. The language does not ensure these extra conventions are followed correctly.

Low-level services in SPIN, such as device drivers, are written in C. For lan-
guage interoperability, the Modula-3 compiler produces C interfaces for Modula-3
types. Furthermore, data allocated by Modula-3 must be visible to the garbage
collector even if the only remaining references to it are from C code.

Systems Programming in High-Level Languages: Although this disserta-
tion presupposes that implementing operating systems and run-time systems bene-
fits from controlling data representation and resource management, several research
projects have nonetheless performed these tasks with high-level languages. These
systems benefit from using safe languages, but they often require unsafe extensions
and then try to minimize such extensions’ use.

Operating systems implemented in Java [92] include J-Kernel [203] and Kaf-
feOS [13]. The DrScheme programming environment [69] includes substantial sup-
port for running untrusted extensions much as operating systems manage untrusted
user processes [78]. These systems address important requirements that Cyclone
does not such as limiting resources (e.g., the amount of memory it can allocate)
and revoking resources (e.g., aborting a process and recovering locks it holds).
Back et al. compare the techniques for the Java systems [14]. Czajkowski and von
Eicken describe JRes, the resource-accounting scheme underlying J-Kernel [53].
More recently, Hawblitzel and Von Eicken have taken a more language-based ap-
proach in the Luna system [111], in which the type system distinguishes revocable
and irrevocable pointers.

The techniques developed in this dissertation appear ill-equipped to address this
style of process-oriented resource control. Nonetheless, the OKE project [27] has
modified Cyclone to ensure that untrusted kernel extensions are safe. In general,
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using a safe language avoids the performance overhead of running all untrusted
code in separate (virtual) memory spaces.

The Jikes Java Virtual Machine [125] is implemented entirely in Java, with a few
extensions for reading and writing particular words of memory. Such extensions
are necessary for services like garbage collection; they should not be available to
untrusted components.

The Ensemble system uses OCaml to implement a flexible infrastructure for
distributed-communication protocols [112, 113]. The developers provide substan-
tial comparison with an early system written in C. They argue that safety and
higher-level abstractions led to a smaller, more flexible, and more robust imple-
mentation with little performance impact. For one crucial data structure, garbage
collection proved inappropriate so they resorted to explicit reference counting.

The Fox Project [109] uses Standard ML [149] for various systems tasks, such
as network-protocol stacks. The project contends that safe languages and certified
code (see Section 8.3) increase program reliability.

Vault: The Vault programming language [55, 66] uses a sound type system that
restricts aliasing to ensure, at compile time, that programs use objects and inter-
faces correctly. By tracking the abstract state of objects, such as file descriptors,
the type system can formalize interface protocols. For example, Vault can ensure
that programs close files exactly once. The key technology is a type system in the
spirit of the capability calculus [211] that ensures aliases to tracked objects are
never lost. Extensions termed “adoption” and “focus” ameliorate the strong re-
strictions of capabilities without violating safety. Incorporating restricted aliasing
into Cyclone is ongoing work.

Restricted aliasing allows safe use of explicit memory deallocation (like C’s free
function), allowing the Vault implementation to use no garbage collector. As such,
it is easier to use Vault in environments such as operating systems that are hostile
to automatic memory management. DeLine and Fähndrich have implemented a
Windows device driver in Vault. The Vault interface to the kernel ensures the
driver obeys several important protocols, such as not modifying interrupt packets
after passing their “ownership” to other parts of the system.

In 2001, I implemented the same device driver in Cyclone. Compared to Vault,
the Cyclone interface did not prevent several unsafe operations. In other words,
the driver was memory safe, but it was still provided an interface through which it
could crash the operating system. The lesson is that memory safety is necessary
but not sufficient. On the other hand, Cyclone’s C-level view of data representation
was welcome. The Cyclone device driver had less than 100 lines of C code for per-
forming operations inexpressible in Cyclone. In contrast, the Vault driver had over
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2000 lines of C code, primarily for converting between Vault’s data representation
and C’s data representation.

Vault and Cyclone are both research prototypes exploring powerful approaches
to compile-time checking of low-level software. Although there is already some
overlap (e.g., regions and type variables), much work remains to realize a smooth
integration of the two approaches.

Cforall: The Cforall language [39, 57] attempts to improve C. In addition to
syntactic improvements (e.g., pointer-type syntax) and additional language con-
structs (e.g., tuples and multiple return values), they have support for polymorphic
functions. Compared to Cyclone, the project is more interested in remaining closer
to C and less interested in ensuring safety.

Control-C: Control-C [135] combines severe restrictions on C with interproce-
dural flow analysis to ensure small (about 1000 lines) real-time control systems
are safe without run-time checking or user annotations. The system disallows all
pointer arithmetic and casts among pointer types, making it impossible to write
generic code. Interprocedural analysis and an expressive arithmetic prove array-
indexing is safe or reject a program. A primitive can deallocate all heap-allocated
data (in this sense, there is one region) and the flow analysis ensures there are no
dangling-pointer dereferences as a result. The designers claim this simple form of
memory management suffices for small control applications. NULL-pointer deref-
erences and using uninitialized pointers are actually checked at run-time, but they
use hardware protection and trap handlers to incur no performance overhead when
the checks succeed. The work does not consider thread-shared data.

8.2 Language Interoperability

Implementations of high-level languages often provide access to code or data not
written in the language. Such facilities require a way to describe a foreign function’s
argument types and foreign data’s representation. Conversely, implementations
often let C programs use code or data written in the high-level language. These
interoperability mechanisms are related to Cyclone because a key requirement is
an explicit definition of data representation at an appropriate level of abstraction.
However, no projects I am aware of check the interoperability interface for safety.

Fisher, Pucella, and Reppy [70] explore the design space for foreign-function
and foreign-data interfaces. Their compiler’s intermediate language, BOL, is a
low-level unsafe language rich enough to describe such interfaces. BOL is suffi-
ciently powerful to allow their compiler infrastructure to implement cross-language
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inlining. In fact, using BOL for interoperability is so lightweight that their infras-
tructure uses BOL to implement primitive operations, such as arithmetic.

Blume [24] provides Standard ML programs with direct access to data from C
programs. His approach uses ML’s type system to encode invariants about how the
C data must be accessed. Compiler extensions provide direct access to memory.

Many systems use an IDL [100] (interface description language) to describe
code and data without committing to a particular language. In fact, IDL uses
rather C-like assumptions, but it has many interesting extensions. For example, an
attribute can indicate that arguments of type char* are strings. Another example
reminiscent of safety is an attribute specifying that one argument is the length of
another (array) argument. Language implementations typically support IDL by
generating “stub code” to mediate the mismatch between the implementation’s
internal data-representation decisions and an appropriate external interface.

Some languages specify an interface to C code without resorting to IDL. Per-
haps the most well-known example is the Java Native Interface [142].

Allowing C code to access high-level language structures usually amounts to
providing header files describing the implementation’s data-representation deci-
sions. More interesting are conventions for maintaining the run-time system’s
assumptions, such as the ability to find roots for garbage collection. One solution
is to compile code from multiple languages to a common virtual machine [143, 28].
The virtual machine provides one run-time system for code from multiple source
languages. Compilers can produce metadata to describe the data they produce.
Virtual machines often assume security and resource-management obligations tra-
ditionally relegated to operating systems.

The C-- project [36, 131] is designing a language suitable as a target language for
a variety of high-level language. C-- provides a more open run-time system than the
virtual-machine approach. For example, the high-level language implementation
can provide code that the run-time system uses to find garbage-collection roots.
By extending the run-time system via call-back code in this way, C-- avoids a
complicated language for describing data representation. In fact, types in C--
describe little more than the size of data, which is what one needs to compile a
low-level language.

8.3 Safe Machine Code

Several recent projects have implemented frameworks for verifying prior to execu-
tion that machine code obeys certain safety properties. Verifying machine code
lets us ensure safety without trusting a compiler that produces it or—in a mobile-
code setting—the network that delivers it. This motivation leads to systems that
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are substantially different than Cyclone in practice. First, because we expect most
object code to be machine-generated (i.e., the result of compilation), safe machine
languages are more convenient for machines than humans. In particular, expres-
siveness takes precedence over convenience and simplicity. Second, implementing
a checker should be simpler than implementing a compiler. Otherwise, the frame-
work does not reduce the size of the trusted computing base.

Typed Assembly Language (TAL) imposes a lambda-calculus-inspired type sys-
tem on assembly code. Early work [157, 156] showed how compilers for safe source
languages could produce TAL (i.e., machine code plus typing annotations). In
particular, the type system can encode low-level control decisions such as calling
conventions and simple implementations of exception handling. Later work ex-
plored how to use regions and linear types to avoid relying on conservative garbage
collection for all heap-allocated data [211, 186, 212, 210]. An implementation for
the IA-32 architecture included many important extensions [155], such as a kind
system for discriminating types’ sizes and a link-checker for safely linking sepa-
rately compiled object files [89, 88]. I explored several techniques to reduce the
size of type annotations and the time for type-checking TAL programs [96]. Com-
pared to Cyclone, TAL has a much lower level view of control and a slightly lower
level view of data. For the former, there is no notion in the language of procedure
boundaries or lexical scope. For the latter, the language exposes the byte-level size
and alignment of all data.

Proof Carrying Code (PCC) [161, 160] also uses annotations on object code to
verify that the code meets a safety policy. By encoding the policies in a formal
logic, policy designers can change the policy without changing the implementation
of the checker. In practice, the policies that have been written cater to the calling
conventions, procedure boundaries, and data representation of particular compil-
ers, including a Java compiler [48] and a compiler for a small subset of C [162].
Compared to Cyclone or TAL, the policies have allowed more sophisticated proofs
for eliminating array-bounds checks, but they cannot express memory-management
invariants, aliasing invariants, or optimized data representations. Work on reduc-
ing the size of annotations and the time for checking [163, 165] focuses on eliding
simple proofs and encoding proofs as directions for a search-based proof-checker
to follow. These techniques make proofs smaller, but they are probably no more
convenient (for machines or humans), so they make little sense for Cyclone.

Because TAL and PCC led to implementations with trusted components con-
taining over 20,000 lines of code, other researchers have taken a minimalist or
“foundational” approach to PCC [10, 9, 104]. In such systems, one trusts only the
implementation of an expressive logic, an encoding of the machine’s semantics in
the logic, and an encoding of the safety policy. A compiler-writer could then prove
(once) that a type system like TAL is sound with respect to the safety policy and
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then prove (for each program) that the compiler output is well-typed. It is unclear
if techniques from these projects could make the Cyclone implementation more
trustworthy. Crary has encoded TAL-like languages in a formal metalogic [51].
Like foundational PCC, this project reduces the trusted computing base, but it is
unclear how much the techniques apply to human-centric programming languages.

The minimalist approach has also tried to remove garbage collection from the
trusted computing base. Powerful type systems supporting intensional type analy-
sis [215] and regions can allow untrusted programmers to write simple garbage col-
lectors [214, 153]. Cyclone is far too restrictive for writing a garbage collector, but
the necessary typing technologies seem far too complicated for a general-purpose
programming language.

Rather than using type-checking or proof-checking as the foundation for check-
ing machine code, Xu et al. use techniques more akin to shape-analysis [181]
and flow analysis [227, 228, 226]. Their approach requires no explicit annotations
except at the entry point to untrusted code, but they use expensive program-
verification techniques to synthesize induction invariants for loops and recursive
functions. This approach allows checking code from unmodified compilers and
compilers for unsafe languages, but it has been used only for programs with less
than one thousand machine instructions. Furthermore, the type system (based on
the physical type-checking work described in Section 8.5) and abstract model of
the heap cannot handle existential types or discriminated unions. Rather, Xu’s
focus has been on inferring array sizes and the safety of array indexing. The in-
terpretation of the program as modifying an abstract model of the heap captures
more alias and points-to information than other approaches. Cyclone has stronger
support for sophisticated data invariants, but less support for array-bounds and
points-to information.

Kozen’s Efficient Certifying Compilation (ECC) [136] tends to favor elegance,
simplicity, and fast verification over the complex policies of the other frameworks.
By exploiting structure in the code being verified, it can quickly and easily verify
control-flow and memory-safety properties. Like the work in this dissertation, ECC
checks code that separates operations like array-subscripts into more primitive
steps like bounds-checks and dereferences. The focus in Cyclone has been on a
type system expressive enough to allow programmers to move checks safely, such
as hoisting them out of loops. It is usually straightforward to extend ECC to
handle such optimizations.
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8.4 Safe C Implementations

Contrary to many programmers’ expectations, the C standard imposes weak re-
quirements on an implementation’s data representation and resource management.
Therefore, an implementation can impose safety via run-time checks.

Pure Run-Time Approaches: Austin et al. developed such a system called
Safe-C [12]. Instead of translating pointers to machine addresses, the implementa-
tion translates pointers to records including lifetime and array-bounds information.
Each pointer dereference uses this auxiliary information to ensure safety. The pro-
gram must also record the deallocation of heap objects and stack frames. Safe-C
supports all of C, including tricky issues such as variable-argument functions. The
disadvantages of this approach include performance (programs sometimes run an
order of magnitude slower than with a conventional implementation) and data-
representation changes (making it difficult to interface with unchanged code).

Jones and Kelly solve the latter problem by storing auxiliary information in
separate tables [129]. That is, a pointer is again a machine address, but a pointer
dereference first uses the address to look up the auxiliary information in a table.

McGary has developed an extension to the gcc compiler that allows pointers
to carry bounds information and subscript expressions to check the bound [148].

Although not discussed in this dissertation, Cyclone has a form of pointer
type that carries run-time bounds information. Such pointers permit unrestricted
pointer arithmetic. Subscript operations incur a run-time check. Because Cyclone
also has the compile-time approaches discussed in this dissertation, the program-
mer has the choice between the convenience of implicit run-time checks and the
performance and data-representation advantages of unchanged code generation.
However, Cyclone provides little support for run-time approaches to detecting
dangling-pointer dereferences. The extension described in Section 4.4.2 is a partial
solution, but it works for neither individual heap objects nor stack regions.

Several tools (Purify [110], Electric Fence [171], and StackGuard [50] are a few
examples) also use run-time techniques to detect bounds violations and dangling-
pointer dereferences. Techniques include using hardware virtual-memory protec-
tion to generate traps. For example, one way to detect dangling-pointer derefer-
ences is to allocate each object on a different virtual-memory page and to make the
page inaccessible when the object is deallocated. The performance costs of these
tools mean they are primarily used for debugging. Different systems have different
limitations. For example, Electric Fence detects only heap-object violations. One
advantage is that tools can replace libraries or rewrite object code, which avoids
recompilation.

Finally, software-fault isolation [209] provides sound, coarse-grained memory
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isolation for untrusted components. It assigns such components a portion of the
application’s address space and then rewrites components’ object code (typically
with masking operations) to ensure all memory accesses fall within this space. This
approach does not necessarily detect bugs nor is it appropriate for applications that
share data across component boundaries, but it is simple and language-neutral.

Approaches Exploiting Static Analysis: If static analysis can prove that
some run-time checks are unnecessary, then a system can recover many of Cy-
clone’s advantages. In particular, there is less performance cost, less change of
data representation, and fewer points of potential run-time failure. An automatic
analysis is also more convenient. However, the programmer generally has less
control than with Cyclone.

The CCured system [164, 38] uses a scalable whole-program static analysis in
a safe implementation of C. It also can show programmers the analysis results to
help with static debugging. The analysis is sound. Its essence is to distinguish
pointer types so that not all of them have to carry bounds information. CCured has
two kinds of pointer types that Cyclone does not: Sequence pointers allow adding
nonnegative values to pointers (i.e., they permit unidirectional pointer arithmetic).
Wild pointers let a pointer point to values of different types. The latter is impor-
tant because CCured has no notion of polymorphism, although wild pointers are
strictly more lenient than type variables. However, run-time type checks require
run-time type information, which is not present in the Cyclone implementation.
(Discriminated unions have tags, of course, but this information is not hidden from
programmers.)

CCured relies on conservative garbage collection to prevent dangling-pointer
dereferences. Programs where stack pointers are placed in data structures some-
times need to be manually rewritten. As described in Chapter 5, it is unclear how
to extend CCured to support multithreading.

The main convenience of CCured over Cyclone is that programmers do not need
to indicate which pointers refer to arrays (of potentially unknown length). Cyclone
is less likely to accept unmodified C programs, but CCured does require some
manual changes. For example, because CCured may translate different occurrences
of a type t to different data representations, it forbids expressions of the form
sizeof(t). CCured also cannot support some valid C idioms, such as a local
allocation buffer that creates a large array of characters and then casts pieces of
the array to different types.

The CCured implementation ensures left-to-right evaluation order of expres-
sions whereas Cyclone imposes no more ordering restrictions than C.

To summarize, in cases where the performance of a program compiled with
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CCured is acceptable, the convenience over Cyclone makes CCured compelling for
legacy code. Cyclone’s language-based approach makes it easier for the program-
mer to control data representation and where run-time checks occur. The explicit
type system may also make it easier to write new code in Cyclone.

Yong et al.’s Runtime Type-Checking (RTC) tool also can reduce performance
cost by using static analysis [145, 229]. Some of the particular analyses they employ
correspond closely to Cyclone features. These include ensuring data is initialized
and ensuring pointers are not NULL. Unlike Cyclone, their analyses take as input
a precomputed flow-insensitive points-to analysis, whereas Cyclone makes worst-
case assumptions for “escaped” locations. This points-to information allows RTC
to avoid redundant checks of repeated data reads when they can determine that
no intervening mutation of the data is possible. Like CCured, RTC maintains run-
time type information for all of memory (where it cannot be safely eliminated), but
it does not store the information with the underlying data. RTC has no explicit
support for threads.

8.5 Other Static Approaches

This section describes other projects that use compile-time techniques for ensuring
software enjoys some safety properties. Most of the projects discussed analyze C
programs. We address these questions for each project:

1. What properties are checked?

2. What assurances does the project give?

3. What techniques does the implementation use?

4. How does the project complement Cyclone’s approach?

One point that we do not repeat for every (implemented) system is that these
projects find real bugs in real software. (The projects in the previous section do
too.) Empirical evidence is indisputable that many C programs, even those that
have been used for years by many people, harbor lingering safety violations.

Physical Type Checking: Chandra et al. have developed a tool that checks
type casts in C programs [184, 41]. They identify safe idioms for which C requires
casts, including generic code (using void*) and simulating object-oriented idioms.
For the latter, programs include “upcasts” and “downcasts” for casting to pointers
to a prefix of the fields of a struct and vice-versa. They view τ1∗ as a supertype
of τ2∗ when τ1 describes a prefix of memory described by τ2 (i.e., it is equivalent
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to τ2 except that it may be shorter). A novel constraint-based inference algorithm
assigns types to expressions without consulting the actual types in the source
program.

Empirical results show their tool can determine that about ninety percent of
casts fit one of their sensible idioms. The remaining casts deserve close scrutiny.
However, downcasts may not be safe. The tool does not consider other potential
safety violations.

Cyclone supports the idioms identified to the extent safety allows. Chapter 3
discussed support for generic code. Subtyping (not discussed in this dissertation)
uses a similar notion of physical layout. However, downcasts are not supported.
Many object-oriented idioms can be avoided via other features (e.g., existential
types and discriminated unions), but better object support remains future work.
Because Cyclone is strongly typed, there is no reason to ignore the program’s type
annotations.

Type Qualifiers: Foster et al.’s work on “cqual” uses type qualifiers to enrich
C’s type system in a user-extensible way [80, 81, 82]. Whereas C has only a
few qualifiers (const, volatile, restrict), cqual lets programmers define new
ones. The qualifiers can enjoy a partial order (as examples, const is less than
non-const and not-NULL is less than possibly NULL) and the system has qualifier
polymorphism.

Interprocedural flow-sensitive analysis eliminates the need for most explicit
annotations. In practice, programmers annotate only the key interface routines.
For example, a qualifier distinguishing user pointers and kernel pointers helps
detect security violations in operating-systems code. Functions that may produce
user pointers and functions for which security demands they not consume user
pointers require annotations. The system then infers the flow of user pointers
in the program. Aliasing assumptions are sound and less conservative than in
Cyclone.

The techniques in Cyclone cqual are complementary. Cyclone’s focus on mem-
ory safety makes it less extensible than cqual. Without extensibility, we find
ourselves extending the base language every time a new safety violation arises. On
the other hand, cqual assumes the input program is valid ANSI C. That is, cqual is
sound only if one assumes memory safety. The two systems do overlap somewhat.
For example, both systems have been used to prevent NULL-pointer dereferences.

Extended Static Checking: ESC/Java [76] (and its predecessor ESC/Modula-
3 [56]) uses verification-condition generation and automated theorem proving to
establish properties of programs without running them. Although this checker
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analyzes programs in a safe language, we compare it to Cyclone because it takes a
quite different approach to eliminating similar errors. First, it identifies potential
errors including NULL-pointer dereferences, array-bounds violations, data races,
incorrect downcasts, and deadlocks. Second, it checks that the program meets
partial specifications that users make in an annotation language.

ESC/Java translates Java to a simpler internal language, then generates a
verification condition that (along with some axioms describing Java) must hold for
the program to meet its partial specification, then uses a theorem prover to prove
the verification condition, and finally generates warnings based on how the prover
fails to prove the condition. This architecture involves more components than
Cyclone, which is more like a conventional compiler with type-checking followed
by flow analysis.

The ESC/Java implementation is neither sound nor complete. Incompleteness
stems from the theorem prover (which is sound but operates over a semidecidable
logic) and from modularity in the verification condition (which means abstraction
can lead to a verification condition that is unnecessarily strong). Unsoundness
stems from ignoring arithmetic overflow (to avoid spurious warnings) and from
analyzing loops as though their bodies execute only once. The user can specify
that ESC/Java should unroll loops a larger (fixed) number of times. The system
treats loops with explicit invariants soundly.

Whereas Cyclone uses distinct syntax for terms (e.g., x) and compile-time val-
ues (e.g., tag_t<‘i>), the annotation language for ESC/Java contains a subset of
Java expressions. For programmers, reusing expressions is easier. However, it is
less convenient from the perspective of designing a type system. (Dependent type
systems use terms in specifications, but mutation complicates matters.)

To reduce programmer burden and spurious warnings, the Houdini tool [75] at-
tempts to infer annotations by using ESC/Java as a subroutine. A similar approach
for inferring Cyclone prototypes, using the Cyclone compiler as a subroutine, might
prove useful.

Lint-Like Tools: The original Lint program [127] used simple syntactic check-
ing to find likely errors not reported by early C compilers. More recently, more
sophisticated tools implement the basic idea of finding anomalies in C code at
compile-time.

LCLint [138, 63] and its successor Splint [189, 65] use intraprocedural analysis
and (optional) user-provided function annotations to find possible errors and avoid
false positives. A vast number of annotations give users control over the tool; any
warning is suppressible for any block of code. Early work focused on ensuring
code respected abstract-datatype interfaces and modification to externally visible
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state (e.g., global variables) was documented [64]. Subsequent work focused on
safety violations including NULL-pointer and dangling-pointer dereferences, as
well as memory leaks. Pointer annotations include notions of uniqueness (there are
no other references) and aliasing (a return value may be a function parameter).
The expressive power of these annotations and Cyclone’s region system appear
incomparable, but they capture similar idioms. LCLint also warns about uses
of uninitialized memory and has an annotation similar to Cyclone’s “initializes”
attribute (see Section 6.3).

LCLint is neither sound nor complete. In particular, its analysis acts as though
loop bodies execute no more than once. It checks (unsoundly) for expressions
that are incorrect because of C’s under-specified evaluation order. Other parts of
the tool then assume all orders are equivalent. Cyclone might benefit from this
separation of concerns.

The Splint tool’s primary extensions are support for finding potential array-
bounds violations and support for allowing the user to define new checks. For
arrays, function annotations describe the minimum and maximum indexes of an
array that a function may access. The expression language for indexes includes
arithmetic combinations of identifiers and constants. The tool uses arithmetic
constraints and algebraic simplification to analyze function bodies. It does not
appear that type definitions can describe where programs store array lengths. To
analyze loops, Splint uses a set of heuristics to find common loop idioms. These
idioms include pointer-arithmetic patterns that Cyclone does not support. Splint
unsoundly assumes any bounds violation will occur in the first or last loop iteration
because this simplification works well in practice.

Splint’s extensibility allows programmers to declare new attributes and specify
how assignments and control-flow joins should combine the attributes. The lan-
guage is rich enough to track values, such as whether a string could be “tainted”
via external input. The extension language appears much weaker than the metal
language described below.

The PREfix tool [34] also finds program errors such as NULL-pointer deref-
erences, memory leaks, and dangling-pointer dereferences. It has been used with
many commercial applications, comprising a total code base of over 100 million
lines of code. PREfix expects no explicit annotations, so it is trivial to use. The
primary challenge in implementing PREfix is avoiding spurious warnings because
it must discover all static information not provided by C. PREfix attempts to find
only a fixed collection of errors (not including, it appears, array-bounds errors). It
is unsound and considers only one evaluation order for expressions.

PREfix ensures scalability by generating a model for each function and using the
model at call sites. (It unsoundly evaluates recursive call cycles a small number of
times, typically twice.) These models are quite rich: They can require properties of
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parameters, produce results that depends on parameter values, and describe effects
on memory (including global variables). Intraprocedurally, PREfix examines all
feasible execution paths, up to a fixed limit to avoid taking time exponential in
a function’s size. Heuristics guide which paths to examine when there are too
many. A rich language of relations and constraints among variables (e.g., x >

2*y) discovers infeasible paths, which is crucial for avoiding spurious warnings. A
generic notion of “resource” tracks similar problems such as using freed memory
or reading from a closed file handle.

PREfix produces excellent error messages, describing control paths and reasons
for the warning. It also filters unimportant warnings, such as memory leaks in code
that executes only shortly before an application terminates.

Cyclone and PREfix use very different techniques. PREfix is certainly more
useful for large commercial applications for which nobody will modify the code
or insert explicit annotations. Many of the errors it detects are impossible in
Cyclone, and providing the annotations is straightforward when writing new code.
Its detection of misused resources (leaks and use-after-revocation) is finer grained
than Cyclone’s support for resource management.

Metacompilation: Engler et al. have developed the metal language and xgcc
tool, which allow users to write static analyses [102, 43]. The language has prim-
itive notions of state machines and patterns for matching against language con-
structs. These features make it extremely easy to write analyses that check for
idioms such as, “functions must release locks they acquire,” or, “no floating-point
operations allowed.” The analysis is automatically implemented as a compiler
extension (hence the term metacompilation). Simple application-specific analyses
have found thousands of bugs in real systems [61]. The metal language allows
analyses to execute arbitrary C code, so it is quite expressive.

For scalability and usefulness, Engler exploits many of the same unsoundnesses
of the Lint-like tools. Examples include optimistics assumptions about memory
safety, aliasing, and recursive functions. The checking is quite syntactic. For
example, an analysis that forbids call to f could allow code that assigns f to a
function-pointer variable g and then calls through g. Because we do not expect
nonmalicious code to do such things, a bug-finding tool may not suffer from such
false negatives.

The xgcc tool employs context-sensitive interprocedural and path-sensitive in-
traprocedural dataflow analysis. Although such analyses could take time expo-
nential in the size of programs, such cost does not occur in practice: Aggressive
caching of analysis results and the tendency for programs to have simple control
structures (with respect to the constructs relevant to the analysis) are crucial.
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When the tool finds thousands of potential bugs, it uses statistical techniques
to rank which ones are most likely to be actual errors. If many potential violations
arise along control-flow paths following a function f, it is likely they are false
positives resulting from an imprecise analysis of f. Engler also uses statistics to
infer analyses automatically [62]. Essentially, a tool can guess policies (e.g., calls
to g must follow calls to f) and report potential violation only if the policy is
followed almost all of the time. (This work is similar in spirit to work on mining
specifications [5], but the latter uses machine-learning techniques to analyze run-
time call sequences.) It could prove useful to use similar statistical techniques
to control the sometimes impenetrable error messages from the Cyclone compiler,
especially when porting C code. For example, if many errors follow calls from f,
the compiler could suppress the errors and try to find a stronger type for f.

The extensibility that metacompilation provides is difficult to emulate within
a language like Cyclone. Although clever programmers can sometimes write in-
terfaces that leverage a type-checker to enforce other properties [79], application-
specific idioms such as calling sequences remain difficult to capture. For example,
the Cyclone compiler itself has an invariant that all types in an abstract-syntax
tree have been passed to a check_valid_type function before the abstract-syntax
tree is type-checked. Lack of automated support for checking this invariant has
produced plenty of bugs. In short, metacompilation is a good complement to sound
static checking.

Model Checking: A model checker ensures an implementation meets a spec-
ification by systematically exploring the states that the implementation might
reach [47]. (Specifications are often equivalent to temporal-logic formulas, so ex-
haustive state exploration can establish that the implementation is a model of the
formula, in the formal-logic sense.) Given the initial conditions, a model of the
environment, and the possible state transitions, a model checker can search the
state space. Upon encountering an error, it can present the state-transition path
taken. Compared to conventional testing, model checking achieves greater cover-
age by not checking the same state twice. Compared to flow analysis and type
systems, model checking is more naturally path sensitive.

Model checking, even model checking of software, is too large a field to describe
here, so we focus only on projects that model check C code. (To contrast, many
systems require a human to abstract the software to a state machine. Checking
this abstraction can catch some logical errors, but not necessarily implementation
errors.) The challenge of software model checking is the “state-explosion problem.”
Typical systems have too many distinct states (perhaps infinite) for an efficient
checker to remember which states have been visited.
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VeriSoft [90] and CMC [159] model check C implementations of event-handling
(i.e., reactive) code by actually running the code with a scheduler that induces sys-
tematic state exploration. Programmers must provide the specification to check,
the entry points (event handlers) for the code, and a C implementation of the
assumed environment. VeriSoft runs different system processes in different host-
operating-system processes. Therefore, safety violations do not compromise the
model. CMC uses only one operating-system process. Both systems assume that
the C implementations of a process make deterministic, observable transitions.
That is, the model checker assumes the C code terminates and does not have in-
ternal nondeterminism. A safety violation presumably leads to nondeterminism
(e.g., reading arbitrary memory locations to compute a result). However, CMC
does detect some safety violations such as dangling-pointer dereferences and mem-
ory leaks.

SLAM [17, 16] and BLAST [117, 116] automatically create a model that soundly
abstracts a C program, and then model check the abstract model against the user-
provided specification. If the abstract model does not meet the specification, the
model checker creates a counterexample. A theorem prover then determines if the
counterexample applies to the C program or if it results from the model being too
abstract. For the latter, the system automatically generates additional predicates
that induce a less abstract model to model check. This architecture is known as an
abstract-verify-refine loop. It is sound (each abstract model is a correct abstraction
of the code) and complete (it does not report counterexamples unless they apply to
the code), but the process may not terminate. Furthermore, both systems assume
the C program has no array-bounds violations and no order-of-evaluation errors.
The theorem provers assume there is no arithmetic overflow.

BLAST uses “lazy abstraction” for efficiency. It does not completely rebuild
the abstract model on each refinement iteration. Instead, the additional predi-
cates induce a less abstract model only for the parts of the model relevant to the
counterexample. BLAST has been run on programs up to sixty thousand lines.
Both systems have been used to verify (and find bugs in) device drivers of several
thousand lines.

Finally, Holzmann’s AX [119] and Uno [120] tools use model-checking tech-
niques to check C programs. The former assumes programs are ANSI-C. It ex-
tracts a model and represents it with a table. Users can then modify the table to
interpret certain operations correctly (e.g., function calls that are message sends).
This framework does not preclude using tools to ensure the modification is sound,
but the focus is extracting most of the model automatically. Uno is more like
metal or lint (see above). By default, it looks for uses of uninitialized variables,
array-bounds violations (for arrays of known size), and NULL-pointer dereferences.
It uses model-checking techniques for intraprocedural analysis. Therefore, it can
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exploit more path-sensitivity than Cyclone. It does not appear that there is much
support for nested pointers and data structures. Uno lets programmers write new
checks using C (which Uno then interprets) enriched with ways to match against
definitions and uses in the program being checked.

Compared to Cyclone, model checking is superior technology for checking
application-specific temporal properties. The projects described here demonstrate
that it is feasible for medium-size C programs of considerable complexity. The
generated counterexamples are useful for fixing bugs. Although the systems are
sound with respect to some safety violations (e.g., incorrect type casts), there re-
main caveats (e.g., array bounds). Furthermore, model checking remains slower
in practice than type-checking. Therefore, like metacompilation, the technologies
seem complementary: A sound type system for detecting safety violations makes
safety an integral result of compilation, but model checkers can check more inter-
esting properties and are less prone to false positives. It would be interesting to
enrich Cyclone with more path-sensitive checking, using model-checking techniques
to control the potentially exponential number of paths.

Dependent Types: Section 7.5 describes Xi et al.’s work on using dependent
types for soundly checking properties of low-level imperative programs [221, 223,
222]. They argue that for imperative languages with decidable type systems, it is
important to make a clear separation between term expressions and type expres-
sions. As such, the difference between “dependent types” and Cyclone’s approach
is little in principle. However, Xi’s systems use more expressive compile-time
arithmetics. Integrating such arithmetics and explicit loop invariants into Cyclone
should pose few technical problems, but it may not be simple.

Cleanness Checking: Section 6.5 describes work by Dor et al.[58, 59] to use
shape analysis and pointer analysis to check for some C safety violations. They
call the absence of such violations “cleanness.” The sophisticated analyses they
use are sound and produce more precise alias information than Cyclone. They also
check that no memory becomes unreachable. Current work to enrich Cyclone with
unaliased pointers may achieve some of these goals, but with less precision.

As discussed in Section 7.5, Dor has also used an integer analysis to detect
misuse of C strings [60]. Work to extend the approach to all of C is ongoing. This
work appears to confirm the experience in Cyclone that the important abstractions
for ensuring safe arrays describe the values of index expressions. Section 7.5 also
describes work by Wagner et al. [208, 207] that uses an abstraction of C string-
library functions and unsound aliasing assumptions to find bugs.
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Property Simulation: Das et al.’s ESP project [54] uses a technique they call
property simulation to make path-sensitive verification of program properties scal-
able. They seek to verify properties similar to those checked with model-checking
tools like SLAM while enjoying the scalability of interprocedural dataflow analysis.

One way to distinguish model checking and conventional flow analysis is to
consider their treatment of control-flow merge points. Whereas model checking
maintains information from both paths to the merge, flow analysis soundly merges
them into one abstract state. The key insight in ESP is to use the property being
checked to strike a middle ground: Viewing the property as a finite-state machine
(with an “error” state to indicate the property is not met), ESP merges abstract
states for and only for paths for which the finite-state machine is in the same state.

Property simulation takes as input a global alias analysis as input, so most
soundness issues are relegated to this preceding phase.

ESP gains efficiency by checking one property at a time and using the def-
inition of the property to guide the precision of its analysis. In contrast, the
Cyclone compiler checks for all safety violations at the same time. If Cyclone were
to incorporate more path-sensitivity, it might become faster to check properties
independently.



Chapter 9

Conclusions

In this dissertation, we have designed and justified compile-time restrictions (in the
form of a type system and a flow analysis) to ensure that Cyclone is a safe language.
Techniques such as quantified types and must points-to information have allowed
the resulting system to achieve significant expressiveness. We have used similar
approaches to solve several problems, including incorrect type casts, dangling-
pointer dereferences, data races, uninitialized data, NULL-pointer dereferences,
array-bounds violations, and misused unions. This similarity supports our thesis
that the system is safe and convenient.

In this chapter, we summarize the similarities of our solutions and argue that
they capture a natural level of expressive power. We then describe some general
limitations of the approaches taken. Section 9.3 describes the implementation
status of this dissertation’s work and experience using the Cyclone implementation.
Finally, Section 9.4 briefly places this work in the larger picture of building safe
and robust software systems.

9.1 Summary of Techniques

Type Variables: We use type variables, quantified types, type constructors, and
singleton types to describe data-structure invariants necessary for safety.

These invariants describe one data value that is necessary for the safe manipu-
lation of another data value. The former can be an integer describing the latter’s
length, a lock that ensures mutual exclusion for the latter, a region handle describ-
ing the latter’s lifetime, or a value of an unknown type that must be passed to
code reachable from the latter. In all cases, we use the same type variable for both
data values—what changes is the kind of this type variable.

To bind type variables, we use universal quantification, existential quantifica-
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tion, or a type constructor. Universal quantification allows code reuse. Existential
quantification lets us define data structures that do not overly restrict invariants.
For example, one field can be the length of an array that another field points to,
without committing to a particular length. Type constructors let us reuse data
descriptions for large data structures. For example, we could define a list of arrays,
where all the arrays have the same length. Together, existential quantification and
type constructors let programmers enforce invariants at a range of granularities.

Singleton types (types for which only one value has that type) prove useful for
regions, locks, and compile-time integers. In Cyclone, no two region handles have
the same type, no two locks have the same type, and no distinct integer constants
have the same tag_t type. Singletons ensure the typing rules for primitive con-
structs are sound. For example, if two region handles have the same type, then the
type we give to an allocation expression (rnew(r,e)) could imply a lifetime that
is too long. Similarly, if a test concludes that a value of type tag_t<i> is greater
than 37, then we do not conclude the inequality for the “wrong” constant.

Effects and Constraints: Whereas data structures often enjoy safety-critical
invariants, whether code can safely access data often depends on the program
point. Effects summarize what is safe at a program point and what is necessary
to call a function. (For the former, we sometimes call the effect a capability.)
Examples include the names of held locks, the names of live regions, and inequal-
ities among compile-time constants. Run-time operations influence effects. For
example, acquiring a lock before executing a statement increases the effect for the
statement. Similarly, tests between integers can introduce inequalities along for
the succeeding control-flow branches.

Using effects as function preconditions keeps type-checking intraprocedural.
The type-checker ensures call sites satisfy the effect and assumes the effect to
check the function. However, if our effect language includes only “regions live,”
“locks held,” etc., then the type system is too restrictive for polymorphic code.
We cannot say that a function that quantifies over a type variable α is safe to call
if the call instantiates α with a type that describes only live data. Therefore, we
have effects that describe this situation and the analogous one for locks.

For existential types, we need some way to describe an abstract type’s lifetime
or locks without reference to a particular call site. To solve this problem, we have
constraints that bound an effect with another one, e.g., locks(α)⊆ {`}. These
constraints also prove useful for describing outlives relationships for regions and
preconditions for functions using a callee-locks idiom.

Prior work integrating effects and type variables used abstract effects instead
of constraints and effects of the form locks(α). We have shown that abstract
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effects are less convenient for user-defined abstract data types and that we can use
Cyclone’s effects to simulate abstract effects.

Flow Analysis: For safety issues for which data-structure invariants prove in-
sufficient, we use a sound flow analysis that is more flexible than a conventional
type-system approach. Problems include dereferences of possibly-NULL pointers,
uninitialized data (the only safe invariant would outlaw uninitialized data), and
mutable integers (which are necessary for loops that use the same variable to access
different elements of an array).

For each program point, the analysis assigns each “abstract location” (roughly
corresponding to a local variable or allocation point) an “abstract value.” The
abstract value soundly approximates whether any actual value it represents may be
uninitialized, NULL, or within some integer intervals. However, because pointers
and aliasing are so pervasive in C programs, soundness and expressiveness require
the flow analysis to maintain some pointer information, as we summarize below.

Our analysis is intraprocedural, but additional function preconditions can cap-
ture some common interprocedural idioms. Intraprocedurally, the analysis takes
the conventional flow-analysis approach of checking a program point under a sin-
gle abstract state that soundly approximates the abstract states of all control-flow
predecessors. That is, the analysis is path-insensitive.

Must Points-To and Escapedness Information: Because C’s address-of op-
erator lets programs create arbitrary aliases to any location, a sound flow analysis
cannot assume that aliases do not exist. However, it is sound to assume aliases do
not exist when memory is allocated (either by a variable declaration or by a call
to malloc). Furthermore, tracking pointer information is necessary for separating
the allocation and initialization of data in the heap.

To handle these issues in a principled way, Cyclone’s flow analysis includes
must points-to information and makes worst-case assumptions for locations for
which not all aliases are known. That is, at a program point, we may know that
abstract location x must hold a pointer to abstract location y. In particular, the
analysis result for a malloc expression is that the result must point to the abstract
location representing the allocation.

To enforce soundness in the presence of unknown aliases, the analysis maintains
whether there may be a pointer to an abstract location that is not tracked with
must points-to information. If so, the pointed-to location must have an abstract
value determined only from its type. In particular, it must remain initialized and
possibly NULL (unless its type disallows NULL pointers). It is a compile-time
error to create an unknown alias of uninitialized memory.
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9.2 Limitations

Because it is undecidable if a C program commits a safety violation, sound compile-
time techniques necessarily reject safe programs. This section describes some gen-
eral sources of approximation and possible approaches to relax them.

Data-Structure Invariants: Although the combination of existential types and
type constructors gives programmers considerable power for describing invariants,
restrictions on the scope of type variables is a limitation. For example, consider
a thread-shared linked list of integers: With existential types and a lock field at
each list node, we can describe a list where each integer is guarded by a (possibly)
different lock. With a type constructor, we can describe a linked list where every
integer is guarded by the same lock. Using both techniques, other invariants are
possible. We can describe lists where the “odd” list positions (first, third, ...) use
one lock and the “even” list positions (second, fourth, ...) use another. We can
also describe lists where the first three elements use one lock, the second three
another lock, and so on.

However, it is impossible to describe an invariant in which we have two lists,
one for locks and one for integers, in which the ith lock in one list guards the ith

integer in the other list. Similarly, if the integers are in an array, no mechanism
exists for using two locks, each for half of the array elements. It does not appear
that type-theoretic constructs extend well to support such data structures, which
unfortunately threatens our thesis that Cyclone gives programmers control over
data representation. One possible way to overcome this gap is to prove that an
abstract data type is equivalent to one for which we can use standard typing
techniques, but developing an appropriate proof language may prove difficult.

Programmers also cannot express certain object-oriented idioms within Cy-
clone’s type system. Although recursive and existential types permit some object
encodings, they prove insufficient for some optimized data representations and ad-
vanced notions of subtyping [33, 1, 88]. It may suffice to extend Cyclone with
additional forms of quantified types.

Type Inference and Implicit Downcasts: To reduce the programmer burden
that Cyclone’s advanced type system imposes, we use intraprocedural type infer-
ence and some implicit run-time checks. Given an explicitly typed program, where
the checks occur is well-defined, so programmers maintain control. For example,
when dereferencing a possibly-NULL pointer or assigning a possibly-NULL pointer
to a not-NULL pointer, the compiler can insert a check (and warn the program-
mer). Unfortunately, it is not clear how to infer types and implicit checks in a
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principled way, as this example demonstrates. (The keyword let indicates that
the type-checker should infer a declaration’s type.)

void f(int b, int* q) {

let p = new 0;

p = q;

printf("x");

*p = 37;

}

If q is NULL, then either p=q or *p=37 should fail its run-time check. However,
which assignment should fail depends on the type of p. If p has type int*, then
*p=37 fails. If p has type int@, then p=q fails. It is undesirable for the result of
type inference to affect program behavior, but it is unclear what metrics should
guide the inference. In our example, either choice leads to one inserted run-time
check.

Aliasing: Although Cyclone’s flow analysis tracks must points-to and escaped-
ness information, programmers cannot provide annotations to describe stronger
points-to information. In particular, the flow analysis can track information only
up to a pointer depth (the depth being the number of pointer dereferences needed
to reach the location) that depends on the number of allocation sites in a function.
For escaped locations, which includes all locations with too large a pointer depth,
Cyclone assumes the most pessimistic aliasing assumptions.

A language for expressing stronger alias information would make Cyclone more
powerful. For example, C99 [107] has the restrict type qualifier to indicate that
a function parameter points to a location that the function body cannot reach
except through the parameter. Work is underway to add “unique” pointers to Cy-
clone. A unique pointer must be the only pointer to the pointed-to location [32]. A
type distinction between unique and nonunique pointers distinguishes the unique-
ness invariant. If an unescaped location holds a unique pointer, it is safe to treat
the pointed-to location as unescaped. But unlike Cyclone’s flow analysis, adding
unique pointers to the type system lets programmers express uniqueness invari-
ants for unbounded data structures, such as linked lists. Unique pointers also
permit manual memory deallocation and the safe “migration” of exclusive access
to another thread.

Unique pointers are not more general than restrict because the latter can
permit unknown aliases provided that those aliases are unavailable in some scope.
This distinction illustrates that a static system can define a virtual partition of the
heap and require that all unknown pointers to a location reside in one part of the
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partition. This idea underlies the focus operator in the Vault language [66] and
has been investigated foundationally in the logic of bunched implications [122].

Finally, we reiterate the discussion in Chapter 6 distinguishing alias information
and must points-to information. Without the former, we cannot accept code that
is safe only because x and y point to the same location unless we actually know
which location.

Relations: The type and flow information in Cyclone is all “point-wise” meaning
the information for each location is independent. For example, we may know x

is not NULL, but there is no way to express that y is not NULL only if x is not
NULL. The lack of aliasing information is another example.

Arithmetic and Loops: As discussed in Chapter 7, Cyclone supports little
compile-time arithmetic. Therefore, if len holds the length of an array arr, we
can accept if(x<len) arr[x]; (assuming x is unsigned), but not if(x<len && x

> 1) arr[x/2 - 1];. Many loops are safe only because of nontrivial properties
of fixed-width arithmetic.

Cyclone also has no support for loop invariants that describe parts of arrays.
This limitation often makes it impossible to check that loops correctly perform
operations such as initialize all elements of an array.

Resource Exhaustion: We have not discussed safety violations that result from
consuming excessive resources. For example, programs that open too many files
or allocate too much memory can exceed limits set by the operating system or the
underlying hardware. In the Cyclone implementation, we handle such problems
by having the routines that open files or allocate memory throw exceptions when
the resource is exhausted. There is no static support for ensuring programs do not
exceed resource bounds. This omission makes Cyclone less useful for embedded
systems.

Worse, the current Cyclone implementation does not detect stack overflow.
That is, too many nested function calls or stack-allocated objects can exhaust the
memory for the control-flow stack. This situation can lead to an illegal memory
access (segmentation fault) or even a corruption of heap-allocated data. Unfortu-
nately, it is difficult to detect stack overflow without hurting the performance of
function calls.
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9.3 Implementation Experience

This dissertation does not present empirical results from the Cyclone implementa-
tion. Such results do exist. Quantitative measurements regarding the code changes
necessary to port C code to Cyclone and the run-time performance implications
suggest that Cyclone is a practical choice [126, 97]. Furthermore, subsequent
changes to Cyclone have led to substantial improvements. In particular, some
benchmarks spend most of their time in loops that iterate over arrays. Support
for allowing users to hoist array-bounds checks out of loops (even when the array
length is not a compile-time constant) significantly improves the results for these
benchmarks. Techniques described in Chapter 7 made this improvement possible.

In this section, we make some brief qualitative observations based on Cyclone
programming experience that are relevant to the work in this dissertation. First,
Cyclone’s support for quantified types provides excellent support for generic li-
braries such as linked lists and hashtables. In practice, using such libraries is
simple. Callers do not have to instantiate type variables explicitly nor do they
need to cast results.

Second, Cyclone’s region-based memory management is quite practical. The
compile-time guarantee that stack pointers are not misused actually makes it more
convenient to use stack pointers than in C. Growable regions make it simple to use
idioms where callers determine object lifetimes but callees determine object sizes.
However, simply using a garbage-collected heap is often as fast or faster than using
growable regions.

Third, many applications, such as most of the Cyclone compiler, do not need
control over data representation. Although not emphasized in this dissertation,
Cyclone provides built-in support for arrays that carry run-time size information
and discriminated unions that carry run-time tags. Use of these built-in features
pervades Cyclone code. In particular, Cyclone supports full pointer arithmetic only
for pointers (arrays) that have implicit bounds fields. Nonetheless, the work in this
dissertation helped design these built-in features. For example, the problem with
mutable existential types discussed in Chapter 3 applies to mutable discriminated
unions, even if the programmer does not choose the data representation.

Fourth, the support for multithreading is not yet implemented. Although its
similarity with other features suggests that we can implement a practical system
with a compile-time guarantee of freedom from data races, such a system does not
exist yet.

Fifth, support for separating the allocation and initialization of data is mostly
successful. Occasionally the lack of path-sensitivity in the flow analysis forces
programmers to include unnecessary initializers. Much more problematic is the
lack of support for initializing different array elements separately. For arrays that
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hold types for which 0 or NULL are legal values, using calloc in place of malloc
proves useful (which Cyclone supports), as would implicit initialization of stack-
allocated arrays (which Cyclone does not do). In practice, this problem has led
the implementation not to check for initialization of numeric data. This compro-
mise ensures the compiler never rejects programs due to uninitialized character
buffers. Although we may miss bugs as a result, correct initialization of characters
is unnecessary for memory safety.

9.4 Context

This dissertation develops an approach for ensuring that low-level systems written
in a C-like language enjoy memory safety. The Cyclone language is a proof-of-
concept for using a rich language of static invariants and source-level flow analysis
to provide programmers a convenient safe language at the C level of abstraction. As
this chapter has summarized, Cyclone’s compile-time analysis is an approximate
solution to an undecidable problem. It uses a small set of techniques to give
programmers substantial low-level control, but significant limitations remain.

However, memory safety for a C-like language is just one way to help program-
mers produce better software. Memory safety does not ensure correctness. At
best, it can help isolate parts of a software system such that programmers can
soundly use compositional reasoning when building systems. Safety and compo-
sitional reasoning are just a means to an end. We are more interested in correct
software, or at least in software that has certain properties such as security (e.g.,
not leaking privileged information).

Hopefully a memory-safe low-level language can provide a suitable foundation
on which we can build assurances of higher-level properties. After all, enforcing
such properties without memory safety is impossible in practice.

There is little hope that we will rewrite the world’s software in Cyclone, and
there are good reasons that we should not. Different programming languages are
good for different tasks. Large systems often comprise code written in many lan-
guages. Even if each language is safe under the assumption that all code is written
in that language, incorrect use of “foreign” code can induce disaster. Although Cy-
clone is a useful “brick” for creating robust systems, I hope future programming-
languages research focuses more on the “mortar” that connects code written in
different languages, compiled by different compilers, and targeted for different
platforms.
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Chapter 3 Safety Proof

This appendix proves Theorem 3.2, which we repeat here:

Definition 3.1. State H; s is stuck if s is not of the form return v and there are
no H ′ and s′ such that H; s

s→ H ′; s′.

Theorem 3.2 (Type Safety). If ·; ·; ·; τ s̀typ s, r̀et s, and ·; s s→∗
H ′; s′ (where

s→∗
is the reflexive, transitive closure of

s→), then H ′; s′ is not stuck.

Like all proofs in this dissertation, the proof follows the syntactic approach
that Wright and Felleisen advocate [219]. The key lemmas are:

• Preservation (also known as subject reduction): If p̀rog H; s and H; s
s→

H ′; s′, then p̀rog H ′; s′.

• Progress: If p̀rog H; s, then s has the form return v or there exists H ′ and s′

such that H; s
s→ H ′; s′.

Given these lemmas (which we strengthen in order to prove them inductively),
the proof of Theorem 3.2 is straightforward: By induction on the number of steps
n taken to reach H ′; s′, we know p̀rog H ′; s′. (For n = 0, we can prove p̀rog ·s
given the theorem’s assumptions by letting Γ = · and Υ = ·. For n > 0, the
induction hypothesis and the Preservation Lemma suffice.) Hence the Progress
Lemma ensures H ′; s′ is not stuck.

Proving these lemmas requires several auxiliary lemmas. We state the lemmas
and prove them in “bottom-up” order (presenting and proving lemmas before using
them and fixing a few minor omissions from the proofs in previous work [93]), but
first give a “top-down” description of the proof’s structure.

Preservation follows from the Term Preservation Lemma (terms can type-check
after taking a step) and the Return Preservation Lemma (evaluation preserves
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r̀et s, which we need to prove the Term Preservation Lemma when the term is
call s). Progress follows from the Term Progress Lemma. The Substitution Lemmas
provide the usual results that appropriate type substitutions preserve the necessary
properties of terms (and types contained in them), which we need for the cases
of the Term Preservation Lemma that employ substitution. The Canonical Forms
Lemma provides the usual arguments for the Term Progress Lemma when we must
determine the form of a value given its type.

Because the judgments for terms rely on judgments for heap objects (namely
get, set, and gettype), the proofs of Term Preservation and Term Progress require
corresponding lemmas for heap objects. The Heap-Object Safety Lemmas are the
lemmas that fill this need. Lemmas 1 and 2 are quite obvious facts. Lemma 3
amounts to preservation and progress for the get relation (informally, if gettype
indicates a value of some type is at some path, then get produces a value of the
type), as well as progress for the set relation (informally, given a legal path, we can
change what value is at the end of it). We prove these results together because the
proofs require the same reasoning about paths. Lemma 5 amounts to preservation
for the set relation. The interesting part is showing that the àsgn judgment preserves
the correctness of the Υ in the context, which means no witnesses for &-style
packages changed. Given set(v1, p, v2, v

′
1), Lemma 5 proves by induction the rather

obvious fact that the parts of v′1 that were in v1 (i.e., the parts not at some path
beginning with p) are compatible with Υ. Lemma 4 provides the result for the
part of v′1 that is v2 (i.e., the parts at some path beginning with p). Reference
patterns significantly complicate these lemmas; see the corresponding lemmas in
Chapter 3 to see how much simpler the lemmas are without reference patterns.

The Path-Extension Lemmas let us add path elements on the right of paths.
We must do so, for example, to prove case DL3.1 of Term Preservation. The proofs
require induction because the heap-object judgments destruct paths from the left.

The remaining lemmas provide more technical results that the aforementioned
lemmas need. The Typing Well-Formedness Lemmas let us conclude types and
contexts are well-formed given typing derivations, which need to do to satisfy
the assumptions of other lemmas. It is uninteresting because we can always add
more hypotheses to the static semantics until the lemmas hold. The Commuting
Substitutions Lemma provides an equality necessary for the cases of the proof
of Substitution Lemma 8 that involve a second type substitution. Substitution
lemmas for polymorphic languages invariably need a Commuting Substitutions
Lemma, but I have not seen it explicitly stated elsewhere, so I do not know a
conventional name for it. We need the Useless Substitutions Lemma only because
we reuse variables as heap locations. Because the heap does not have free type
variables, type substitution does not change the Γ and Υ that describe it. Finally,
the weakening lemmas are conventional devices used to argue that unchanged
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constructs (e.g., e1 when (e0, e1) becomes (e′0, e1)) have the same properties in
extended contexts (e.g., in the context of a larger heap).

Lemma A.1 (Context Weakening).

1. If ∆ k̀ τ : κ, then ∆∆′
k̀ τ : κ.

2. If ẁf Υ, then ∆ k̀ Υ(xp) : A.

Proof:

1. The proof is by induction on the derivation of ∆ k̀ τ : κ.

2. The proof is by induction on the derivation of ẁf Υ, using the previous
lemma.

Lemma A.2 (Term Weakening). Suppose ẁf ∆; ΥΥ′; ΓΓ′.

1. If Υ; xp ` gettype(τ, p′, τ ′), then ΥΥ′; xp ` gettype(τ, p′, τ ′).

2. If ∆; Υ; Γ l̀typ e : τ , then ∆; ΥΥ′; ΓΓ′
l̀typ e : τ .

3. If ∆; Υ; Γ r̀typ e : τ , then ∆; ΥΥ′; ΓΓ′
r̀typ e : τ .

4. If ∆; Υ; Γ; τ s̀typ s, then ∆; ΥΥ′; ΓΓ′; τ s̀typ s.

Proof: The first proof is by induction on the assumed gettype derivation. It
follows because if xp ∈ Dom(Υ), then (ΥΥ′)(xp) = Υ(xp). The other proofs are
by simultaneous induction on the assumed typing derivation. Cases SS3.6–8 and
SR3.13 can use α-conversion to ensure that x 6∈ Dom(ΓΓ′). Cases SL3.1 and SR3.1
follow from the first proof because if x ∈ Dom(Γ), then (ΓΓ′)(x) = Γ(x).

Lemma A.3 (Heap Weakening).

1. If ẁf ·; ΥΥ′; ΓΓ′ and Υ; Γ h̀typ H : Γ′′, then ΥΥ′; ΓΓ′
h̀typ H : Γ′′.

2. If H r̀efp Υ, then HH ′
r̀efp Υ.

Proof: The first proof is by induction on the heap-typing derivation, using
Term Weakening Lemma 3. The second proof is by induction on the assumed
derivation, using the fact that if x ∈ Dom(H), then (HH ′)(x) = H(x).

Lemma A.4 (Useless Substitutions). Suppose α 6∈ Dom(∆).

1. If ∆ k̀ τ ′ : κ, then τ ′[τ/α] = τ ′.

2. If ∆ ẁf Γ, then Γ[τ/α] = Γ.
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3. If ẁf Υ, then (Υ(xp))[τ/α] = Υ(xp).

Proof: The first proof is by induction on the assumed derivation. The other
proofs are by induction on the assumed derivation, using the first lemma.

Lemma A.5 (Commuting Substitutions). If β is not free in τ2, then
τ0[τ1/β][τ2/α] = τ0[τ2/α][τ1[τ2/α]/β].

Proof: The proof is by induction on the structure of τ0. If τ0 = α, then the
result of both substitutions is τ2, using the assumption that β is not free in τ2. If
τ0 = β, then the result of both substitutions is τ1[τ2/α]. If τ0 is some other type
variable or int, both substitutions are useless. All other cases follow by induction
and the definition of substitution.

Lemma A.6 (Substitution). Suppose ∆ àk τ : κ.

1. If ∆, α:κ k̀ τ ′ : κ′, then ∆ k̀ τ ′[τ/α] : κ′.

2. If ∆, α:κ àk τ ′ : κ′, then ∆ àk τ ′[τ/α] : κ′.

3. If ∆, α:κ àsgn τ ′, then ∆ àsgn τ ′[τ/α].

4. If ∆, α:κ ẁf Γ, then ∆ ẁf Γ[τ/α].

5. If ẁf ∆, α:κ; Υ; Γ, then ẁf ∆; Υ; Γ[τ/α].

6. If r̀et s, then r̀et s[τ/α].

7. If ẁf Υ and Υ; xp ` gettype(τ1,p
′,τ2), then Υ; xp ` gettype(τ1[τ/α],p′,τ2[τ/α]).

8. If ∆, α:κ; Υ; Γ l̀typ e : τ ′, then ∆; Υ; Γ[τ/α] l̀typ e[τ/α] : τ ′[τ/α].
If ∆, α:κ; Υ; Γ r̀typ e : τ ′, then ∆; Υ; Γ[τ/α] r̀typ e[τ/α] : τ ′[τ/α].
If ∆, α:κ; Υ; Γ; τ ′

s̀typ s, then ∆; Υ; Γ[τ/α] l̀typ τ ′[τ/α] : s[τ/α].

Proof:

1. The proof is by induction on the assumed derivation. The nonaxiom cases
are by induction. The case for τ ′ = int is trivial. The case where τ ′ is a
type variable is trivial unless τ ′ = α. In that case, ∆(α) = B, so inverting
∆ àk τ : κ ensures ∆ k̀ τ : B, as desired. Similarly, the case where τ ′ has
the form β∗ is trivial unless β = α. In that case, if τ is some type variable
α′ where ∆(α′) = A, then we can derive ∆, α′:A k̀ α′∗ : B as desired. Else
inverting ∆ àk τ : κ ensures ∆ k̀ τ : κ, so we can derive ∆ k̀ τ∗ : B (using
the introduction rule for pointer types and possibly the subsumption rule).
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2. The proof is by cases on the assumed derivation, using the previous lemma.

3. The proof is by induction on the assumed derivation. The nonaxiom cases
are by induction. The cases for int and pointer types are trivial. The case
where τ ′ is a type variable is trivial unless τ ′ = α. In that case, ∆(α) = B,
so inverting ∆ àk τ : κ ensures ∆ k̀ τ : B, as desired.

4. The proof is by induction on the assumed derivation, using Substitution
Lemma 1.

5. The lemma is a corollary to the previous lemma.

6. The proof is by induction on the assumed derivation. Type substitution is
irrelevant to r̀et.

7. The proof is by induction on the assumed derivation. The case where p′ = ·
is trivial. The cases where p′ starts with 0 or 1 are by induction. In the
remaining case, we have a derivation of the form:

Υ; xpu ` gettype(τ0[Υ(xp)/β], p′′, τ2)

Υ; xp ` gettype(∃&β:κ′.τ0, up
′′, τ2)

So by induction, Υ; xpu ` gettype(τ0[Υ(xp)/β][τ/α], p′′, τ2[τ/α]). So the
Commuting Substitutions Lemma ensures
Υ; xpu ` gettype(τ0[τ/α][Υ(xp)[τ/α]/β], p′′, τ2[τ/α]). Useless Substitution
Lemma 3 ensures Υ(xp)[τ/α] = Υ(xp), so
Υ; xpu ` gettype(τ0[τ/α][Υ(xp)/β], p′′, τ2[τ/α]), from which we can derive
Υ; xp ` gettype(∃&β:κ′.τ0[τ/α], p′′, τ2[τ/α]), as desired.

Note that this lemma is somewhat unnecessary because a program state
reached from a source program that had no nonempty paths can type-check
without using the gettype judgment on open types. Put another way, rules
SL3.1 and SR3.1 could require that Γ(x) is closed if p is nonempty. Rather
than prove that restricted type system is sound, I have found it easier just
to include this lemma.

8. The proof is by simultaneous induction on the assumed derivations, proceed-
ing by cases on the last rule in the derivation. In each case, we satisfy the
hypotheses of the rule after substitution and then use the rule to derive the
desired result. So for most cases, we explain just how to conclude the neces-
sary hypotheses. We omit cases SL3.1–4 because they are identical to cases
SR3.1–4.
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• SR3.1: The left, middle, and right hypotheses follows from Substitution
Lemmas 7, 1, and 5, respectively.

• SR3.2: The left hypothesis follows from induction. The right hypothesis
follows from Substitution Lemma 1.

• SR3.3: The hypothesis follows from induction.

• SR3.4: The hypothesis follows from induction.

• SR3.5: The hypothesis follows from Substitution Lemma 5.

• SR3.6: The hypothesis follows from induction.

• SR3.7: The hypotheses follow from induction.

• SR3.8: The left and middle hypothesis follow from induction. The right
hypothesis follows from Substitution Lemma 3.

• SR3.9: The hypotheses follow from induction.

• SR3.10: The left hypothesis follows from induction. The right hypoth-
esis follows from Substitution Lemma 6.

• SR3.11: We have a derivation of the form:

∆, α:κ; Υ; Γ r̀typ e : ∀β:κ′.τ1 ∆, α:κ àk τ0 : κ′

∆, α:κ; Υ; Γ r̀typ e[τ0] : τ1[τ0/β]

The left hypothesis and induction provide ∆; Υ; Γ r̀typ e : ∀β:κ′.τ1[τ/α].
The right hypothesis and Substitution Lemma 2 provide ∆ àk τ0[τ/α] :
κ′. So we can derive ∆; Υ; Γ r̀typ e[τ/α][τ0[τ/α]] : τ1[τ/α][τ0[τ/α]/β].
The Commuting Substitutions Lemma ensures the type is what we want.

• SR3.12: We have a derivation of the form:

∆, α:κ; Υ; Γ r̀typ e : τ1[τ0/β] ∆, α:κ àk τ0 : κ′ ∆, α:κ k̀ ∃φβ:κ′.τ1 : A

∆, α:κ; Υ; Γ r̀typ pack τ0, e as ∃φβ:κ′.τ1 : ∃φβ:κ′.τ1

The left hypothesis and induction provide ∆; Υ; Γ[τ/α] r̀typ e[τ/α] :
τ1[τ0/β][τ/α], which by the Commuting Substitutions Lemma ensures
∆; Υ; Γ[τ/α] r̀typ e[τ/α] : τ1[τ/α][τ0[τ/α]/β]. The middle hypothesis
and Substitution Lemma 2 provide ∆ àk τ0[τ/α] : κ′. The right hy-
pothesis and Substitution Lemma 1 provide ∆ k̀ ∃φβ:κ′.τ1[τ/α] : A.
So we can derive ∆; Υ; Γ r̀typ pack τ0[τ/α], e[τ/α] as ∃φβ:κ′.τ1[τ/α] :
∃φβ:κ′.τ1[τ/α], as desired.

• SR3.13: The left hypothesis follows from induction. The right hypoth-
esis follows from Substitution Lemma 6.
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• SR3.14: The left hypothesis follows from induction (using implicit con-
text reordering). The well-formedness hypothesis follows from Substi-
tution Lemma 5.

• SS3.1–6: In each case, all hypotheses follow from induction.

• SS3.7–8: In both cases, Substitution Lemma 1 provides the kinding
hypothesis and induction (and context reordering) provides the typing
hypotheses.

Lemma A.7 (Typing Well-Formedness).

1. If ẁf Υ, Υ; xp ` gettype(τ, p′, τ ′), and ∆ k̀ τ : A, then ∆ k̀ τ ′ : A.

2. If ∆; Υ; Γ l̀typ e : τ , then ẁf ∆; Υ; Γ and ∆ k̀ τ : A.

3. If ∆; Υ; Γ r̀typ e : τ , then ẁf ∆; Υ; Γ and ∆ k̀ τ : A.

4. If ∆; Υ; Γ; τ s̀typ s, then ẁf ∆; Υ; Γ.
If ∆; Υ; Γ; τ s̀typ s and r̀et s, then ∆ k̀ τ : A.

Proof: The first proof is by induction on the gettype derivation. The case
where p′ = · is trivial. The cases where p′ starts with 0 or 1 are by induction
and inversion of the kinding derivation. In the remaining case, the induction
hypothesis applies by inverting the kinding derivation (to get ∆, α:κ k̀ τ0 : A where
τ = ∃&α:κ.τ0), inverting the gettype derivation (to ensure xp ∈ DomΥ, so ẁf Υ
provides · k̀ Υ(xp) : A), Context Weakening Lemma 2 (to get ∆ k̀ Υ(xp) : A), and
Substitution Lemma 1 (to get ∆ k̀ τ0[Υ(xp)/α] : A).

The remaining proofs are by simultaneous induction on the assumed typing
derivations. Most cases follow trivially from an explicit hypothesis or from in-
duction and the definition of ∆ k̀ τ : A. Cases SL3.1 and SR3.1 use the first
lemma. Case SR3.11 uses Substitution Lemma 1. Case SR3.13 uses the definition
of ẁf ∆; Υ; Γ to determine the function-argument type has kind A. The statement
cases must argue about whether the contained expressions must return. As exam-
ples, case SS3.1 uses the fact that 6 r̀et e to vacuously satisfy the conclusion for τ ,
and case SS3.3 uses the fact that if r̀et s1; s2, then one of the invocations of the
induction hypothesis provide ∆ k̀ τ : A.

Lemma A.8 (Return Preservation). If r̀et s and H; s
s→ H ′; s′, then r̀et s′.

Proof: The proof is by induction on the derivation of H; s
s→ H ′; s′, proceeding

by cases on the last rule in the derivation:

• DS3.1: s = let x = v; s′ and r̀et s implies r̀et s′.
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• DS3.2: s = (v; s′) and r̀et s implies r̀et s′ (because 6 r̀et v).

• DS3.3: s′ = return v, so trivially r̀et s′.

• DS3.4: s = if v s1 s2 and r̀et s implies r̀et s1 and r̀et s2, so in both cases r̀et s′.

• DS3.5: The argument for the previous case applies.

• DS3.6: This case holds vacuously because 6 r̀et s.

• DS3.7: s = open v as α, x; s′′ and r̀et s implies r̀et s′′. Substitution Lemma
6 ensures r̀et s′′[τ/α] for any τ , so we can derive r̀et let x = v; s′′[τ/α].

• DS3.8: This case is analogous to the previous one.

• DS3.9: For each conclusion, if r̀et s, then r̀et s′ because the form of the
subexpression is irrelevant.

• DS3.10: s = s1; s2, so if r̀et s, then either r̀et s1 or r̀et s2. In the former case,
the induction hypothesis lets us use one of the composition-introduction rules
to derive r̀et s′. In the latter case, the other rule applies regardless of the
statement that s1 becomes.

• DS3.11: If r̀et s, then r̀et s′ because the form of the subexpression is irrelevant.

Lemma A.9 (Canonical Forms). Suppose ·; Υ; Γ r̀typ v : τ .

• If τ = int, then v = i for some i.

• If τ = τ0 × τ1, then v = (v0, v1) for some v0 and v1.

• If τ = τ0 → τ1, then v = (τ0 x) → τ1 s for some x and s.

• If τ = τ ′∗, then v = &xp for some x and p.

• If τ = ∀α:κ.τ ′, then v = Λα:κ.f for some f .

• If τ = ∃δα:κ.τ ′, then v = pack τ ′′, v′ as ∃δα:κ.τ ′ for some τ ′′ and v′.

• If τ = ∃&α:κ.τ ′, then v = pack τ ′′, v′ as ∃&α:κ.τ ′ for some τ ′′ and v′.

Proof: The proof is by inspection of the rules for r̀typ and the form of values.
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Lemma A.10 (Path Extension).

1. Suppose get(v, p, v′).
If v′ = (v0, v1), then get(v, p0, v0) and get(v, p1, v1), else we cannot derive
get(v, pip′, v′′) for any i, p′, and v′′.
If v′ = pack τ ′, v0 as ∃&α:κ.τ , then get(v, pu, v0), else we cannot derive
get(v, pup′, v′′) for any p′ and v′′.

2. Suppose Υ; xp ` gettype(τ, p′, τ ′).
If τ ′=τ0 × τ1, then Υ; xp ` gettype(τ, p′0, τ0) and Υ; xp ` gettype(τ, p′1, τ1).
If τ ′=∃&α:κ.τ0 and xp ∈ Dom(Υ), then Υ; xp ` gettype(τ, p′u, τ0[Υ(xp)/α]).

Proof:

1. The proof is by induction on the length of p. If p = ·, then v = v′ and the
result follows from inspection of the get relation (because ·p1 = p1 for all p1).
For longer p, we proceed by cases on the leftmost element of p. In each case,
inverting the get(v, p, v′) derivation and the induction hypothesis suffice.

2. The proof is by induction on the length of p′. If p′ = ·, then τ = τ ′ and
the result follows from inspection of the gettype relation (because ·p1 = p1

for all p1). For longer p′, we proceed by cases on the leftmost element of
p′. In each case, inverting the Υ; xp ` gettype(τ, p′, τ ′) derivation and the
induction hypothesis suffice.

Lemma A.11 (Heap-Object Safety).

1. There is at most one v2 such that get(v1, p, v2).

2. If get(v0, p1, v1) and get(v0, p1p2, v2), then get(v1, p2, v2).

3. Suppose

• H r̀efp Υ and Υ; Γ h̀typ H : Γ

• get(H(x), p1, v1) and ·; Υ; Γ r̀typ v1 : τ1

• Υ; xp1 ` gettype(τ1, p2, τ2)

Then:

• There exists a v2 such that get(H(x), p1p2, v2). Also, ·; Υ; Γ r̀typ v2 : τ2.

• For all v′2, there exists a v′1 such that set(v1, p2, v
′
2, v

′
1).

Corollary: If H r̀efp Υ, U ; Γ h̀typ H : Γ, and Υ; x· ` gettype(τ1, p2, τ2), then
the conclusions hold with p1 = · and v1 = H(x).
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4. Suppose in addition to the previous lemma’s assumptions, · àsgn τ2. Then for
all p′, xp1p2p

′ 6∈ Dom(Υ).

5. Suppose in addition to the previous lemma’s assumptions, set(v1, p2, v
′
2, v

′
1)

and ·; Υ; Γ r̀typ v′2 : τ2. Then ·; Υ; Γ r̀typ v′1 : τ1 and if xp1p
′ ∈ Dom(Υ), there

are v′′, τ ′′, α, and κ such that get(v′1, p
′, pack Υ(xp1p

′), v′′ as ∃&α:κ.τ ′′).
Corollary: If H r̀efp Υ, Υ; Γ h̀typ H : Γ, Υ; x· ` gettype(τ1, p2, τ2), · àsgn τ2,
set(H(x), p2, v

′
2, v

′
1), and ·; Υ; Γ r̀typ v′2 : τ2 then the conclusions hold with

p1 = · and v1 = H(x).

Proof:

1. The proof is by induction on the length of p.

2. The proof is by induction on the length of p1.

3. The proof is by induction on the length of p2. If p2 = ·, the gettype relation
ensures τ1 = τ2 and the get relation ensures get(H(x), p1·, v1). So letting
v2 = v1, the assumption ·; Υ; Γ r̀typ v1 : τ1 means ·; Υ; Γ r̀typ v2 : τ2. We can
trivially derive set(v1, ·, v′2, v′2). For longer paths, we proceed by cases on the
leftmost element:

• p2 = 0p3:

Inverting the assumption Υ; xp1 ` gettype(τ1, 0p3, τ2) provides
Υ; xp10 ` gettype(τ10, p3, τ2) where τ1 = τ10 × τ11. Inverting the
assumption ·; Υ; Γ r̀typ v1 : τ10 × τ11 provides v1 = (v10, v11) and
·; Υ; Γ r̀typ v10 : τ10. Applying Path Extension Lemma 1 to the
assumption get(H(x), p1, (v10, v11)) provides get(H(x), p10, v10). So the
induction hypothesis applies to the underlined results, using p10 for p1,
v10 for v1, τ10 for τ1, p3 for p2, and τ2 for τ2.

Therefore, there exists a v2 such that get(H(x), p10p3, v2) and ·; Υ; Γ r̀typ

v2 : τ2, as desired. Furthermore, for all v′2 there exists a v′10 such that
set(v10, p3, v

′
2, v

′
10). Hence we can derive set((v10, v11), 0p3, v

′
2, (v

′
10, v11)),

which satisfies the desired result (letting v′1 = (v′10, v11)).

• p2 = 1p3: This case is analogous to the previous one.

• p2 = up3:

Inverting the assumption Υ; xp1 ` gettype(τ1, up3, τ2) provides
Υ; xp1u ` gettype(τ3[Υ(xp1)/α], p3, τ2) where τ1 = ∃&α:κ.τ3. Inverting

the assumption ·; Υ; Γ r̀typ v1 : ∃&α:κ.τ3 provides ·; Υ; Γ r̀typ v3 : τ3[τ4/α]
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where v1 = pack τ4, v3 as ∃&α:κ.τ3. Applying Path Extension Lemma 1
to the assumption get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3) provides
get(H(x), p1u, v3). From get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3),
Heap-Object Safety Lemma 1, and H r̀efp Υ, we know τ4 = Υ(xp1). So
the induction hypothesis applies to the underlined results, using p1u

for p1, v3 for v1, τ3[Υ(xp1)/α] for τ1, p3 for p2, and τ2 for τ2.

Therefore, there exists a v2 such that get(H(x), p1up3, v2) and
·; Υ; Γ r̀typ v2 : τ2, as desired. Furthermore, for all v′2 there exists a v′3
such that set(v3, p3, v

′
2, v

′
3). Hence we can derive

set(pack τ4, v3 as ∃&α:κ.τ3, up3, v
′
2, pack τ4, v

′
3 as ∃&α:κ.τ3), which

satisfies the desired result (letting v′1 = pack τ4, v
′
3 as ∃&α:κ.τ3).

The corollary holds because get(H(x), ·, H(x)) and Υ; Γ h̀typ H : Γ
ensures ·; Υ; Γ r̀typ H(x) : τ1.

4. Heap-Object Safety Lemmas 1 and 3 ensure there is exactly one v2 such that
get(H(x), p1p2, v2). Furthermore, ·; Υ; Γ r̀typ v2 : τ2. The proof proceeds by
induction on the structure of τ2.

If τ2 = int, the Canonical Forms Lemma ensures v2 = i for some i. Hence
Path Extension Lemma 1 ensures we cannot derive get(H(x), p1p2p

′, v′′) un-
less p′ = · (and therefore v′′ = i). So get(H(x), p1p2p

′, pack τ0, v0 as ∃&α:κ.τ ′0)
is impossible , but it is necessary for xp1p2p

′ ∈ Dom(Υ).

The cases for τ2 = τ3∗, τ2 = τ3 → τ4, τ2 = ∃δα:κ.τ3, and τ2 = ∀α:κ.τ3 are
analogous to the case for int, replacing i with a different form of value.

If τ2 = α or τ2 = ∃&α:κ.τ3, the lemma holds vacuously because we cannot
derive · àsgn τ2.

If τ2 = τ3×τ4, the Canonical Forms Lemma ensures v2 = (v3, v4). Hence Path
Extension Lemma 1 ensures we can derive get(H(x), p1p2p

′, v′′) only if p′ = ·,
p′ = 0p′′, or p′ = 1p′′. If p′ = ·, then get(H(x), p1p2p

′, pack τ0, v0 as ∃&α:κ.τ ′0)
is impossible, but it is necessary for xp1p2p

′ ∈ Dom(Υ). If p′ = 0p′′, apply-
ing Path Extension Lemma 2 to the assumption Υ; xp1 ` gettype(τ1, p2, τ2)
provides Υ; xp1 ` gettype(τ1, p20, τ3). Inverting the assumption · àsgn τ3 × τ4

provides · àsgn τ3. With the underlined results and the assumptions
get(H(x), p1, v1) and ·; Υ; Γ r̀typ v1 : τ1, the induction hypothesis applies (us-
ing p20 for p2 and τ3 for τ2), so xp1p20p

′′ 6∈ Dom(Υ), as desired. The argument
for p′ = 1p′′ is analogous.

5. The proof is by induction on the length of p2. If p2 = ·, the set relation
ensures v′1 = v′2. and the gettype relation ensures τ2 = τ1. Hence the
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assumption ·; Υ; Γ r̀typ v′2 : τ2 means ·; Υ; Γ r̀typ v′1 : τ1. Heap Lemma 4
ensures xp1 · p′ 6∈ Dom(Υ), so the second conclusion holds vacuously. For
longer paths, we proceed by cases on the leftmost element:

• p2 = 0p3: Inverting the assumption Υ; xp1 ` gettype(τ1, 0p3, τ2)
provides Υ; xp10 ` gettype(τ10, p3, τ2) where τ1 = τ10 × τ11. Inverting
the assumption set(v1, 0p3, v

′
2, v

′
1) provides set(v10, p3, v

′
2, v

′
10) where

v1 = (v10, v11) and v′1 = (v′10, v11). Applying Path Extension Lemma 1
to the assumption get(H(x), p1, (v10, v11)) provides get(H(x), p10, v10).
Inverting the assumption ·; Υ; Γ r̀typ (v10, v11) : τ10 × τ11 provides
·; Υ; Γ r̀typ v10 : τ10. With the underlined results and the assumptions
·; Υ; Γ r̀typ v′2 : τ2 and · àsgn τ2, the induction hypothesis applies (using
p10 for p1, p3 for p2, v10 for v1, τ10 for τ1, τ2 for τ2, v′2 for v′2, and v′10 for
v′1).

Hence ·; Υ; Γ r̀typ v′10 : τ10 and if xp10p
′′ ∈ Dom(Υ), then

get(v′10, p
′′, pack Υ(xp10p

′′), v′′ as ∃&α:κ.τ ′′). So we can derive
·; Υ; Γ r̀typ (v′10, v11) : τ10 × τ11, as desired. If xp1p

′ ∈ Dom(Υ), then
H r̀efp Υ provides get(H(x), p1p

′, pack Υ(xp1p
′), v′′ as ∃&α:κ.τ ′′).

Because get(H(x), p1, (v10, v11)), Path Extension Lemma 1 ensures
that p′ has the form ·, 0p′′, or 1p′′. Heap-Object Safety Lemma 1
precludes p′ = ·. If p′ = 0p′′, the induction provides the result we need.
If p′ = 1p′′, applying Heap-Object Safety Lemma 2 provides
get((v10, v11), 1p

′′, pack Υ(xp1p
′), v′′ as ∃&α:κ.τ ′′), which by inversion

provides get(v11, p
′′, pack Υ(xp1p

′), v′′ as ∃&α:κ.τ ′′). So we can derive
get((v′10, v11), 1p

′′, pack Υ(xp1p
′), v′′ as ∃&α:κ.τ ′′), as desired.

• p2 = 1p3: This case is analogous to the previous one.

• p2 = up3: Inverting the assumption Υ; xp1 ` gettype(τ1, up3, τ2)
provides Υ; xp1u ` gettype(τ3[Υ(xp1)/α], p3, τ2) where τ1 = ∃&α:κ.τ3.
Inverting the assumption set(v1, up3, v

′
2, v

′
1) provides set(v3, p3, v

′
2, v

′
3)

where v1 = pack τ4, v3 as ∃&α:κ.τ3 and v′1 = pack τ4, v
′
3 as ∃&α:κ.τ3.

Applying Path Extension Lemma 1 to the assumption
get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3) provides get(H(x), p1u, v3).

Inverting the assumption ·; Υ; Γ r̀typ pack τ4, v3 as ∃&α:κ.τ3 : ∃&α:κ.τ3

provides ·; Υ; Γ r̀typ v3 : τ3[τ4/α]. From

get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3), Heap-Object Safety Lemma 1,
and H r̀efp Υ, we know τ4 = Υ(xp1). So with the underlined results
and the assumptions ·; Υ; Γ r̀typ v′2 : τ2 and · àsgn τ2, the induction
hypothesis applies (using p1u for p1, p3 for p2, v3 for v1, τ3[Υ(xp1)/α]
for τ1, τ2 for τ2, v′2 for v′2, and v′3 for v′1).
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Hence ·; Υ; Γ r̀typ v′3 : τ3[Υ(xp1)/α] and if xp1up
′′ ∈ Dom(Υ), then

get(v′3, p
′′, pack Υ(xp1up

′′), v′′ as ∃&α:κ.τ ′′). So we can derive
·; Υ; Γ r̀typ pack τ4, v

′
3 as ∃&α:κ.τ3 : ∃&α:κ.τ3, as desired. If

xp1p
′ ∈ Dom(Υ), then H r̀efp Υ provides

get(H(x), p1p
′, pack Υ(xp1p

′), v′′ as ∃&α:κ.τ ′′). Because
get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3), Path Extension Lemma 1
ensures that p′ has the form · or up′′. The case p′ = · is trivial because
get(v′1, ·, v′1) (the witness type did not change, so it is okay if
xp1 ∈ Dom(Υ)). The case up′′ follows from induction.

The corollary holds because get(H(x), ·, H(x)) and Υ; Γ h̀typ H : Γ
ensures ·; Υ; Γ r̀typ H(x) : τ1.

Definition A.12 (Extension). Γ2 (or Υ2) extends Γ1 (or Υ1) if there exists a
Γ3 (or Υ3) such that Γ2 = Γ1Γ3 (or Υ2 = Υ1Υ3).

Lemma A.13 (Term Preservation). Suppose Υ; Γ h̀typ H : Γ and H r̀efp Υ.

• If ·; Υ; Γ l̀typ e : τ and H; e
l→ H ′; e′, then there exist Γ′ and Υ′ extending Γ

and Υ such that Υ′; Γ′
h̀typ H ′ : Γ′, H ′

r̀efp Υ′, and ·; Υ′; Γ′
l̀typ e′ : τ .

• If ·; Υ; Γ r̀typ e : τ and H; e
r→ H ′; e′, then there exist Γ′ and Υ′ extending Γ

and Υ such that Υ′; Γ′
h̀typ H ′ : Γ′, H ′

r̀efp Υ′, and ·; Υ′; Γ′
r̀typ e′ : τ .

• If ·; Υ; Γ; τ s̀typ s and H; s
s→ H ′; s′, then there exist Γ′ and Υ′ extending Γ

and Υ such that Υ′; Γ′
h̀typ H ′ : Γ′, H ′

r̀efp Υ′, and ·; Υ′; Γ′; τ s̀typ s′.

Proof: The proof is by simultaneous induction on the assumed derivations
that the term can take a step, proceeding by cases on the last rule used. Except
where noted, we use H ′ = H, Γ′ = Γ, and Υ′ = Υ.

• DL3.1: Inverting ·; Υ; Γ l̀typ xp.i : τ provides Υ; x· ` gettype(Γ(x), p, τ0 × τ1)
(where τ = τi), · k̀ Γ(x) : A, and ẁf ·; Υ; Γ. Applying Path Extension Lemma
2 provides Υ; x· ` gettype(Γ(x), pi, τi), so we can derive ·; Υ; Γ l̀typ xpi : τi.

• DL3.2: Inverting ·; Υ; Γ l̀typ ∗&xp : τ provides ·; Υ; Γ l̀typ xp : τ .

• DL3.3: Inverting ·; Υ; Γ l̀typ ∗e1 : τ provides ·; Υ; Γ r̀typ e1 : τ∗ and · k̀ e1 : A.
So the induction hypothesis applies to H; e1

r→ H ′; e′1. Using the induction,
we can derive ·; Υ′; Γ′

l̀typ ∗e′1 : τ .

• DL3.4: Inverting ·; Υ; Γ l̀typ e1.i : τ provides ·; Υ; Γ l̀typ e1 : τ0 × τ1 (where

τ = τi) . So the induction hypothesis applies to H; e1
l→ H ′; e′1. Using the

induction, we can derive ·; Υ′; Γ′
l̀typ e′1.i : τ .
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• DR3.1: Inverting ·; Υ; Γ r̀typ xp : τ provides Υ; x· ` gettype(Γ(x), p, τ). So
Heap-Object Safety Lemmas 1 and 3 provide ·; Υ; Γ r̀typ v : τ .

• DR3.2: Inverting ·; Υ; Γ r̀typ xp=v : τ provides Υ; x· ` gettype(Γ(x), p, τ),
·; Υ; Γ r̀typ v : τ , and · àsgn τ . Heap-Object Safety Lemma 5 provides
·; Υ; Γ r̀typ v′ : Γ(x) and all xp′ ∈ Dom(Υ) are still correct in the sense
of H r̀efp Υ. So letting H ′ = H, x 7→ v′, Γ′ = Γ, and Υ′ = Υ, we can derive
the needed results.

• DR3.3: Inverting ·; Υ; Γ r̀typ ∗&xp : τ provides ·; Υ; Γ l̀typ xp : τ , which im-
plies ·; Υ; Γ r̀typ xp : τ (because SL3.1 and SR3.1 have identical hypotheses).

• DR3.4: Inverting ·; Υ; Γ r̀typ (v0, v1).i : τi provides ·; Υ; Γ r̀typ vi : τi.

• DR3.5: Inverting ·; Υ; Γ r̀typ ((τ1 x) → τ s)(v) : τ provides ·; Υ; Γ r̀typ v : τ1,

r̀et s, and ·; Υ; Γ, x:τ1 r̀typ τ : s. Using SS3.6 and SR3.10, these results let us
derive ·; Υ; Γ r̀typ call (let x = v; s) : τ .

• DR3.6: Inverting ·; Υ; Γ r̀typ call return v : τ provides ·; Υ; Γ r̀typ v : τ .

• DR3.7: Inverting ·; Υ; Γ r̀typ (Λα:κ.f)[τ1] : ∀α:κ.τ2 provides α:κ; Υ; Γ r̀typ

f : τ2 and · àk τ1 : κ. So Substitution Lemma 8 provides ·; Υ; Γ[τ1/α] r̀typ

f [τ1/α] : τ2[τ1/α]. Because ẁf ·; Υ; Γ, Useless Substitution Lemma 2 ensures
Γ[τ1/α] = Γ. So ·; Υ; Γ r̀typ f [τ1/α] : τ2[τ1/α].

• DR3.8–10: The arguments for each of the conclusions are very similar. In-
verting the typing derivation provides that the induction hypothesis applies
to the contained s (for DR3.8) or e (for DR3.9 or DR3.10). The induction
provides Υ′; Γ′

h̀typ H ′ : Γ′, H r̀efp Υ′, and the appropriate typing judgment
for the transformed contained term. To conclude the appropriate typing
judgment for the transformed outer term, we use the same static rule as the
original typing derivation. For DR3.8, we also need the Return Preservation
Lemma to use SR3.10. For cases with other contained terms (e.g. (v, e)), we
use the Term Weakening Lemma to type-check the unchanged terms under
Υ′ and Γ′. (This argument is why we require Υ′ and Γ′ to extend Υ and Γ.)

• DS3.1: Inverting ·; Υ; Γ; τ s̀typ let x = v; s provides ·; Υ; Γ, x:τ ′; τ s̀typ s and
·; Υ; Γ r̀typ v : τ ′. Let H ′ = H, x 7→ v, Γ′ = Γ, x:τ ′, and Υ′ = Υ. The Typing
Well-Formedness Lemma provides ∆ k̀ τ ′ : A and ẁf ·; Υ; Γ, so ẁf ·; Υ′; Γ′.
So Heap Weakening Lemma 1 provides Υ′; Γ′

h̀typ H : Γ, so ·; Υ; Γ r̀typ v : τ ′

provides Υ′; Γ′
h̀typ H ′ : Γ′. Heap Weakening Lemma 2 provides H ′

r̀efp Υ′.
The underlined results are our obligations.
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• DS3.2: Inverting ·; Υ; Γ; τ s̀typ v; s provides ·; Υ; Γ; τ s̀typ s.

• DS3.3: Inverting ·; Υ; Γ; τ s̀typ return v; s provides ·; Υ; Γ; τ s̀typ return v.

• DS3.4: Inverting ·; Υ; Γ; τ s̀typ if 0 s1 s2 provides ·; Υ; Γ; τ s̀typ s2.

• DS3.5: Inverting ·; Υ; Γ; τ s̀typ if i s1 s2 provides ·; Υ; Γ; τ s̀typ s1.

• DS3.6: Inverting ·; Υ; Γ; τ s̀typ while e s provides ·; Υ; Γ; τ s̀typ s and ·; Υ; Γ r̀typ

e : int. Typing Well-Formedness Lemma provides ẁf ·; Υ; Γ, so ·; Υ; Γ r̀typ

0 : int. With these results, we can use SS3.5, SS3.3, and SS3.1 to derive
·; Υ; Γ; τ s̀typ if e (s; while e s) 0.

• DS3.7: Inverting ·; Υ; Γ; τ ′′
s̀typ open (pack τ ′, v as ∃φα:κ.τ) as α, x; s pro-

vides α:κ; Υ; Γ, x:τ ; τ ′′
s̀typ s, ·; Υ; Γ r̀typ v : τ [τ ′/α], · àk τ ′ : κ, and · k̀ τ ′′ :

A. So Substitution Lemma 8 provides ·; Υ; (Γ[τ ′/α]), x:τ [τ ′/α]; τ ′′[τ ′/α] s̀typ

s[τ ′/α]. Applying Useless Substitution Lemmas 1 and 2 (using Typing Well-
Formedness Lemma for ẁf ·; Υ; Γ) provides ·; Υ; Γ, x:τ [τ ′/α]; τ ′′

s̀typ s[τ ′/α].
So SS3.6 lets us derive ·; Υ; Γ; τ ′′

s̀typ let x = v; s[τ ′/α], as desired.

• DS3.8: Inverting ·; Υ; Γ; τ ′′
s̀typ open xp as α, ∗x′; s provides

α:κ; Υ; Γ, x′:τ∗; τ ′′
s̀typ s, Υ; x· ` gettype(Γ(x), p, ∃&α:κ.τ), and · k̀ τ ′′ : A.

Heap-Object Safety Lemmas 1 and 3 provide
·; Υ; Γ r̀typ pack τ ′, v as ∃&α:κ.τ : ∃&α:κ.τ . Inverting this result provides
·; Υ; Γ r̀typ v : τ [τ ′/α] and · àk τ ′ : κ. So Substitution Lemma 8 provides
·; Υ; (Γ[τ ′/α]), x′:τ∗[τ ′/α]; τ ′′[τ ′/α] s̀typ s[τ ′/α]. Applying Useless
Substitution Lemmas 1 and 2 (using Typing Well-Formedness Lemma for

ẁf ·; Υ; Γ) provides ·; Υ; Γ, x:τ∗[τ ′/α]; τ ′′
s̀typ s[τ ′/α].

Let Υ′ = Υ, xp:τ ′, Γ′ = Γ, and H ′ = H. It is impossible that Υ′ is not
an extension of Υ, because that would violate the assumption H r̀efp Υ. It
may be that xp ∈ Dom(Υ) in which case Υ′ = Υ, which is fine. Apply-
ing Term Weakening Lemma 1 to Υ; x· ` gettype(Γ(x), p,∃&α:κ.τ) provides
Υ′; x· ` gettype(Γ(x), p,∃&α:κ.τ). Applying Path Extension Lemma 2 to this
result provides Υ′; x· ` gettype(Γ(x), pu, τ [τ ′/α]). So SL3.1 and SR3.6 let us
derive ·; Υ′; Γ′

r̀typ &xpu : τ [τ ′/α]. Applying Term Weakening Lemma to
·; Υ; Γ, x:τ∗[τ ′/α]; τ ′′

s̀typ s[τ ′/α] provides ·; Υ′; Γ′, x:τ∗[τ ′/α]; τ ′′
s̀typ s[τ ′/α].

So SS3.6 lets us derive ·; Υ′; Γ′; τ ′′
s̀typ let x′ = &xpu; s[τ ′/α], as desired.

• DS3.9–11: These cases use inductive arguments similar to cases DR3.8–10.
Again, the Term Weakening Lemma allows unchanged contained terms to
type-check under Γ′ and Υ′. For binding forms (let and open), α-conversion
(of x) ensures that Γ′, x:τ ′ makes sense.
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Lemma A.14 (Term Progress). Suppose Υ; Γ h̀typ H : Γ and H r̀efp Υ.

• If ·; Υ; Γ l̀typ e : τ , then e has the form xp or there exists an H ′ and e′ such

that H; e
l→ H ′; e′.

• If ·; Υ; Γ r̀typ e : τ , then e is some value v or there exists an H ′ and e′ such
that H; e

r→ H ′; e′.

• If ·; Υ; Γ; τ s̀typ s, then s has the form v or return v, or there exists an H ′

and s′ such that H; s
s→ H ′; s′.

Proof: The proof is by simultaneous induction on the assumed typing deriva-
tions, proceeding by cases on the last rule used:

• SL3.1: e has the form xp.

• SL3.2: By induction, if e′ (where e = ∗e′) is not a value, it can take a step,
so DL3.3 applies. Else e′ is a value with a pointer type, so the Canonical
Forms Lemma provides it has the form &xp. So DL3.2 applies.

• SL3.3: By induction, if e′ (where e = e′.0) is not some xp, it can take a step,
so DL3.4 applies. Else e′ is some xp, so DL3.1 applies.

• SL3.4: This case is analogous to the previous one.

• SR3.1: Heap Safety Lemma 3 provides get(H(x), p, v) for some v, so DR3.1
applies.

• SR3.2: This case is analogous to SL3.2, using DR3.10 and DR3.3 in place of
DL3.3 and DL3.2.

• SR3.3: By induction, if e′ (where e = e′.0) is not a value, it can take a step,
so DR3.10 applies. Else e′ is a value with a product type, so the Canonical
Forms Lemma provides it has the form (v0, v1). So DR3.4 applies.

• SR3.4: This case is analogous to the previous one.

• SR3.5: e is a value.

• SR3.6: By induction, if e′ (where e = &e′) is not some xp, it can take a step,
so DR3.9 applies. Else e is a value.

• SR3.7: Let e = (e0, e1). If e0 is not a value, or e0 is a value but e1 is not
a value, then induction ensures the nonvalue can take a step, so DR3.10
applies. Else e is a value.
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• SR3.8: Let e = (e1=e2). If e1 is not some xp, then induction ensures e1

can take a step, so DR3.9 applies. Else if e2 is not a value, then induction
ensures e2 can take a step, so DR3.10 applies. Else the typing derivation and
Heap-Object Safety Lemma 3 provide the hypothesis to DR3.2.

• SR3.9: Let e = e1(e2). By induction, if e1 is not a value or e1 is a value and
e2 is not a value, then the nonvalue can take a step and DR3.10 applies. Else,
e1 is a value with a function type, so the Canonical Forms Lemma provides
it is a function. So DR3.5 applies.

• SR3.10: By induction, if s is not v or return v, then it can take a step so
DR3.8 applies. Else s is v or return v. Inspection of r̀et s (provided by
inversion of the typing derivation) shows the former case is impossible). In
the latter case, DR3.6 applies.

• SR3.11: Let e = e′[τ ]. By induction, if e′ is not a value, it can take step,
so DR3.10 applies. Else it is a value with a universal type, so the Canonical
Forms Lemma ensures it is a polymorphic value. So DR.27 applies.

• SR3.12: By induction, if the expression inside the package is not a value, it
can take a step, so DR3.10 applies. Else e is a value.

• SR3.13: e is a value.

• SR3.14: e is a value.

• SS3.1: By induction, if e is not a value, it can take a step so DS3.9 applies.
Else s is a value.

• SS3.2: By induction, if e is not a value, it can take a step so DS3.9 applies.
Else s has the form return v.

• SS3.3: By induction, s can take a step, is some v, or has the form return v.
In the first case, DS3.10 applies. In the second case, DS3.2 applies. In the
third case, DS3.3 applies.

• SS3.4: DS3.6 applies.

• SS3.5: By induction, if e is not a value, it can take a step, so DS3.9 applies.
Else e is a value of type int, so the Canonical Forms Lemma ensures it is
some i. So either DS3.4 or DS3.5 applies.

• SS3.6: By induction, if e is not a value, it can take a step, so DS3.9 applies.
Else DS3.1 applies.
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• SS3.7: By induction, if e is not a value, it can take a step, so DS3.9 applies.
Else e is a value with an existential type, so the Canonical Forms Lemma
ensures it is an existential package. So DS3.7 applies.

• SS3.8: By induction, if e is not of the form xp, it can take a step, so DS3.11
applies. Else e has the form xp and Υ; x· ` gettype(Γ(x), p, ∃&α:κ.τ ′).
So Heap-Object Safety Lemma 3 provides there exists some v such that
get(H(x), p, v) and ·; Υ; Γ r̀typ v : ∃&α:κ.τ ′. So the Canonical Forms Lemma
provides v has the form pack τ ′′, v′ as ∃&α:κ.τ ′. So DS3.8 applies.

It is straightforward to check that the preservation and progress properties
stated in the proof of the Type Safety Theorem are corollaries to the Return Preser-
vation Lemma, the Term Preservation Lemma, and the Term Progress Lemma.
These lemmas apply given the hypotheses of p̀rog P and the conclusions of the
preservation lemmas suffice to conclude p̀rog P ′. The lemmas are stronger (e.g.,
the static context is an extension) because of their inductive proofs.



Appendix B

Chapter 4 Safety Proof

This appendix proves Theorem 4.2, which we repeat here:

Definition 4.1. State SG; S; s is stuck if s is not of the form return v and there
are no S ′

G, S ′, and s′ such that SG; S; s
s→ S ′

G; S ′; s′.

Theorem 4.2 (Type Safety). If ·; ·; ·; ·; ∅; τ s̀typ s, r̀et s, s contains no pop
statements, and ·; ·; s s→∗

S ′
G; S ′; s′ (where

s→∗
is the reflexive, transitive closure of

s→), then S ′
G; S ′; s′ is not stuck.

Before presenting and proving the necessary lemmas in “bottom-up” order,
we summarize the structure of the argument and explain how the lemmas imply
the Type Safety Theorem. Because the theorem’s assumptions imply p̀rog ·; ·; s,
a simple induction on the number of steps taken shows that it suffices to estab-
lish preservation (if p̀rog SG; S; s and SG; S; s

s→ S ′
G; S ′; s′, then p̀rog S ′

G; S ′; s′) and
progress (if p̀rog SG; S; s, then s is not stuck). To prove these properties induc-
tively, we need analogous lemmas for right-expressions and left-expressions as in
Chapter 3, but memory allocation complicates matters.

Chapter 4 explains why the hypotheses for the p̀rog rule type-check s under
the capability ∅ and require RP s̀pop s. But we must change these restrictions
to apply the induction hypothesis when s has the form s1; pop i. After all, we
should allow access to i within s1 and s1 should not deallocate i. The necessary
generalization of p̀rog, defined in Figure B.1, conceptually partitions the live regions
S such that S = SESP . A statement or expression is acceptable if it type-checks
under a capability consisting of the regions in SE and deallocates the regions in SP

(subject to the other restrictions of s̀pop and èpop). Otherwise, the judgments used
in the statement of the Type and Pop Preservation Lemma and the Type and Pop
Progress Lemma are like p̀rog.

When SG; SESP ; s becomes S ′
G; S ′

ES ′
P ; s′, a region might be deallocated (shrink-

ing SP and growing SG), a region might be allocated (growing SP ), a live location
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might be mutated (changing SE or SP but not its type), or the heap might re-
main unchanged. The Type and Pop Preservation Lemma demonstrates that the
type context that the heap induces is strong enough for the resulting state to be
well-typed in all of these situations. The most interesting use of the induction hy-
pothesis is when s is s1; pop i because the proof conceptually “shifts” the deepest
region in SP to the shallowest region in SE to apply induction to s1.

Applying the Type and Pop Preservation Lemma with SP = · in conjunction
with the Return Preservation Lemma implies the statement of preservation we
need. Similarly, applying the Type and Pop Progress Lemma with SP = · in
conjunction with r̀et s implies the statement of progress we need.

The Type and Pop Progress Lemma relies on the Canonical Forms Lemma (as
usual), the Heap-Object Safety Lemma (for progress results involving paths; these
are much simpler than in Chapter 3), and the Access Control Lemma. This last
lemma ensures the àcc hypotheses suffice to prevent programs from trying to access
SG (and therefore becoming stuck). In languages where programs may access all
locations in scope, such lemmas are unnecessary.

Proving the Type and Pop Preservation Lemma requires several auxiliary lem-
mas. The New-Region Preservation Lemma dismisses a technical point for cases
that allocate regions: Statements like s1 in region ρ, x s1 assume the constraint
(i1 ∪ . . . ∪ in)<ρ, but the typing context after the step provides i1<i2, . . . , in<i
(where we substitute S(i) for ρ). This lemma proves these constraints suffice to
type-check s1 (after the substitution). The Subtyping Preservation Lemma proves
results that would hold by inversion were it not for rules SR4.17 and SL4.5. Like
for progress, the Heap-Object Safety Lemmas provide results about paths and the
associated relations (get, set, and gettype). The proofs are simple without the
reference patterns of Chapter 3. The Values Effectless Lemma ensures C r̀typ v : τ
and R èpop v means v type-checks regardless of the current capability (intuitively,
“evaluating” values does not access the heap) and v contains no pop statements.
This lemma is crucial for allowing values to escape scope.

The other auxiliary lemmas for preservation are more conventional. The Term
Substitution Lemma provides the preservation result we need for dynamic steps
that use type substitution. The Heap-Type Well-Formedness Lemma just describes
what we can assume about heap locations by inverting the h̀typ judgments. The
Typing Well-Formedness Lemma lets us use typing judgments to conclude context
well-formedness and some types’ kinds. The Type Substitution Lemma provides
type-level results we need to prove the Typing Well-Formedness Lemma and the
Term Substitution Lemma. The eighth such lemma needs the Type Canonical
Forms Lemma, which is rather obvious. The remaining lemmas (Commuting Sub-
stitutions, Useless Substitution, and various weakening lemmas) serve the same
purpose they did in Chapter 3. For each, we need to prove analogous results for
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effects, constraints, and types. The Commuting Substitutions Lemma for effects
is interesting because we must prove regions(τ1[τ2/α]) = (regions(τ1))[τ2/α]. The
weakening lemmas always use the semantic notion of stronger effects and con-
straints (the èff judgments) rather than a less useful notion of syntactic extension.

Lemma B.1 (Context Weakening).

1. If R; ∆ ẁf ε and R ⊆ R′, then R′; ∆∆′
ẁf ε.

2. If R; ∆ ẁf γ and R ⊆ R′, then R′; ∆∆′
ẁf γ.

3. If R; ∆ k̀ τ : κ and R ⊆ R′, then R′; ∆∆′
k̀ τ : κ.

4. If R; ∆ ẁf Γ and R ⊆ R′, then R′; ∆∆′
ẁf Γ.

5. If γ èff ε1 ⇐ ε2 and γ′
èff γ, then γ′

èff ε1 ⇐ ε2.

6. If γ; ε àcc r, γ′
èff γ, and γ′

èff ε ⇐ ε′, then γ′; ε′ àcc r.

7. If γ2 èff γ1 and γ3 èff γ2, then γ3 èff γ1.

Proof:

1. By induction on the derivation of R; ∆ ẁf ε

2. By induction on the derivation of R; ∆ ẁf γ, using the previous lemma

3. By induction on the derivation of R; ∆ k̀ τ : κ, using the previous lemmas

4. By induction on the derivation of R; ∆ ẁf Γ, using the previous lemma

5. By induction on the derivation of γ èff ε1 ⇐ ε2: The interesting case is when
γ = γ1, ε1<ε2, γ2 and the derivation ends with the corresponding axiom. In
this case, γ′

èff γ ensures γ′
èff ε1 ⇐ ε2.

6. By inspection of the γ; ε àcc r judgment, using the previous lemma and the

èff rule for transitivity

7. By induction on the derivation of γ2 èff γ1, using Context Weakening Lemma
5

Lemma B.2 (Term Weakening). Suppose ẁf R′; ∆∆′; ΓΓ′; γ′; ε′, R ⊆ R′, γ′
èff

γ, and γ′
èff ε ⇐ ε′.

1. If R; ∆; Γ; γ; ε l̀typ e : τ, r, then R′; ∆∆′; ΓΓ′; γ′; ε′ l̀typ e : τ, r.
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2. If R; ∆; Γ; γ; ε r̀typ e : τ , then R′; ∆∆′; ΓΓ′; γ′; ε′ r̀typ e : τ .

3. If R; ∆; Γ; γ; ε; τ s̀typ s, then R′; ∆∆′; ΓΓ′; γ′; ε′; τ s̀typ s.

Proof: By simultaneous induction on the assumed typing derivations, proceed-
ing by cases on the last rule in the derivation:

• SS4.1–5: These cases follow from induction.

• SS4.6–8: These cases follow from induction and Context Weakening Lemma
3. The induction hypothesis applies because of α-conversion, implicit re-
ordering of ∆ and Γ, the fact that γ′

èff γ implies γ′, ε<ρ èff γ, ε<ρ, and the
fact that γ′

èff ε ⇐ ε′ implies γ′
èff ε ∪ ρ ⇐ ε′ ∪ ρ.

• SS4.9: This case follows from induction, which applies because γ′
èff ε ⇐ ε′

implies γ′
èff ε ∪ i ⇐ ε′ ∪ i.

• SL4.1: This case is trivial because ΓΓ′(x) = Γ(x).

• SL4.2–4: These cases follow from induction.

• SL4.5: This case follows from induction and Context Weakening Lemmas 3
and 6.

• SR4.1: This case is trivial because ΓΓ′(x) = Γ(x).

• SR4.2–7: These cases follow from induction. (SR4.5 is trivial.)

• SR4.8: This case follows from induction and Context Weakening Lemma 6.

• SR4.9: This case follows from induction and Context Weakening Lemma 5.

• SR4.10: This case follows from induction.

• SR4.11–12: These cases follow from induction and Context Weakening Lem-
mas 3 and 7.

• SR4.13–14: These cases are like cases SS4.6–8. For SR4.13, the induction
hypothesis applies to the function body using the function’s explicit effect
for ε and e′. This explicit effect has no connection to the ε or ε′ used (but
ignored) to type-check the function.

• SR4.15: This case follows from induction and Context Weakening Lemma 6.

• SR4.16: This case is trivial because i ∈ R′.
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• SR4.17: This case is like SL4.5.

Lemma B.3 (Heap-Type Weakening). Suppose R ⊆ R′, R′; · ẁf ΓΓ′, R′; · ẁf

γ′, and γ′
èff γ.

1. If R; Γ; γ; i h̀typ H : Γ′′, then R′; ΓΓ′; γ′; i h̀typ H : Γ′′.

2. If R; Γ; γ h̀typ S : Γ′′, then R′; ΓΓ′; γ′
h̀typ S : Γ′′.

Proof: The first proof is by induction on the derivation of R; Γ; γ; i h̀typ H :
Γ′′ using Term Weakening Lemma 2. The second proof is by induction on the
derivation of R; Γ; γ h̀typ S : Γ′′, using the first lemma.

Lemma B.4 (Useless Substitution). Suppose α 6∈ Dom(∆).

1. If R; ∆ ẁf ε, then ε[τ/α] = ε.

2. If R; ∆ ẁf γ, then γ[τ/α] = γ.

3. If R; ∆ k̀ τ ′ : κ, then τ ′[τ/α] = τ ′.

4. If R; ∆ ẁf Γ, then Γ[τ/α] = Γ.

Proof: Each proof is by induction on the assumed derivation, appealing to the
definition of substitution and the preceding lemmas as necessary.

Lemma B.5 (Type Canonical Forms). If R; ∆ k̀ τ : R, then τ = S(i) for some
i ∈ R or τ = α for some α ∈ Dom(∆).

Proof: By inspection of the k̀ rules

Lemma B.6 (Commuting Substitutions). Suppose β 6= α and β is not free in
τ2.

1. ε[τ1/β][τ2/α] = ε[τ2/α][τ1[τ2/α]/β]

2. γ[τ1/β][τ2/α] = γ[τ2/α][τ1[τ2/α]/β]

3. τ0[τ1/β][τ2/α] = τ0[τ2/α][τ1[τ2/α]/β]
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Proof:

1. By induction on the structure of ε (assuming set equalities as usual): The
cases where ε is ∅, i, or some α′ that is neither α nor β are trivial. The case
where ε = ε1 ∪ ε2 is by induction. If ε = α, then both substitutions produce
regions(τ2); for the right side, we rely on the assumption that β is not free
in τ2 and the definition of regions for the outer substitution to be useless. If
ε = β, the left substitution produces regions(τ1)[τ2/α] and the right produces
regions(τ1[τ2/α]). An inductive argument on the structure of τ1 ensures these
sets are the same.

2. By induction on the structure of γ, using the previous lemma

3. By induction on the structure of τ0: The cases for int and S(i) are trivial.
The cases for pair types, pointer types, and handle types are by induction.
The case for function types is by induction and Commuting Substitutions
Lemma 1. The cases for quantified types are by induction and Commuting
Substitutions Lemma 2. The case for α′ that is neither α nor β is trivial. If
τ0 = α, then both substitutions produce τ2; for the right side, we rely on the
assumption that β is not free in τ2 for the outer substitution to be useless.
If τ0 = β, both substitutions produce τ1[τ2/α].

Lemma B.7 (Type Substitution). Suppose R; ∆ k̀ τ : κ.

1. R; ∆ ẁf regions(τ)

2. If R; ∆, α:κ ẁf ε, then R; ∆ ẁf ε[τ/α].

3. If R; ∆, α:κ ẁf γ, then R; ∆ ẁf γ[τ/α].

4. If R; ∆, α:κ k̀ τ ′ : κ′, then R; ∆ k̀ τ ′[τ/α] : κ′.

5. If R; ∆, α:κ ẁf Γ, then R; ∆ ẁf Γ[τ/α].

6. If ẁf R; ∆, α:κ; Γ; γ; ε, then ẁf R; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α].

7. If γ èff ε1 ⇐ ε2, then γ[τ/α] èff ε1[τ/α] ⇐ ε2[τ/α].

8. If γ; ε àcc r and R; ∆, α:κ k̀ r : R, then γ[τ/α]; ε[τ/α] àcc r[τ/α].

9. If γ èff γ′, then γ[τ/α] èff γ′[τ/α].
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Proof:

1. By induction on the assumed kinding derivation: Cases in which regions(τ)
is ∅ are trivial. The cases for subkinding, pair types, pointer types, and
handle types are by induction. The case for function types follows immedi-
ately from the rule’s right-most hypothesis. The cases for type variables and
singleton types follow from the rules’ assumptions and the definition of ẁf .
For ∀α:κ′[γ].τ ′ or ∃α:κ′[γ].τ ′, induction provides R; ∆, α:κ′

ẁf regions(τ ′). A
trivial induction on ẁf shows that if R; ∆, α:κ′

ẁf ε and α 6∈ ε, then R; ∆ ẁf ε.
Hence R; ∆ ẁf regions(τ ′)− α, as desired.

2. By induction on the derivation of R; ∆, α:κ ẁf γ: The previous lemma en-
sures the interesting case, when ε = α.

3. By induction on the derivation of R; ∆, α:κ ẁf γ, using the previous lemma

4. By induction on the derivation of R; ∆, α:κ k̀ τ ′ : κ′: Most cases are immedi-
ate or by induction. The case for function types also uses Type Substitution
Lemma 2. The case for quantified types also uses Type Substitution Lemma
3 and implicit reordering of type-variable contexts.

5. By induction on the derivation of R; ∆, α:κ ẁf Γ, using the previous lemma

6. This lemma is a corollary to Type Substitution Lemmas 2, 3, and 5.

7. By induction on the derivation of γ èff ε1 ⇐ ε2: The two axioms follow from
the definition of substitution. The other cases are by induction.

8. By inspection of the derivation of γ; ε àcc r, using the previous lemma: Type
Substitution Lemma 3 and the Type Canonical Forms Lemma ensure the
form of r[τ/α] is appropriate for àcc.

9. By induction on the derivation of γ èff γ′, using Type Substitution Lemma 7

Lemma B.8 (Typing Well-Formedness).

1. If ` gettype(τ ′, p, τ) and CR; C∆ k̀ τ ′ : A, then CR; C∆ k̀ τ : A.

2. If C l̀typ e : τ, r, then ẁf C, CR; C∆ k̀ τ : A, and CR; C∆ k̀ r : R.

3. If C r̀typ e : τ , then ẁf C and CR; C∆ k̀ τ : A.

4. If C; τ s̀typ s, then ẁf C. If C; τ s̀typ s and r̀et s, then CR; C∆ k̀ τ : A.
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Proof: The first proof is by induction on the ` gettype(τ, p, τ ′) derivation. If
p = ·, the result is immediate, else inversion of the kinding derivation ensures the
induction hypothesis applies. The remaining proofs are by simultaneous induction
on the assumed typing derivations, proceeding by cases on the last rule used. Sev-
eral of the cases that invert kinding derivations implicitly cover two cases because
the last step may subsume kind B to A.

• SL4.1, SR4.1: These cases follow from the definition of CR; C∆ ẁf Γ (for the
kind of τ ′ and r) and Typing Well-Formedness Lemma 1.

• SL4.2–4, SR4.2–4: This case follows from induction and inversion of the
kinding derivation for the type of the term used in the hypothesis.

• SL4.5, SR4.17: These cases follow from induction on the left hypothesis,
inversion of the kinding derivation for its type, the right hypothesis, and (for
SR4.17) the kinding rule for pointer types.

• SR4.5: This case is trivial.

• SR4.6–7: These cases follow from induction and the kinding rules for pointer
and pair types.

• SR4.8: This case follows from induction, using the middle hypothesis.

• SR4.9: This case follows from induction, using the left hypothesis and inver-
sion of the kinding derivation for function types.

• SR4.10: This case follow from induction.

• SR4.11: This case follows from induction on the left hypothesis, inversion of
the kinding derivation for the quantified type, and Type Substitution Lemma
4 (using the middle hypothesis from the typing derivation).

• SR4.12: This case follows from the right hypothesis and induction on the left
hypothesis.

• SR4.13–14: These cases are trivial.

• SR4.15: This case follows from induction, inversion of the kinding derivation
for the handle type, and the kinding rule for pointer types.

• SR4.16: This case follows from the kinding rule for singleton types.

• SS4.1–5: These cases follow from induction. Note that the r̀et obligation
holds vacuously for SS4.1 and SS4.4.
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• SS4.6–7: These cases follow from induction on the expression-typing hypoth-
esis and the kinding hypothesis for τ .

• SS4.8: This case follows immediately from the hypotheses.

• SS4.9: This case follows from induction and the fact that if ε∪i is well-formed,
then ε is well-formed.

Lemma B.9 (Heap-Type Well-Formedness). If R; Γ′; γ h̀typ S : Γ, then x ∈
Dom(Γ) if and only if x is in some H in S. If Γ(x) = (τ, r) then r = S(i)) and S
has the form S1, i : H1, x 7→ v, H2, S2 where R; ·; Γ′; γ; ∅ r̀typ v : τ and · èpop v.

Proof: By induction on the h̀typ derivations

Lemma B.10 (Term Substitution).

1. If r̀et s, then r̀et s[τ/α].

2. If R s̀pop s, then R s̀pop s[τ/α].
If R èpop e, then R èpop e[τ/α].

3. If ` gettype(τ1, p, τ2), then ` gettype(τ1[τ/α], p, τ2[τ/α]).

4. Suppose R; ∆ k̀ τ : κ.
If R; ∆, α:κ; Γ; γ; ε l̀typ e : τ ′, r,
then R; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α] l̀typ e[τ/α] : τ ′[τ/α], r[τ/α].
If R; ∆, α:κ; Γ; γ; ε r̀typ e : τ ′,
then R; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α] r̀typ e[τ/α] : τ ′[τ/α].
If R; ∆, α:κ; Γ; γ; ε; τ ′

s̀typ s,
then R; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α]; τ ′[τ/α] s̀typ s[τ/α].

Proof:

1. By induction on the derivation of r̀et s

2. By simultaneous induction on the derivations of R s̀pop s and R èpop e

3. By induction on the derivation of ` gettype(τ1, p, τ2)

4. By simultaneous induction on the assumed derivations, proceeding by cases
on the last rule used: In each case, we satisfy the hypotheses of the rule
after substitution and then use the rule to derive the desired result. So
for each case, we just list the lemmas and arguments needed to conclude
the necessary hypotheses. Cases SR4.11 and SR4.12 use the Commuting
Substitutions Lemma just like cases SR3.11 ans SR3.12 in Chapter 3; see
there for details.
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• SL4.1: the definition of substitution, Term Substitution Lemma 3, and
Type Substitution Lemma 6

• SL4.2–4: induction

• SL4.5: induction, Type Substitution Lemma 8, and Type Substitution
Lemma 4

• SR4.1: the definition of substitution, Term Substitution Lemma 3, Type
Substitution Lemma 8 (which applies because the right hypothesis en-
sures CR; C∆ ẁf CΓ), and Type Substitution Lemma 6

• SR4.2: induction and Type Substitution Lemma 8 (which applies be-
cause the Typing Well-Formedness Lemma ensures CR; C∆ ẁf CΓ)

• SR4.3–4: induction

• SR4.5: Type Substitution Lemma 6

• SR4.6–7: induction

• SR4.8: induction and Type Substitution Lemma 8 (which applies be-
cause the Typing Well-Formedness Lemma ensures CR; C∆ ẁf CΓ)

• SR4.9: induction and Type Substitution Lemma 7

• SR4.10: induction and Term Substitution Lemma 1

• SR4.11: induction, Type Substitution Lemma 4, and Type Substitution
Lemma 9 ensure we can derive a result that, given the Commuting
Substitutions Lemma, is what we want.

• SR4.12: induction (applying the Commuting Substitutions Lemma to
the result), Type Substitution Lemma 4, Type Substitution Lemma 9,
and Type Substitution Lemma 4 again

• SR4.13: induction, Term Substitution Lemma 1, and Type Substitution
Lemma 4

• SR4.14: induction, Type Substitution Lemma 6, and Type Substitution
Lemma 4

• SR4.15: induction and Type Substitution Lemma 8 (which applies be-
cause the Typing Well-Formedness Lemma ensures CR; C∆ ẁf CΓ)

• SR4.16: Type Substitution Lemma 6

• SR4.17: induction, Type Substitution Lemma 8, and Type Substitution
Lemma 4

• SS4.1–5: induction

• SS4.6–7: induction and Type Substitution Lemma 4
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SG = i′1:, H
′
1 . . . , i′m:H ′

m RG = i′1, . . . , i
′
m γG = ε1<i′1, . . . , εm<i′m

SE = i1:H1, . . . , ij:Hj RE = i1, . . . , ij ε = i1 ∪ . . . ∪ ij
SP = ij+1:Hj+1, . . . , in:Hn RP = ij+1, . . . , in γ = i1<i2, i2<i3, . . . , in−1<in
RGRERP ; Γ; γγG h̀typ SGSESP : Γ

h̀ind SG; SE; SP : RG; RE; RP ; Γ; γγG; ε

h̀ind SG; SE; SP : RG; RE; RP ; Γ; γ; ε RGRERP ; ·; Γ; γ; ε; τ s̀typ s RP s̀pop s

s̀ind SG; SE; SP ; τ ; s : RG; RE; RP ; Γ; γ

h̀ind SG; SE; SP : RG; RE; RP ; Γ; γ; ε RGRERP ; ·; Γ; γ; ε r̀typ e : τ RP èpop e

r̀ind SG; SE; SP ; e : τ ; RG; RE; RP ; Γ; γ

h̀ind SG; SE; SP : RG; RE; RP ; Γ; γ; ε RGRERP ; ·; Γ; γ; ε l̀typ e : τ, r RP èpop e

l̀ind SG; SE; SP ; e : τ, r; RG; RE; RP ; Γ; γ

Figure B.1: Chapter 4 Safety-Proof Invariant

• SS4.8: Type Substitution Lemma 6, induction, and Type Substitution
Lemma 4

• SS4.9: induction

Lemma B.11 (Return Preservation).

If r̀et s and SG; S; s
s→ S ′

G; S ′; s′, then r̀et s′.

Proof: The proof is by induction on the derivation of the dynamic step. It is
very similar to the corresponding proof in Chapter 3, so we omit the details.

Lemma B.12 (Values Effectless).

1. If R èpop v or R èpop xp, then R = ·.

2. If R; ∆; Γ; γ; ε r̀typ v : τ and R; ∆ ẁf ε′, then R; ∆; Γ; γ; ε′ r̀typ v : τ .
If R; ∆; Γ; γ; ε l̀typ xp : τ, r and R; ∆ ẁf ε′, then R; ∆; Γ; γ; ε′ l̀typ xp : τ, r.

Proof: Both proofs are by induction on the structure of values. The nonin-
ductive cases show that the deallocation rules disallow a nonempty R and that the
type-checking rules require nothing of ε except well-formedness.

Lemma B.13 (Access Control).

1. If h̀ind SG; SE; SP : RG; RE; RP ; Γ; γ; ε and γ; ε àcc r, then r = S(i) for some
i ∈ Dom(SE).
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2. If we further assume Γ(x) = (τ, r), then x ∈ Dom(H) for some H in SE.

Proof:

1. If γ; ε àcc r, then γ èff regions(r) ⇐ ε. Furthermore, the h̀ind hypotheses
ensure ε describes only regions in SE (and none of the form α). So it suffices
to prove this stronger claim: If γ èff ε1 ⇐ ε2 and ε2 describes only regions in
SE, then ε1 describes only regions in SE. The proof is by induction on the
derivation of γ èff ε1 ⇐ ε2. The interesting case is when the last rule uses
the fact that ε1<ε2 is in γ. This case follows from the h̀ind hypotheses.

2. This lemma is a corollary to the previous one, given the Heap-Type Well-
Formedness Lemma.

Lemma B.14 (Canonical Forms). Suppose R; ·; Γ; γ; ε r̀typ v : τ .

1. If τ = int, then v = i for some i.

2. If τ = τ0 × τ1, then v = (v0, v1) for some v0 and v1.

3. If τ = τ0
ε′
→ τ1, then v = (τ0, ρ x)

ε′
→ τ1 s for some ρ, x, and s.

4. If τ = τ ′∗r, then v = &xp for some x and p.

5. If τ = ∀α:κ[γ].τ ′, then v = Λα:κ[γ].f for some f .

6. If τ = ∃α:κ[γ].τ ′, then v = pack τ ′′, v′ as ∃α:κ[γ].τ ′ for some τ ′′ and v′.

7. If τ = region(r), then r = S(i) and v = rgn i for some i.

Proof: By inspection of the rules for r̀typ and the form of values

Lemma B.15 (Heap-Object Safety).

1. If ` gettype(τ, p, τ0 × τ1), then ` gettype(τ, p0, τ0) and ` gettype(τ, p1, τ1).

2. If C r̀typ v : τ , ` gettype(τ, p, τ ′), and get(v, p, v′), then C r̀typ v′ : τ ′.

3. If C r̀typ v : τ , ` gettype(τ, p, τ ′), C r̀typ v′ : τ ′, and set(v, p, v′, v′′), then
C r̀typ v′′ : τ .

4. If ` gettype(τ, p, τ ′) and C r̀typ v : τ , then there exists some v′ such that
get(v, p, v′).

5. If ` gettype(τ, p, τ ′) and C r̀typ v : τ , then for all v′ there exists some v′′

such that set(v, p, v′, v′′).
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6. If · èpop v and get(v, p, v′), then · èpop v′.

7. If · èpop v, · èpop v′, and set(v, p, v′, v′′), then · èpop v′′.

Proof: In all cases, the proof is by induction on the length of p.

1. If p = ·, the result is immediate, else the induction hypothesis suffices.

2. If p = ·, the result is immediate, else the induction hypothesis suffices.

3. If p = ·, the result is immediate given C r̀typ v′ : τ ′, else the induction
hypothesis, inversion of the derivation of C r̀typ v : τ , and rule SR4.7 suffice.

4. If p = ·, let v′ = v. Else the induction hypothesis and the Canonical Forms
Lemma suffice.

5. If p = ·, let v′′ = v′. Else the induction hypothesis and the Canonical Forms
Lemma suffice.

6. If p = ·, the result is immediate, else the induction hypothesis and the
definition of èpop suffices.

7. If p = ·, the result is immediate, else the induction hypothesis and the
definition of èpop suffices.

Lemma B.16 (Subtyping Preservation).

1. If C r̀typ &xp : τ∗r, then C l̀typ xp : τ, r.

2. If C l̀typ xp : τ, r and Cγ; Cε àcc r, then C r̀typ xp : τ .

3. If C r̀typ &xp : τ∗r and Cγ; Cε àcc r, then C r̀typ xp : τ .

4. If C l̀typ xp : τ0 × τ1, r, then C l̀typ xp0 : τ0, r and C l̀typ xp1 : τ1, r.

Proof:

1. By induction on the derivation of C r̀typ &xp : τ∗r: If the last rule is SR4.6,
its hypothesis suffices. Else the last rule is SR4.17, so there is an r′ such that
C r̀typ &xp : τ∗r′, Cγ; regions(r) àcc r′, and CR; C∆ k̀ r : R. By induction
C l̀typ xp : τ, r′, so SL4.5 ensures the desired result.

2. By induction on the derivation of C l̀typ xp : τ, r: If the last rule is SL4.1, then
its hypotheses, Cγ; Cε àcc r, and SR4.1 ensure the desired result. Else the last
rule is SL4.5, so there is an r′ such that C l̀typ xp : τ, r′ and Cγ; regions(r) àcc

r′. Given Cγ; Cε àcc r and Cγ; regions(r) àcc r′, we know Cγ èff regions(r) ⇐
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Cε and Cγ èff regions(r′) ⇐ regions(r). So we can derive Cγ èff regions(r′) ⇐
Cε; hence Cγ; Cε àcc r′. (The Typing Well-Formedness Lemma and the Type
Canonical Forms Lemma ensure àcc applies.) Hence the induction hypothesis
ensures C r̀typ xp : τ .

3. This lemma is a corollary of the previous two lemmas.

4. By induction on the derivation of C l̀typ xp : τ0 × τ1, r: If the last rule is
SL4.1, inversion and Heap-Object Safety Lemma 1 suffice. Else the last rule
is SL4.5, and the result follows from induction.

Lemma B.17 (New-Region Preservation).

If ε = i1 ∪ . . . ∪ in and γ = i1<i2, . . . , in−1<in, then γ, in<i èff γ, ε<i.

Proof: By induction on n: If n = 0, our obligation is · èff ∅<i, which we
can prove by rewriting i as ∅ ∪ i and showing · èff ∅ ⇐ ∅. For n > 0, let ε′ =
i1 ∪ . . . ∪ in−1 and γ′ = i1<i2, . . . , in−2<in−1. Invoking the induction hypothesis
with in for i ensures γ èff γ′, ε′<in. The Context Weakening Lemma ensures
γ, in<i èff γ′, ε′<in, so we can derive γ, in<i èff γ′, ε′<in, in<i. So the Context
Weakening Lemma ensures it suffices to show γ′, ε′<in, in<i èff γ, ε<i, for which
it suffices to show γ′, ε′<in, in<i èff γ′ (trivial), γ′, ε′<in, in<i èff in−1<in (trivial
because ε′ = in−1 ∪ ε′′ for some ε′′), and γ′, ε′<in, in<i èff ε<i (follows from ε′<in
and in<i because ε = ε′ ∪ in).

Lemma B.18 (Type and Pop Preservation). Suppose:

1. SG; SESP ; s
s→ S ′

G; S ′; s′

(respectively, SG; SESP ; e
r→ S ′

G; S ′; e′)

(respectively, SG; SESP ; e
l→ S ′

G; S ′; e′)

2. s̀ind SG; SE; SP ; τ ; s : RG; RE; RP ; Γ; γ
(respectively, r̀ind SG; SE; SP ; e : τ ; RG; RE; RP ; Γ; γ)
(respectively, l̀ind SG; SE; SP ; e : τ, r; RG; RE; RP ; Γ; γ)

Then there exist S ′
G, S ′

E, S ′
P , R′

G, R′
P , Γ′, and γ′ such that:

1. S ′ = S ′
ES ′

P

2. RGRP ⊆ R′
GR′

P

3. Γ′ = ΓΓ′′ for some Γ′′

4. γ′
èff γ
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5. s̀ind S ′
G; S ′

E; S ′
P ; τ ; s′ : R′

G; RE; R′
P ; Γ′; γ′

(respectively, r̀ind S ′
G; S ′

E; S ′
P ; e′ : τ ; R′

G; RE; R′
P ; Γ′; γ′)

(respectively, l̀ind S ′
G; S ′

E; S ′
P ; e′ : τ, r; R′

G; RE; R′
P ; Γ′; γ′)

Proof: The proofs are by simultaneous induction on the typing derivations
implied by the s̀ind, r̀ind, and l̀ind assumptions, proceeding by cases on the last
rule used. (Subtyping makes this technique easier than induction on the dynamic
derivations.) In each case, let C = RGRERP ; ·; Γ; γ; ε and C ′ = R′

GRER′
P ; ·; Γ′; γ′; ε.

Two situations arise often in the proof, so we sketch the structure of the argu-
ment for these situations. First, if the dynamic step does not change the heap, (e.g.,
SG; S; s

s→ SG; S; s′), then we say the situation is local. Letting S ′
E = SE, S ′

P = SP ,
R′

G = RG, R′
P = RP , Γ′ = Γ, and γ′ = γ, it suffices to show C; τ s̀typ s′ and

RP s̀pop s′ (respectively, C r̀typ e′ : τ and RP èpop e′) (respectively, C l̀typ e′ : τ, r
and RP èpop e′).

Second, all arguments that use induction follow a similar form. We say the situ-
ation is inductive. To invoke the induction hypothesis, we use the h̀ind assumption
without change and we use inversion on the type-checking and deallocation as-
sumptions to conclude the type-checking and deallocation facts induction requires.
Invoking the induction hypothesis provides h̀ind S ′

G; S ′
E; S ′

P : R′
GRE; R′

P ; Γ′; γ′; ε
for S ′

E, S ′
P , R′

G, R′
P , Γ′, and γ′ satisfying conclusions 1–4. It also provides type-

checking and deallocation results that we use to derive the type-checking and
deallocation results we need. Conclusions 1–4 let us apply various weakening lem-
mas to establish other hypotheses necessary for the type-checking result. Given
the h̀ind result from the induction and the type-checking and deallocation results
established for each situation, conclusion 5 follows.

• SL4.1: This case holds vacuously because no dynamic rule applies.

• SL4.2: Let e = ∗e1. By inversion C r̀typ e1 : τ∗r and RP èpop e1. Only DL4.2
or DL4.3 applies. For DL4.2, e1 = &xp and the situation is local. Subtyping
Preservation Lemma 1 ensures C l̀typ xp : τ, r. Inversion ensures RP èpop xp.
For DL4.3, the situation is inductive and e1 becomes e′1, so C ′

r̀typ e′1 : τ∗r
and R′

P èpop e′1. So C ′
l̀typ ∗e′1 : τ, r and R′

P èpop ∗e′1.

• SL4.3–4: Let e = e1.i and τ = τi. By inversion C r̀typ e1 : τ0 × τ1 and
RP èpop e1. Only DL4.1 or DL4.4 applies. For DL4.1, e1 = xp and the
situation is local. Subtyping Preservation Lemma 4 ensures C l̀typ xpi : τi, r.
Inspection ensures RP èpop xpi. For DL4.4, the situation is inductive and e1

becomes e′1, so C ′
l̀typ e′1 : τ0 × τ1, r and R′

P èpop e′1. So C ′
l̀typ e′1.i : τi, r and

R′
P èpop e′1.i.
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• SL4.5: Inversion ensures C l̀typ e : τ, r′, γ; regions(r) àcc r′, and CR; · k̀ r :
R. The situation is inductive (using r′ for r so the èpop hypothesis applies
unchanged). So C ′

l̀typ e′ : τ, r′ and R′
P èpop e′. Context Weakening Lemmas

6 and 3 ensure γ′; regions(r) àcc r′ and C ′
R; · k̀ r : R, so C ′

l̀typ e′ : τ, r.

• SR4.1: Inversion ensures Γ(x) = (τ ′, r), ` gettype(τ ′, p, τ), ẁf C, and RP èpop

xp (and therefore RP = ·). Only DR4.1 applies and the situation is local. The
Heap-Type Well-Formedness Lemma ensures · èpop H(x) and CR; ·; Γ; γ; ∅ r̀typ

H(x) : τ ′, which by the Term Weakening Lemma ensures C r̀typ H(x) : τ ′.
So Heap-Object Safety Lemmas 6 and 2 ensure · èpop v and C r̀typ v : τ .

• SR4.2: Let e = ∗e1. By inversion C r̀typ e1 : τ∗r, γ; ε àcc r, and RP èpop e1.
Only DR4.3 or DR4.11 applies. For DR4.3, e1 = &xp and the situation is
local. Subtyping Preservation Lemma 3 ensures C r̀typ xp : τ . Inversion
ensures RP èpop xp. For DR4.11, the situation is inductive and e1 becomes
e′1, so C ′

r̀typ e′1 : τ∗r and R′
P èpop e′1. Context Weakening Lemma 6 ensures

γ′; ε àcc r. So C ′
r̀typ ∗e′1 : τ and R′

P èpop ∗e′1.

• SR4.3–4: Let e = e1.i and τ = τi. By inversion C r̀typ e1 : τ0 × τ1 and
RP èpop e1. Only DR4.4 or DR4.11 applies. For DR4.4, e1 = (v0, v1) and
the situation is local. Inversion and the Values Effectless Lemma ensure
C r̀typ vi : τi and RP èpop vi (because RP = ·). For DR4.11, the situation
is inductive and e1 becomes e′1, so C ′

r̀typ e′1 : τ0 × τ1 and R′
P èpop e′1. So

C ′
r̀typ e′1.i : τi and R′

P èpop e′1.i.

• SR4.5: This case holds vacuously because no dynamic rule applies.

• SR4.6: Let e = &e1 and τ = τ1∗r. By inversion C l̀typ e1 : τ1, r and
RP èpop e1. Only DR4.10 applies. The situation is inductive with e1 becoming
e′1. So C ′

l̀typ e′1 : τ1, r and RP èpop e′1. So C ′
r̀typ &e′1 : τ1∗r and RP èpop &e′1.

• SR4.7: Let e = (e0, e1) and τ = τ0 × τ1. By inversion C r̀typ e0 : τ0 and
C r̀typ e1 : τ1. Only DR4.11 applies; either e0 is a value or not. For e0 a
value, the situation is inductive and e1 becomes e′1. By inversion · èpop e0

and RP èpop e1. (Inversion of RP èpop e could provide RP èpop e0 and · èpop e1,
but then the Values Effectless Lemma ensures RP = ·.) By induction C ′

r̀typ

e′1 : τ1 and R′
P èpop e′1. By the Term Weakening Lemma C ′

r̀typ e0 : τ0. So
C ′

r̀typ (e0, e
′
1) : τ0 × τ1 and R′

P èpop (e0, e
′
1). For e0 not a value, the situation

is inductive and e0 becomes e′0. By inversion, RP èpop e0 and · èpop e1. By
induction C ′

r̀typ e′0 : τ0 and R′
P èpop e′0. By the Term Weakening Lemma,

C ′
r̀typ e1 : τ1. So C ′

r̀typ (e′0, e1) : τ0 × τ1 and R′
P èpop (e′0, e1).
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• SR4.8: Let e = (e1=e2). By inversion C l̀typ e1 : τ, r, C r̀typ e2 : τ , and
γ; ε àcc r. Only DR4.2, DR4.10, or DR4.11 applies. For DR4.2, let e1 = xp
and e2 = v. By inversion and the Values Effectless Lemma, RP = ·, · èpop v,
CΓ(x) = (τ ′, r), ` gettype(τ ′, p, τ), and CR; ·; Γ; γ; ∅ r̀typ v : τ . The Heap-
Type Well-Formedness Lemma ensures location x holds some v′ such that
CR; ·; Γ; γ; ∅ r̀typ v′ : τ ′ and · èpop v′. So given set(v′, p, v, v′′), Heap-Object
Safety Lemmas 3 and 7 ensure CR; ·; Γ; γ; ∅ r̀typ v′′ : τ ′ and · èpop v′′. So
letting S ′

E and S ′
P be SE and SP except x holds v′′, a trivial induction on the

h̀ind assumption CR; Γ; γ h̀typ SGSESP : Γ shows CR; Γ; γ h̀typ SGS ′
ES ′

P : Γ.
(In fact, γ; ε àcc r ensures x is in SE.) So h̀ind SG; S ′

E; S ′
P ; RG; RE; RP ; Γ; γ; ε.

Because e′ = v, C r̀typ v : τ , and RP èpop v, all the conclusions follow.
For DR4.10, the situation is inductive and e1 becomes e′1. By inversion,
RP èpop e1 and · èpop e2. By induction C ′

l̀typ e′1 : τ, r and R′
P èpop e′1. By the

Term Weakening Lemma, C ′
r̀typ e2 : τ . By the Context Weakening Lemma

γ′; ε àcc r. So C ′
r̀typ e′1=e2 : τ and R′

P èpop e′1=e2. For DR4.11, the situation
is inductive and e2 becomes e′2. By inversion, · èpop xp and RP èpop e2.
(Inversion of RP èpop e could provide RP èpop e1 and · èpop e2, but then the
Values Effectless Lemma ensures RP = ·.) By induction C ′

r̀typ e′2 : τ and
R′

P èpop e′2. By the Term Weakening Lemma, C ′
l̀typ e1 : τ, r. By the Context

Weakening Lemma γ′; ε àcc r. So C ′
r̀typ e1=e′2 : τ and R′

P èpop e1=e′2.

• SR4.9: Let e = e1(e2). By inversion C r̀typ e1 : τ ′ ε′
→ τ , C r̀typ e2 : τ ′, and

γ èff ε′ ⇐ ε. Only DR4.5 or DR4.11 applies. For DR4.5, the situation is

local and e becomes call (let ρ, x = v; s). Let e1 = (τ ′, ρ x)
ε′
→ τ s and

e2 = v. By inversion and the Values Effectless Lemma, RP = ·, · èpop v,
· s̀pop s, r̀et s, and CR; ρ:R; Γ, x:τ ′; γ, ε′<ρ; ε′ ∪ ρ; τ s̀typ s. By the Context
Weakening Lemma, CR; ρ:R; Γ, x:τ ′; γ, ε<ρ; ε ∪ ρ; τ s̀typ s. So we can derive
C r̀typ call (let ρ, x = v; s) : τ and · èpop call (let ρ, x = v; s). For DR4.11,
the situation is inductive. The argument is like the argument for SR4.7
(using e1 for e0 and e2 for e1) with the addition that the Context Weakening
Lemma ensures γ′

èff ε′ ⇐ ε.

• SR4.10: Let e = call s. By inversion C; τ s̀typ s, r̀et s and RP s̀pop s. Only
DR4.6 and DR4.9 apply. For DR4.6, the situation is local, s = return v and
e becomes v. Inversion ensures C r̀typ v : τ and RP èpop v. For DR4.9,
the situation is inductive and s becomes s′, so C ′; τ s̀typ s′ and R′

P s̀pop s′.
The Return Preservation Lemma ensures r̀et s′, so C ′

r̀typ call s′ : τ and
R′

P èpop call s′.

• SR4.11: Let e = e1[τ2] and τ = τ1[τ2/α]. By inversion C r̀typ e : ∀α:κ[γ1].τ1,



274

CR; · k̀ τ2 : κ, γ èff γ1[τ2/α], and RP èpop e1. Only DR4.7 or DR4.11 ap-
plies. For DR4.7, the situation is local. Inversion ensures e1 = Λα:κ[γ1].f ,
CR; α:κ; Γ; γγ1; ε r̀typ f : τ1, ẁf C, and RP = ·. The Substitution Lemma,
Useless Substitution Lemma, and ẁf C ensure CR; ·; Γ; γ(γ1[τ2/α]); ε r̀typ

f [τ2/α] : τ1[τ2/α] and · èpop f [τ2/α]. The Context Weakening Lemma and
γ èff γ1[τ2/α] ensure C r̀typ f [τ2/α] : τ1[τ2/α]. For DR4.11, the situation is
inductive and e1 becomes e′1, so C ′

r̀typ e′1 : ∀α:κ[γ1].τ1 and R′
P èpop e′1. So

C ′
r̀typ e′1[τ2] : τ1[τ2/α] and R′

P èpop e′1[τ2].

• SR4.12: Let e = pack τ2, e1 as ∃α:κ[γ1].τ1 and τ = ∃α:κ[γ1].τ1. Only DR4.11
applies. The situation is inductive and e1 becomes e′1. By inversion, C r̀typ

e1 : τ1[τ2/α], CR; · k̀ τ2 : κ, γ èff γ1[τ2/α], CR; · k̀ τ : A, and RP èpop

e1. By induction, C ′
r̀typ e′1 : τ1[τ2/α] and R′

P èpop e′1. By the Context
Weakening Lemma, C ′

R; · k̀ τ2 : κ, γ′
èff γ1[τ2/α] and C ′

R; · k̀ τ : A. So
C ′

r̀typ pack τ2, e
′
1 as ∃α:κ[γ1].τ1 : τ and R′

P èpop pack τ2, e
′
1 as ∃α:κ[γ1].τ1.

• SR4.13–14: These cases hold vacuously because no dynamic rule applies.

• SR4.15: Let e = rnew e1 e2 and τ = τ ′∗r. By inversion C r̀typ e1 :
region(r), C r̀typ e2 : τ ′, and γ; ε àcc r. Only DR4.8 or DR4.11 applies.
For DR4.8, e1 = rgn i and e2 = v. Inversion ensures r = S(i), RP = ·, and
· èpop v. The Values Effectless Lemma ensures CR; ·; Γ; γ; ∅ r̀typ v : τ ′. So
given the h̀ind assumption, a trivial induction on the h̀typ derivation shows
CR; Γ, x:(τ ′, S(i)); γ h̀typ SGS ′

ES ′
P : Γ, x:(τ ′, S(i)) where S ′

E and S ′
P are like

SE and SP except i now has a location x holding v. (In fact, γ; ε àcc r
ensures x is in S ′

E.) So h̀ind SG; S ′
E; S ′

P : RG; RE; RP ; Γ, x:(τ ′, S(i)); γ; ε. We
can derive CR; ·; Γ, x:(τ ′, S(i)); γ; ε r̀typ &x· : τ ′∗S(i) and RP èpop &x·, so we
can conclude the r̀ind fact conclusion 5 requires. The other conclusions follow
because Γ, x:(τ ′, S(i)) extends Γ and the rest of the context is unchanged.

For DR4.11, the situation is inductive. The argument is like the argument
for SR4.7 (using e1 for e0 and e2 for e1) with the addition that the Context
Weakening Lemma ensures γ′; ε àcc r.

• SR4.16: This case holds vacuously because no dynamic rule applies.

• SR4.17: Let τ = τ1∗r. Inversion ensures C r̀typ e : τ1∗r′, γ; regions(r) àcc r′,
and CR; · k̀ r : R. The situation is inductive (using r′ for r so the èpop

hypothesis applies unchanged). So C ′
r̀typ e′ : τ1∗r′ and R′

P èpop e′. Context
Weakening Lemmas 6 and 3 ensure γ′; regions(r) àcc r′ and C ′

R; · k̀ r : R, so
C ′

r̀typ e′ : τ1∗r.
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• SS4.1–2: In both cases, only DS4.11 applies and the situation is inductive.
By inversion C r̀typ e : τ ′ (for SS4.2 τ ′ = τ) and RP èpop e. By induction
C ′

r̀typ e′ : τ ′ and R′
P èpop e′. So C ′; τ s̀typ s′ and R′

P s̀pop s′.

• SS4.3: Let s = s1; s2. By inversion C; τ s̀typ s1 and C; τ s̀typ s2. Only DS4.2,
DS4.3, or DS4.12 applies. For DS4.2, the situation is local, s1 = v, and
s becomes s2. By inversion RP èpop v (so by the Values Effectless Lemma
RP = ·) and · s̀pop s2. So RP s̀pop s2. For DS4.3, the situation is local and s
becomes s1. By inversion RP s̀pop s1. For DS4.12, the situation is inductive
and s1 becomes s′1. By inversion RP s̀pop s1 and · s̀pop s2. By induction
C ′; τ s̀typ s′1 and R′

P s̀pop s′1. By the Term Weakening Lemma, C ′; τ s̀typ s2.
So C ′; τ s̀typ s′1; s2 and R′

P s̀pop s′1; s2.

• SS4.4: Let s = while e s1. Only DS4.6 applies and the situation is local.
By inversion C r̀typ e : int, C; τ s̀typ s1, · èpop e, · s̀pop s1, and RP = ·.
Trivially, C r̀typ 0 : int and · èpop 0. So C; τ s̀typ if e (s1; while e s1) 0 and
· s̀pop if e (s1; while e s1) 0.

• SS4.5: Let s = if e s1 s2. By inversion C r̀typ e : int, C; τ s̀typ s1, C; τ s̀typ s2,
RP èpop e, · s̀pop s1, and · s̀pop s2. Only DS4.4, DS4.5, or DS4.11 applies.
For DS4.4, the situation is local, e = 0, and s becomes s1. By the Values
Effectless Lemma RP = ·, so RP s̀pop s1. The proof for DS4.5 is analogous,
using i and s2 for 0 and s1. For DS4.11, the situation is inductive and e
becomes e′. By induction C ′

r̀typ e′ : int and R′
P èpop e′. By the Term

Weakening Lemma, C ′; τ s̀typ s1 and C ′; τ s̀typ s2. So C ′; τ s̀typ if e′ s1 s2 and
R′

P s̀pop if e′ s1 s2.

• SS4.6: Let s = let ρ, x = e; s1. Only DS4.1 and DS4.11 apply. For
DS4.1, the argument is analogous to case SS4.8 below, so we explain only
the differences: We use e (which is a value v) in place of rgn i and the
type of e (τ ′) in place of region(S(i)). To conclude RP = ·, we use the
Values Effectless Lemma and RP èpop e. We also need the Values Effect-
less Lemma to show that e is well-typed in the heap (under capability
∅). For DS4.11, the situation is inductive and e becomes e′. By inver-
sion, C r̀typ e : τ ′, CR; ρ:R; Γ, x:(τ ′, ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s1, CR; · k̀ τ : A,
RP èpop e, and · èpop s1. By induction C ′

r̀typ e′ : τ ′ and R′
P èpop e′ By the

Term Weakening Lemma, C ′
R; ρ:R; Γ′, x:(τ ′, ρ); γ′, ε<ρ; ε ∪ ρ; τ s̀typ s1. By the

Context Weakening Lemma, C ′
R; · k̀ τ : A. So C ′; τ s̀typ let ρ, x = e′; s1 and

R′
P s̀pop let ρ, x = e′; s1.

• SS4.7: Let s = open e as ρ, α, x; s1. By inversion C r̀typ e : ∃α:κ[γ1].τ1,
CR; ρ:R, α:κ; Γ, x:(τ1, ρ); γ, ε<ρ, γ1; ε ∪ ρ; τ s̀typ s1, CR; · k̀ τ : A, RP èpop e,
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and · s̀pop s1. Only DS4.7 or DS4.11 applies. For DS4.7, the situation is local,
e = pack τ2, v as ∃α:κ[γ1].τ1, and s becomes let ρ, x = v; s1[τ2/α]. By inver-
sion, C r̀typ v : τ1[τ2/α], CR; · k̀ τ2 : κ, γ èff γ1[τ2/α], and RP èpop v. By the
Context Weakening Lemma, CR; ρ:R k̀ τ2 : κ, so by the Substitution Lemma,
CR; ρ:R; (Γ, x:(τ1, ρ))[τ2/α]; (γ, ε<ρ, γ1)[τ2/α]; (ε∪ρ)[τ2/α];τ [τ2/α] s̀typ s1[τ2/α]
and · s̀pop s1[τ2/α]. The Typing Well-Formedness Lemma ensures ẁf C, so
the Useless Substitution Lemma ensures
CR; ρ:R; Γ, x:(τ1[τ2/α], ρ); γ, ε<ρ, (γ1[τ2/α]); ε ∪ ρ; τ s̀typ s1[τ2/α].
Because γ, ε<ρ èff γ, ε<ρ, (γ1[τ2/α]), the Term Weakening Lemma ensures
CR; ρ:R; Γ, x:(τ1[τ2/α], ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s1[τ2/α].
So C; τ s̀typ let ρ, x = v; s1[τ2/α] and RP s̀pop let ρ, x = v; s1[τ2/α].

For DS4.11, the situation is inductive and e becomes e′. By induction
C ′

r̀typ e′ : ∃α:κ[γ1].τ1 and R′
P èpop e′. By the Term Weakening Lemma,

C ′
R; ρ:R; Γ′, x:(τ1[τ2/α], ρ); γ′, ε<ρ; ε∪ρ; τ s̀typ s1[τ2/α]. By the Context Weak-

ening Lemma, C ′
R; · k̀ τ : A. So C ′; τ s̀typ open e′ as ρ, α, x; s1 and R′

P s̀pop

open e′ as ρ, α, x; s1.

• SS4.8: Let s = region ρ, x s1. Only DS4.8 applies. By inversion
CR; ρ:R; Γ, x:(region(ρ), ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s1, RP = ·, · s̀pop s1, and

h̀ind SG; SE; ·; RG; RE; ·; Γ; γ; ε. Let S ′
G = SG, S ′

E = SE, S ′
P = i:x 7→ rgn i,

R′
G = RG, R′

P = i, and Γ′ = Γ, x:(region(S(i)), S(i)). Let γ′ = γ, in<i
where RE = i1, . . . , in (if n = 0, then γ′ = γ). By the Heap-Type Weak-
ening Lemma, C ′

R; Γ′; γ′
h̀typ S ′

GS ′
E· : Γ, so we can derive C ′

R; Γ′; γ′
h̀typ

S ′
GS ′

ES ′
P : Γ′ and therefore h̀ind S ′

G; S ′
E; ·; R′

G; RE; R′
P ; Γ′; γ′; ε. From · s̀pop s1,

we can derive R′
P s̀pop s1; pop i, so the Substitution Lemma ensures R′

P s̀pop

(s1; pop i)[S(i)/ρ]. Our remaining obligation is C ′; τ s̀typ (s1; pop i)[S(i)/ρ].
The Context Weakening Lemma ensures
C ′

R; ρ:R; Γ, x:(region(ρ), ρ); γ, ε<ρ; ε ∪ ρ; τ s̀typ s1,
so the Substitution Lemma, Useless Substitution Lemma and ẁf C ensure
C ′

R; ·; Γ, x:(region(S(i)), i); γ, ε<i; ε ∪ i; τ s̀typ s1[S(i)/ρ].
The New-Region Preservation Lemma and Context Weakening Lemma en-
sure C ′

R; ·; Γ, x:(region(S(i)), i); γ′; ε ∪ i; τ s̀typ s1[S(i)/ρ], from which we can
derive C ′; τ s̀typ (s1; pop i)[S(i)/ρ].

• SS4.9: Let s = s1; pop i. By inversion CR; ·; Γ; γ; ε ∪ i; τ s̀typ s1 and R1 s̀pop s1

where RP = i, R1. Only DS4.9, DS4.10, and DS4.12 apply. For DS4.9 and
DS4.10, s′ = s1. Inversion of R1 s̀pop s1 and the Values Effectless Lemma
ensure R1 = ·, so SP = i:H for some H. Letting S ′

G = SG, i:H, S ′
E = SE,

S ′
P = ·, R′

G = RG, i, R′
P = ·, and Γ′ = Γ, conclusions 1–3 hold. Inverting

the h̀ind assumption, γ has the form γGγ1 where γ1 has the form γ′
1, in−1<in.
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Letting γ′
G = γG, in−1<in and γ′ = γ′

1γ
′
G, a simple induction on n shows that

conclusion 4 holds. A simple induction on the assumed h̀typ derivation ensures
CR; Γ; γ h̀typ S ′

GS ′
ES ′

P : Γ (intuitively, heap typing is reorderable). Because
R′

GRER′
P ⊆ RGRERP (in fact, the sets are equal), the Typing Weaken-

ing Lemma ensures C ′
R; Γ; γ′

h̀typ S ′
GS ′

ES ′
P : Γ. So by choosing in−1 for

the ε that i outlives, we can conclude h̀ind S ′
G; S ′

E; S ′
P ; R′

G; RE; R′
P ; γ′; ε. By

the Values Effectless Lemma and inversion of the typing derivation for s1,
CR; ·; Γ; γ; ε; τ s̀typ s1. So the Typing Weakening Lemma ensures C ′; τ s̀typ s1.
Because R′

P s̀pop s1, we can conclude s̀ind S ′
G; S ′

E; S ′
P ; τ ; s1 : R′

G; RE; R′
P ; Γ; γ′.

For DS4.12, s1 becomes s′1. To apply the induction hypothesis, we need an
appropriate h̀ind fact to use with CR; ·; Γ; γ; ε ∪ i; τ s̀typ s1 and R1 s̀pop s1. In-
verting the h̀ind assumption ensures SP has the form i:H, S1. Letting SE1 =
SE, i:H and RE1 = RE, i, we observe RGRE1R1 = RGRERP and SGSE1S1 =
SGSESP , so we can derive h̀ind SG; SE1; S1; RG; RE1; R1; Γ; γ; ε∪i. The induc-
tion hypothesis and inversion ensure h̀ind S ′

G; S ′
E1; S

′
1; R

′
G; RE1; R

′
1; Γ

′; γ′; ε∪ i,
R′

GRE1R
′
1; ·; Γ′; γ′; ε ∪ i; τ s̀typ s′1, and R′

1 s̀pop s′1 with conclusions 1–4 holding.
Inverting the h̀ind fact from the induction ensures S ′

E1 has the form S ′
E, i:H ′.

Letting S ′
P = i:H ′, S ′

1 and R′
P = i, R′

P , we observe R′
GRER′

P = R′
GRE1R

′
1 and

S ′
GS ′

ES ′
P = S ′

GS ′
E1S

′
1, so we can derive h̀ind SG; S ′

E; S ′
P ; R′

G; RE; R′
P ; Γ′; γ′; ε.

From R′
GRE1R

′
1; ·; Γ′; γ′; ε ∪ i; τ s̀typ s′1 we can derive C ′; τ s̀typ s′1; pop i. From

R′
1 s̀pop s′1 we can derive R′

P s̀pop s′1; pop i. So conclusion 5 holds. It is easy
to verify the other conclusions.

Lemma B.19 (Type and Pop Progress).

1. If s̀ind SG; SE; SP ; τ ; s : RG; RE; RP ; Γ, then s = v for some v, s = return v
for some v, or there exists S ′

G, S ′, and s′ such that SG; SESP ; s
s→ S ′

G; S ′; s′.

2. If r̀ind SG; SE; SP ; e : τ ; RG; RE; RP ; Γ, then e = v for some v or there exists
S ′

G, S ′, and e′ such that SG; SESP ; e
r→ S ′

G; S ′; e′.

3. If l̀ind SG; SE; SP ; e : τ, r; RG; RE; RP ; Γ, then e = xp for some x and p or
there exists S ′

G, S ′, and e′ such that SG; SESP ; e
l→ S ′

G; S ′; e′.

Proof: The proofs are by simultaneous induction on the typing derivations
implied by the s̀ind, r̀ind, and l̀ind assumptions, proceeding by cases on the last rule
used. In each case, let C = RGRERP ; ·; Γ; γ; ε.

• SL4.1: This case is trivial because e has the form xp.

• SL4.2: Let e = ∗e1. If e1 is a value, the Canonical Forms Lemma ensures it
has the form &xp, so DL4.2 applies. Else inversion ensures C r̀typ e1 : τ∗r
and RP èpop e1, so the result follows from induction and DL4.3.
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• SL4.3–4: Let e = e1.i. If e1 has the form xp, then DL4.1 applies. Else
inversion ensures C l̀typ e1 : τ0 × τ1, r and RP èpop e1, so the result follows
from induction and DL4.4.

• SL4.5: This case follows from induction.

• SR4.1: Let e = xp. The Access Control Lemma ensures x ∈ Dom(H)
for some H in SE. The h̀ind hypotheses, the Heap-Type Well-Formedness
Lemma, and the Values Effectless Lemma ensure C r̀typ H(x) : τ ′ (where
Γ(x) = (τ ′, r)). So Heap-Object Safety Lemma 4 ensures DR4.1 applies.

• SR4.2: This case is analogous to case SL4.2, using DR4.3 for DL4.2 and
DR4.11 for DL4.3.

• SR4.3–4: Let e = e1.i. If e1 is a value, the Canonical Forms Lemma ensures
it has the form (v0, v1), so DR4.4 applies. Else inversion ensures C r̀typ e1 :
τ0 × τ1 and RP èpop e1, so the result follow from induction and DR4.11.

• SR4.5: This case is trivial because e is a value.

• SR4.6: Let e = &e1. If e1 has the form xp, then e is a value. Else inversion
ensures C l̀typ e1 : τ, r and RP èpop e1, so the result follows from induction
and DR4.10.

• SR4.7: Let e = (e0, e1). If e0 and e1 are values, then e is a value. Else if e0

is not a value, inversion ensures C r̀typ e0 : τ0 and RP èpop e0, so the result
follows from induction and DR4.11. Else inversion ensures C r̀typ e1 : τ1 and
RP èpop e1, so the result follows from induction and DR4.11.

• SR4.8: Let e = (e1=e2). If e1 has the form xp and e2 is a value, then
inversion of the typing derivation ensures Γ(x) = (τ, r), γ; ε àcc r, and `
gettype(τ, p, τ ′). So the Access Control Lemma ensures x ∈ Dom(H) for some
H in SE. The h̀ind hypotheses, the Heap-Type Well-Formedness Lemma,
and the Values Effectless Lemma ensure C r̀typ H(x) : τ . So Heap-Object
Safety Lemma 5 ensures DL4.2 applies. Else if e1 does not have the form xp,
inversion ensures C l̀typ e1 : τ, r and RP èpop e1, so the result follows from
induction and DR4.10. Else inversion ensures C r̀typ e2 : τ and RP èpop e2,
so the result follows from induction and DR4.11.

• SR4.9: Let e = e1(e2). If e1 and e2 are values, the Canonical Forms Lemma
ensures e1 is a function, so DR4.5 applies. Else if e1 is not a value, inversion

ensures C r̀typ e1 : τ ′ ε′
→ τ and RP èpop e1, so the result follows from induction
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and DR4.11. Else inversion ensures C r̀typ e2 : τ ′ and RP èpop e2, so the result
follows from induction and DR4.11.

• SR4.10: Let e = call s. If s = return v, then DR4.6 applies. Else inversion
ensures C; τ s̀typ s and RP s̀pop s. Because r̀et s ensures s does not have the
form v, the result follows from induction and DR4.9.

• SR4.11: Let e = e1[τ
′]. If e1 is a value, the Canonical Forms Lemma ensures it

is a polymorphic term, so DR4.7 applies. Else inversion ensures C r̀typ e1 : τ ′′

and RP èpop e1, so the result follows from induction and DR4.11.

• SR4.12: Let e = pack τ ′, e1 as τ . If e1 is a value, then e is a value. Else
inversion ensures C r̀typ e1 : τ ′′ and RP èpop e1, so the result follows from
induction and DR4.11

• SR4.13–14: These cases are trivial because e is a value.

• SR4.15: Let e = rnew e1 e2. If e1 and e2 are values, the Canonical Forms
Lemma ensures e1 has the form rgn i, so r = S(i). Because γ; ε àcc r, the
Access Control Lemma ensures i names a heap in SE, so α-conversion ensures
DR4.8 applies. Else if e1 is not a value, then inversion ensures C r̀typ e1 :
region(r) and RP èpop e1, so the result follows from induction and DR4.11.
Else if e1 is a value and e2 is not a value, then inversion ensures C r̀typ e2 : τ ′

and RP èpop e2, so the result follows from induction and DR4.11.

• SR4.16: This case is trivial because e is a value.

• SR4.17: This case follows from induction.

• SS4.1–2: If e is a value, the result is immediate. Else inversion ensures
C r̀typ e : τ ′ (for SS4.2 τ ′ = τ) and RP èpop e, so the result follows from
induction and DS4.11.

• SS4.3: Let s = s1; s2. If s1 is some v, then DS4.2 applies. Else if s1 = return v
for some v, then DS4.3 applies. Else inversion ensures C; τ s̀typ s1 and
RP s̀pop s1, so the result follows from induction and DS4.12.

• SS4.4: DS4.6 applies.

• SS4.5: If e is a value, the Canonical Forms Lemma ensures e = i for some
i, so either DS4.4 or DS4.5 applies. Else inversion ensures C r̀typ e : int and
RP èpop e, so the result follows from induction and DS4.11.
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• SS4.6: If e is a value, then α-conversion ensures DS4.1 applies. Else inversion
ensures C r̀typ e : τ ′ and RP èpop e, so the result follows from induction and
DS4.11.

• SS4.7: If e is a value, then the Canonical Forms Lemma ensures it is an
existential package, so DS4.7 applies. Else inversion ensures C r̀typ e : τ ′ and
RP èpop e, so the result follows from induction and DS4.11.

• SS4.8: Because of α-conversion, DS4.8 applies.

• SS4.9: Let s = s1; pop i. If s1 is some v, then RP s̀pop v; pop i and the Values
Effectless Lemma ensures RP = i. So the h̀ind assumptions ensure SP = i:H
for some H, i.e., i is the youngest live region. So DS4.9 applies.

Else if s1 = return v for some v, then by the same argument as above, DS4.10
applies.

Else RP s̀pop s1 ensures RP = i, R′
P for some R′

P and R′
P s̀pop s1. Given the as-

sumptions of the h̀ind derivation, i = ij+1 and R′
P = ij+2, . . . , in. Letting S ′

E =
SE, ij+1:Hj+1, S ′

P = ij+2:Hj+2, . . . , in:Hn, and R′
E = i1, . . . , ij+1, we can use

the h̀ind assumptions to derive h̀ind SG; S ′
E; S ′

P ; RG; R′
E; R′

P ; Γ; γγG; ε ∪ ij+1.
(In particular, RGR′

ER′
P = RGRERP and SGS ′

ES ′
P = SGSESP .) Inverting

the original typing derivation ensures RGR′
ER′

P ; ·; Γ; γγG; ε ∪ ij+1 r̀typ τ : s1.
Given the underlined conclusions, induction ensures s1 can take a step, so
the result follows from DS4.12.



Appendix C

Chapter 5 Safety Proof

This appendix proves Theorem 5.2, which we repeat here:

Definition 5.1. A program P = (H; L; L0; T1 · · ·Tn) is badly stuck if it has a badly
stuck thread. A badly stuck thread is a thread (L′, s) in P such that there is no v
such that s = return v and L = ·; and there is no i such that H; (L; L0, i; L

′); s
s→

H ′; L
′
; sopt; s

′ for some H ′, L
′
, sopt, and s′.

Theorem 5.2 (Type Safety). If ·; ·; ·; ·; ∅; τ s̀typ s, r̀et s, s is junk-free, s has no
release statements, and ·; (·; ·; ·); (·; s) →∗ P (where →∗ is the reflexive transitive
closure of →), then P is not badly stuck.

Before presenting and proving the necessary lemmas in “bottom-up” order, we
summarize the structure of the argument. It is similar to the proof in Chapter 4,
but it is simpler because locks are unordered and more complicated because of
junk expressions.

The Type Soundness Theorem is a simple corollary given the Preservation
and Progress Lemmas. In turn, these lemmas follow from the Type and Release
Preservation (and Return Preservation) and Type and Release Progress Lemmas,
respectively. These lemmas establish type preservation and progress for an individ-
ual thread by strengthening their claims to apply inductively to every well-typed
statement and expression (given an appropriate type context). Given the intricacy
of p̀rog P , the necessary assumptions for a statement or expression are complicated
enough that we define the judgments in Figure C.1 to describe them accurately
and concisely.

These rules merge the locks held by other threads and the shared heap locations
guarded by such locks into one HX and LX . Furthermore, it does not suffice to say
Li s̀rel s (or Li èrel e) where Li describes the locks held by the thread containing
s. Instead, we must distinguish the locks released by statements containing s

281
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(call these LE) and locks in release statements contained in s (call these LR). We
require Li = LELR and LR s̀rel s. We use LE to determine the ε used to type-check
s. (For “top-level” statements, ε = ∅.) It is really these judgments that capture
exactly what a statement or expression reduction preserves. The interesting part of
each case of the preservation proof is which of the arguments to the judgment (for
example, LR or H0S) change in order to prove the result of the reduction satisfies
the property.

The Return Preservation Lemma is used in the proof of the Preservation Lemma
to show that threads always return. It is also used in case DR5.9 of the Type and
Release Preservation Lemma.

The Access Control Lemma establishes that if the static context permits a term
to access a heap location, then that location is local to the thread or guarded by
a lock that the thread holds. We use this lemma in cases DR5.1 and DR5.2A of
the Type and Release Preservation Lemma to argue that the heap accessible to
the executing thread is junk-free.

The Sharable Values Need Only Sharable Context Lemma establishes that if a
value has some type of kind AS in some context, then the value has the same type in
a context where all unsharable locations are omitted. Intuitively, if we needed any
of these locations to type-check the value, then the value is not sharable. We use
this lemma in case DS5.12 of the Type and Release Preservation Lemma because
spawning a thread involves “moving” two values to a different thread. We also use
this lemma in cases DR5.2A and DS5.1 when the assigned-to location is sharable
because assignment involves “moving” a value into the heap (in this case, part of
the heap that must type-check without using unsharable locations).

The Canonical Forms Lemma describes the form of “top-level” values (where
type variables are never in scope). As usual, we use this lemma throughout the
Type and Release Progress Lemma proof to argue about the form of values given
their types.

The Term Substitution Lemmas establish that proper substitution of types
through terms preserves important properties. As expected, we use these lemmas
for cases involving substitution (DR5.7 and DS5.7) in the preservation proofs.

The Heap-Type Well-Formedness Lemma provides some rather obvious prop-
erties of all locations in a well-typed heap. We use these properties in subsequent
proofs when we need to conclude properties about a location x knowing only that
x is in a heap that type-checks under some context.

The Values Effectless Lemma provides properties about values. We use these
properties in subsequent proofs to refine the information provided by assumptions.
For example, when proving type preservation for rule DR5.4, we use the lemma to
conclude LR = ·, so we can derive LR èrel v0 and LR èrel v1.

The Typing Well-Formedness Lemma shows that the typing rules have enough
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well-formedness hypotheses to conclude that the context and the result types are
always well-formed and have the right kinds. We use this lemma to conclude con-
text well-formedness when we need it as an explicit assumption to type-check the
result of an evaluation step or to apply various weakening lemmas. We also use
this lemma to conclude the kinds of types in typing judgments (which is some-
times necessary to establish the assumptions of other lemmas, such as the Type
Substitution Lemmas).

The Type Substitution Lemmas show how various type-level properties are pre-
served under appropriate type substitutions. These lemmas are necessary to prove
the Term Substitution Lemmas and case SR5.11 of the Typing Well-Formedness
Lemma.

The Commuting Substitutions Lemma is necessary as usual for polymorphic
languages with type-substitution, as previous chapters have demonstrated. As in
Chapter 4, the proof is slightly nontrivial because of the definition of substitution
through effects.

The Type Canonical Forms Lemma restricts the form of types with kind LS.
We use the lemma to restrict the form of ` when proving properties about γ; ε àcc `
and in case DS5.1 of the Type and Release Preservation Lemma proof. It also
provides results needed to prove the Typing Well-Formedness Lemma and the
Term Substitution Lemma. These results would be immediate if we did not have
subkinding.

The Useless Substitution Lemmas are all obvious. We use them to show proper-
ties are preserved under substitution when we know that part of the static context
does not contain the substituted-for type variable. Specifically, case SR5.13 of
Term Substitution Lemma 4 needs this lemma because the function’s free vari-
ables are heap locations (which must have closed types). Similarly, the cases of
the Type and Release Preservation Lemma proof that use substitution use the
Useless Substitution Lemma to obtain an appropriate context for type-checking
the result of the evaluation step.

Finally, the various weakening lemmas serve their usual purpose in the preser-
vation proofs. Reduction steps can extend the heap or the set of allocated locks,
which provides a larger context for type-checking other values (and in the case of
locks, for kind-checking types, etc.). Weakening ensures that enlarging a context
cannot make a value fail to type-check. The structure of our preservation argument
produces additional needs for weakening. For example, when reading a sharable
value from the heap, the value is “copied” from a place where it type-checked
with reference only to sharable values to a term that can also refer to thread-local
values. We also use weakening to type-check terms under a context with more
permissive ε and γ; typically, explicit assumptions provide that ε and γ are more
permissive and we cannot use the less permissive ones because of other terms that
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must still type-check.

We omit some uninteresting proofs, most of which are analogous to correspond-
ing proofs in Chapter 4. We still state as lemmas all facts that require inductive
arguments.

Lemma C.1 (Context Weakening).

1. If L; ∆ ẁf ε, then LL′; ∆∆′
ẁf ε.

2. If L; ∆ ẁf γ, then LL′; ∆∆′
ẁf γ.

3. If L; ∆ k̀ τ : κ, then LL′; ∆∆′
k̀ τ : κ.

4. If L; ∆ ẁf Γ, then LL′; ∆∆′
ẁf Γ.

5. If γ èff ε1 ⊆ ε2 and γ′
èff γ then γ′

èff ε1 ⊆ ε2.

6. If γ; ε àcc `, γ′
èff γ, and γ′

èff ε ⊆ ε′, then γ′; ε′ àcc `.

7. If γ2 èff γ1, and γ3 èff γ2 then γ3 èff γ1.

8. If L s̀hr Γ, then LL′
s̀hr Γ.

9. If L l̀oc Γ and L; · ẁf Γ, then LL′
l̀oc Γ.

Lemma C.2 (Term Weakening). Suppose ẁf LL′; ∆∆′; ΓΓ′; γ′; ε′, γ′
èff γ, and

γ′
èff ε ⊆ ε′.

1. If L; ∆; Γ; γ; ε l̀typ e : τ, `, then LL′; ∆∆′; ΓΓ′; γ′; ε′ l̀typ e : τ, `.

2. If L; ∆; Γ; γ; ε r̀typ e : τ , then LL′; ∆∆′; ΓΓ′; γ′; ε′ r̀typ e : τ .

3. If L; ∆; Γ; γ; ε; τ s̀typ s, then LL′; ∆∆′; ΓΓ′; γ′; ε′; τ s̀typ s.

Lemma C.3 (Heap-Type Weakening). Suppose LL′; · ẁf ΓΓ′.

1. If L; Γ h̀typ H : Γ′′, then LL′; ΓΓ′
h̀typ H : Γ′′.

2. If Γ; L h̀lk H, then ΓΓ′; LL′
h̀lk H.

Lemma C.4 (Useless Substitution). Suppose α 6∈ Dom(∆).

1. If L; ∆ ẁf ε, then ε[τ/α] = ε.

2. If L; ∆ ẁf γ, then γ[τ/α] = γ.

3. If L; ∆ k̀ τ ′ : κ, then τ ′[τ/α] = τ ′.
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4. If L; ∆ ẁf Γ, then Γ[τ/α] = Γ.

Lemma C.5 (Type Canonical Forms).

1. If L; ∆ k̀ τ : Lσ, then τ = S(i) for some i ∈ L, or τ = loc, or τ = α for
some α ∈ Dom(∆).

2. If L; ∆ k̀ τ∗` : κ, then L; ∆ k̀ τ : AU and L; ∆ k̀ τ : LU. Furthermore, if
κ = θS, then L; ∆ k̀ τ : AS and L; ∆ k̀ τ : LS.

3. If L; ∆ k̀ τ0 × τ1 : κ, then L; ∆ k̀ τ0 : AU and L; ∆ k̀ τ1 : AU.

4. If L; ∆ k̀ τ ′ ε→ τ : κ, then L; ∆ k̀ τ : AU and L; ∆ k̀ τ ′ ε→ τ : AS.

5. If L; ∆ k̀ ∀α:κ[γ].τ : κ′, then L; ∆, α:κ k̀ τ : AU.

6. If L; ∆ k̀ lock(`) : κ, then L; ∆ k̀ ` : LU.

Proof: Each proof is by induction on the assumed kinding derivation. Induc-
tion is necessary only because the last step in the derivation may be subsumption.
For the noninductive cases (except for the first lemma), we use subsumption to
derive that the type(s) in the conclusion have kind AU or LU.

Lemma C.6 (Commuting Substitutions). Suppose β is not free in τ2.

1. ε[τ1/β][τ2/α] = ε[τ2/α][τ1[τ2/α]/β].

2. γ[τ1/β][τ2/α] = γ[τ2/α][τ1[τ2/α]/β].

3. τ0[τ1/β][τ2/α] = τ0[τ2/α][τ1[τ2/α]/β].

Lemma C.7 (Type Substitution). Suppose L; ∆ k̀ τ : κ.

1. L; ∆ ẁf locks(τ)

2. If L; ∆, α:κ ẁf ε, then L; ∆ ẁf ε[τ/α].

3. If L; ∆, α:κ ẁf γ, then L; ∆ ẁf γ[τ/α].

4. If L; ∆, α:κ k̀ τ ′ : κ′, then L; ∆ k̀ τ ′[τ/α] : κ′.

5. If L; ∆, α:κ ẁf Γ, then L; ∆ ẁf Γ[τ/α].

6. If ẁf L; ∆, α:κ; Γ; γ; ε, then ẁf L; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α].

7. If γ èff ε1 ⊆ ε2, then γ[τ/α] èff ε1[τ/α] ⊆ ε2[τ/α].
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8. If γ; ε àcc ` and L; ∆, α:κ k̀ ` : LU, then γ[τ/α]; ε[τ/α] àcc `[τ/α].

9. If γ èff γ′, then γ[τ/α] èff γ′[τ/α].

Lemma C.8 (Typing Well-Formedness).

1. If C l̀typ e : τ, `, then ẁf C, CL; C∆ k̀ τ : AU, and CL; C∆ k̀ ` : LU.

2. If C r̀typ e : τ , then ẁf C and CL; C∆ k̀ τ : AU.

3. If C; τ s̀typ s, then ẁf C. If C; τ s̀typ s and r̀et s, then CL; C∆ k̀ τ : AU.

Proof: We omit most of the proof. It is by simultaneous induction on the
assumed typing derivations. Cases where the result type is part of a hypotheses’
result type (SL5.2, SR5.2, SR5.3, SR5.4, SR5.9, SR5.11) use the Type Canonical
Forms Lemma. In Chapter 4, the analogous results were established directly in the
Typing Well-Formedness Lemma proof because that chapter had less subkinding.

Lemma C.9 (Heap-Type Well-Formedness). If L; Γ′
h̀typ H : Γ, then L; · ẁf Γ

and Dom(Γ) = Dom(H). Furthermore, for all x ∈ Dom(H), L; ·; Γ′; ·; ∅ r̀typ H(x) :
τ where Γ(x) = (τ, `) for some ` and · èrel H(x).

Lemma C.10 (Term Substitution).

1. If r̀et s, then r̀et s[τ/α].

2. If L s̀rel s, then L s̀rel s[τ/α].
If L èrel e, then L èrel e[τ/α].

3. If j̀f s, then j̀f s[τ/α].
If j̀f e, then j̀f e[τ/α].

4. Suppose L; ∆ k̀ τ : κ.
If L; ∆, α:κ; Γ; γ; ε l̀typ e : τ ′, `,
then L; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α] l̀typ e[τ/α] : τ ′[τ/α], `[τ/α].
If L; ∆, α:κ; Γ; γ; ε r̀typ e : τ ′,
then L; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α] r̀typ e[τ/α] : τ ′[τ/α].
If L; ∆, α:κ; Γ; γ; ε; τ ′

s̀typ s,
then L; ∆; Γ[τ/α]; γ[τ/α]; ε[τ/α]; τ ′[τ/α] s̀typ s[τ/α].

Proof: We omit the proofs because they are either analogous to proofs in Chap-
ter 4 or trivial inductive arguments. However, we mention two unusual cases in
proving the last lemma (by simultaneous induction on the assumed typing deriva-
tions). In case SR5.13, the assumption L; · ẁf Γ1 and the Useless Substitution
Lemma ensure Γ1[τ/α] = Γ1, so we can use L; · ẁf Γ1 and L s̀hr Γ1 to derive
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j̀f H0S ΓS; L0 h̀lk H0S ΓS; LX h̀lk HXS ΓS; LRLE h̀lk HS

L; ΓS h̀typ HXSH0SHS : ΓS L s̀hr ΓS

L; ΓSΓU h̀typ HU : ΓU L l̀oc ΓU

L = L0LXLRLE LE = i1, . . . , in ε = i1 ∪ . . . ∪ in

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε

j̀ HSHU ; s L; ·; ΓSΓU ; ·; ε; τ s̀typ s LR s̀rel s

s̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; τ ; s : ΓS; ΓU

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε

j̀ HSHU ; e L; ·; ΓSΓU ; ·; ε r̀typ e : τ LR èrel e

r̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ ; ΓS; ΓU

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε

j̀ HSHU ; e L; ·; ΓSΓU ; ·; ε l̀typ e : τ, ` LR èrel e

l̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ, `; ΓS; ΓU

Figure C.1: Chapter 5 Safety-Proof Invariant

the result we need. In case SS5.8, the Typing Well-Formedness Lemma and Type
Canonical Forms Lemma ensure locks(`) is ∅, i, or α. In each case, induction and
the definition of substitution through effects suffices to derive the result we need.

Lemma C.11 (Return Preservation).

If r̀et s and H; L; s
s→ H ′; L

′
; sopt; s

′, then r̀et s′.

Lemma C.12 (Values Effectless).

1. If L èrel v or L èrel x, then L = ·.

2. If L; ∆; Γ; γ; ε r̀typ v : τ and L; ∆ ẁf ε′, then L; ∆; Γ; γ; ε′ r̀typ v : τ .
If L; ∆; Γ; γ; ε l̀typ x : τ, ` and L; ∆ ẁf ε′, then L; ∆; Γ; γ; ε′ l̀typ x : τ, `.

3. x, v 6 j̀e v′ and x, v 6 j̀e x′

Lemma C.13 (Access Control). Suppose:

1. h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε

2. (ΓSΓU)(x) = (τ, `)
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3. ·; ε àcc `

Then x ∈ Dom(HSHU)

Proof: From the h̀ind derivation and the Heap-Type Well-Formedness Lemma,
L; · ẁf ΓS and L; · ẁf ΓU , so the second assumption ensures L; · k̀ ` : LU. Therefore,
the Type Canonical Forms Lemma ensures ` = loc or ` = S(i) for some i. The
derivation of the first assumption provides L s̀hr ΓS, so if ` = loc, then x ∈
Dom(ΓU). In this case, the derivation of the first assumption provides L; ΓSΓU h̀typ

HU : ΓU , so the Heap-Type Well-Formedness Lemma ensures x ∈ Dom(HU).
If ` = S(i), then ·; ε àcc S(i) ensures i ∈ ε, which by the h̀ind derivation ensures

i ∈ LE. More importantly, i 6∈ L0 and i 6∈ LX . From the h̀lk assumptions,
that means x 6∈ Dom(HXS) and x 6∈ Dom(H0S). So from the Heap-Type Well-
Formedness Lemma and x ∈ Dom(ΓSΓU), we conclude x ∈ Dom(HSHU).

Lemma C.14 (Canonical Forms). Suppose L; ·; Γ; γ; ε r̀typ v : τ .

1. If τ = int, then v = i for some i.

2. If τ = τ0 × τ1, then v = (v0, v1) for some v0 and v1.

3. If τ = τ1
ε′
→ τ2, then v = (τ1, ` x)

ε′
→ τ2 s for some `, x, and s.

4. If τ = τ ′∗`, then v = &x for some x.

5. If τ = ∀α:κ[γ′].τ ′, then v = Λα:κ[γ′].f for some f .

6. If τ = ∃α:κ[γ′].τ ′, then v = pack τ ′′, v′ as ∃α:κ[γ′].τ ′ for some τ ′′ and v′.

7. If τ = lock(loc), then v = nonlock.

8. If τ = lock(S(i)), then v = lock i.

Lemma C.15 (Sharable Values Need Only Sharable Context). Suppose:

1. L s̀hr ΓS and L l̀oc ΓU

2. L; ∆; ΓSΓU ; γ; ε r̀typ v : τ

3. L; ∆ k̀ τ : AS

Then L; ∆; ΓS; γ; ε r̀typ v : τ

Proof: The proof is by induction on the structure of v. (Technically, several
cases also need the fact that any part of a well-formed Γ is well-formed to ensure

ẁf L; ∆; ΓS; γ; ε.)
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• If v = i, SR5.5 ensures the result.

• If v = &x, inverting the typing assumption ensures τ = τ ′∗` and (ΓSΓU)(x) =
(τ ′, `). The third assumption and the Type Canonical Forms Lemma ensure
L; ∆ k̀ ` : LS and L; ∆ k̀ τ : AS. Hence L l̀oc ΓU ensures x 6∈ ΓU . So x ∈ ΓS,
from which we can derive the desired result.

• If v = (τ1, ` x)
ε′
→ τ2 s, inverting the typing assumption ensures

L; ∆; Γ1, x:(τ1, `); ε
′; γ; τ2 s̀typ s for some Γ1 such that Γ = Γ1Γ2 and L s̀hr Γ1.

Because L l̀oc ΓU , we can show ΓS = Γ1Γ
′ for some Γ′. (Technically, the

proof is by induction on the size of Γ.) So the Context Weakening Lemma
suffices to derive the desired result.

• If v = Λα:κ[γ′].f , the result follows from induction (extending ∆ and γ) and
the static semantics.

• If v = (v0, v1), the result follows from induction and the static semantics.

• If v = pack τ1, v
′ as T2, the result follows from induction and the static

semantics.

• If v = nonlock, SR5.17 ensures the result.

• If v = lock i, SR5.15 ensures the result.

Lemma C.16 (Type and Release Preservation). Suppose:

1. HXSHXUH0SHSHU ; (L; L0; LRLE); s
s→ H ′; (L′; L′

0; L
′
h); sopt; s

′

(respectively, HXSHXUH0SHSHU ; (L; L0; LRLE); e
r→ H ′; (L′; L′

0; L
′
h); sopt; e

′)

(respectively, HXSHXUH0SHSHU ; (L; L0; LRLE); e
l→ H ′; (L′; L′

0; L
′
h); sopt; e

′)

2. s̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; τ ; s : ΓS; ΓU

(respectively, r̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ ; ΓS; ΓU)
(respectively, l̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ, `; ΓS; ΓU)

Then there exist H ′
XS, H ′

0S, H ′
S, H ′

U , Γ′
S, Γ′

U , L′
0, and L′

R such that:

1. H ′ = H ′
XSHXUH ′

0SH ′
SH ′

U

2. L′
h = L′

RLE

3. s̀ind H ′
XS; H ′

0S; H ′
S; H ′

U ; L′; L′
0; LX ; L′

R; LE; τ ; s′ : Γ′
S; Γ′

U

(respectively, r̀ind H ′
XS; H ′

0S; H ′
S; H ′

U ; L′; L′
0; LX ; L′

R; LE; e′ : τ ; Γ′
S; Γ′

U)
(respectively, l̀ind H ′

XS; H ′
0S; H ′

S; H ′
U ; L′; L′

0; LX ; L′
R; LE; e′ : τ, `; Γ′

S; Γ′
U)



290

4. L′ = LL′′ for some L′′

5. Γ′
S = ΓSΓ for some Γ and Γ′

U = ΓUΓ for some (other) Γ

6. H ′
XS = HXS or H ′

XS = HXS, x 7→ v for some x and v

7. if sopt 6= ·, then

(a) r̀et sopt

(b) · s̀rel sopt

(c) j̀f sopt

(d) L′; ·; Γ′
S; ·; ∅; τ ′

s̀typ sopt for some τ ′

Proof: The proofs are by simultaneous induction on the derivations of the
dynamic step, proceeding by cases on the last step in the derivation. Throughout,
let Hj = HSHU , C = L; ·; ΓSΓU ; ·; ε, H ′

j = H ′
SH ′

U , and C ′ = L′; ·; G′
SΓ′

U ; ·; ε.
If the heap does not change, Conclusions 1, 5, and 6 are trivial by letting

H ′
XS = HXS, H ′

0S = H0S, H ′
S = HS, H ′

U = HU , Γ′
S = ΓS, and Γ′

U = ΓU . If no lock
collection changes, Conclusions 2 and 4 are trivial by letting L′ = L, L′

0 = L0, and
L′

R = LR. If sopt = ·, Conclusion 7 holds vacuously. If the heap does not change,
no lock collection changes, and sopt = ·, we the case is local. For a local case, only
Conclusion 3 remains and the h̀ind conclusion we need is provided by inverting the
typing assumption. Hence it suffices to show:

j̀ Hj; s
′, LR s̀rel s′, and C; τ s̀typ s′

(respectively, j̀ Hj; e
′, LR èrel e′, and C r̀typ e′ : τ)

(respectively, j̀ Hj; e
′, LR èrel e′, and C l̀typ e′ : τ, `).

Inverting the h̀ind assumption, we can assume

j̀ Hj; s, LR s̀rel s, and C; τ s̀typ s
(respectively, j̀ Hj; e, LR èrel e, and C r̀typ e : τ)
(respectively, j̀ Hj; e, LR èrel e, and C l̀typ e : τ, `). Using these assumptions, we
derive our three obligations (underlining them in each case).

Most of the inductive cases follow a similar form: To invoke the induction
hypothesis, we invert the s̀ind (respectively r̀ind or l̀ind) assumption to provide a

h̀ind assumption, a type-checking assumption, a release assumption, and a junk
assumption. For the induction hypothesis to apply, we use the h̀ind assumption
unchanged and invert the other assumptions to get the facts we need. We then
use the result of the induction to provide the result we need: Using the H ′

XS, H ′
0S,

H ′
S, H ′

U , Γ′
S, Γ′

U , L′
0, and L′

R from the result of the induction, only Conclusion
3 remains and the h̀ind conclusion we need is provided by inverting Conclusion 3
from the induction. We use the other assumptions from this inversion to derive
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the other facts we need to derive Conclusion 3. Hence for inductive cases, we just
explain what facts we use to invoke the induction hypothesis, and how we use the
result to derive the facts we need for Conclusion 3. In each case, we underline
these facts.

• DL5.1: Let e = ∗&x and e′ = x. The case is local. Because x′, v′ 6 j̀e x,
inverting j̀ Hj; ∗&x ensures j̀f Hj, so we can derive j̀ Hj; x. Inverting LR èrel

∗&x ensures LR èrel x. Inverting C l̀typ ∗&x : τ, ` ensures C l̀typ x : τ, `.

• DL5.2: Let e = ∗e1 and e′ = ∗e′1. The case is inductive. Inverting j̀ Hj; ∗e1

ensures j̀ Hj; e1. Inverting LR èrel ∗e1 ensures LR èrel ∗e1. Inverting C l̀typ

∗e1 : τ, ` ensures C r̀typ e1 : τ∗`. So the induction hypothesis provides

j̀ H ′
j; e

′
1 (so j̀ H ′

j; ∗e′1), L′
R èrel e′1 (so L′

R èrel ∗e′1), and C ′
r̀typ e′1 : τ∗` (so

C ′
l̀typ ∗e′1 : τ, `).

• DR5.1: Let e = x and e′ = H(x). The case is local. Inverting j̀ Hj; x ensures

j̀f Hj. Inverting LR èrel x ensures LR = ·. Inverting C r̀typ x : τ ensures
(ΓSΓU)(x) = (τ, `), ·; ε àcc `, and ẁf C. So the Access Control Lemma
ensures x ∈ Dom(Hj). Therefore, j̀f H(x), so j̀ Hj; H(x). Because the h̀ind

assumptions ensure HS and HU are well-typed and x ∈ Dom(Hj), the Heap-
Type Well-Formedness Lemma ensures · èrel H(x) and either L; ·; ΓS; ·; ∅ r̀typ

H(x) : τ or L; ·; ΓSΓU ; ·; ∅ r̀typ H(x) : τ . In either case, the Term Weakening
Lemma ensures C r̀typ H(x) : τ .

• DR5.2A: Let e = x=v and e′ = (x=junkv). Inverting the r̀ind assumption
ensures j̀ Hj; x=v, LR èrel x=v, and C r̀typ x=v : τ . Inverting C r̀typ x=v : τ
ensures (ΓSΓU)(x) = (τ, `), ẁf C, C r̀typ v : τ , and ·; ε àcc `. So the Access
Control Lemma ensures x ∈ Dom(Hj). Therefore, either HS = H1, x 7→ v′

or HU = H1, x 7→ v′. In the former case, let H ′
S = H1, x 7→ junkv and

H ′
U = HU ; in the latter case, let H ′

S = HS and H ′
U = H1, x 7→ junkv. Letting

H ′
XS = HXS, H ′

0S = H0S, L′
0 = L0, L′

R = LR, Γ′
S = ΓS, Γ′

U = ΓU , and
sopt = ·, all of the conclusions follow immediately from the assumptions,
except for Conclusion 3.

First we show h̀ind HXS; H0S; H ′
S; H ′

U ; L; L0; LX ; LR; LE; e′ : τ ; ΓS; ΓU ; ε.
If x ∈ Dom(HU), then the h̀ind derivation in the assumptions provides all of
the hypotheses except for L; ΓSΓU h̀typ H ′

U : ΓU . Inverting L; ΓSΓU h̀typ HU :
ΓU provides L; ΓSΓU h̀typ H1 : Γ1 where ΓU = Γ1, x:(τ, `) for some Γ1. Given
C r̀typ v : τ , the Values Effectless Lemma ensures L; ·; ΓSΓU ; ·; ∅ r̀typ v : τ ,
so L; ·; ΓSΓU ; ·; ∅ r̀typ junkv : τ . Inverting LR èrel x=v ensures LR èrel v, so
the Values Effectless Lemma ensures LR = ·. So · èrel junkv. The underlined
facts let us derive L; ΓSΓU h̀typ H ′

U : ΓU .
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If x ∈ Dom(HS), then the h̀ind derivation in the assumptions provides all
of the hypotheses except for L; ΓS h̀typ HXSH0SH ′

S : ΓS and ΓS; LRLE h̀lk

H ′
S. The latter follows from the derivation of ΓS; LRLE h̀lk HS because

Γ′
S = ΓS. For the former, inverting L; ΓS h̀typ HXSH0SHS : ΓS provides

L; ΓS h̀typ HXSH0SH1 : Γ1 where ΓS = Γ1, x:(τ, `) for some Γ1. Given C r̀typ

v : τ , the Values Effectless Lemma ensures L; ·; ΓSΓU ; ·; ∅ r̀typ v : τ , so
L; ·; ΓSΓU ; ·; ∅ r̀typ junkv : τ . Because L s̀hr ΓS and ΓS(x) = (τ, `), we know
L; · k̀ τ : AS. Therefore, the Sharable Values Need Only Sharable Con-
text Lemma ensures L; ·; ΓS; ·; ∅ r̀typ junkv : τ . Inverting LR èrel x=v ensures
LR èrel v, so the Values Effectless Lemma ensures LR = ·. So · èrel junkv. The
underlined facts let us derive L; ΓS h̀typ HXSH0SH ′

S : ΓS.

To conclude r̀ind HXS; H0S; H ′
S; H ′

U ; L; L0; LX ; LR; LE; (x=junkv) : τ ; ΓS; ΓU ,
we still must show j̀ H ′

j; x=junkv, C r̀typ x=junkv : τ , and LR èrel x=junkv.
Inverting j̀ Hj; x=v, the Values Effectless Lemma ensures j̀f Hj and j̀f v,
from which we can derive j̀ H ′

j; x=junkv (because H ′
j(x) = junkv and H ′

j is
otherwise junk-free). From C r̀typ v : τ , we derive C r̀typ junkv : τ , so with
the other facts from inverting C r̀typ x=v : τ (see above), we can derive
C r̀typ x=junkv : τ . Finally, for x ∈ Dom(HS) or x ∈ Dom(HU), we showed
LR = · and · èrel v, so we can derive LR èrel x=junkv.

• DR5.2B: Let e = (x=junkv) and e′ = v. Inverting the r̀ind assumption en-
sures j̀ Hj; x=junkv, LR èrel x=junkv, and C r̀typ x=junkv : τ . Inverting

j̀ Hj; x=junkv ensures Hj = H1, x 7→ junkv, j̀f H1, and j̀f v for some H1.
So either HS = H2, x 7→ junkv or HU = H2, x 7→ junkv for some H2. In
the former case, let H ′

S = H2, x 7→ v and H ′
U = HU ; in the latter case, let

H ′
S = HS and H ′

U = H2, x 7→ v. Letting H ′
XS = HXS, H ′

0S = H0S, L′
0 = L0,

L′
R = LR, Γ′

S = ΓS, Γ′
U = ΓU , and sopt = ·, all of the conclusions follow

immediately from the assumptions, except for Conclusion 3.

First we show h̀ind HXS; H0S; H ′
S; H ′

U ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε. If x ∈
Dom(HU), then the h̀ind derivation in the assumptions provides all of the
hypotheses except for L; ΓS h̀typ ΓU : H ′

UΓU . Inverting L; ΓSΓU h̀typ HU : ΓU

provides L; ΓSΓU h̀typ H1 : Γ1 where ΓU = Γ1, x:(τ, `) for some Γ1, · èrel junkv,
and L; ·; ΓSΓU ; ·; ∅ r̀typ junkv : τ . Inverting the typing and release results
ensures L; ·; ΓSΓU ; ·; ∅ r̀typ v : τ and · èrel v. The underlined facts let us derive
L; ΓSΓU h̀typ H ′

U : ΓU .

If x ∈ Dom(HS), the argument is analogous (using ΓS in place of ΓSΓU), but
we also must show ΓS; LRLE h̀lk H ′

S, which follows from the derivation of
ΓS; LRLE h̀lk HS because Γ′

S = ΓS.

To conclude r̀ind HXS; H0S; H ′
S; H ′

U ; L; L0; LX ; LR; LE; v : τ ; ΓS; ΓU , we still



293

must show j̀ H ′
j; v, C r̀typ v : τ , and LR èrel v. The latter two follow from

inversion of C r̀typ x=junkv : τ and LR èrel x=junkv. We showed above that
Hj = H1, x 7→ junkv for some H1 for which j̀f H1 and j̀f v. So H ′

j = H1, x 7→ v
and we can derive j̀ H ′

j; v.

• DR5.3: Let e = ∗&x and e′ = x. This case is local. Because x′, v′ 6 j̀e x,
inverting j̀ Hj; ∗&x ensures j̀f Hj, so we can derive j̀ Hj; x. Inverting LR èrel

∗&x ensures LR èrel x. Inverting C r̀typ ∗&x : τ ensures (ΓSΓU)(x) = (τ, `),
·; ε àcc `, and ẁf C, so we can derive C r̀typ x : τ .

• DR5.4: Let e = (v0, v1).i and e′ = vi. This case is local. We assume i = 0;
the argument is analogous if i = 1. By the Values Effectless Lemma, x′, v′ 6 j̀e
(v0, v1), so inverting j̀ Hj; (v0, v1).i ensures j̀f Hj and j̀f v0. So we can derive

j̀ Hj; v0. By the Values Effectless Lemma, if LR èrel (v0, v1), then LR = ·,
so inverting LR èrel (v0, v1).i ensures LR èrel v.0 (because LR = ·, it does
not matter which rule derives LR èrel (v0, v1)). Inverting C r̀typ (v0, v1).i : τ
ensures C r̀typ v0 : τ0.

• DR5.5: Let e = ((τ1, ` x)
ε′
→ τ2 s)(v) and e′ = call (let `, x=v; s). The case is

local. The Values Effectless Lemma and inverting j̀ Hj; ((τ1, ` x)
ε′
→ τ2 s)(v)

ensure j̀f Hj, j̀f s, and j̀f v. So we can derive j̀f call (let `, x=v; s) and
therefore j̀ H;call (let `, x=v; s). The Values Effectless Lemma and inverting

LR èrel ((τ1, ` x)
ε′
→ τ s)(v) ensures LR = ·, · èrel v, and · s̀rel s. So we

can derive · èrel call (let `, x=v; s). Inverting C r̀typ ((τ1, ` x)
ε′
→ τ2 s)(v) : τ

ensures τ2 = τ , L; ·; Γ1, x:(τ1, `); ·; ε′; τ s̀typ s (where ΓSΓU = Γ1Γ2 for some
Γ2), r̀et s, C r̀typ v : τ1, and · èff ε′ ⊆ ε. So by the Context Weakening
Lemma L; ·; ΓSΓU , x:(τ1, `); ·; ε; τ s̀typ s. So with SS5.6 and SR5.10 we can
derive C r̀typ call (let `, x=v; s) : τ .

• DR5.6: Let e = call return v and e′ = v. The case is local. Inverting

j̀ Hj; call return v ensures j̀ Hj; v. Inverting LR èrel call return v ensures
LR èrel v. Inverting C r̀typ call return v : τ ensures C r̀typ v : τ .

• DR5.7: Let e = (Λα:κ[γ].f)[τ ′] and e′ = f [τ ′/α]. The case is local. The
Values Effectless Lemma and inverting j̀ Hj; (Λα:κ[γ].f)[τ ′] ensure j̀f Hj

and j̀f f . So Term Substitution Lemma 3 ensures j̀f f [τ ′/α] and therefore

j̀ Hj; f [τ ′/α]. The Values Effectless Lemma and inverting
LR èrel (Λα:κ[γ].f)[τ ′] ensure LR èrel f . So Term Substitution Lemma 2
ensures LR èrel f [τ ′/α]. Inverting C r̀typ Λα:κ[γ].f : ∀α:κ[γ].τ ′′ ensures
τ = τ ′′[τ ′/α], L; α:κ; ΓSΓU ; γ; ε r̀typ f : τ ′′, ẁf C, L; · k̀ ∀α:κ[γ].τ ′′ : AU,
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L; · k̀ τ ′ : κ, and · èff γ[τ ′/α]. So Term Substitution Lemma 4 ensures
L; ·; (ΓSΓU)[τ ′/α]; γ[τ ′/α]; ε[τ ′/α] r̀typ f [τ ′/α] : τ ′′[τ ′/α]. So the Useless Sub-
stitution Lemma ensures L; ·; ΓSΓU ; γ[τ ′/α]; ε r̀typ f [τ ′/α] : τ ′′[τ ′/α]. Finally,
the Term Weakening Lemma ensures L; ·; ΓSΓU ; ·; ε r̀typ f [τ ′/α] : τ ′′[τ ′/α].

• DR5.8: Let e = newlock() and e′ = pack S(i), lock i as ∃α:LS[·].lock(α).
Letting H ′

XS = HXS, H ′
0S = H0S, H ′

S = HS, H ′
U = HU , Γ′

S = ΓS, Γ′
U = ΓU ,

L′
0 = L0, i, and `′R = LR, all of the conclusions follow immediately except for

Conclusion 3.

First we show h̀ind HXS; H0S; HS; HU ; L′; L′
0; LX ; LR; LE : ΓS; ΓU ; ε. By our

choice of L′
0, we know L′ = L′

0LXLRLE (because DR5.8 ensures L′ = L, i).
The other obligations follow from inversion of

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE : ΓS; ΓU ; ε, the Context Weakening
Lemma, and the Heap-Type Weakening Lemma.

To conclude r̀ind HXS; H0S; HS; HU ; L′; L′
0; LX ; LR; LE; e′ : τ ; ΓS; ΓU , we still

must show j̀ Hj; e
′, C r̀typ e′ : τ , and LR èrel e′. Inverting j̀ Hj; newlock()

ensures j̀f Hj. Because j̀f e′, we conclude j̀ Hj; e
′. Inverting LR èrel newlock()

ensures LR = ·, so we can derive LR èrel e′. Inverting C r̀typ newlock() : τ
ensures τ = ∃α:LS[·].lock(α) and ẁf C. So we can derive our last obligation
as follows (note C ′ = `′; ·; ΓSΓU ; ·; ε and ẁf C ′ follows from ẁf C and the
Context Weakening Lemma):

i ∈ L′
ẁf C ′

C ′
r̀typ lock i : lock(S(i))

i ∈ L′

L′; · k̀ S(i) : LS · èff · L′; · k̀ ∃α:LS[·].lock(α) :AU

C ′
r̀typ pack S(i), lock i as ∃α:LS[·].lock(α) : ∃α:LS[·].lock(α)

• DR5.9: Let e = call s and e′ = call s′. The case is inductive. Inverting

j̀ Hj; call s ensures j̀ Hj; s. Inverting LR èrel call s ensures LR s̀rel s. Inverting
C r̀typ call s : τ ensures C; τ s̀typ s and r̀et s. So the induction hypothesis
provides j̀ H ′

j; s
′ (so j̀ H ′

j; call s′), L′
R s̀rel s′ (so L′

R èrel call s′, and C ′; τ s̀typ s′.

The Return Preservation Lemma ensures r̀et s′, so C ′
r̀typ call s′ : τ .

• DR5.10: There are two inductive cases. If e = &e1, let e′ = &e′1. Inverting j̀

Hj; &e1 ensures j̀ Hj; e1. Inverting LR èrel &e1 ensures LR èrel &e1. Inverting
C r̀typ &e1 : τ ensures τ = τ ′∗` and C l̀typ e1 : τ ′, `. So the induction
hypothesis provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; &e′1), L′
R èrel e′1 (so L′

R èrel &e′1) and

C ′
l̀typ e′1 : τ ′, ` (so C ′

r̀typ &e′1 : τ ′∗`).
If e = (e1=e2), let e′ = (e′1=e2). By inspection of the dynamic semantics, e1

is not some x. So inverting j̀ Hj; e1=e2 ensures j̀ Hj; e1 and j̀f e2. Similarly,
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LR èrel e1 and · èrel e2. Inverting C r̀typ e1=e2 : τ ensures C l̀typ e1 : τ, `,
C r̀typ e2 : τ , and ·; ε àcc `. So the induction hypothesis provides j̀ H ′

j; e
′
1

(so with j̀f e2 we have j̀ H ′
j; e

′
1=e2), L′

R èrel e′1 (so with · èrel e2 we have

L′
R èrel e′1=e2), and C ′

l̀typ e′1 : τ, `. By the Term Weakening Lemma, C ′
r̀typ

e2 : τ . So because C ′
ε = ε, ·′γ = ·, and ·; ε àcc `, we can derive C ′

r̀typ e′1=e2 : τ .

• DR5.11: There are nine inductive cases. If e = ∗e1, let e′ = ∗e′1. Inverting

j̀ Hj; ∗e1 ensures j̀ Hj; e1. Inverting LR èrel ∗e1 ensures LR èrel e1. Inverting
C r̀typ ∗e1 : τ ensures C r̀typ e1 : τ∗` and ·; ε àcc `. So the induction hypothesis
provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; ∗e′1), L′
R èrel e′1 (so L′

R èrel ∗e′1), and C ′
r̀typ e′1 : τ∗`

(so C ′
r̀typ ∗e′1 : τ because C ′

ε = ε, C ′
γ = ·, and ·; ε àcc `).

If e = e.i, let e′ = e′1.i. Inverting j̀ Hj; e1.i ensures j̀ Hj; e1. Inverting
LR èrel e1.i ensures LR èrel e1. Inverting C r̀typ e1.i : τ ensures τ = τi

and C r̀typ e1 : τ0 × τ1. So the induction hypothesis provides j̀ H ′
j; e

′
1 (so

j̀ H ′
j; e

′
1.i), L′

R èrel e′1 (so L′
R èrel e′1.i), and C ′

r̀typ e′1 : τ0 × τ1 (so C ′
r̀typ e′1.i :

τi).

If e = (x=e1), let e′ = (x=e′1). Inverting j̀ Hj; x=e1 ensures j̀ Hj; e1 (because
x′, v 6 j̀e x). Inverting LR èrel x=e1 ensures LR èrel e1 (because if LR èrel x,
then LR = · and · èrel e1). Inverting C r̀typ x=e1 : τ ensures C l̀typ x : τ, `,
C r̀typ e1 : τ , and ·; ε àcc `. So the induction hypothesis provides j̀ H ′

j; e
′
1 (so

j̀ H ′
j; x=e′1), L′

R èrel e′1 (so L′
R èrel x=e′1), and C ′

r̀typ e′1 : τ . By the Term

Weakening Lemma, C ′
l̀typ x : τ, `. So because C ′

ε = ε, C ′
γ = ·, and ·; ε àcc `,

we can derive C ′
r̀typ x=e′1 : τ .

If e = e1[τ
′], let e′ = e′1[τ

′]. Inverting j̀ Hj; e1[τ
′] ensures j̀ Hj; e1. Inverting

LR èrel e1[τ
′] ensures LR èrel e1. Inverting C r̀typ e1[τ

′] : τ ensures τ =
τ ′′[τ ′/α], C r̀typ e1 : ∀α:κ[γ].τ ′′ L; · k̀ τ ′ : κ, and · èff γ. So the induction
hypothesis provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; e
′
1[τ

′]), L′
R èrel e′1 (so L′

R èrel e′1[τ
′]), and

C ′
r̀typ e′1 : ∀α:κ[γ].τ ′′. By the Context Weakening Lemma L′; · k̀ τ ′ : κ. So

with · èff γ we can derive C ′
r̀typ e′1[τ

′] : τ ′′[τ ′/α].

If e = (e1, e2) and e1 is not a value, let e′ = (e′1, e2). Inverting j̀ Hj; (e1, e2)
ensures j̀ Hj; e1 and j̀f e2. Inverting LR èrel (e1, e2) ensures LR èrel e1 and
· èrel e2. Inverting C r̀typ (e1, e2) : τ ensures τ = τ1 × τ2, C r̀typ e1 : τ1, and
C r̀typ e2 : τ2. So the induction hypothesis provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; (e
′
1, e2)),

L′
R èrel e′1 (so L′

R èrel (e′1, e2)), and C ′
r̀typ e′1 : τ1. By the Term Weakening

Lemma C ′
r̀typ e2 : τ2, so we can derive C ′

r̀typ (e′1, e2) : τ1 × τ2.

If e = (v, e1), let e′ = (v, e′1). Inverting j̀ Hj; (v, e1) ensures j̀f v and j̀ Hj; e1

(because the Values Effectless Lemma ensures x, v′ 6 j̀e v). Inverting LR èrel

(v, e1) ensures · èrel v and LR èrel e1 (because if LR èrel v, then · èrel e1 and
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the Values Effectless Lemma ensures LR = ·). Inverting C r̀typ (v, e1) : τ
ensures τ = τ0 × τ1, C r̀typ v : τ0, and C r̀typ e1 : τ1. So the induction
hypothesis provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; (v, e′1)), L′
R èrel e′1 (so L′

R èrel (v, e′1)),

and C ′
r̀typ e′1 : τ1. By the Term Weakening Lemma C ′

r̀typ v : τ0, so we can
derive C ′

r̀typ (v, e′1) : τ0 × τ1.

If e = e1(e2) and e1 is not a value, let e′ = e′1(e2). Inverting j̀ Hj; e1(e2)
ensures j̀ Hj; e1 and j̀f e2. Inverting LR èrel e1(e2) ensures LR èrel e1 and
· èrel e2. Inverting C r̀typ e1(e2) : τ ensures C r̀typ e1 : τ1

ε1→ τ , C r̀typ

e2 : τ1, and · èff ε1 ⊆ ε. So the induction hypothesis provides j̀ H ′
j; e

′
1 (so

j̀ H ′
j; e

′
1(e2)), L′

R èrel e′1 (so L′
R èrel e′1(e2)), and C ′

r̀typ e′1 : τ1
ε1→ τ . By the

Term Weakening Lemma C ′
r̀typ e2 : τ1. So because C ′

γ = · and C ′
ε = ε, we

can derive C ′
r̀typ e′1(e2) : τ .

If e = v(e1), let e′ = v(e′1). Inverting j̀ Hj; v(e1) ensures j̀f v and j̀ Hj; e1

(because the Values Effectless Lemma ensures x, v′ 6 j̀e v). Inverting LR èrel

v(e1) ensures · èrel v and LR èrel e1 (because if LR èrel v, then · èrel e1 and
the Values Effectless Lemma ensures LR = ·). Inverting C r̀typ v(e1) : τ
ensures C r̀typ v : τ1

ε1→ τ , C r̀typ e1 : τ1, and · èff ε1 ⊆ ε. So the induction
hypothesis provides j̀ H ′

j; e
′
1 (so j̀ H ′

j; v(e′1)), L′
R èrel e′1 (so L′

R èrel v(e′1)),

and C ′
r̀typ e′1 : τ1. By the Term Weakening Lemma C ′

r̀typ v : τ1
ε1→ τ . So

because C ′
γ = · and C ′

ε = ε, we can derive C ′
r̀typ v(e′1) : τ .

If e = pack τ1, e1 as τ2, let e′ =pack τ1, e
′
1 as τ2. Inverting j̀ Hj; pack τ1, e1 as τ2

ensures j̀ Hj; e1. Inverting LR èrel pack τ1, e1 as τ2 ensures LR èrel e1. Invert-
ing C r̀typ pack τ1, e1 as τ2 : τ ensures τ2 = τ = ∃α:κ[γ].τ3, C r̀typ e1 :
τ3[τ1/α], L; · k̀ τ1 : κ, · èff γ[τ1/α], and L; · k̀ ∃α:κ[γ].τ3 : AU. So the in-
duction hypothesis provides j̀ Hj; e

′
1 (so j̀ H ′

j; pack τ1, e
′
1 as τ2), L′

R èrel e′1 (so

L′
R èrel pack τ1, e

′
1 as τ2), and C ′

r̀typ e1 : τ3[τ1/α]. The Context Weakening
Lemma ensures L′; · k̀ τ1 : κ and L′; · k̀ ∃α:κ[γ].τ3 : AU. So because C ′

γ = ·
and · èff γ[τ1/α], we can derive C ′

r̀typ pack τ1, e
′
1 as ∃α:κ[γ].τ3 : ∃α:κ[γ].τ3.

• DS5.1: Let s = let `, x=v; s1 and s′ = s1. Inverting C; τ s̀typ let `, x=v; s1

ensures C r̀typ v : τ1 and L; ·; ΓSΓU , x:(τ1, `); ·; ε; τ s̀typ s1. So the Typing
Well-Formedness Lemma and inversion ensures L; · k̀ ` : LU, so the Type
Canonical Forms Lemma ensures ` = loc or ` = S(i) for some i ∈ L (so i is
in one of LX , L0, LR, or LE). Our choice of Γ′

S, Γ′
U , H ′

XS, H0S′ , H ′
S, and H ′

U

depends on ` and τ1:

1. If ` = loc or L; · 6 k̀ τ1 : AS, let H ′
XS = HXS, H ′

0S = H0S, H ′
S = HS, and

H ′
U = HU , x 7→ v. Let Γ′

S = ΓS and Γ′
U = ΓU , , x:(τ1, `).
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2. Else if ` = S(i) for some i ∈ LRLE, let H ′
XS = HXS, H ′

0S = H0S,
H ′

S = HS, x 7→ v, and H ′
U = HU . Let Γ′

S = ΓS, x:(τ1, `) and Γ′
U = ΓU .

3. Else if ` = S(i) and i ∈ LX , let H ′
XS = HXS, x 7→ v, H ′

0S = H0S,
H ′

S = HS, and H ′
U = HU . Let Γ′

S = ΓS, x:(τ1, `) and ΓU = ΓU .

4. Else if ` = S(i) and i ∈ L0, let H ′
XS = HXS, H ′

0S = H0S, x 7→ v,
H ′

S = HS, and H ′
U = HU . Let Γ′

S = ΓS, x:(τ1, `) and Γ′
U = ΓU .

In all cases, letting L′
R = LR and L′

0 = L0, all conclusions except Conclusion
3 follow easily. For 3, we first show h̀ind H ′

XS; H ′
0S; H ′

S; H ′
U ; L; L0; LX ; LR; LE :

Γ′
S; Γ′

U ; ε given the h̀ind assumption, proceeding by cases:

1. All obligations are immediate except L; ΓSΓU , x:(τ1, `) h̀typ HU , x 7→ v :
ΓU , x:(τ1, `) (which follows from L; ΓSΓU h̀typ HU : ΓU , the Heap Weak-
ening Lemma, and C r̀typ v : τ1) and L l̀oc ΓU , x:(τ1, `) (which follows
from L l̀oc ΓU and L; · 6 k̀ τ1 : AS).

2. All obligations are, with possible use of the Heap Weakening Lemma,
immediate except Γ′

S; LRLE h̀lk HS, x 7→ v (which follows from
ΓS; LRLE h̀lk HS, the Heap Weakening Lemma, Γ′

S(x) = (τ1, S(i)), and
i ∈ LRLE), L; Γ′

S h̀typ HXSH0SHS, x 7→ v : Γ′
S (which follows from

L; ΓS h̀typ HXSH0SHS : ΓS, the Heap Weakening Lemma, C r̀typ v : τ1,
L; · k̀ τ1 : AS, and the Sharable Values Need Only Sharable Context
Lemma), and L s̀hr Γ′

S (which follows from L s̀hr ΓS, L; · k̀ τ1 : AS, and
the directly derivable L; · k̀ S(i) : LS).

3. This case is the same as case 2 except we use ΓS; LX h̀lk HXS and i ∈ LX

to show Γ′
S; LX h̀lk HXS, x 7→ v.

4. This case is the same as case 2 except we use ΓS; L0 h̀lk H0S and i ∈ L0

to show Γ′
S; L0 h̀lk H0S, x 7→ v and we must show j̀f H0S, x 7→ v. The

latter follows from j̀f H0S and j̀f v (which we prove below).

Only the other s̀ind obligations remain. From L; ·; ΓSΓU , x:(τ1, `); ·; ε; τ s̀typ

s1 and reordering, we have L; ·; Γ′
SΓ′

U ; ·; ε; τ s̀typ s1. The Values Effectless
Lemma and inverting LR s̀rel let `, x=v; s1 ensure LR = · and · s̀rel s1, i.e,
LR s̀rel s1. The Values Effectless Lemma and inverting j̀ Hj; let `, x=v; s1

ensure j̀f Hj, j̀f v, and j̀f s1, so in each of the four cases j̀f H ′
j and therefore

j̀ H ′
j; s1.

• DS5.2: Let s = (v; s1) and s′ = s1. This case is local. By the Values
Effectless Lemma, x, v′ 6 j̀e v, so inverting j̀ Hj; (v; s1) ensures j̀f Hj and

j̀f s1. So j̀ Hj; s1. The Values Effectless Lemma and inverting LR s̀rel v; s1
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ensures LR = · and · s̀rel s1, i.e., LR s̀rel s1. Inverting C; τ s̀typ v; s1 provides
C; τ s̀typ s1.

• DS5.3: Let s = (return v; s1) and s′ = return v. This case is local. Inverting j̀

Hj; (return v; s1) ensures j̀ Hj; return v. Inverting LR èrel return v; s1 ensures
LR èrel return v. Inverting C; τ s̀typ return v; s1 ensures C; τ s̀typ return v.

• DS5.4: Let s = if 0 s1 s2 and s′ = s2. This case is local. Because x, v 6 j̀e 0,
inverting j̀ Hj; if 0 s1 s2 ensures j̀f Hj and j̀f s2. So j̀ Hj; s2. Because
LR èrel 0 ensures LR = ·, inverting LR èrel if 0 s1 s2 ensures · èrel s2, i.e.,
LR s̀rel s2. Inverting C; τ s̀typ if 0 s1 s2 ensures C; τ s̀typ s2.

• DS5.5: This case is analogous to the previous one.

• DS5.6: Let s = while e s1 and s′ = if e (s1; while e s1) 0. This case
is local. Inverting j̀ Hj; while e s1 ensures j̀f Hj, j̀f e, and j̀f s1. So
because j̀f 0, we can derive j̀ Hj; if e (s1; while e s1) 0. Inverting LR s̀rel

while e s1 ensures LR = ·, · èrel e, and · s̀rel s1. So because · èrel 0, we
can derive LR s̀rel if e (s1; while e s1) 0. Inverting C; τ s̀typ while e s1 ensures
C r̀typ e : int and C; τ s̀typ s1. So because C r̀typ 0 : int, we can derive
C; τ s̀typ if e (s1; while e s1) 0.

• DS5.7: Let s = open (pack τ1, v as ∃α:κ[γ].τ2) as `, α, x; s1 and
s′ = (let `, x=v; s1[τ1/α]). This case is local. Inverting j̀ Hj; s ensures j̀ Hj; v
and j̀f s1, so Term Substitution Lemma 3 ensures j̀ Hj; let `, x=v; s1[τ1/α].
Inverting LR s̀rel s ensures LR èrel v and · s̀rel s1, so Term Substitution Lemma
2 ensures LR s̀rel let `, x=v; s1[τ1/α]. Inverting C; τ s̀typ s ensures C r̀typ v :
τ2[τ1/α], · èff γ[τ1/α], L; · k̀ τ1 : κ, L; α:κ; ΓSΓU , x:(τ2, `); γ; ε; τ s̀typ s1,
L; · k̀ ` : LU, and L; · k̀ τ : AU. So Term Substitution Lemma 4 ensures
L; ·; (ΓSΓU , x:(τ2, `))[τ1/α]; γ[τ1/α]; ε[τ1/α]; τ [τ1/α] s̀typ s1[τ1/α]. The Typing
Well-Formedness Lemma ensures ẁf C, so the Useless Substitution Lemma
and the kinding for ` and τ ensure L; ·; ΓSΓU , x:(τ2[τ1/α], `); γ[τ1/α]; ε; τ s̀typ

s1[τ1/α]. Because · èff γ[τ1/α], the Term Weakening Lemma ensures
L; ·; ΓSΓU , x:(τ2[τ1/α], `); ·; ε; τ s̀typ s1[τ1/α]. So with C r̀typ v : τ2[τ1/α], we
can derive L; ·; ΓSΓU ; ·; ε; τ s̀typ let `, x=v; s1[τ1/α].

• DS5.8: Let s = sync lock i s1 and s′ = s1; release i. Also let L0 = L′
0, i.

The h̀ind assumption ensures ΓS; L0 h̀lk H0S. A trivial induction on this
derivation ensures we can write H0S as H ′

0SHi such that ΓS; L′
0 h̀lk H ′

0S and
ΓS; i h̀lk Hi. Inverting LR s̀rel sync lock i s1 ensures LR = · and · s̀rel s1.
Letting H ′

XS = HXS, H ′
S = HSHi, H ′

U = HU , Γ′
S = ΓS, Γ′

U = ΓU , and
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L′
R = i, all of the conclusions follow immediately except for Conclusion 3.

(Note that H ′ = H and L′ = L.)

First we show h̀ind HXS; H ′
0S; H ′

S; HU ; L; L′
0; LX ; i; LE : ΓS; ΓU ; ε given h̀ind.

We know j̀f H ′
0S because j̀f H0S and H0S = H ′

0SHi. We argued above that
ΓS; L′

0 h̀lk H ′
0S. Because ΓS; ·LE h̀lk HS and ΓS; i h̀lk Hi, a trivial induc-

tion shows ΓS; iLE h̀lk H ′
S. All other obligations are provided directly from

the h̀ind assumption because HXSH ′
0SH ′

S = HXSH0SHS and L′
0LXiLE =

L0LXLRLE.

To conclude s̀ind HXS; H ′
0S; H ′

S; HU ; L; L′
0; LX ; i; LE; τ ; s1; release i : ΓS; ΓU ,

we still must show j̀ HSHiHU ; s1; release i, C; τ s̀typ s1; release i, and i s̀rel

s1; release i. Inverting j̀ Hj; sync lock i s1 ensures j̀f HS, j̀f HU , and j̀f s1.
From the h̀ind assumption, we know j̀f H0S so j̀f Hi. So we can derive

j̀ HSHiHU ; s1; release i. We showed above that · s̀rel s1, so we can derive
i s̀rel s1; release i. Inverting C; τ s̀typ sync lock i s1 ensures C r̀typ lock i :
lock(S(i)) and L; ·; ΓSΓU ; ·; ε ∪ locks(S(i)); τ s̀typ s1. Because locks(S(i)) = i,
we can derive C; τ s̀typ s1; release i.

• DS5.9: Let s = sync nonlock s1 and s′ = s1. This case is local. Because x, v 6 j̀e
nonlock, inverting j̀ Hj; sync nonlock s1 ensures j̀f Hj and j̀f s1. So j̀ Hj; s1.
Because LR èrel nonlock ensures LR = ·, inverting LR s̀rel sync nonlock s1

ensures LR = · and · s̀rel s1, i.e., LR s̀rel s1. Because locks(nonlock) = ∅,
inverting C; τ s̀typ sync nonlock s1 ensures C; τ s̀typ s1.

• DS5.10: Let s = v; release i and s′ = v. The Values Effectless Lemma and
inverting LR s̀rel v; release i ensures LR = i and · s̀rel v. The h̀ind assumption
ensures ΓS; LRLE h̀lk HS. A trivial induction on this derivation ensures we
can write HS as H ′

SHi such that ΓS; LE h̀lk H ′
S and ΓS; i h̀lk Hi. Letting

H ′
XS = HXS, H ′

0S = H0SHi, H ′
U = HU , Γ′

S = ΓS, Γ′
U = ΓU , L′

0 = L0, i, and
L′

R = ·, all of the conclusions follow immediately except for Conclusion 3.
(Note that H ′ = H and L′ = L.)

First we show h̀ind HXS; H ′
0S; H ′

S; HU ; L; L′
0; LX ; ·; LE : ΓS; ΓU ; ε given h̀ind.

The Values Effectless Lemma and inverting j̀ Hj; v; release i ensures j̀f v
and j̀f Hj, so therefore j̀f Hi. So with j̀f H0S, we know j̀f H ′

0S. Because
ΓS; L0 h̀lk H0S and ΓS; i h̀lk Hi, a trivial induction shows ΓS; L′

0 h̀lk H ′
0S.

We argued above that ΓS; LE h̀lk H ′
S. All other obligations are provided

directly from the h̀ind assumption because HXSH ′
0SH ′

S = HXSH0SHS and
L′

0LXiLE = L0LXLRLE.

To conclude s̀ind HXS; H ′
0S; H ′

S; HU ; L; L′
0; LX ; ·; LE; τ ; v : ΓS; ΓU , we still

must show j̀ H ′
SHU ; v, C; τ s̀typ v, and · s̀rel v. We already showed
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j̀f Hj (so j̀f H ′
j) and j̀f v, so j̀ H ′

j; v. Inverting C; τ s̀typ v; release i ensures

L; ·; ΓSΓU ; ·; ε ∪ i; τ s̀typ v, so the Values Effectless Lemma ensures C; τ s̀typ v.
We already showed · s̀rel v.

• DS5.11: Let s = return v; release i. This case is analogous to the previous
one because inversion ensures C r̀typ v : τ , · èrel v, and j̀ Hj; v.

• DS5.12: Let s = spawn v1(v2), s′ = 0, and sopt = return v1v2. Leaving all
heap portions and lock sets unchanged (H ′

XS = HXS, H ′
0S = H0S, H ′

S = HS,
H ′

U = HU , Γ′
S = ΓS, Γ′

U = ΓU , L′
0 = L0, and L′

R = LR), all conclusions
except 3 and 7 are trivial. For 3, the Values Effectless Lemma and inversion
of LR s̀rel spawn v1(v2) ensures LR = ·, · èrel v1, and · èrel v2, so LR s̀rel 0.
The Values Effectless Lemma and inversion of j̀f Hj; spawn v1(v2) ensures

j̀f Hj, j̀f v1, and j̀f v2. So j̀ Hj; 0. The Typing Well-Formedness Lemma
ensures C; τ s̀typ 0. With the h̀ind assumption, the underlined facts establish
Conclusion 3.

For 7, r̀et return v1(v2) is trivial. We showed above · èrel v1 and · èrel v2,
so · s̀rel return v1(v2). We showed above j̀f v1 and j̀f v2, so j̀f return v1(v2).

Inverting C; τ s̀typ spawn v1(v2) ensures C r̀typ v1 : τ1
∅→ τ2, C r̀typ v2 : τ1, and

L; · k̀ τ1 : AS. The Typing Well-Formedness Lemma ensures L; · k̀ τ1
∅→ τ2 :

AU, so the Type Canonical Forms Lemma ensures L; · k̀ τ1
∅→ τ2 : AS. So

two uses of the Sharable Values Need Only Sharable Context Lemma ensure

L; ·; ΓS; ·; ε r̀typ v1 : τ1
∅→ τ2 and L; ·; ΓS; ·; ε r̀typ v2 : τ1. So the Values

Effectless Lemma ensures L; ·; ΓS; ·; ∅ r̀typ v1 : τ1
∅→ τ2 and L; ·; ΓS; ·; ∅ r̀typ

v2 : τ1. So we can derive L; ·; ΓS; ·; ∅; τ2 s̀typ return v1(v2).

• DS5.13: There are eight inductive cases. If s = e, let s′ = e′. Inverting

j̀ Hj; s ensures j̀ Hj; e. Inverting LR s̀rel e ensures LR èrel e. Inverting
C; τ s̀typ e ensures C r̀typ e : τ ′. So the induction hypothesis provides j̀ H ′

j; e
′

(so j̀ H ′
j; s

′), L′
R èrel e′ (so L′

R s̀rel s′), and C ′
r̀typ e′ : τ ′ (so C ′; τ s̀typ s′).

If s = return e, the argument is analogous to the case s = e. Note that
τ ′ = τ .

If s = if e s1 s2, let s′ = if e′ s1 s2. Inverting j̀ Hj; if e s1 s2 ensures

j̀ Hj; e, j̀f s1, and j̀f s2. Inverting LR s̀rel if e s1 s2 ensures LR èrel e,
· s̀rel s1, and · s̀rel s2. Inverting C; τ s̀typ if e s1 s2 ensures C r̀typ e : int,
C; τ s̀typ s1, and C; τ s̀typ s2. So the induction hypothesis provides j̀ H ′

j; e
′

(so j̀ H ′
j; if e′ s1 s2), L′

R èrel e′ (so L′
R s̀rel if e′ s1 s2), and C ′

r̀typ e′ : int.

The Term Weakening Lemma ensures C ′; τ s̀typ s1 and C ′; τ s̀typ s2, so
C ′; τ s̀typ if e′ s1 s2.
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If s = let `, x=e; s1, let s′ = let `, x=e′; s1. Inverting j̀ Hj; let `, x=e; s1

ensures j̀ Hj; e and j̀f s1. Inverting LR s̀rel let `, x=e; s1 ensures LR èrel e
and · s̀rel s1. Inverting C; τ s̀typ let `, x=e; s1 ensures C r̀typ e : τ ′ and
L; ·; ΓSΓU , x:(τ ′, `); ·; ε; τ s̀typ s1. So the induction hypothesis provides j̀ H ′

j; e
′

(so j̀ H ′
j; let `, x=e′; s1), L′

R èrel e′ (so L′
R èrel let `, x=e′; s1), and C ′

r̀typ e :

τ ′. The Term Weakening Lemma ensures L; ·; Γ′
SΓ′

U , x:(τ ′, `); ·; ε; τ s̀typ s1, so
C ′; τ s̀typ let `, x=e′; s1.

If s = open e as `, α, x; s1, the argument is analogous to the case s =
let `, x=e; s1 although s1 is type-checked under a different context. Inverting
the typing derivation also provides L; · k̀ ` : LU and L; · k̀ τ : AU. So the
Context Weakening Lemma ensures L′; · k̀ ` : LU and L′; · k̀ τ : AU, which we
need to derive C ′; τ s̀typ open e′ as `, α, x; s1.

If s = sync e s1, the argument is analogous to the case s = let `, x=e; s1

although s1 is type-checked under a different context.

If s = spawn e1(e2) and e1 is not a value, let s′ = spawn e′1(e2). Inverting

j̀ Hj; spawn e1(e2) ensures j̀ Hj and j̀f e2. Inverting LR s̀rel spawn e1(e2)
ensures LR èrel e1 and · èrel e2. Inverting C; τ s̀typ spawn e1(e2) ensures C r̀typ

e1 : τ1
∅→ τ2, C r̀typ e2 : τ1, and L; · k̀ τ1 : AS. So the induction hypothesis

provides j̀ H ′
j; e

′
1 (so j̀ Hj; spawn e′1(e2)), L′

R èrel e′1 (so L′
R s̀rel spawn e′1(e2)),

and C ′
r̀typ e′1 : τ1

∅→ τ2. The Term Weakening Lemma ensures C ′
r̀typ e2 : τ1

and the Context Weakening Lemma ensures L′; · k̀ τ1 : AS, so we can derive
C ′; τ s̀typ spawn e′1(e2).

If s = spawn v(e1), let s′ = spawn v(e′1). Inverting j̀ Hj; spawn v(e1) ensures

j̀f v and j̀ Hj; e1 (because the Values Effectless Lemma ensures x, v′ 6 j̀e v).
Inverting LR s̀rel spawn v(e1) ensures · èrel v and LR èrel e1 (because if LR èrel

v, then · èrel e1 and the Values Effectless Lemma ensures LR = ·). Inverting

C; spawn v(e1) s̀typ τ ensures C r̀typ v : τ1
∅→ τ2, C r̀typ e1 : τ1, and L; · k̀

τ1 : AS. So the induction hypothesis provides j̀ H ′
j; e

′
1 (so j̀ H ′

j; spawn v(e′1)),

L′
R èrel e′1 (so L′

R èrel spawn v(e′1)), and C ′
r̀typ e′1 : τ1. The Term Weakening

Lemma ensures C ′
r̀typ v : τ1

∅→ τ2 and the Context Weakening Lemma
ensures L′; · k̀ τ1 : AS, so we can derive C ′; τ s̀typ spawn v(e′1).

• DS5.14: There are two cases. If s = s1; s2, let s′ = s′1; s2. The case is
inductive. Inverting j̀ Hj; (s1; s2) ensures j̀ Hj; s1 and j̀f s2. Inverting LR s̀rel

s1; s2 ensures LR s̀rel s1 and · s̀rel s2. Inverting C; τ s̀typ s1; s2 ensures C; τ s̀typ

s1 and C; τ s̀typ s2. So the induction hypothesis provides j̀ H ′
j; s

′
1 (so with

j̀f s2 we have j̀ H ′
j; (s

′
1; s2)), L′

R s̀rel s′1 (so with · s̀rel s2 we have L′
R s̀rel s′1; s2),
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and C ′; τ s̀typ s′1. The Term Weakening Lemma ensures C ′; τ s̀typ s2, so we
have C ′; τ s̀typ s′1; s2.

If s = s1; release i, let s′ = s′1; release i. Inverting LR s̀rel s1; release i ensures
LR has the form i, LR1 and LR1 s̀rel s1. Letting LE1 = LE, i and ε1 = ε ∪ i,
the h̀ind assumption’s hypotheses let us easily derive

h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR1; LE1 : ΓS; ΓU ; ε1.
Inverting j̀ Hj; s1; release i ensures j̀ Hj; s1. Inverting C; τ s̀typ s1; release i
ensures L; ·; ΓSΓU ; ·; ε1; τ s̀typ s1. Applying the induction hypothesis to the
underlined facts provides some H ′

XS, H ′
0S, H ′

S, H ′
U , L′, L′

0, L′
R1, Γ′

S, and
Γ′

U such that the seven conclusions hold (with LE1 in place of LE and s′1
in place of s1). Conclusions 1, 4, 5, 6, and 7 from the induction satisfy
our corresponding obligations directly. Letting L′

R = L′
R1, i, Conclusion 2

from the induction (L′
h = L′

R1LE1) is equivalent to L′
h = L′

RLE, which is
Conclusion 2 of our obligations. Conclusion 3 from the induction is s̀ind

H ′
XS; H ′

0S; H ′
S; H ′

U ; L′; L′
0; LX ; L′

R1; LE1; τ ; s′1 : Γ′
S; Γ′

U , from which inversion
ensures h̀ind H ′

XS; H ′
0S; H ′

S; H ′
U ; L′; L′

0; LX ; L′
R1; LE1 : Γ′

S; Γ′
U ; ε1, (the assump-

tions of which ensure h̀ind H ′
XS; H ′

0S; H ′
S; H ′

U ; L′; L′
0; LX ; L′

R; LE : Γ′
S; Γ′

U ; ε),
L′; ·; Γ′

SΓ′
U ; ·; ε1; τ s̀typ s′1 (so C ′; τ s̀typ s′1; release i), L′

R1 s̀rel s′1 (so
L′

R s̀rel s′1; release i), and j̀ H ′
j; s

′
1 (so j̀ H ′

j; s
′
1; release i). Conclusion 3 follows

form the underlined facts.

Lemma C.17 (Type and Release Progress).

1. If s̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; τ ; s : ΓS; ΓU , then s = v for
some v, s = return v for some v or there exist i, H ′, L

′
, sopt, and s′ such

that HXSHXUH0SHSHU ; (L; L0, j; LRLE); s
s→ H ′; L

′
; sopt; s

′.

2. If r̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ ; ΓS; ΓU , then e = v for
some v or there exist i, H ′, L

′
, sopt, and e′ such that

HXSHXUH0SHSHU ; (L; L0, j; LRLE); e
r→ H ′; L

′
; sopt; e

′.

3. If l̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR; LE; e : τ, `; ΓS; ΓU , then e = x for
some x or there exist i, H ′, L

′
, sopt, and e′ such that

HXSHXUH0SHSHU ; (L; L0, j; LRLE); e
l→ H ′; L

′
; sopt; e

′.

Proof: The proofs are by simultaneous induction on the typing derivations
implied by the s̀ind, r̀ind, and l̀ind assumptions, proceeding by cases on the last
step in the s̀typ, r̀typ, or l̀typ derivation. Throughout, let Hj = HSHU and C =
L; ·; ΓSΓU ; ·; ε. Unless otherwise stated, when we apply the induction hypothesis,
we use the assumed h̀ind assumption unchanged and use inversion to establish the
typing, release, and junk facts necessary to derive the appropriate s̀ind, r̀ind, or l̀ind

fact.
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• SL5.1: This case is trivial because e = x.

• SL5.2: Let e = ∗e1. If e1 is a value, the Canonical Forms Lemma ensures it
has the form &x, so DL5.1 applies. Else inversion ensures j̀ Hj; e1, C r̀typ

e1 : τ ′ for some τ ′, and LR èrel e1. So the result follows from induction and
DL5.2.

• SR5.1: Let e = x. Inverting C r̀typ x : τ ensures x ∈ Dom(ΓSΓU). Inverting
the h̀ind assumption ensures L; ΓS h̀typ HXSH0SHS : ΓS and L; ΓSΓU h̀typ

HU : ΓU . So the Heap-Type Well-Formedness Lemma ensures Dom(ΓSΓU) ⊆
Dom(H), so DR5.1 applies.

• SR5.2: This case is analogous to case SL5.2, using DR5.3 for DL5.1 and
DR5.11 for DL5.2

• SR5.3–4: Let e = e1.i. If e1 is a value, the Canonical Forms Lemma ensures
it has the form (v0, v1), so DR5.4 applies. Else inversion ensures j̀ Hj; e1,
C r̀typ e1 : τ0 × τ1, and LR èrel e1. So the result follows from induction and
DR5.11.

• SR5.5: This case is trivial because e is a value.

• SR5.6: Let e = &e1. If e1 is some x, then e is a value. Else inversion ensures

j̀ Hj; e1, C l̀typ e1 : τ ′, `, and LR èrel e1. So the result follows from induction
and DR5.10.

• SR5.7: Let e = (e0, e1). If e0 and e1 are values, then e is a value. Else if e0

is not a value, inversion ensures j̀ Hj; e0, C r̀typ e0 : τ0, and LR èrel e0. So
the result follows from induction and DR5.11. Else e0 is some v, so inversion
ensures j̀ Hj; e1 (because the Values Effectless Lemma ensures x, v′ 6 j̀e v),
LR èrel e1 (because the Values Effectless Lemma ensures LR èrel v only if
LR = ·), and C r̀typ e1 : τ1. So the result follows from induction and DR5.11.

• SR5.8: Let e = e1=e2. If e1 = x and e2 = v, inverting C r̀typ e1=e2 : τ en-
sures x ∈ Dom(ΓS, ΓU). Inverting the h̀ind assumption ensures L; ΓS h̀typ

HXSH0SHS : ΓS and L; ΓSΓU h̀typ HU : ΓU . So the Heap-Type Well-
Formedness Lemma ensures Dom(ΓSΓU)=Dom(H)−Dom(HXU), so DR5.2A
applies so long as H(x) = v′ for some v′ (i.e., H(x) = junkv′). The Values Ef-
fectless Lemma and inverting j̀ Hj; x=v ensures j̀f Hj, so it suffices to show
x ∈ Dom(HUHS): Because L; · ẁf ΓSΓU , we know (ΓSΓU)(x) = (τ, `) for
some ` such that L; · k̀ ` : LU. So the Type Canonical Forms Lemma ensures
` = loc or ` = S(i) for some i ∈ L. If ` = loc, the assumption s̀hr ΓS ensures
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x ∈ Dom(ΓU), so L; ΓSΓU h̀typ HU : ΓU and the Heap-Type Well-Formedness
Lemma ensure x ∈ Dom(HU). If ` = S(i), inverting C r̀typ e1=e2 : τ en-
sures ·; ε àcc S(i), so i ∈ ε. From the h̀ind assumptions, that means i ∈ LE,
so i 6∈ L0 and i 6∈ LX . So given the h̀lk assumptions, x 6∈ Dom(HXS) and
x 6∈ Dom(H0S). So x ∈ Dom(Hj).

If e1 is not some x, inversion ensures that j̀ Hj; e1, C l̀typ e1 : τ, `, and
LR èrel e1. So the result follows from induction and DR5.10.

If e1 is some x and e2 is not a value, inverting j̀ Hj; e ensures either e2 = junkv

for some v or j̀ Hj; e2. In the former case, j̀ Hj; e (that is, j̀ Hj; x=junkv)
ensures Hj(x) = junkv, so DR5.2B applies. In the latter case, inversion
ensures C r̀typ e2 : τ and LR èrel e2, so the result follows from induction and
DR5.11.

• SR5.9: Let e = e1(e2). If e1 and e2 are values, the Canonical Forms Lemma

ensures e1 has the form (τ1, ` x)
ε′
→ τ2 s, so DR5.5 applies. Else if e1 is

not a value, inversion ensures that j̀ Hj; e1, C r̀typ e1 : τ ′ for some τ ′, and
LR èrel e1. So the result follows from induction and DR5.11. Else e1 is some
v, so inversion ensures that j̀ Hj; e2 (because the Values Effectless Lemma
ensures x, v′ 6 j̀e v), C r̀typ e2 : τ ′ for some τ ′, and LR èrel e2 (because the
Values Effectless Lemma ensures LR èrel v only if LR = ·). So the result
follows from induction and DR5.11.

• SR5.10: Let e = call s. If s = return v, then DR5.6 applies. Else we know
s 6= v because r̀et s. Inversion ensures that j̀ Hj; s, C; τ s̀typ s, and LR s̀rel s.
So the result follows from induction and DR5.9.

• SR5.11: Let e = e1[τ ]. If e1 is a value, the Canonical Forms Lemma ensures
e1 = Λα:κ[γ].f for some f , so DR5.7 applies. Else inversion ensures j̀ Hj; e1,
C r̀typ e1 : τ ′ for some τ ′, and LR èrel e1. So the result follows from induction
and DR5.11.

• SR5.12: e = pack τ1, e1 as τ2 If e1 is a value, then e is a value. Else inversion
ensures j̀ Hj; e1, C r̀typ e1 : τ ′ for some τ ′, and LR èrel e1. So the result
follows from induction and DR5.11.

• SR5.13–15: These cases are trivial because e is a value.

• SR5.16: This case holds vacuously because 6 j̀ Hj; junkv.

• SR5.17: This case is trivial because e is a value.

• SR5.18: Rule DR5.8 applies.
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• SS5.1: Let s = e. If e is a value, the result is immediate. Else inversion
ensures j̀ Hj; e, C r̀typ e : τ ′, and LR èrel e. So the result follows from
induction and DS5.13.

• SS5.2: This case is analogous to the previous case.

• SS5.3: Let s = s1; s2. If s1 = v, DS5.2 applies. If s1 = return v, DS5.3
applies. Else inversion ensures j̀ Hj; s1, C; τ s̀typ s1, and LR s̀rel s1. So the
result follows from induction and DS5.14.

• SS5.4: Rule DS5.6 applies.

• SS5.5: Let s = if e s1 s2. If e is a value, inverting C; τ s̀typ if e s1 s2 ensures
it has type int, so the Canonical Forms Lemma ensures it is some i. So either
DS5.4 or DS5.5 applies. Else inversion ensures j̀ Hj; e, C r̀typ e : int, and
LR èrel e. So the result follows from induction and DS5.13.

• SS5.6: Let s = let `, x=e; s1. If e is a value, DS5.1 applies. Else inversion
ensures j̀ Hj; e, C r̀typ e : τ ′, and LR èrel e. So the result follows from
induction and DS5.13.

• SS5.7: Let s = open e as `, α, x; s1. If e is a value, inverting C; τ s̀typ

open e as `, α, x; s1 ensures it has an existential type, so the Canonical Forms
Lemma ensures it is an existential package. So DS5.7 applies. Else inversion
ensures j̀ Hj; e, C r̀typ e : τ ′, and LR èrel e. So the result follows from
induction and DS5.13.

• SS5.8: Let s = sync e s1. If e is a value, inverting C; τ s̀typ sync e s1 ensures
C r̀typ e : lock(`) for some `. The Typing Well-Formedness lemma ensures
L; · k̀ lock(`) : LU, so the Type Canonical Forms Lemma ensures ` = S(i) or
` = loc. In the former case, the Canonical Forms Lemma ensures e = lock i
so DS5.8 applies so long as i is available. The statement of the lemma is
weak enough that assuming i is available suffices. In the latter case, the
Canonical Forms Lemma ensures e = nonlock, so DS5.9 applies. Else e is not
a value. Inversion ensures j̀ Hj; e, C r̀typ e : lock(`), and LR èrel e. So the
result follows from induction and DS5.13.

• SS5.9: Let s = s1; release i. If s1 = v or s1 = return v for some v, then DS5.10
or DS5.11 applies so long as i ∈ LRLE. Inverting LR s̀rel s1; release i ensures
i ∈ LR. Else inversion ensures j̀ Hj; s1, L; ·; ΓSΓU ; ·; ε ∪ i; τ s̀typ s1, and
LR1 s̀rel s1 where LR = LR1, i. The result follows from induction and DS5.13
so long as h̀ind HXS; H0S; HS; HU ; L; L0; LX ; LR1; LE1; ΓS; ΓU ; ε1 where LE1 =
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LE, i and ε1 = ε∪ i. The h̀ind assumption provides all the facts we need (note
that LR1LE1 = LRLE).

• SS5.10: Let s = spawn e1(e2). If e1 and e2 are values, DR5.12 applies. Else
if e1 is not a value, inversion ensures j̀ Hj; e1, C r̀typ e1 : τ ′ for some τ ′,
and LR èrel e1. So the result follows from induction and DS5.13. Else e1 is
some v, so inversion ensures j̀ Hj; e2 (because the Values Effectless Lemma
ensures x, v′ 6 j̀e v), C r̀typ e2 : τ ′ for some τ ′, and LR èrel e2 (because the
Values Effectless Lemma ensures LR èrel v only if LR = ·). So the result
follows from induction and DS5.13.

Lemma C.18 (Preservation). If p̀rog P and P → P ′, then either P ′ has no
threads or p̀rog P ′.

Proof: The proof is by cases on the rule used for P → P ′.
For case DP5.1, let P = L; L0; H; (L1, s1) · · · (Ln, sn) where i is the thread that

takes a step. Inverting p̀rog P , the conditions for the Type and Release Preservation
Lemma are satisfied by letting HXS = H1S . . . H(i−1)SH(i+1)S . . . HnS, HXU =
H1U . . . H(i−1)UH(i+1)U . . . HnU , HS = HiS, HU = HiU ,LX = L1 . . . Li−1Li+1 . . . Ln,
LR = Li, LE = ·, s = si, and τ = τi. The lemma ensures
P ′ = L′

0LXL′
RLE; L′

0; H
′
XSHXUH ′

0SH ′
iSH ′

U ;
(L1, s1) . . . (Li−1, si−1)(L

′
RLE, s′)(Li+1, si+1) . . . (Ln, sn) (where we write H ′

iS where
the statement of the lemma writes H ′

S) and the lemma’s conclusions hold. We
must establish p̀rog P ′ from these conclusions and p̀rog P .

We have shown L′ = L′
0LXL′

RLE. Letting H ′
S = H ′

0SH ′
XSH ′

iS, we have shown
H ′ = H ′

SH1U . . . H(i−1)UH ′
UH(i+1)U . . . HnU . For H ′

S = H ′
0SH ′

1S . . . H ′
nS, it suffices to

choose H ′
jS for j 6= i and 1 ≤ j ≤ n such that H ′

XS = H ′
1S . . . H ′

(i−1)SH ′
(i+1)S . . . H ′

nS.
Using Conclusion 6, choose H ′

jS = HjS with one possible exception: If H ′
XS =

HXS, x 7→ v, then Conclusion 3 ensures Γ′
S; LX h̀lk H ′

XS, so Γ′
S(x) = (τ ′, S(k)) for

some τ ′ and k ∈ LX . So k ∈ Lj for some j. In this case, let H ′
jS = HjS, x 7→

v. The h̀ind assumption from Conclusion 3 provides L′; Γ′
S h̀typ H ′

S : Γ′
S, L s̀hr ΓS,

Γ′
S; L′

0 h̀lk H ′
0S, and j̀f H0S. The remaining obligations involve threads that are ei-

ther i or some j 6= i. For thread i, Conclusion 3 provides all the obligations (using
Γ′

U for ΓiU , L′
R for Li, H ′

U for HiU , etc.) except for r̀et s′, which follows from
inverting p̀rog P and the Return Preservation Lemma. For thread j 6= i, the ap-
propriate weakening lemmas and p̀rog P ensure L′; Γ′

SΓjU h̀typ HjU : ΓjU , L′
l̀oc ΓjU ,

and L′; ·; Γ′
SΓjU ; ·; ∅; τj s̀typ sj. Without need for weakening, p̀rog P ensures r̀et sj

and Lj s̀rel sj. The remaining obligations involve H ′
jS, which could be HjS or

HjS, x 7→ v for some x and v. In either case, P̀ provides j̀ HjSHjU ; sj, so we can
derive j̀ H ′

jSHjU ; sj. Similarly, P̀ provides ΓS; Lj h̀lk HjS. With the Heap Weaken-
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ing Lemma, this fact suffices to derive ΓS; Lj h̀lk H ′
jS so long as ΓS(x) = (τ ′, S(k))

and k ∈ Lj, which is exactly why we put x in H ′
jS.

For case DP5.2, we use the entire argument for the previous case. It then
remains to establish the assumptions for the new thread, call it n + 1. Letting
H ′

(n+1)U = ·, H ′
(n+1)S = ·, L′

n+1 = ·, and Γ′
(n+1)U = ·, Conclusion 7 of the Type and

Release Preservation Lemma provides four of the obligations for thread n+1. The
other three are trivial.

For case DP5.3, (Li, si) = (·, return v) for some i and v. If this thread is the
only one, then P ′ has no threads and we are done. Else, the assumptions from

p̀rog P almost suffice to show p̀rog P ′. Because Li = ·, inverting ΓS; Li h̀lk HiS

ensures HiS = ·. The complication is how to account for HiU (which is in fact
garbage). We take some j 6= i, let H ′

jU = HjUHiU , and show p̀rog P ′ using H ′
jU for

HjU . The assumptions that are not provided immediately via p̀rog P are:

1. L; ΓSΓjUΓiU h̀typ HjUHiU : ΓjUΓiU

2. L l̀oc ΓjU , ΓiU

3. L; · ẁf ΓjUΓiU

4. L; ·; ΓSΓjUΓiU ; ·; ∅; τj s̀typ sj

5. j̀ HjSHjUHiU ; sj

The first assumption is proven by induction on the size of HiU , using the assump-
tions that HiU and HjU type-check separately and the Heap Weakening Lemma.
The second assumption is proven by induction on the size of ΓiU using the assump-
tions L l̀oc ΓjU and L l̀oc ΓiU . The third assumption is proven by induction on
the size of ΓiU using the assumptions L; · ẁf ΓjU and L; · ẁf ΓiU . The fourth as-
sumption follows from the Term Weakening Lemma. For the fifth assumption, the
form of si, the assumption j̀ HiSHiU ; si, and the Values Effectless Lemma ensure

j̀f HiU . Hence the assumption j̀ HjSHjU ; sj ensures j̀ HjSHjUHiU ; sj.

Lemma C.19 (Progress). If p̀rog P = L; L0; H; (L1, s1) · · · (Ln, sn), then for
all 1 ≤ i ≤ n, either si = return v and Li = · or there exists a j such that
H; (L; L0, j; Li); si

s→ H ′; L
′
; sopt; s

′
i for some H ′, L

′
, sopt, and s′i. (Note that the

latter case subsumes the situation where no j needs to be added to L0.)

Proof: Let (Li, si) be an arbitrary thread in P . By assumption, we have
all the hypotheses for p̀rog P . The conditions for the Type and Release Progress
Lemma are satisfied by letting HXS = H1S . . . H(i−1)SH(i+1)S . . . HnS, HXU =
H1U . . . H(i−1)UH(i+1)U . . . HnU , HS = HiS, HU = HiU ,LX = L1 . . . Li−1Li+1 . . . Ln,
LR = Li, LE = ·, s = si, and τ = τi.
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Hence one of the three cases in the conclusion of the Type and Release Progress
Lemma hold. In fact, s = v is impossible because Values Effectless Lemma provides
6 r̀et v, but we assume r̀et v. If s = return v, then the assumption Li s̀rel s and the
Values Effectless Lemma ensure that Li = ·. So the program can take a step with
DP5.3. The remaining possibility is allowed directly by the lemma we are proving.
(In this case, if no j is necessary, then either DP5.1 or DP5.2 lets the program
take a step.)

Finally, we can prove the Type Soundness theorem by induction on the length
of the execution sequence. First, it is trivial to establish p̀rog ·; (·; ·; ·); (·; s) given
the theorems assumptions, so the Progress Lemma ensures the theorem holds after
0 steps. The Preservation Lemma ensures that P̀’ if P is the state after n steps
and P → P ′. So the Progress Lemma ensures the theorem holds after n + 1 steps.



Appendix D

Chapter 6 Safety Proof

This appendix proves Theorem 6.2, which we repeat here:

Definition 6.1. State V ; H; s is stuck if s is not some value v, s is not return,
and there are no V ′, H ′ and s′ such that V ; H; s

s→ V ′; H ′; s′.

Theorem 6.2 (Type Safety). If V ; · s̀typ s : Γ, V̀ s : V , and V ; ·; s s→∗
V ′; H ′; s′

(where
s→∗

is the reflexive transitive closure of
s→), then V ′; H ′; s′ is not stuck.

Proof: The proof is by induction on the number of steps to reach V ′; H ′; s′.
For zero steps, we can use the assumptions to show p̀rog V ; ·; s : Γ. For more
steps, induction and Preservation Lemma 3 (proved in this appendix) ensure p̀rog

V ′; H ′; s′ : Γ. So Progress Lemma 3 (also proved in this appendix) ensures V ′; H ′; s′

is not stuck.
Before presenting and proving the necessary lemmas in “bottom-up” order, we

identify several novel aspects of the proof and then give a “top-down” overview of
the proof’s structure. Novel proof obligations include the following:

• Assignments to escaped locations must preserve heap typing. This result
follows because for any type τ there is only one abstract rvalue r such that
Γ ẁf τ,esc, r.

• Preservation when v; s becomes s (similarly, when we reduce if v s1 s2) is
difficult to establish because the assumed typing of v; s may use subsumption
to type-check s under a weaker context than v. It is not the case that s
necessarily type-checks under the stronger context (e.g., s may be a loop).
Somewhat surprisingly, it is the case that the heap type-checks under an
extension of the weaker context and s type-checks under this extension.

• Given Γ r̀typ e : τ, r, Γ′, Γ h̀typ H : Γ′, and H; e
r→ H ′; e′ (and analogously

for left-evaluation), the conventional conclusion of preservation (Γ′′
r̀typ e′ :

309
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τ, r, Γ′ for an appropriate Γ′′) is not strong enough for an inductive proof.
Specifically, expressions with under-specified evaluation order have Γ′ = Γ
and preservation requires that Γ′′ = Γ. In fact, because of subsumption,
we must show that Γ′′ can be Γ whenever Γ ` Γ′ ≤ Γ. Interestingly, this
extended preservation result is what fails to hold if we add sequence expres-
sions as described in Section 6.2. Under a, “permutation semantics,” the
result does not hold, but it does not need to for safety. Under a, “C ordering
semantics,” this result is necessary.

• The Weakening Lemmas for typing judgments must allow extensions to the
assumed typing context to appear in the produced context. Without this
extension, the result is too weak due to under-specified evaluation order.
The contexts with which we can extend the assumed context are subject to
technical conditions that avoid variable clashes.

• Preservation when copying a loop body s requires systematic renaming of
s. We argue that the renamed copy still type-checks under the same Γ1

and produces the same Γ because Γ1 and Γ cannot mention variables that s
allocates.

The Progress Lemma ensures well-typed program states are not stuck. As
usual, some cases use the Canonical Forms Lemma to argue about the form of
values. For example, a value with abstract rvalue all@ cannot be 0. Case ST6.4
is interesting because the derivation uses l̀typ, but we need to take a right-expression
step. Subtyping Preservation Lemma 2 ensures the expression is a well-typed right-
expression. Case SS6.4 must argue that it is always possible to use systematic
renaming such that rule DS6.6 applies.

The Preservation Lemma ensures evaluation preserves typing. The lemmas
for expressions and tests are simpler because such terms cannot extend the heap.
We discussed above why expression preservation has unconventional obligations.
When ∗&x becomes x, we need the Subtyping Preservation Lemma to show that
any subsumption used in the typing derivation for ∗&x can be duplicated when
typing x. Case SR6.10 (assignment) is particularly complicated when e has the
form x=v. When the assignment changes the abstract rvalue for x, we use the
Assignment Preservation Lemma to argue that the rest of the heap (i.e., locations
other than x) continue to type-check. For type-checking the contents of x, we
use Canonical Forms Lemma 8. We also use Heap Subsumption Lemma 3 to
show that if the new abstract rvalue of x is less approximate than the old one,
then we can subsume the heap to its old type. (Intuitively, we need to do so
when assignments are nested within under-specified evaluation-order expressions.)
When the assignment is to an escaped location, we argue that the heap does not
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change type. Cases SR6.12 and SL6.3 need Abstract-Ordering Transitivity Lemma
5, which states that the ordering relationship on typing contexts is transitive.

The only interesting case for test-expression preservation is ST6.4 (which uses
a run-time test to refine typing information) when the expression is some x. Intu-
itively, we argue by cases on the form of H(x) that ST6.1 or ST6.3 let us derive a
typing with the refined type information, using H(x) in place of x. The Assignment
Preservation Lemma ensures the rest of the heap still type-checks under the refined
information. When H(x) = &y for some y, we use Values Effectless Lemma 2 to en-
sure Γ0 ` &y ≤ all@. This fact and some simple observations about well-formed
typing contexts (the Typing Well-Formedness Lemma) and ordering judgments
(the Abstract-Ordering Inversion Lemma) let us derive Γ1 r̀typ &y : τ,all@, Γ1 if
y is escaped. We use some technical lemmas to show this fact, but intuitively it
follows because x originally had abstract rvalue all∗.

Preservation for statements must account for evaluation steps that allocate
memory or make (renamed) copies of loop bodies. Case SS6.1 uses Preservation
Lemma 1. Case SS6.2 is trivial.

Case SS6.3 is surprisingly complicated. If the statement has the form v; s, then
the Value Elimination Lemma provides the interesting results. In turn, this lemma
uses the Heap Subsumption Lemma to handle any subsumption that the typing of
v introduced. The Values Effectless Lemma ensures the typing of v changes the
typing context only via subsumption. If the statement has the form return; s, then
an inordinate amount of bookkeeping is necessary to prove we can produce the
same typing context with return as with return; s. For part of the argument, we
need Weakening Lemma 3 to ensure a well-formed context that we can then restrict
with SS6.8. Finally the statement may have the form s1; s2 and s1 becomes s′1. We
need Weakening Lemma 11 to argue that s2 still type-checks. Interestingly, we do
not need Weakening Lemma 9. Intuitively, the typing of s′1 can use subsumption
to produce the same typing context as s1.

Case SS6.4 is the only case that must argue about systematic renaming. Copy-
ing the loop body increases the number of variables allocated in the statement, but
the assumptions for p̀rog and rule DS6.6 sufficiently restrict what new variables are
used. The Systematic Renaming Lemma ensures the renamed body type-checks
with renamed typing contexts. The restrictions on the renaming ensure the typing
contexts do not mention variables that the body binds, so the Useless Renaming
Lemma ensures the renamed body type-checks under unchanged typing contexts.
We also need Weakening Lemma 10 to show that the test type-checks even though
new variables have been introduced.

Case SS6.5 uses either the Value Elimination Lemma like case SS6.3 or Preser-
vation Lemma 2 like case SS6.1 uses Preservation Lemma 1. Case SS6.6 allocates
memory. Weakening Lemma 7 ensures the heap still type-checks. Cases SS6.7 and
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SS6.8 follow from induction.
We now note some interesting arguments from the proofs of the auxiliary lem-

mas.
The proof of Assignment Preservation Lemmas 4 and 5 must establish that

induction applies when the assumed typing derivation ends with SL6.3 or SR6.12.
The Values Effectless Lemma ensures the shorter derivation produces a weaker
context and the assumptions of SL6.3 or SR6.12 ensure it produces a stronger
context. Hence the Abstract-Ordering Antisymmetry Lemma ensures it produces
the same context it consumes, so the induction hypothesis applies.

The Abstract-Ordering Antisymmetry Lemma is also crucial for cases of the
Subtyping Preservation Lemma and Canonical Forms Lemma that have derivations
ending with SR6.13, which subsumes abstract rvalues.

The Value Elimination Lemma proof uses the Values Effectless Lemma and
Heap Subsumption Lemma to show that the assumed heap type-checks under a
weaker context suitably extended. To show that the assumed statement type-
checks under the extension, we need Weakening Lemma 9, which is complicated
only because of renaming issues. (Compare it with Weakening Lemma 7.) The
proof of Weakening Lemma 9 requires Weakening Lemmas 1–8.

The Heap Subsumption Lemma proof uses the Abstract-Ordering Antisymme-
try Lemma to dismiss complications due to SL6.3 and SR6.12.

The Values Effectless Lemma proof needs the Abstract-Ordering Transitivity
Lemma to ensure multiple subsumption steps produce only successively weaker
results.

The Abstract-Ordering Inversion Lemma and Typing Well-Formedness Lemma
make rather obvious technical points needed throughout other proofs.

Lemma D.1 (Typing Well-Formedness).

1. If Γ0 ẁf Γ1 and Dom(Γ0) = Dom(Γ2), then Γ2 ẁf Γ1.

2. If Γ0 ` Γ1 ≤ Γ2, then Dom(Γ1) = Dom(Γ2).

3. If Γ0 l̀typ e : τ, `, Γ1 and Γ0 ẁf Γ0, then Dom(Γ0) = Dom(Γ1) and Γ1 ẁf Γ1.

If Γ0 r̀typ e : τ, r, Γ1 and Γ0 ẁf Γ0, then Dom(Γ0) = Dom(Γ1) and Γ1 ẁf Γ1.

4. If V ; Γ0 t̀st e : Γ1; Γ2 and Γ0 ẁf Γ0, then
Dom(Γ0) ⊆ Dom(Γ1) ⊆ Dom(Γ0) ∪ V , Γ1 ẁf Γ1,
Dom(Γ0) ⊆ Dom(Γ2) ⊆ Dom(Γ0) ∪ V , and Γ2 ẁf Γ2.

5. If V ; Γ0 s̀typ s : Γ1, V̀ s : V ′, V ′ ⊆ V , and Γ0 ẁf Γ0, then
Dom(Γ1) ⊆ Dom(Γ0) ∪ V and Γ1 ẁf Γ1.
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Proof:

1. By induction on the assumed derivation and inspection of the rules for Γ ẁf

τ, k, r

2. By induction on the assumed derivation

3. The proof is by simultaneous induction on the assumed typing derivations.
Cases SR6.1–6 are trivial because Γ1 = Γ0. Cases SR6.7A–B and SR6.8A–D
follow from induction. Case SR6.9 is trivial because Γ1 = Γ0. Case SR6.10
follows from inspection of the rules for àval because Γ1 differs from Γ0 for
at most one variable, and àval has the necessary well-formedness hypothesis.
Case SR6.11 follows from induction. Case SR6.12 follows from the previous
lemma. Case SR6.13 follows from induction. Case SL6.1 is trivial because
Γ1 = Γ0. Cases SL6.2A–B follow from induction. Case SL6.3 follows from
the previous lemma. Case SL6.4 follows from induction.

4. The proof is by cases on the assumed typing derivation. Cases ST6.1–3 follow
from the previous lemma and inspection of the rules for V1; V2 ẁf Γ. Case
ST6.4 follows from the previous lemma and the fact that for any Γ and τ , if
Γ ẁf τ,unesc,all∗, then Γ ẁf τ,unesc,all@ and Γ ẁf τ,unesc, 0. Case
ST6.5 follows from the previous lemma.

5. The proof is by induction on the assumed typing derivation. Case SS6.1
follows from Typing Well-Formedness Lemma 3. Case SS6.2 follows from in-
spection of the rules for V1; V2 ẁf Γ. Case SS6.3 follows from two invocations
of the induction hypothesis, inversion of V̀ s1; s2 : V ′, and the transitiv-
ity of ⊆. Case SS6.4 follows from the previous lemma. Case SS6.5 follows
from the previous lemma, induction (applied to either branch), inversion
of V̀ if e s1 s2 : V ′, and the transitivity of ⊆. Case SS6.6 follows because
Γ1 ẁf τ,unesc,none and inverting V̀ s : V ′ shows x ∈ V ′. Case SS6.7
follows from induction and Typing Well-Formedness Lemma 2. Case SS6.8
follows from induction and the transitivity of ⊆.

Lemma D.2 (Weakening). Suppose Γ0 ẁf Γ0.

1. If Γ0 ẁf `, then Γ0Γ1 ẁf `.

2. If Γ0 ẁf τ, k, r, then Γ0Γ1 ẁf τ, k, r.

3. If Γ0 ẁf Γ1, then Γ0Γ2 ẁf Γ1. If Γ0 ẁf Γ1 and Γ0 ẁf Γ2, then Γ0 ẁf Γ1Γ2.

4. If Γ0 ` `1 ≤ `2, then Γ0Γ1 ` `1 ≤ `2.
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5. If Γ0 ` r1 ≤ r2, then Γ0Γ1 ` r1 ≤ r2.

6. If Γ1 ` Γ0 ≤ Γ1, then Γ1Γ2 ` Γ0Γ2 ≤ Γ1Γ2.

7. If Γ0 l̀typ e : τ, `, Γ1 and Γ0Γ2 ẁf Γ2, then Γ0Γ2 l̀typ e : τ, `, Γ1Γ2.
If Γ0 r̀typ e : τ, r, Γ1 and Γ0Γ2 ẁf Γ2, then Γ0Γ2 r̀typ e : τ, r, Γ1Γ2.

8. If V ; Γ0 t̀st e : Γ1A; Γ1B, Γ0Γ2 ẁf Γ2, and V ∩Dom(Γ2) = ∅, then V ; Γ0Γ2 t̀st

e : Γ1AΓ2; Γ1BΓ2.

9. Suppose Γ0Γ2 ẁf Γ2, V0∩Dom(Γ0Γ2) = ∅, Dom(Γ0) ⊆ Dom(Γ3) ⊆ Dom(Γ0)∪
V0, and V2 ⊆ V1 ⊆ V0. If Γ3 ẁf Γ3, V1; Γ3 s̀typ s : Γ1 and V̀ s : V2, then
V1; Γ3Γ2 s̀typ s : Γ1. Furthermore, if Dom(Γ1) ⊇ Dom(Γ0), then V1; Γ3Γ2 s̀typ

s : Γ1Γ2.

10. If V ; Γ0 t̀st e : Γ1A; Γ1B, then V ∪ V ′; Γ0 t̀st e : Γ1A; Γ1B.

11. If V ; Γ0 s̀typ s : Γ1, then V ∪ V ′; Γ0 s̀typ s : Γ1.

Proof:

1. By inspection of the assumed derivation

2. By inspection of the assumed derivation

3. The proof of both statements is by induction on the size of Γ1. The first
proof uses the previous lemma.

4. By inspection of the rules for Γ ` `1 ≤ `2

5. By induction on the derivation of Γ0 ` r1 ≤ r2

6. The proof is by induction on the size of Γ2. It is a trivial consequence of the
previous lemma, ` k ≤ k, and Γ′ ` r ≤ r.

7. The proof is by simultaneous induction on the assumed typing derivations.
Cases SR6.1–SR6.6 are trivial. Cases SR6.7A–B, SR6.8A–D, and SR6.9 fol-
low from induction. Case SR6.10 follows from induction and Weakening
Lemma 2. Case SR6.11 follows from induction. Case SR6.12 follows from
induction and Weakening Lemmas 3 and 6. Case SR6.13 follows from induc-
tion and Weakening Lemma 5. Case SL6.1 is trivial. Cases SL6.2A–B follow
from induction. Case SL6.3 follows from induction and Weakening Lemmas
3 and 6. Case SL6.4 follows from induction and Weakening Lemma 4.

8. The proof is by cases on the assumed typing derivation:
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• ST6.1: Inversion ensures Γ0 r̀typ e : τ, 0, Γ1B, Γ1A ẁf Γ1A, and
Dom(Γ0) ⊆ Dom(Γ1A) ⊆ Dom(Γ0) ∪ V . So the previous lemma en-
sures Γ0Γ2 r̀typ e : τ, 0, Γ1BΓ2. By the transitivity of ⊆, Dom(Γ0Γ2) ⊆
Dom(Γ1AΓ2) ⊆ Dom(Γ0Γ2) ∪ V (where V ∩ Dom(Γ2) = ∅, Dom(Γ0) ∩
Dom(Γ2) = ∅, and Dom(Γ1A) ⊆ Dom(Γ0) ∪ V ensure we can write
Γ1AΓ2). Furthermore, Dom(Γ0) ⊆ Dom(Γ1A), Γ0Γ2 ẁf Γ2, Weakening
Lemma 3 and Typing Well-Formedness Lemma 1 ensure Γ1AΓ2 ẁf Γ2.
With Γ1A ẁf Γ1A, Weakening Lemma 3 ensures that means Γ1AΓ2 ẁf

Γ1AΓ2. So we can conclude V ; Dom(Γ0Γ2) ẁf Γ1AΓ2. The underlined
results let us use ST6.1 to derive V ; Γ0Γ2 t̀st e : Γ1AΓ2; Γ1BΓ2.

• ST6.2–3: These cases are identical to each other and analogous to case
ST6.1, swapping the roles of Γ1A and Γ1B.

• ST6.4–5: These cases follow from the previous lemma. After apply-
ing the lemma, we can use ST6.4 or ST6.5, respectively, to conclude
V ; Γ3Γ2 t̀st e : Γ1AΓ2; Γ1BΓ2.

9. The proof is by induction on the assumed typing derivation, but we first
derive some results that hold in all cases. Because Dom(Γ3) ⊆ Dom(Γ0)∪V0

and V0∩Dom(Γ0Γ2) = ∅, we know Dom(Γ3)∩Dom(Γ2) = ∅, so we can write
Γ3Γ2. Furthermore, Dom(Γ0) ⊆ Dom(Γ3), Γ0Γ2 ẁf Γ2, Weakening Lemma
3 and Typing Well-Formedness Lemma 1 ensure Γ3Γ2 ẁf Γ2. Therefore,
Γ3 ẁf Γ3 ensures Γ3Γ2 ẁf Γ3Γ2.

Typing Well-Formedness Lemma 5 ensures Dom(Γ1) ⊆ Dom(Γ3) ∪ V1 and
Γ1 ẁf Γ1. Therefore, Dom(Γ3) ⊆ Dom(Γ0) ∪ V0 and V1 ⊆ V0 ensures
Dom(Γ1) ⊆ Dom(Γ0) ∪ V0. Therefore, because V0 ∩ Dom(Γ0Γ2) = ∅, we
know Dom(Γ1) ∩ Dom(Γ2) = ∅, so we can write Γ1Γ2. Furthermore, if
Dom(Γ1) ⊇ Dom(Γ0), then Weakening Lemma 3, Typing Well-Formedness
Lemma 1, and Γ0Γ2 ẁf Γ2 ensure Γ1Γ2 ẁf Γ2. Therefore, Γ1 ẁf Γ1 ensures
Γ1Γ2 ẁf Γ1Γ2.

• SS6.1: By inversion, Γ3 r̀typ e : τ, r, Γ1. So Weakening Lemma 7 ensures
Γ3Γ2 r̀typ e : τ, r, Γ1Γ2, so SS6.1 lets us derive V1; Γ3Γ2 s̀typ e : Γ1Γ2.
Because Γ1 ẁf Γ1, SS6.8 lets us derive V1; Γ3Γ2 s̀typ e : Γ1.

• SS6.2: By inversion, Dom(Γ3) ⊆ Dom(Γ1) ⊆ Dom(Γ3) ∪ V1. Therefore,
Dom(Γ0) ⊆ Dom(Γ3) ensures Dom(Γ0) ⊆ Dom(Γ1). So we argued
above that Γ1Γ2 ẁf Γ1Γ2. By transitivity of ⊆, we have Dom(Γ3Γ2) ⊆
Dom(Γ1Γ2) ⊆ Dom(Γ3Γ2) ∪ V1. So SS6.2 lets us derive V1; Γ3Γ2 s̀typ

return : Γ1Γ2. Because Γ1 ẁf Γ1, SS6.8 lets us derive V1; Γ3Γ2 s̀typ

return : Γ1.
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• SS6.3: By inversion, V1; Γ3 s̀typ s1 : Γ′, V1 − V ′; Γ′
s̀typ s2 : Γ1, and V̀ s1 :

V ′ for some Γ′ and V ′. Inversion of V̀ s1; s2 : V2 and the transitivity of
⊆ ensures V̀ s2 : V2 − V ′ and V ′ ⊆ V2. Because V1; Γ3 s̀typ s1 : Γ′ and
V ′ ⊆ V2, induction ensures V1; Γ3Γ2 s̀typ s1 : Γ′. So SS6.3 lets us derive
V1; Γ3Γ2 s̀typ s1; s2 : Γ1, as required.

Now suppose Dom(Γ1) ⊇ Dom(Γ0). Typing Well-Formedness Lemma
5 and V1 − V ′; Γ′

s̀typ s2 : Γ1 ensure Dom(Γ1) ⊆ Dom(Γ′) ∪ (V1 − V ′).
Therefore, Dom(Γ0) ⊆ Dom(Γ′)∪(V1−V ′). Because V0∩Dom(Γ0Γ2) = ∅
and (V1 − V ′) ⊆ V0, we know (V1 − V ′) ∩ Dom(Γ0) = ∅. Therefore,
Dom(Γ0) ⊆ Dom(Γ′). Therefore, V1; Γ3 s̀typ s1 : Γ′, V ′ ⊆ V2, and induc-
tion ensure V1; Γ3Γ2 s̀typ s1 : Γ′Γ2.

Typing Well-Formedness Lemma 5 and V1; Γ3 s̀typ s1 : Γ′ ensure Γ′
ẁf Γ′

and Dom(Γ′) ⊆ Dom(Γ3) ∪ V1. Therefore, Dom(Γ3) ⊆ Dom(Γ0) ∪ V0

and V1 ⊆ V0 ensure Γ′ ⊆ Dom(Γ0) ∪ V0. Furthermore, (V2 − V ′) ⊆ V2

and V2 ⊆ V1 ⊆ V0 ensures (V2 − V ′) ⊆ (V1 − V ′) ⊆ V0. The underlined
results and induction let us conclude V1 − V ′; Γ′Γ2 s̀typ s2 : Γ1Γ2. We
already showed V1; Γ3Γ2 s̀typ s1 : Γ′Γ2 and V̀ s1 : V ′. So SS6.3 lets us
derive V1; Γ3Γ2 s̀typ s1; s2 : Γ1Γ2, as required.

• SS6.4: By inversion, V1; Γ3 t̀st e : Γ′; Γ1 and V1; Γ
′

s̀typ s1 : Γ3 for some
Γ′. Because Γ3Γ2 ẁf Γ2 and V1 ⊆ V0, the previous lemma ensures
V1; Γ3Γ2 t̀st e : Γ′Γ2; Γ1Γ2.

Assume we could show V1; Γ
′Γ2 s̀typ s1 : Γ3Γ2. Then SS6.4 would let us

derive V1; Γ3Γ2 s̀typ while e s1 : Γ1Γ2. So SS6.8 would then let us derive
V1; Γ3Γ2 s̀typ while e s1 : Γ1 because Γ1 ẁf Γ1. So it suffices to show
V1; Γ

′Γ2 s̀typ s1 : Γ3Γ2.

We know V1; Γ
′

s̀typ s1 : Γ3. Inverting V̀ while e s1 : V2 ensures V̀ s1 : V2.
Because V1; Γ3 t̀st e : Γ′; Γ1, Typing Well-Formedness Lemma 4 en-
sures Dom(Γ3) ⊆ Dom(Γ′) ⊆ Dom(Γ3) ∪ V1 and Γ′

ẁf Γ′. Because
Dom(Γ0) ⊆ Dom(Γ3) ⊆ Dom(Γ0) ∪ V0 and V1 ⊆ V0, that means
Dom(Γ0) ⊆ Dom(Γ′) ⊆ Dom(Γ0) ∪ V0. Because Γ3 ⊇ Γ0, the result we
need, V ; Γ′Γ2 s̀typ s1 : Γ3Γ2, follows from induction, using the underlined
results.

• SS6.5: By inversion, V1; Γ3 t̀st e : Γ′
1; Γ

′
2, V1; Γ

′
1 s̀typ s1 : Γ1, and

V1; Γ
′
2 s̀typ s2 : Γ1 for some Γ′

1 and Γ′
2. Because Γ3Γ2 ẁf Γ2 and V1 ⊆ V0,

the previous lemma ensures V1; Γ3Γ2 t̀st e : Γ′
1Γ2; Γ

′
2Γ2.

Because V1; Γ3 t̀st e : Γ′
1; Γ

′
2, Typing Well-Formedness Lemma 4 ensures

Dom(Γ3) ⊆ Dom(Γ′
1) ⊆ Dom(Γ3) ∪ V1 and Γ′

1 ẁf Γ′
1. Therefore,

Dom(Γ0) ⊆ Dom(Γ3) ⊆ Dom(Γ0) ∪ V1 ensures
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Dom(Γ0) ⊆ Dom(Γ′
1) ⊆ Dom(Γ0) ∪ V1. Inverting V̀ s : V2 ensures

V̀ s1 : V ′ and V ′ ⊆ V2. So V2 ⊆ V1 ⊆ V0 ensures V ′ ⊆ V1 ⊆ V0). So
applying induction to the underlined results ensures
V1; Γ

′
1Γ2 s̀typ s1 : Γ1 and if Dom(Γ1) ⊇ Dom(Γ0), then

V1; Γ
′
1Γ2 s̀typ s1 : Γ1Γ2.

By an analogous argument, V1; Γ
′
2Γ2 s̀typ s2 : Γ1 and if Dom(Γ1) ⊇

Dom(Γ0), then V1; Γ
′
2Γ2 s̀typ s2 : Γ1Γ2. So we can use SS6.5 to derive

the results we need.

• SS6.6: Rule SS6.6 lets derive V1; Γ3Γ2 s̀typ τ x : Γ3Γ2, x:τ,unesc,none
if x 6∈ Dom(Γ2). (We already know Γ3Γ2 ẁf Γ3Γ2 and the assumed
derivation implies x 6∈ Γ3.) The assumption V̀ τ x : V2 ensures x ∈ V2,
so the assumptions V0 ∩ Dom(Γ0Γ2) = ∅ and V2 ⊆ V1 ⊆ V0 suffice.
Because Γ1 ẁf Γ1 (where Γ1 = Γ3, x:τ,unesc,none), SS6.8 lets us
derive V1; Γ3Γ2 s̀typ τ x : Γ1.

• SS6.7: By inversion, V1; Γ3 s̀typ s : Γ′ and Γ1 ` Γ′ ≤ Γ1 for some Γ′.
By induction, V1; Γ3Γ2 s̀typ s : Γ′, and if Dom(Γ′) ⊇ Dom(Γ0), then
V1; Γ3Γ2 s̀typ s : Γ′Γ2. So SS6.7 lets us derive V1; Γ3Γ2 s̀typ s : Γ1.

Now suppose Dom(Γ1) ⊇ Dom(Γ0). Then V1; Γ3Γ2 s̀typ s : Γ′Γ2 because
Γ1 ` Γ′ ≤ Γ1 and Typing Well-Formedness Lemma 2 ensure Dom(Γ1) =
Dom(Γ′). Typing Well-Formedness Lemma 5 ensures Γ′Γ2 ẁf Γ′Γ2.
Weakening Lemma 6 and Γ1 ` Γ′ ≤ Γ1 ensure Γ1Γ2 ` Γ′Γ2 ≤ Γ1Γ2. So
SS6.7 lets us derive V1; Γ3Γ2 s̀typ s : Γ1Γ2.

• SS6.8: By inversion, V1; Γ3 s̀typ s : Γ′Γ1 for some Γ′. By induction,
V1; Γ3Γ2 s̀typ s : Γ′Γ1, and if Dom(Γ′Γ1) ⊇ Dom(Γ0), then V1; Γ3Γ2 s̀typ

s : Γ′Γ1Γ2. So we can use SS6.8 to derive V1; Γ3Γ2 s̀typ s : Γ1. Further-
more, if Dom(Γ1) ⊇ Dom(Γ0), then Dom(Γ′Γ1) ⊇ Dom(Γ0). So in this
case, we can derive V1; Γ3Γ2 s̀typ s : Γ1Γ2 if Γ1Γ2 ẁf Γ1Γ2. We argued
above that this result holds.

10. By inspection of the assumed derivation

11. By inspection of the assumed derivation

Lemma D.3 (Abstract-Ordering Antisymmetry).

1. If Γ ` none ≤ r, then r is none.

2. If Γ ` all∗ ≤ r, then r is all∗ or none.

3. If Γ ` all@ ≤ r, then r is all@, all∗, or none.
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4. If Γ ` 0 ≤ r, then r is 0, all∗, or none.

5. If Γ ` &x ≤ r, then r is &x, all@, all∗, or none. If r is all@ or all∗,
then Γ(x) = τ,esc, r′ for some τ and r′.

6. If Γ ` r1 ≤ r2, then r1 is r2 or we cannot derive Γ′ ` r2 ≤ r1.

7. If ` k1 ≤ k2 then k1 is k2 or we cannot derive ` k2 ≤ k1.

8. If Γ ` `1 ≤ `2 then `1 is `2 or we cannot derive Γ′ ` `2 ≤ `1.

9. If Γ ` Γ1 ≤ Γ2, then Γ1 is Γ2 or we cannot derive Γ′ ` Γ2 ≤ Γ1.

Proof: We prove each of the first five lemmas by induction on the assumed
derivation. For the transitive case, we invoke the induction hypothesis twice and
appeal to earlier lemmas.

For the sixth lemma, we proceed by cases on r1. If r1 is &x for some x, then
the fifth lemma ensures four cases, which are trivial (r2 is r1) or handled by the
first three lemmas. If r1 is 0 (or all@), then the fourth lemma (or third lemma)
ensures three cases, which are trivial or handled by the first two lemmas. If r1 is
all∗, then the second lemma ensures two cases, which are trivial or handled by
the first lemma. If r1 is none, the first lemma ensures there is one trivial case.

We prove the seventh lemma by cases on k1.
We prove the eighth lemma by cases on `1.
We prove the ninth lemma by induction on the size of Γ1, using the sixth and

seventh lemmas.

Lemma D.4 (Abstract-Ordering Inversion).

If Γ0 ` Γ1 ≤ Γ2, then for all x ∈ Dom(Γ1), there are one and only one τ , k1, k2, r1,
and r2 such that Γ1(x) = τ, k1, r1, Γ2(x) = τ, k2, r2, ` k1 ≤ k2, and Γ0 ` r1 ≤ r2.

Proof: By induction on the assumed derivation

Lemma D.5 (Abstract-Ordering Transitivity).

1. If Γ ` `1 ≤ `2 and Γ ` `2 ≤ `3, then Γ ` `1 ≤ `3.

2. If Γ1 ` Γ0 ≤ Γ1 and Γ0 ` `1 ≤ `2, then Γ1 ` `1 ≤ `2.

3. If ` k1 ≤ k2 and ` k2 ≤ k3, then ` k1 ≤ k3.

4. If Γ1 ` Γ0 ≤ Γ1 and Γ0 ` r1 ≤ r2, then Γ1 ` r1 ≤ r2.

5. If Γ1 ` Γ0 ≤ Γ1 and Γ2 ` Γ1 ≤ Γ2, then Γ2 ` Γ0 ≤ Γ2.
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Proof:

1. By inspection of the rules, `2 is `1 or `3.

2. By inspection of the rules, it suffices to show that if Γ0(x) = τ,esc, r for
some x, τ , and r, then Γ1(x) = τ,esc, r′ for some r′. The Abstract-Ordering
Inversion Lemma ensures this result.

3. By inspection of the rules, k2 is k1 or k3.

4. The proof is by induction on the derivation of Γ0 ` r1 ≤ r2. Every case
is immediate or by induction except when the derivation is Γ, x:τ,esc, r `
&x ≤ all@ (so Γ0 = Γ, x:τ,esc, r). In this case, the Abstract-Ordering
Inversion Lemma ensures Γ1 = Γ′, x:τ,esc, r′ for some Γ′ and r′, so we can
use the same rule to derive Γ1 ` &x ≤ all@.

5. We prove the stronger result that if Γ1 ` Γ′
0 ≤ Γ′

1, Γ2 ` Γ′
1 ≤ Γ′

2, and
Γ2 ` Γ1 ≤ Γ2, then Γ2 ` Γ′

0 ≤ Γ′
2. The proof is by induction on the sizes

of Γ′
0, Γ′

1, and Γ′
2, which Typing Well-Formedness Lemma 2 ensures are the

same. If Γ′
0 = ·, the result is trivial. For larger Γ′

0, we know Γ′
0, Γ′

1, and
Γ′

2 have the form Γ′′
0, x:τ, k0, r0, Γ′′

1, x:τ, k1, r1, and Γ′′
2, x:τ, k2, r2, respectively.

Inversion ensures Γ1 ` Γ′′
0 ≤ Γ′′

1, Γ2 ` Γ′′
1 ≤ Γ′′

2, ` k0 ≤ k1, ` k1 ≤ k2,
Γ1 ` r0 ≤ r1 and Γ2 ` r1 ≤ r2. So induction ensures Γ2 ` Γ′′

0 ≤ Γ′′
2. Abstract-

Ordering Transitivity Lemma 3 ensures ` k0 ≤ k2. Because Γ2 ` Γ1 ≤ Γ2 and
Γ1 ` r0 ≤ r1, Abstract-Ordering Transitivity Lemma 4 ensures Γ2 ` r0 ≤ r1,
so with Γ2 ` r1 ≤ r2, we can derive Γ2 ` r0 ≤ r2. From the underlined
results, we can derive Γ2 ` Γ′

0 ≤ Γ′
2.

Lemma D.6 (Values Effectless).

1. If Γ0 l̀typ x : τ, `, Γ1 and Γ0 ẁf Γ0, then Γ1 ` Γ0 ≤ Γ1, Γ0(x) = τ, k, r (for
some k and r), and Γ1 ` x ≤ `.

2. If Γ0 r̀typ v : τ, r, Γ1 and Γ0 ẁf Γ0, then Γ1 ` Γ0 ≤ Γ1. Furthermore, if
v = &x, then there exists τ ′, k, and r′ such that Γ0(x) = τ ′, k, r′, τ is τ ′∗ or
τ ′@, and Γ1 ` &x ≤ r.

3. If V ; Γ0 s̀typ v : Γ1 and Γ0 ẁf Γ0, then there exists a Γ2 such that Γ1Γ2 `
Γ0 ≤ Γ1Γ2 and Γ1Γ2 ẁf Γ2.

Proof:
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1. The proof is by induction on the assumed typing derivation, which must
end with SL6.1, SL6.3, or SL6.4. Case SL6.1 follows from Γ ` x ≤ x and
Γ ` Γ ≤ Γ for any Γ. Case SL6.3 follows from induction and Abstract-
Ordering Transitivity Lemmas 2 and 5. Case SL6.4 follows from induction
and Abstract-Ordering Transitivity Lemma 1.

2. The proof is by induction on the assumed typing derivation, which must
end with SR6.1–4, SR6.7A–B, or SR6.11–13. Cases SR6.1–4 follow from
Γ ` Γ ≤ Γ for any Γ. Cases SR6.7A–B follow from the previous lemma.
(Case SR6.7B requires inverting the derivation of Γ1 ` x ≤ ? to derive
Γ1 ` &x ≤ all@.) Cases SR6.11 follows from induction. Case SR6.12
follows from induction and Abstract-Ordering Transitivity Lemmas 4 and 5.
and SR6.13 follow from induction and the transitivity rule for abstract-rvalue
ordering.

3. The proof is by induction on the assumed typing derivation, which must end
with SS6.1, or SS6.7–8. Case SS6.1 follows from the previous lemma, letting
Γ2 = ·. For case SS6.8, inversion ensures V ; Γ0 s̀typ v : Γ′Γ1 for some Γ′.
So induction ensures there exists a Γ′

2 such that Γ′Γ′
2Γ1 ` Γ0 ≤ Γ′Γ′

2Γ1 and
Γ′Γ′

2Γ1 ẁf Γ′
2. Typing Well-Formedness Lemma 5 ensures Γ′Γ1 ẁf Γ′Γ1. So

Weakening Lemma 3 ensures Γ′Γ′
2Γ1 ẁf Γ′

2Γ
′Γ1. So letting Γ2 = Γ′Γ′

2 suffices.

For case SS6.7, inversion ensures V ; Γ0 s̀typ v : Γ′ and Γ1 ` Γ′ ≤ Γ1 for
some Γ′. By induction there exists a Γ′

2 such that Γ′Γ′
2 ` Γ0 ≤ Γ′Γ′

2 and
Γ′Γ′

2 ẁf Γ′
2. Because Γ1 ` Γ′ ≤ Γ1, Weakening Lemma 6 ensures Γ1Γ

′
2 `

Γ′Γ′
2 ≤ Γ1Γ

′
2. So Abstract-Ordering Transitivity Lemma 5 ensures Γ1Γ

′
2 `

Γ0 ≤ Γ1Γ
′
2. Because Γ1 ` Γ′ ≤ Γ1, Typing Well-Formedness Lemma 2 ensures

Dom(Γ1) = Dom(Γ′), so Γ′Γ′
2 ẁf Γ′

2 and Typing Well-Formedness Lemma 1
ensure Γ1Γ

′
2 ẁf Γ′

2. So letting Γ2 = Γ′
2 suffices.

Lemma D.7 (Heap Subsumption). Suppose Γ ẁf Γ, Γ′ ` Γ ≤ Γ′, and Γ′
ẁf Γ′.

1. If Γ l̀typ x : τ, `, Γ and Γ′ ` ` ≤ `′, then Γ′
l̀typ x : τ, `′, Γ′.

2. If Γ r̀typ v : τ, r, Γ and Γ′ ` r ≤ r′, then Γ′
r̀typ v : τ, r′, Γ′.

3. If Γ = Γ0Γ1, Γ′ = Γ′
0Γ

′
1, Dom(Γ1) = Dom(Γ′

1), and Γ h̀typ H : Γ1, then
Γ′

h̀typ H : Γ′
1.

Proof:

1. The proof is by induction on the derivation of Γ l̀typ x : τ, `, Γ, which must
end with SL6.1, SL6.3, or SL6.4. For case SL6.1, the Abstract-Ordering
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Inversion Lemma ensures Γ and Γ′ give the same type τ to x, so SL6.1 lets
us derive Γ′

l̀typ x : τ, `, Γ′. Then SL6.4 lets us derive Γ′
l̀typ x : τ, `′, Γ′

For case SL6.3, inversion ensures Γ l̀typ x : τ, `, Γ1 and Γ ` Γ1 ≤ Γ for some
Γ. So Values Effectless Lemma 1 ensures Γ1 ` Γ ≤ Γ1. So Abstract-Ordering
Antisymmetry Lemma 9 ensures Γ = Γ1 and the result follows from induction
(because we have a shorter derivation of Γ l̀typ x : τ, `, Γ).

For case SL6.4, inversion ensures Γ l̀typ x : τ, `1, Γ and Γ ` `1 ≤ ` for some
`1. So Abstract-Ordering Transitivity Lemma 2 ensures Γ′ ` `1 ≤ `. So
Abstract-Ordering Transitivity Lemma 1 ensures Γ′ ` `1 ≤ `′. By induction
and Γ′ ` `1 ≤ `1, we know Γ′

l̀typ x : τ, `1, Γ
′. So we can use SL6.4 to derive

Γ′
l̀typ x : τ, `′, Γ′.

2. The proof is by induction on the assumed typing derivation, which must
end with SR6.1–4, SR6.7A–B, or SR6.11–13. For cases SR6.1–4, we can
use the same rule to derive Γ′

r̀typ v : τ, r, Γ′. Then SR6.13 lets us derive
Γ′

r̀typ v : τ, r′, Γ′. For cases SR6.7A–B, v = &x and inversion ensures
Γ l̀typ x : τ, `, Γ for some `. Because Γ′ ` ` ≤ `, the previous lemma ensures
Γ′

l̀typ x : τ, `, Γ′. Then SR6.7A or SR6.7B lets us derive Γ′
r̀typ &x : τ, r, Γ′.

Then SR6.13 lets us derive Γ′
r̀typ v : τ, r′, Γ′. Case SR6.11 follows from

induction.

Cases SR6.12 and SR6.13 are analogous to cases SL6.3 and SL6.4 in the
previous proof. Case SR6.12 uses Values Effectless Lemma 2 instead of 1.
Case SR6.13 uses Abstract-Ordering Transitivity Lemma 4 instead of 2, and
the transitivity rule for abstract-rvalue ordering instead of Abstract-Ordering
Transitivity Lemma 1.

3. The proof is by induction on the derivation of Γ h̀typ H : Γ1. If H = ·, then
Γ1 = Γ′

1 = · and the result is immediate. Else inversion ensures there exists
Γ2, k, r, Γ′

2, k′, r′, τ , H ′, and v where Γ1 = Γ2, x:τ, k, r, Γ′
1 = Γ′

2, x:τ, k′, r′,
H = H ′, x 7→ v, and the typing derivation ends as follows:

Γ h̀typ H ′ : Γ2 Γ r̀typ v : τ, r, Γ

Γ h̀typ H ′, x 7→ v : Γ2, x:τ, k, r

Therefore, the induction hypothesis ensures Γ′
h̀typ H ′ : Γ′

2, so it suffices to
show Γ′

r̀typ v : τ, r′, Γ′. The Abstract-Ordering Inversion Lemma ensures
Γ′ ` r ≤ r′. So the result follows from Heap Subsumption Lemma 2.

Lemma D.8 (Value Elimination). If Γ0 h̀typ H : Γ0, Γ0 ẁf Γ0, V ′; Γ0 s̀typ v : Γ3,
V ′; Γ3 s̀typ s : Γ1, V̀ s : V ′′, V ′′ ⊆ V ′, V ′ ∩ Dom(H) = ∅, and V ⊇ Dom(H) ∪ V ′,
then p̀rog V ; H; s : Γ1.



322

Proof: Because V ′; Γ0 s̀typ v : Γ3, Typing Well-Formedness Lemma 5 en-
sures Γ3 ẁf Γ3. So Values Effectless Lemma 3 ensures there exists a Γ2 such
that Γ3Γ2 ` Γ0 ≤ Γ3Γ2 and Γ3Γ2 ẁf Γ3Γ2. Typing Well-Formedness Lemma
2 ensures Dom(Γ3Γ2) = Dom(Γ0). So Heap Subsumption Lemma 3 ensures
Γ3Γ2 h̀typ H : Γ3Γ2. Given the lemma’s assumptions and the underlined results,
we can derive p̀rog V ; H; s : Γ1 if V ′; Γ3Γ2 s̀typ s : Γ1.

We show that Weakening Lemma 9 ensures V ′; Γ3Γ2 s̀typ s : Γ1 by instantiating
this lemma with Γ3 for Γ0, Γ2 for Γ2, V ′ for V0, Γ3 for Γ3, V ′ for V1, and V ′′

for V2. (The key is that the lemma distinguishes its Γ3 from Γ0 and V0 from
V1 for its inductive proof, but we use Γ3 and V ′ for both.) Because Γ3Γ2 ẁf

Γ3Γ2, inversion ensures Γ3Γ2 ẁf Γ2. We show V ′ ∩ Dom(Γ3Γ2) = ∅ as follows:
A trivial induction on Γ0 h̀typ H : Γ0 shows Dom(Γ0) = Dom(H). We showed
above that Dom(Γ3Γ2) = Dom(Γ0). So Dom(Γ3Γ2) = Dom(H). By assumption
V ′ ∩ Dom(H) = ∅. So V ′ ∩ Dom(Γ3Γ2) = ∅. Trivially, Dom(Γ3) ⊆ Dom(Γ3) ⊆
Dom(Γ3)∪ V . By assumption, V ′′ ⊆ V ′, so V ′′ ⊆ V ′ ⊆ V ′. We showed above that
Γ3 ẁf Γ3. By assumption V ′; Γ3 s̀typ s : Γ1 and V̀ s : V ′′. So the lemma applies.

Lemma D.9 (Canonical Forms). Suppose Γ ẁf Γ.

1. If Γ r̀typ v : τ, 0, Γ′, then v is 0.

2. If Γ r̀typ v : int, r, Γ′, then r is not &x.

3. If Γ r̀typ v : int,all@, Γ′, then v is some i 6= 0.

4. If Γ r̀typ v : int,all∗, Γ′, then v is some i.

5. If Γ r̀typ v : τ, &x, Γ′ and τ 6= int, then v is &x.

6. If Γ r̀typ v : τ,all@, Γ′ and τ 6= int, then v is &x for some x.

7. If Γ r̀typ v : τ,all∗, Γ′ and τ 6= int, then v is 0 or &x for some x.

8. If Γ r̀typ v : τ∗, r, Γ′, Γ ẁf τ@, k, r, and r 6= none, then Γ r̀typ v : τ@, r, Γ′.

9. If Γ r̀typ v : τ, r, Γ′ and r 6= none, then v 6= junk.

Proof:

1. The proof is by induction on the assumed derivation, which must end with
SR6.2–3 or SR6.11–13. Cases SR6.2 and SR6.3 are trivial. Cases SR6.11–
12 follows from induction. Case SR6.13 follows from induction because the
Abstract-Ordering Antisymmetry Lemmas ensure for any Γ and r, Γ ` r ≤ 0
only if r is 0. (In fact, case SR6.11 is impossible.)



323

2. The proof is by induction on the assumed derivation, which must end with
SR6.3–4 or SR6.12–13. Cases SR6.3 and SR6.4 are trivial. Case SR6.12
follows from induction. Case SR6.13 follows from induction because the
Abstract-Ordering Antisymmetry Lemmas ensure for any Γ, r1, r2, x, and y,
if Γ ` r1 ≤ r2 and r1 is not &x, then r2 is not &y.

3. The proof is by induction on the assumed derivation, which must end with
SR6.4 or SR6.12–13. Case SR6.4 is trivial. Case SR6.12 follows from in-
duction. Case SR6.13 follows from induction because the Abstract-Ordering
Antisymmetry Lemmas ensure for any Γ and r, Γ ` r ≤ all@ only if r is
all@ or &x. Canonical Forms Lemma 2 eliminates the latter possibility.

4. The proof is by induction on the assumed derivation, which must end with
SR6.12–13. Case SR6.12 follows from induction. For case SR6.13, the
Abstract-Ordering Antisymmetry Lemmas ensure for any Γ and r, Γ ` r ≤
all∗ only if r is not none. From this fact, Canonical Forms Lemma 2, and
inversion, we know Γ r̀typ v : int, r′, Γ′ where r′ is one of all∗, all@, or 0. If
r′ is all∗, the result follows from induction. If r′ is all@, the result follows
from Canonical Forms Lemma 3. If r′ is 0, the result follows from Canonical
Forms Lemma 1.

5. The proof is by induction on the assumed derivation, which must end in
SR6.7A, or SR6.11–13. For case SR6.7A, inversion ensures v is &y for some
y. So Values Effectless Lemma 2 ensures Γ′ ` &y ≤ &x. So Abstract-
Ordering Antisymmetry Lemma 5 ensures y is x. Cases SR6.11–12 follow
from induction. Case SR6.13 follows from induction because the Abstract-
Ordering Antisymmetry Lemmas ensure for any Γ and r, Γ ` r ≤ &x only if
r is &x.

6. The proof is by induction on the assumed derivation, which must end with
SR6.7B or SR6.11–13. Case SR6.7B is trivial. Cases SR6.11–12 follow from
induction. For case SR6.13, the Abstract-Ordering Antisymmetry Lemmas
ensure for any Γ and r, Γ ` r ≤ all@ only if r is all@ or &x for some x.
From this fact and inversion, we know Γ r̀typ v : τ, r′, Γ′ where r′ is all@ or
&x for some x. If r′ is all@, the result follows from induction. If r′ is some
&x, Canonical Forms Lemma 5 ensures v is &x.

7. The proof is by induction on the assumed derivation, which must end with
SR6.11–SR6.13. Cases SR6.11–12 follow from induction. For case SR6.13,
the Abstract-Ordering Antisymmetry Lemmas ensure for any Γ and r, Γ `
r ≤ all∗ implies r is not none. From this fact and inversion, we know
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Γ r̀typ v : τ, r′, Γ′ where r′ is all∗, 0, all@ or &x for some x. If r′ is all∗,
then the result follows from induction. If r′ is all@, the result follows from
Canonical Forms Lemma 6. If r′ is 0, the result follows from Canonical Forms
Lemma 1. If r′ is &x, Canonical Forms Lemma 5 ensures v is some &x.

8. The proof is by induction on the assumed typing derivation, which must end
with SR6.2 or SR6.11–13. Case SR6.2 holds vacuously because Γ 6 ẁf τ@, k, 0.
Case SR6.11 holds by inversion. Case SR6.12 follows from induction. For
case SR6.13, inversion ensures Γ r̀typ v : τ@, r′, Γ′ and Γ′ ` r′ ≤ r. Because
Γ ẁf τ@, k, r and r 6= none, r is all@ or &x for some x ∈ Dom(Γ). So
the Abstract-Ordering Antisymmetry Lemmas ensure r′ is all@ or &y for
some y ∈ Dom(Γ). In either case, Γ ẁf τ@, k′, r′ for some k′ and r′ 6= none.
So induction ensures Γ r̀typ v : τ∗, r′, Γ′ and SR6.13 lets us derive Γ r̀typ v :
τ∗, r, Γ′.

9. This lemma is a corollary of Canonical Forms Lemmas 1 and 3–7 because r 6=
none ensures one of these lemmas applies (using Canonical Forms Lemma
2 when r = &x for some x).

Lemma D.10 (Subtyping Preservation).

Suppose Γ ẁf Γ and τ = τ0∗ or τ = τ0@.

1. If Γ r̀typ &x : τ, &x, Γ′, then Γ l̀typ x : τ0, x, Γ′.

If Γ r̀typ &x : τ,all@, Γ′, then Γ l̀typ x : τ0, ?, Γ
′.

2. If Γ l̀typ x : τ0, x, Γ′, then Γ′(x) = τ0, k, r for some k and r, and Γ r̀typ x :
τ0, r, Γ

′.

If Γ l̀typ x : τ0, ?, Γ
′, then there exists an r such that Γ′

ẁf τ0,esc, r and
Γ r̀typ x : τ0, r, Γ

′.

3. If Γ r̀typ &x : τ, &x, Γ′, then Γ′(x) = τ0, k, r for some k and r, and Γ r̀typ x :
τ0, r, Γ

′.

If Γ r̀typ &x : τ,all@, Γ′, then there exists an r such that Γ′
ẁf τ0,esc, r

and Γ r̀typ x : τ0, r, Γ
′.

Proof:

1. The proof is by induction on the assumed derivations, which must end with
SR6.7A–B or SR6.11–13. Cases SR6.7A–B follow from inversion. Case 6.11
follows from induction. For case SR6.12, inversion ensures Γ r̀typ &x : τ, r, Γ′′,
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Γ′ ` Γ′′ ≤ Γ′, and Γ′
ẁf Γ′ for some Γ′′. So induction ensures Γ l̀typ x : τ, `, Γ′′

for the appropriate `. So SL6.3 lets us derive Γ l̀typ x : τ, `, Γ′.

For case SR6.13, inversion ensures Γ r̀typ e : τ, r′, Γ′ and Γ′ ` r′ ≤ r. If r is &x,
the Abstract-Ordering Antisymmetry Lemmas ensure r′ is &x, so the result
follows from induction. If r is all@, the Abstract-Ordering Antisymmetry
Lemmas ensure r′ is all@ or &y for some y. If r′ is all@, the result follows
from induction. Otherwise, Γ r̀typ e : τ, r′, Γ′ and Canonical Forms Lemma
5 ensure y = x. So induction ensures Γ l̀typ x : τ0, x, Γ′. Furthermore,
Γ′ ` &x ≤ all@ and Abstract-Ordering Antisymmetry Lemma 5 ensure
Γ′(x) = τ0,esc, r for some r. So we can derive Γ′ ` x ≤ ?. So SL6.4 lets us
derive Γ l̀typ x : τ0, ?, Γ

′.

2. The proof is by induction on the assumed derivations, which must end with
SL6.1 or SL6.3–4. For case SL6.1, the first statement follows by using SR6.6
to derive the result. The second statement holds vacuously.

For case SL6.3, inversion ensures Γ l̀typ x : τ, `, Γ′′, Γ′ ` Γ′′ ≤ Γ′, and Γ′
ẁf Γ′

for some Γ′′ and the appropriate `. So by induction, the results hold using
Γ′′ in place of Γ′. So SR6.12 lets us derive the typing results we need. For
the other results, Γ′ ` Γ′′ ≤ Γ′, the Abstract-Ordering Inversion Lemma, and
Γ′′(x) = τ0, k, r for some k and r ensure Γ′(x) = τ0, k

′, r′ for some k′ and
r′. Furthermore, Γ′′

ẁf τ0,esc, r ensures Γ′
ẁf τ0,esc, r′ because the typing

context is irrelevant when k is esc.

For case SL6.4, inversion ensures Γ l̀typ x : τ, `′, Γ′ and Γ′ ` `′ ≤ `. If `
is x, then inspection of Γ′ ` `′ ≤ ` ensures `′ is x, so the result follows
from induction. If ` is ?, then inspection of Γ′ ` `′ ≤ ` ensures `′ is x or
?. (Values Effectless Lemma 1 ensures `′ is not some y 6= x.) If `′ is ?, the
result follows from induction. Otherwise, induction ensures Γ r̀typ x : τ0, r, Γ

′

where Γ′(x) = τ0, k, r. Inverting Γ′ ` x ≤ ? ensures k is esc. The Typing
Well-Formedness Lemma ensures Γ′

ẁf Γ′, so Γ′
ẁf τ0,esc, r, as required.

3. This lemma is a corollary of the previous two lemmas.

Lemma D.11 (Assignment Preservation).

Suppose Γ0 = Γ, x:τ, k, r0, Γ1 = Γ, x:τ, k, r1, Γ0 ẁf Γ0, and Γ1 ẁf Γ1.

1. If Γ0 ` ` ≤ `′, then Γ1 ` ` ≤ `′.

2. If Γ0 ` r ≤ r′, then Γ1 ` r ≤ r′.

3. If Γ0 l̀typ y : τ, `, Γ0, then Γ1 l̀typ y : τ, `, Γ1.
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4. If Γ0 r̀typ v : τ, r, Γ0, then Γ1 r̀typ v : τ, r, Γ1.

5. If Γ = ΓAΓB and Γ0 h̀typ H : ΓB, then Γ1 h̀typ H : ΓB.

Proof:

1. The proof is by cases on the assumed derivation. The abstract rvalues in the
typing context are irrelevant.

2. The proof is by induction on the assumed derivation. The abstract rvalues
in the typing context are irrelevant.

3. The proof is by induction on the assumed derivation, which must end with
SL6.1, SL6.3, or SL6.4. Case SL6.1 is trivial (even if y is x). For case
SL6.3, inversion ensures Γ l̀typ x : τ, `, Γ1 and Γ ` Γ1 ≤ Γ for some Γ.
So Values Effectless Lemma 1 ensures Γ1 ` Γ ≤ Γ1. So Abstract-Ordering
Antisymmetry Lemma 9 ensures Γ = Γ1 and the result follows from induction
(because we have a shorter derivation of Γ l̀typ x : τ, `, Γ). Case SL6.3
follows from induction (changing Γ′). Case SL6.4 follows from induction and
Assignment Preservation Lemma 1 (to use SL6.4 to derive the result).

4. The proof is by induction on the assumed derivation, which must end with
SR6.1–4, SR6.7A–B, or SR6.11–13. Cases SR6.1–4 follow trivially. Cases
SR6.7A–B follow from Assignment Preservation Lemma 3. Case SR6.11
follows from induction (using SR6.11 to derive the result). Case SR6.12
follows from an argument analogous to case SL6.3 in the previous proof.
Case SR6.13 follows from induction and Assignment Preservation Lemma 2
(to use SR6.13 to derive the result).

5. The proof is by induction on the assumed derivation. If H = ·, the result is
trivial. Else the result follows from induction and Assignment Preservation
Lemma 4.

Lemma D.12 (Systematic Renaming). If V1; Γ0 s̀typ s : Γ1, V̀ s : V2, V2 ⊆
V1 ⊆ V0, Dom(M) = Dom(V2), V0 ẁf M , and V̀ rename(M, s) : V ′, then
V1 ∪ V ′; rename(M, Γ0) s̀typ rename(M, s) : rename(M, Γ1) and V0 ∩ V ′ = ∅.

Proof: The proof is by induction on the assumed typing derivation using many
(omitted) renaming lemmas for other judgments. As examples, we can prove Γ0 `
Γ1 ≤ Γ2 ensures rename(M, Γ0) ` rename(M, Γ1) ≤ rename(M, Γ2) and Γ0 r̀typ e :
τ, r, Γ1 ensures rename(M, Γ0) r̀typ rename(M, e) : τ, rename(M, r), rename(M, Γ1).
None of these lemmas are interesting.



327

Lemma D.13 (Useless Renaming). If Γ ẁf Γ and Dom(Γ) ∩ Dom(M) = ∅,
then rename(M, Γ) = Γ.

Proof: By induction on the derivation of Γ ẁf Γ

Lemma D.14 (Preservation). Suppose Γ0 h̀typ H : Γ0 and Γ0 ẁf Γ0.

1. If Γ0 l̀typ e : τ, `, Γ1 and H; e
l→ H ′; e′, then there exists a Γ2 with Dom(Γ2) =

Dom(Γ0) such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and Γ2 l̀typ e′ : τ, `, Γ1.
Furthermore, if Γ0 ` Γ1 ≤ Γ0, then one such Γ2 is Γ0.

If Γ0 r̀typ e : τ, r, Γ1 and H; e
r→ H ′; e′, then there exists a Γ2 with Dom(Γ2) =

Dom(Γ0) such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2 and Γ2 r̀typ e′ : τ, r, Γ1. Further-
more, if Γ0 ` Γ1 ≤ Γ0, then one such Γ2 is Γ0.

2. If V ; Γ0 t̀st e : Γ1; Γ2 and H; e
r→H ′; e′, then there exists a Γ3 with Dom(Γ3)=

Dom(Γ0) such that Γ3 ẁf Γ3, Γ3 h̀typ H ′ : Γ3, and V ; Γ3 t̀st e′ : Γ1; Γ2.

3. Suppose p̀rog V0; H; s : Γ1, V0; H; s
s→ V1; H

′; s′, and V̀ s : V ′′
0 . Then p̀rog

V1; H
′; s′ : Γ1, V1 ⊇ V0, and Dom(H ′) ⊆ Dom(H) ∪ V ′′

0 . Furthermore, if

V̀ s′ : V ′′
1 , then V ′′

1 ∩ V0 ⊆ V ′′
0 .

Proof:

1. The proof is by simultaneous induction on the assumed typing derivations,
proceeding by cases on the last rule used. Note that if Γ1 = Γ0, then a trivial
induction ensures Γ0 ` Γ1 ≤ Γ0.

• SR6.1–4: These cases are trivial because no rule applies.

• SR6.5: Let e = ? and Γ0 = Γ1 = Γ. Only rule DR6.4 applies, so
e′ = i for some i and H ′ = H. Using SR6.3 or SR6.4 (depending on
whether i is 0), we can derive Γ r̀typ i : int, r, Γ for r = all@ or r = 0.
In either case, we can derive Γ ` r ≤ all∗, so SR6.13 lets us derive
Γ r̀typ i : int,all∗, Γ.

• SR6.6: Let e = x, Γ0 = Γ1 = Γ, and Γ(x) = τ, k, r. Only rule DR6.1
applies, so e′ = H(x) and H ′ = H. Inverting Γ h̀typ H : Γ ensures
Γ r̀typ H(x) : τ, r, Γ, as required.

• SR6.7A: Let e = &e0 and τ = τ0@. Only rule DR6.7 applies, so e′ =
&e′0 where H; e0

l→ H ′; e′0. By inversion, Γ0 l̀typ e0 : τ0, x, Γ1. So
by induction, there exists a Γ2 such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and
Γ2 l̀typ e′0 : τ0, x, Γ1 (and if Γ0 ` Γ1 ≤ Γ0, then one such Γ2 is Γ0). So
SR6.7A lets us derive Γ2 r̀typ &e′0 : τ, &x, Γ1 (and if Γ0 ` Γ1 ≤ Γ0, then
Γ0 r̀typ &e′0 : τ, &x, Γ1).
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• SR6.7B: This case is analogous to the previous one, using SR6.7B in
place of SR6.6A, all@ in place of &x, and ? in place of x.

• SR6.8A: Let e = ∗e0. By inversion, Γ0 r̀typ e0 : τ∗, &x, Γ1 and Γ1(x) =
τ, k, r for some k. Only rules DR6.3 and DR6.6 apply.

For DR6.3, Canonical Forms Lemma 7 ensures e0 = &x, so e′ = x and
H ′ = H. Subtyping Preservation Lemma 3 ensures Γ0 r̀typ x : τ, r, Γ1.
So it suffices to let Γ2 = Γ0.

For DR6.6, e′ = ∗e′0 where H; e0
r→ H ′; e′0. So by induction, there exists

a Γ2 such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and Γ2 r̀typ e′0 : τ∗, &x, Γ1 (and
if Γ0 ` Γ1 ≤ Γ0, then one such Γ2 is Γ0). So SR6.8A lets us derive
Γ2 r̀typ ∗e′0 : τ, r, Γ1 (and if Γ0 ` Γ1 ≤ Γ0, then Γ0 r̀typ ∗e′0 : τ, r, Γ1).

• SR6.8B: Let e = ∗e0 and τ = τ0@. Only rules DR6.3 and DR6.6 apply.
By inversion, Γ0 r̀typ e0 : τ0@∗,all@, Γ1.

For DR6.3, let e0 = &x, so e′ = x and H ′ = H. Subtyping Preservation
Lemma 3 ensures there exists an r such that Γ1 ẁf τ0@,esc, r and
Γ0 r̀typ x : τ0@, r, Γ1. Inverting Γ1 ẁf τ0@,esc, r ensures r is all@. So
it suffices to let Γ2 = Γ0.

For DR6.6, the argument is analogous to the argument in case SR6.8A,
using rule SR6.8B in place of SR6.8A and all@ in place of &x.

• SR6.8C: Let e = ∗e0 and τ = τ0∗. Only rules DR6.3 and DR6.6 apply.
By inversion, Γ0 r̀typ e0 : τ0∗∗,all@, Γ1.

For DR6.3, the argument is analogous to the argument in case SR6.8B
except inverting Γ1 ẁf τ0∗,esc, r ensures r is all∗.
For DR6.6, the argument is analogous to the argument in case SR6.8A,
using rule SR6.8C in place of SR6.8A and all@ in place of &x.

• SR6.8D: This case is analogous to case SR6.8C, using int in place of
τ0∗.

• SR6.9: Let e = e0‖e1 and Γ1 = Γ0 = Γ. Only rules DR6.5 or DR6.6
(applied to e0 or e1) apply. By inversion, Γ r̀typ e0 : τ ′, r′, Γ and Γ r̀typ

e1 : τ, r, Γ.

For DR6.5, e′ = e1 and H ′ = H. So Γ r̀typ e1 : τ, r, Γ and the lemma’s
assumptions suffice.

For DR6.6, assume e′ = e′0‖e1 where H; e0
r→ H ′; e′0. (The case where

e′ = e0‖e′1 is completely analogous.) By induction, Γ r̀typ e′0 : τ ′, r′, Γ
and Γ h̀typ H ′ : Γ. So with Γ r̀typ e1 : τ, r, Γ, SR6.9 lets us derive
Γ r̀typ e′0‖e1 : τ, r, Γ.
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• SR6.10: Let e = (e1=e2). By inversion, Γ0 l̀typ e1 : τ1, `, Γ0, Γ0 r̀typ e2 :
τ2, r, Γ0, Γ0 àval τ1, `, r, Γ1, and àtyp τ1, τ2, r. Only rules DR6.2, DR6.6,
or DR6.7 apply.

For DR6.2, let e = (x=v), H = H0, x 7→ v′, and H ′ = H0, x 7→ v. We
proceed by cases on `.

If ` is some y, then Values Effectless Lemma 1 ensures y is x. Inverting
Γ0 àval τ1, `, r, Γ1 ensures Γ0 = Γ′, x:τ1, k, r1 for some Γ′, k, and r1;
Γ1 ẁf τ1, k, r; and Γ1 = Γ′, x:τ1, k, r. Inverting Γ0 ẁf Γ0 ensures Γ0 ẁf Γ′,
so Typing Well-Formedness Lemma 1 ensures Γ1 ẁf Γ′. Because Γ1 ẁf

τ1, k, r, we can derive Γ1 ẁf Γ1. Because Γ0 r̀typ v : τ2, r, Γ0, Assignment
Preservation Lemma 4 ensures Γ1 r̀typ v : τ2, r, Γ1. Inverting Γ0 h̀typ H :
Γ0 ensures Γ0 h̀typ H0 : Γ′. Therefore, Assignment Preservation Lemma
5 ensures Γ1 h̀typ H0 : Γ′. So if we can show Γ1 r̀typ v : τ1, r, Γ1, then
we can derive Γ1 h̀typ H ′ : Γ1. Inverting àtyp τ1, τ2, r, either τ1 = τ2 or
τ1 = τ0@ and τ2 = τ0∗ for some τ0. If τ1 = τ2, we already know
Γ1 r̀typ v : τ1, r, Γ1. Else r 6= none, so Canonical Forms Lemma 8
ensures the result. So letting Γ2 = Γ1 satisfies our first obligation. For
our second obligation, suppose Γ0 ` Γ1 ≤ Γ0. Then Heap Subsumption
Lemma 3 ensures Γ0 h̀typ H ′ : Γ0. Using Γ1 r̀typ v : τ2, r, Γ1 and Γ0 ẁf Γ0,
SR6.12 lets us derive Γ0 r̀typ v : τ2, r, Γ0.

If ` is ?, then inverting Γ0 àval τ1, `, r, Γ1 ensures Γ1 = Γ0 and Γ0 ẁf

τ1,esc, r. We already know Γ0 ẁf Γ0 and Γ0 r̀typ v : τ2, r, Γ0. It remains
to show Γ0 h̀typ H ′ : Γ0. Because Γ0 h̀typ H : Γ0, we know Dom(Γ0) =
Dom(H). Therefore, Γ0 l̀typ e1 : τ1, `, Γ0 and Values Effectless Lemma
1 ensure x ∈ Dom(H) and Γ0(x) = τ1,esc, r′ for some r′. Because the
escapedness is esc, Γ0 ẁf Γ0 and the rules for Γ0 ẁf τ1,esc, r′ ensure
r′ is r. Therefore, Γ0 r̀typ v : τ2, r

′, Γ0. Inverting àtyp τ1, τ2, r, either
τ1 = τ2 or τ1 = τ0@ and τ2 = τ0∗ for some τ0. If τ1 = τ2, we already
know Γ0 r̀typ v : τ1, r

′, Γ0. For the latter, Γ0 ẁf τ1,esc, r′ ensures
r′ = all@, so Canonical Forms Lemma 8 ensures Γ0 r̀typ v : τ1, r

′, Γ0.
Finally, inverting Γ0 h̀typ H : Γ0, ensures Γ0 h̀typ H0 : Γ′ where Γ0 =
Γ′, x:τ1,esc, r′, so Γ0 r̀typ v : τ1, r

′, Γ0 lets us derive Γ0 h̀typ H ′ : Γ0.

For DR6.6, let e′ = (e1=e′2) where H; e2
r→ H ′; e′2. So induction

ensures Γ0 r̀typ e′2 : τ2, r, Γ0 and Γ0 h̀typ H ′ : Γ0. So SR6.10 ensures
Γ0 r̀typ e1=e′2 : τ2, r, Γ1.

For DR6.7, let e′ = (e′1=e2) where H; e1
l→ H ′; e′1. So induction

ensures Γ0 l̀typ e′1 : τ1, `, Γ0 and Γ0 h̀typ H ′ : Γ0. So SR6.10 ensures
Γ0 r̀typ e′1=e2 : τ2, r, Γ1.

• SR6.11: This case follows from induction: Given Γ2 r̀typ e′ : τ0@, r, Γ1,
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SR6.11 lets us derive Γ2 r̀typ e′ : τ0∗, r, Γ1.

• SR6.12: By inversion Γ0 r̀typ e : τ, r, Γ′ and Γ1 ` Γ′ ≤ Γ1 for some Γ′.
By induction, there exists a Γ2 such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and
Γ0 r̀typ e′ : τ, r, Γ′, so SR6.12 lets us derive Γ2 r̀typ e′ : τ, r, Γ1. Further-
more, suppose Γ0 ` Γ1 ≤ Γ0. Then Γ1 ` Γ′ ≤ Γ1 and Abstract-Ordering
Transitivity Lemma 5 ensure Γ0 ` Γ′ ≤ Γ0. Therefore, induction ensures
we can assume Γ2 is Γ0.

• SR6.13: This case follows from induction: Given Γ2 r̀typ e′ : τ, r′, Γ1 and
Γ1 ` r′ ≤ r, SR6.13 lets us derive Γ2 r̀typ e′ : τ, r, Γ1.

• SL6.1: This case is trivial because no rule applies.

• SL6.2A: Let e = ∗e0. By inversion, Γ0 r̀typ e0 : τ∗, &x, Γ1. Rules DL6.1
and DL6.2 can apply.

For DL6.1, Canonical Forms Lemma 5 ensures e0 = &x, so e′ = x and
H ′ = H. Subtyping Preservation Lemma 1 ensures Γ0 l̀typ x : τ, x, Γ1.
So it suffices to let Γ2 = Γ0.

For DL6.2, e′ = ∗e′0 where H; e0
r→ H ′; e′0. So by induction, there exists

a Γ2 such that Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and Γ2 r̀typ e′0 : τ∗, &x, Γ1 (and
if Γ0 ` Γ1 ≤ Γ0, then one such Γ2 is Γ0). So SL6.2A lets us derive
Γ2 l̀typ ∗e′0 : τ, `, Γ1 (and if Γ0 ` Γ1 ≤ Γ0, then Γ0 l̀typ ∗e′0 : τ, `, Γ1).

• SL6.2B: Let e = ∗e0. By inversion, Γ0 r̀typ e0 : τ∗,all@, Γ1. Rules
DL6.1 and DL6.2 can apply.

For DL6.1, let e0 = &x, so e′ = x and H ′ = H. Subtyping Preservation
Lemma 1 ensures Γ0 l̀typ x : τ, ?, Γ1. So it suffices to let Γ2 = Γ0.

For DL6.2, the argument is analogous to the argument in case SL6.2A,
using SL6.2B in place of SL6.2A, all@ in place of &x, and ? in place
of x.

• SL6.3: This case is analogous to case SR6.12, using l̀typ and ` in place
of r̀typ and r.

• SL6.4: This case follows from induction: Given Γ2 l̀typ e′ : τ, `′, Γ1 and
Γ1 ` `′ ≤ `, SL6.4 lets us derive Γ2 l̀typ e′ : τ, `, Γ1.

2. The proof is by cases on the rule used to derive V ; Γ0 t̀st e : Γ1; Γ2.

• ST6.1: Inversion ensures Γ0 r̀typ e : τ, 0, Γ2 and V ; Dom(Γ0) ẁf Γ1.
Preservation Lemma 1 ensures all our obligations except V ; Γ3 t̀st e′ :
Γ1; Γ2. It also ensures Γ3 r̀typ e′ : τ, 0, Γ2. Because Dom(Γ3) = Dom(Γ0),
we know V ; Dom(Γ3) ẁf Γ1. Therefore, ST6.1 lets us derive V ; Γ3 t̀st

e′ : Γ1; Γ2).
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• ST6.2–3: These cases are similar to case ST6.1.

• ST6.4: Inversion ensures Γ0 l̀typ e : τ, x, Γ′, x:τ,unesc,all∗ where
Γ1 = Γ′, x:τ,unesc,all@ and Γ2 = Γ′, x:τ,unesc, 0. The Typing Well-
Formedness Lemmas ensure Γ′, x:τ,unesc,all∗ ẁf Γ′, x:τ,unesc,all∗,
Γ1 ẁf Γ1, and Γ2 ẁf Γ2. Inverting Γ0 l̀typ e : τ, x, Γ′, x:τ,unesc,all∗
ensures e is y for some y or ∗e0 for some e0. We proceed by cases on
the form of e.

If e is ∗e0, then H; ∗e0
r→ H ′; e′ with either DR6.6 or DR6.3. If the step

uses DR6.6, then inspection of DL6.2 ensures H; ∗e0
l→ H ′; e′. Similarly,

if the step uses DR6.3, then inspection of DL6.1 ensures H; ∗e0
l→ H ′; e′.

Therefore, Preservation Lemma 1 ensures all our obligations except
V ; Γ3 t̀st e′ : Γ1; Γ2. It also ensures Γ3 l̀typ e′ : τ, x, Γ′, x:τ,unesc,all∗.
So ST6.4 lets us derive V ; Γ3 t̀st e′ : Γ1; Γ2.

If e is y, then Values Effectless Lemma 1 ensures e is x. Only rule
DR6.1 applies, so H ′ = H and e′ = H(x). Values Effectless Lemma
1 and Γ0 l̀typ x : τ, x, Γ′, x:τ,unesc,all∗ ensure Γ′, x:τ,unesc,all∗ `
Γ0 ≤ Γ′, x:τ,unesc,all∗. Letting H = H0, x 7→ H(x) and inverting
Γ0 h̀typ H : Γ0 ensures Γ0 r̀typ H(x) : τ0, r0, Γ0 and Γ0 h̀typ H0 : Γ′

0 where
Γ0 = Γ′

0, x:τ0, k0, r0. The Abstract-Ordering Inversion Lemma ensures
τ0 = τ , ` k0 ≤ unesc (i.e., k0 = unesc), and Γ′, x:τ,unesc,all∗ `
r0 ≤ all∗. So the Abstract Antisymmetry Lemmas ensure r0 is not
none. So Canonical Forms Lemma 9 ensures H(x) is not junk. Further-
more, Typing Well-Formedness Lemma 2 ensures Dom(Γ′) = Dom(Γ′

0).
So we have established the hypotheses necessary for Heap Subsumption
Lemma 3 to show Γ′, x:τ,unesc,all∗ h̀typ H0 : Γ′. Therefore, Assign-
ment Preservation Lemma 5 ensures Γ1 h̀typ H0 : Γ′ and Γ2 h̀typ H0 : Γ′.
We proceed by cases on H(x).

If H(x) is 0, let Γ3 = Γ2. Depending on τ , SR6.2 or SR6.3 lets us derive
Γ2 r̀typ 0 : τ, 0, Γ2. (We know τ cannot have the form τ ′@ because
inverting Γ2 ẁf Γ2 ensures Γ2 ẁf τ,unesc,all∗.) So H(x) = 0 and
Γ2 h̀typ H0 : Γ′ means we can derive Γ2 h̀typ H : Γ2. Because Dom(Γ1) =
Dom(Γ2), we can derive V ; Dom(Γ2) ẁf Γ1. So ST6.1 lets us derive
V ; Γ2 t̀st H(x) : Γ1; Γ2. Because Γ2 ẁf Γ2, the lemma holds in this case.

If H(x) is some i 6= 0, let Γ3 = Γ1. A trivial induction on Γ0 r̀typ H(x) :
τ, r0, Γ0 ensures τ is int. So SR6.4 lets us derive Γ1 r̀typ i : τ,all@, Γ1.
So H(x) = i and Γ1 h̀typ H0 : Γ′ means we can derive Γ1 h̀typ H : Γ1. Be-
cause Dom(Γ2) = Dom(Γ1), we can derive V ; Dom(Γ1) ẁf Γ2. So ST6.3
lets us derive V ; Γ1 t̀st H(x) : Γ1; Γ2. Because Γ1 ẁf Γ1, the lemma holds
in this case.
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If H(x) is some &y, let Γ3 = Γ1. If we can show Γ1 r̀typ &y : τ,all@, Γ1,
the argument continues as when H(x) is some i 6= 0. A trivial induction
on Γ0 r̀typ H(x) : τ, r0, Γ0 ensures τ is not int. Values Effectless Lemma
2 ensures there exist τ ′, k′, and r′ such that Γ0(y) = τ ′, k′, r′, τ is τ ′∗
or τ ′@, and Γ0 ` &y ≤ r0. So Typing Well-Formedness Lemma 2 and
the Abstract-Ordering Inversion Lemma ensure Γ1 also maps y to τ ′.
So SL6.1 and SR6.7A let us derive Γ1 r̀typ &y : τ ′@, &y, Γ1. So by
possibly using SR6.11, we know Γ1 r̀typ &y : τ, &y, Γ1. So SR6.13 lets
us conclude Γ1 r̀typ &y : τ,all@, Γ1 if Γ1(y) = τ1,esc, r1 for some τ1

and r1.

Because Γ′, x:τ,unesc,all∗ ` Γ0 ≤ Γ′, x:τ,unesc,all∗ and
Γ0 ` &y ≤ r0, Abstract-Ordering Transitivity Lemma 3 ensures
Γ′, x:τ,unesc,all∗ ` &y ≤ r0. Therefore, because
Γ′, x:τ,unesc,all∗ ` r0 ≤ all∗, we can derive
Γ′, x:τ,unesc,all∗ ` &y ≤ all∗. Therefore, Assignment Preservation
Lemma 2 ensures Γ1 ` &y ≤ all∗. (We showed the well-formedness
hypotheses of this lemma above.) Therefore, Abstract-Ordering
Antisymmetry Lemma 5 ensures Γ1(y) = τ1,esc, r1, as required.

• ST6.5: Inversion ensures Γ0 r̀typ e : τ,all∗, Γ1 and Γ1 = Γ2. Preser-
vation Lemma 1 ensures all our obligations except V ; Γ3 t̀st e′ : Γ1; Γ1.
It also ensures Γ3 r̀typ e′ : τ,all∗, Γ1 (therefore, ST6.5 lets us derive
V ; Γ3 t̀st e′ : Γ1; Γ1).

3. The proof is by induction on the statement-typing derivation that inversion
of p̀rog V0; H; s : Γ1 ensures (i.e., V ′

0 ; Γ0 s̀typ s : Γ1 where V ′′
0 ⊆ V ′

0), proceeding
by cases on the last rule used.

• SS6.1: Let s = e. Inversion ensures Γ0 r̀typ e : τ, r, Γ1 for some
τ and r. Only DS6.7 applies, so H; e

r→ H ′; e′. So Preservation
Lemma 1 ensures there exists a Γ2 such that Dom(Γ2) = Dom(Γ0),
Γ2 ẁf Γ2, Γ2 h̀typ H ′ : Γ2, and Γ0 r̀typ e′ : τ, r, Γ1. So SS6.1 ensures
V ′

0 ; Γ0 s̀typ e′ : Γ1. Inverting V̀ e : V ′′
0 ensures V ′′

0 = ·, so we can derive

V̀ e′ : V ′′
0 . By assumption, V ′′

0 ⊆ V ′
0 . Because Dom(Γ2) = Dom(Γ0), we

know Dom(H ′) = Dom(H). So V ′
0 ∩Dom(H ′) = ∅. So the assumption

V0 ⊇ V ′
0 ∪ Dom(H) ensures V0 ⊇ V ′

0 ∪Dom(H ′). Letting V1 = V0, the
underlined hypotheses ensure p̀rog V1; H

′; s′ : Γ1. The other results are
trivial because V1 = V0, H ′ = H, and V ′′

1 = V ′′
0 .

• SS6.2: This case is trivial because no rule applies.
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• SS6.3: Let s = s1; s2. Inversion ensures there exists a Γ′ such that
V ′

0 ; Γ0 s̀typ s1 : Γ′, V ′
0 − V ′′

0A; Γ′
s̀typ s2 : Γ1, V̀ s1 : V ′′

0A, V̀ s2 : V ′′
0B,

V0A ∩ V0B = ∅, V ′′
0 = V ′′

0A ∪ V ′′
0B, and V ′′

0 ⊆ V ′
0 . Only DS6.2, DS6.3, and

DS6.8 can apply.

For DS6.2, s1 = v for some v and V0; H; s
s→ V0; H; s2. So inverting

V̀ v; s2 : V ′′
0 ensures V̀ s2 : V ′′

0 . So letting V1 = V0 and V ′′
1 = V ′′

0 , the
result follows from the Value Elimination Lemma.

For DS6.3, s1 = return and V0; H; s
s→ V0; H; return. Trivially, we know

V̀ return : ∅, ∅ ⊆ V ′
0 , and ∅ ∩ V0 ⊆ V ′′

0 . So given the assumptions and
the underlined results, we just need to show V ′

0 ; Γ0 s̀typ return : Γ1.
Applying Typing Well-Formedness Lemma 5 to V ′

0 ; Γ0 s̀typ s1 : Γ′ and
V ′

0 − V ′′
0A; Γ′

s̀typ s2 : Γ1 ensures Dom(Γ′) ⊆ Dom(Γ0) ∪ V ′
0 , Dom(Γ1) ⊆

Dom(Γ′)∪ (V ′
0 − V ′′

0A), and Γ1 ẁf Γ1. Therefore, Dom(Γ1) ⊆ Dom(Γ0)∪
V ′

0 . If Dom(Γ0) ⊆ Dom(Γ1), then V ′
0 ; Dom(Γ0) ẁf Γ1, so SS6.2 lets

us derive V ′
0 ; Γ0 s̀typ return : Γ1. Else Dom(Γ1) ⊆ Dom(Γ0). In this

case, let Γ0 = Γ0AΓ0B where Dom(Γ1) = Dom(Γ0A). Inverting Γ0 ẁf

Γ0 ensures Γ0 ẁf Γ0B. Therefore, Γ1 ẁf Γ1, Typing Well-Formedness
Lemma 1, and Weakening Lemma 3 ensure Γ1Γ0B ẁf Γ1Γ0B. Therefore,
V ′

0 ; Dom(Γ0) ẁf Γ1Γ0B, so SS6.2 lets us derive V ′
0 ; Γ0 s̀typ return : Γ1Γ0B.

Therefore, Γ1 ẁf Γ1 and SS6.8 let us derive V ′
0 ; Γ0 s̀typ return : Γ1.

For DS6.8, V0; H; s1
s→ V1; H

′; s′1 and s′ = s′1; s2. Because V ′′
0A ⊆ V ′

0 ,
V ′

0 ; Γ0 s̀typ s1 : Γ′ and induction ensure p̀rog V1; H
′; s′1 : Γ′, V1 ⊇ V0,

Dom(H ′) ⊆ Dom(H) ∪ V ′′
0A, and V ′′

1A ∩ V0 ⊆ V ′′
0A where V̀ s′1 : V ′′

1A.
Inverting p̀rog V1; H

′; s′1 : Γ′ means Γ2 h̀typ H ′ : Γ2, V ′
1A; Γ2 s̀typ s′1 : Γ′,

Γ2 ẁf Γ2, V ′′
1A ⊆ V ′

1A, V ′
1A ∩Dom(H ′) = ∅, and V1 ⊇ V ′

1A ∪Dom(H ′).

Let V ′′
1 = V ′′

1A ∪ V ′′
0B and V ′

1 = V ′
1A ∪ (V ′

0 − V ′′
0A).

Weakening Lemma 11 and V ′
1A; Γ2 s̀typ s′1 : Γ′ ensure V ′

1 ; Γ2 s̀typ s′1 : Γ′.
Because V ′′

1A∩V0 ⊆ V ′′
0A and V ′

0 ⊆ V0, we can rewrite V ′
0 − V ′′

0A; Γ′
s̀typ s2 :

Γ1 as (V ′
0 − V ′′

0A)− V ′′
1A; Γ′

s̀typ s2 : Γ1. So Weakening Lemma 11 ensures
V ′

1 − V ′′
1A; Γ′

s̀typ s2 : Γ1. So SS6.3 lets us derive V ′
1 ; Γ2 s̀typ s′1; s2 : Γ1.

Because V ′′
0B ⊆ V0, V ′′

0A ∩ V ′′
0B = ∅, and V ′′

1A ∩ V0 ⊆ V ′′
0A, we know

V ′′
1A ∩ V ′′

0B = ∅. So V̀ s′1 : V ′′
1A and V̀ s2 : V ′′

0B lets us derive V̀ s1; s2 : V ′′
1

Because V ′′
1A ⊆ V ′

1A and V ′′
0B ⊆ V ′

0 , and V ′′
0A∩V ′′

0B = ∅, we know V ′′
1 ⊆ V ′

1 .
Because Dom(H ′) ⊆ Dom(H) ∪ V ′′

0A, V ′
1A ∩ Dom(H ′) = ∅, and V ′

0 ∩
Dom(H) = ∅, we know V ′

1 ∩Dom(H ′) = ∅. Because V1 ⊇ V0 ⊇ V ′
0 and

V1 ⊇ V ′
1A ∪ Dom(H ′), we know V1 ⊇ V ′

1 ∪Dom(H ′). The underlined
results ensure p̀rog V1; H

′; s′ : Γ1.

As for the other obligations, induction showed V1 ⊇ V0. It also showed
Dom(H ′) ⊆ Dom(H) ∪ V ′′

0A, so V ′′
0A ⊆ V ′′

0 suffices to show Dom(H ′) ⊆
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Dom(H) ∪ V ′′
0 . Similarly, V ′′

1A ∩ V0 ⊆ V ′′
0A ensures (V ′′

1A ∪ V ′′
0B) ∩ V0 ⊆

V ′′
0A ∪ V ′′

0B (because V ′′
0B ⊆ V0).

• SS6.4: Let s = while e s1. Inversion ensures V0; Γ0 t̀st e : Γ′; Γ1 and
V0; Γ

′
s̀typ s1 : Γ0 for some Γ′. Furthermore, V̀ s1 : V ′′

0 . Only rule DS6.6
applies, so s′ = if e (s′1; while e s1) 0, H ′ = H, and V1 = V0 ∪ VA where
s′1 = rename(M, s1), Dom(M) = Dom(V ′′

0 ), V0 ẁf M , and V̀ s′1 : VA.

Because V ′′
0 ⊆ V ′

0 and V0 ⊇ V ′
0 ∪ Dom(H), we know V ′′

0 ⊆ V ′
0 ⊆ V0. So

the Systematic Renaming Lemma ensures V0 ∪ VA; rename(M, Γ′) s̀typ

s′1 : rename(M, Γ0). The assumption Γ0 h̀typ H : Γ0 ensures Dom(Γ0) =
Dom(H). So V ′

0 ∩ Dom(H) = ∅, V ′′
0 ⊆ V ′

0 , and Dom(M) = Dom(V ′′
0 )

ensure Dom(M) ∩ Dom(Γ0) = ∅. So the Useless Renaming Lemma
ensures V0 ∪ VA; rename(M, Γ′) s̀typ s′1 : Γ0, i.e., V1; rename(M, Γ′) s̀typ

s′1 : Γ0.

Rules SR6.2 and SS6.1 let us derive V1; Γ1 s̀typ 0 : Γ1. Because V0; Γ0 s̀typ

while e s1 : Γ1, we can write the equivalent V1 − VA; Γ0 s̀typ while e s1 :
Γ1. Therefore, if we assume V1; Γ0 t̀st e : rename(M, Γ′); Γ1, then we
have the following derivation:

V1; rename(M, Γ′) s̀typ s′1 : Γ0

V1 − VA; Γ0 s̀typ while e s1 : Γ1

V̀ s′1 : VA

V1; rename(M, Γ′) s̀typ s′1; while e s1 : Γ1

V1; Γ0 t̀st e : rename(M, Γ′); Γ1

V1; rename(M, Γ′) s̀typ s′1; while e s1 : Γ1

V1; Γ1 s̀typ 0 : Γ1

V1; Γ0 s̀typ if e (s′1; while e s1) 0 : Γ1

So we need V1; Γ0 t̀st e : rename(M, Γ′); Γ1 to conclude
V1; Γ0 s̀typ s′ : Γ1. We proceed by cases on the derivation of
V1; Γ0 t̀st e : Γ′; Γ1 (which exists because of Weakening Lemma 10 and
V0; Γ0 t̀st e : Γ′; Γ1). For cases ST6.2–ST6.5, inversion and Typing
Well-Formedness Lemma 3 ensure Γ′

ẁf Γ′ and Dom(Γ0) = Dom(Γ′).
Therefore, Dom(M) ∩Dom(Γ0) = ∅ ensures Dom(M) ∩Dom(Γ1) = ∅,
so the Useless Renaming Lemma ensures rename(M, Γ′) = Γ′. So
V1; Γ0 t̀st e : Γ′; Γ1 suffices. For case ST6.1, inversion ensures it suffices
to show V1; Dom(Γ0) ẁf rename(M, Γ′). An omitted Systematic
Renaming Lemma ensures rename(M, Γ′) ẁf rename(M, Γ′) because
Γ′

ẁf Γ′ and V0 ẁf M . By inversion,
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Dom(Γ0) ⊆ Dom(Γ′) ⊆ V0 ∪Dom(Γ0), so V1 = V0 ∪ VA ensures
Dom(Γ0) ⊆ Dom(Γ′) ⊆ V1 ∪Dom(Γ0). So we can derive
V1; Dom(Γ0) ẁf rename(M, Γ′).

Because V̀ s′1 : VA and V̀ s : V ′′
0 , we can derive V̀ s′ : VA ∪ V ′′

0 . Because
V0 ⊇ V ′

0 ∪Dom(H) (and therefore V0 ⊇ V ′′
0 ), the Systematic Renaming

Lemma ensures VA ∩ V0 = ∅. Therefore, because V ′′
0 ∩Dom(H) = ∅, we

know VA ∪ V ′′
0 ∩Dom(H) = ∅ and V0 ∪ VA ⊇ V ′′

0 ∪ VA ∪Dom(H). By
assumption, Γ0 ẁf Γ0. The underlined results let us derive p̀rog V0 ∪
VA; H; s′ : Γ1. Furthermore, VA ∩ V0 = ∅ ensures (V ′′

0 ∪ VA) ∩ V0 ⊆ V ′′
0 .

• SS6.5: Let s = if e s1 s2. Inversion ensures V ′
0 ; Γ0 t̀st e : ΓA; ΓB,

V ′
0 ; ΓA s̀typ s1 : Γ1, and V ′

0 ; ΓB s̀typ s2 : Γ1 for some ΓA and ΓB. Fur-
thermore, V̀ s1 : VA, V̀ s2 : VB, and V ′′

0 = VA ∪ VB. Only rules DS6.4,
DS6.5, and DS6.7 can apply.

For DS6.4, let e = 0, s′ = s2, and H ′ = H. Because VB ⊆ V ′′
0 and

V ′′
0 ⊆ V ′

0 , we know VB ⊆ V ′
0 . Therefore, the Value Elimination Lemma

ensures p̀rog V0; H; s2 : Γ1 if V ′
0 ; Γ0 s̀typ 0 : ΓB. We show this result

by cases on the derivation of V ′
0 ; Γ0 t̀st 0 : ΓA; ΓB. Case ST6.1 follows

from inversion and SS6.1. Cases ST6.2 and ST6.3 cannot apply because
the Canonical Forms Lemma ensure there is no Γ′, τ , and x such that
Γ0 r̀typ 0 : τ, &x, Γ′ or Γ0 r̀typ 0 : τ,all@, Γ′. Case ST6.4 cannot
apply because a trivial induction shows 0 is not a left-expression. Case
ST6.5 follows from inversion and SS6.1. The other obligations are trivial
because V1 = V0, H ′ = H, and V ′′

1 = VB ⊆ V ′′
0 .

Case DS6.5 is analogous to case DS6.4, where e is some v that is neither
0 nor junk. We use s1 in place of s2, VA in place of VB, and ΓA in place
of ΓB. We use the Canonical Forms Lemmas to ensure case ST6.1 does
not apply. Cases ST6.2 and ST6.3 follow from inversion and SS6.1.

For DS6.7, s′ = if e′ s1 s2 and H; e
r→ H ′; e′. Preservation Lemma 2

ensures there exists a Γ2 such that Dom(Γ2) = Dom(Γ0), Γ2 ẁf Γ2,
Γ2 h̀typ H ′ : Γ2, and V ′

0 ; Γ0 t̀st e′ : ΓA; ΓB. So SS6.5 lets us derive
V ′

0 ; Γ2 s̀typ if e′ s1 s2 : Γ1. Because V̀ s1 : VA and V̀ s2 : VB, we can
derive V̀ if e′ s1 s2 : V ′′

0 . By assumption, V ′′
0 ⊆ V ′

0 . Because Dom(Γ2) =
Dom(Γ0), we know Dom(H ′) = Dom(H). So V ′

0 ∩Dom(H ′) = ∅. So
the assumption V0 ⊇ V ′

0 ∪ Dom(H) ensures V0 ⊇ V ′
0 ∪Dom(H ′). Let-

ting V1 = V0, the underlined hypotheses ensure p̀rog V1; H
′; s′ : Γ1. The

other obligations are trivial because V1 = V0, Dom(H ′) = Dom(H), and
V ′′

1 = V ′′
0 .

• SS6.6: Let s = τ x and Γ1 = Γ0, x:τ,unesc,none. Only DS6.1 applies,
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so s′ = 0 and H ′ = H, x 7→ junk. By assumption, Γ0 h̀typ H : Γ0. Triv-
ially, Γ1 ẁf τ,unesc,none. So by a trivial inductive argument over
the derivation of Γ0 h̀typ H : Γ0, using Weakening Lemma 7, we know
Γ1 h̀typ H : Γ0. Rule SR6.1 lets us derive Γ1 r̀typ junk : τ,none, Γ1.
So we can derive Γ1 h̀typ H ′ : Γ1. Rules SR6.2 and SS6.1 let us derive
∅; Γ1 s̀typ 0 : Γ1. Typing Well-Formedness Lemma 5 and the assumptions
ensure Γ1 ẁf Γ1. Trivially, V̀ 0 : ∅, ∅ ⊆ ∅, and ∅ ∩Dom(H ′) = ∅. Invert-
ing V̀ τ x : V ′′

0 ensures V ′′
0 = ·, x. So V ′′

0 ⊆ V ′
0 and V0 ⊇ V ′

0 ∪ Dom(H)
ensure V0 ⊇ ∅ ∪Dom(H ′). The underlined results ensure p̀rog V0; H

′; s′ :
Γ1. Trivially, V0 ⊇ V0, Dom(H ′) ⊆ Dom(H) ∪ V ′′

0 , and ∅ ∩ V0 ⊆ V ′′
0 .

• SS6.7: Inverting V0; Γ0 s̀typ s : Γ1 ensures V0; Γ0 s̀typ s : Γ′, Γ1 ` Γ′ ≤ Γ1,
and Γ1 ẁf Γ1 for some Γ′. So p̀rog V0; H; s : Γ′. So induction ensures

p̀rog V1; H
′; s′ : Γ′, V1 ⊇ V0, Dom(H ′) ⊆ Dom(H)∪V ′′

0 , and V ′′
1 ∩V0 ⊆ V ′′

0

where V̀ s′ : V ′′
1 . So SS6.7 lets us derive p̀rog V1; H

′; s′ : Γ1.

• SS6.8: Inverting V0; Γ0 s̀typ s : Γ1 ensures V0; Γ0 s̀typ s : Γ1Γ
′ and

Γ1 ẁf Γ1 for some Γ′. So p̀rog V0; H; s : Γ′. So induction ensures p̀rog

V1; H
′; s′ : Γ1Γ

′, V1 ⊇ V0, Dom(H ′) ⊆ Dom(H) ∪ V ′′
0 , and V ′′

1 ∩ V0 ⊆ V ′′
0

where V̀ s′ : V ′′
1 . So SS6.8 lets us derive p̀rog V1; H

′; s′ : Γ1.

Lemma D.15 (Progress). Suppose Γ0 h̀typ H : Γ0 and Γ0 ẁf Γ0.

1. If Γ0 l̀typ e : τ, `, Γ1, then e is x for some x or there exist H ′ and e′ such that

H; e
l→ H ′; e′.

If Γ0 r̀typ e : τ, r, Γ1, then e is v for some v or there exist H ′ and e′ such that
H; e

r→ H ′; e′.

2. If V ; Γ0 t̀st e : Γ1; Γ2, then e is v for some v that is not junk or there exist
H ′ and e′ such that H; e

r→ H ′; e′.

3. If V ; Γ0 s̀typ s : Γ1, then s is v for some v, or s is return, or there exist V ′,
H ′, and s′ such that V ; H; s

s→ V ′; H ′; s′.

Proof:

1. The proof is by simultaneous induction on the assumed typing derivations,
proceeding by cases on the last rule used:

• SR6.1–4: These cases are trivial because e is a value.

• SR6.5: Rule DR6.4 applies.

• SR6.6: Because Γ0 h̀typ H : Γ0 and x ∈ Γ0, we know x ∈ Dom(H). So
rule DR6.1 applies.
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• SR6.7A–B: Let e = &e0. By induction, e0 is some x (in which case e is

a value), or there exists an e′0 such that H; e0
l→ H ′; e′0 (in which case

DR6.7 applies).

• SR6.8A–D: Let e = ∗e0. By induction, either e0 is some value or there
exists an e′0 such that H; e0

r→ H ′; e′0. In the latter case, rule DR6.6
applies. In the former case, Canonical Forms Lemmas 5 and 6 ensure
e0 is &x for some x, so rule DR6.3 applies.

• SR6.9: Let e = e1‖e2. By induction, if e1 or e2 is not a value, then
DR6.6 applies. If e1 and e2 are values, then DR6.5 applies.

• SR6.10: Let e = (e1=e2). By induction, if e1 is not some x, then DR6.7
applies. By induction, if e2 is not a value, then DR6.6 applies. If e1 = x
and e2 = v, then DR6.2 applies if x ∈ Dom(H). Values Effectless
Lemma 1 ensures x ∈ Dom(Γ0), so Γ0 h̀typ H : Γ0 ensures x ∈ Dom(H).

• SR6.11–13: These cases follow from induction.

• SL6.1: This case is trivial because e is some x.

• SL6.2A–B: Let e = ∗e0. By induction, either e0 is some value or there
exists an e′0 such that H; e0

r→ H ′; e′0. In the latter case, rule DL6.2
applies. In the former case, Canonical Forms Lemmas 5 and 6 ensure
e0 is &x for some x, so rule DL6.1 applies.

• SL6.3–4: These cases follow from induction.

2. The proof is by cases on the assumed typing derivation. In each case, in-
version ensures e is the subject of a right-expression typing derivation. (In
case ST6.4, we need Subtyping Preservation Lemma 2 for this fact.) So the
previous lemma ensures e can take a step or is some value. In the latter case,
the abstract rvalues in the r̀typ hypotheses and Canonical Forms Lemma 9
ensure the value is not junk.

3. The proof is by induction on the assumed typing derivation, proceeding by
cases on the last rule used:

• SS6.1: This case follows from rule DS6.7 and Progress Lemma 1.

• SS6.2: This case is trivial because s is return.

• SS6.3: Let s = s1; s2. Because s1 is well-typed, induction ensures s1 is v
or return or can take a step. So one of DS6.2, DS6.3, or DS6.8 applies.

• SS6.4: Rule DS6.6 applies because we can always find an M such that
the hypotheses of the rule hold. Specifically, Dom(M) = Dom(V0) where
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V̀ s : V0 and M maps each x in its domain to a distinct y that is not in
V . For such an M , all hypotheses hold.

• SS6.5: Let e = if e s1 s2. Because e is a well-typed test, Progress Lemma
2 ensures e can take a step or it is some v 6= junk. In the former case,
rule DS6.7 applies. In the latter case, either DS6.4 or DS6.5 applies.

• SS6.6: Let e = τ x. Rule DS6.1 applies if x 6∈ Dom(H). The form of
SS6.6 implies x 6∈ Dom(Γ0), so Γ0 h̀typ H : Γ0 ensures x 6∈ Dom(H).

• SS6.7–8: These cases follow from induction.
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[130] Simon Peyton Jones and John Hughes, editors. Haskell 98: A Non-strict,
Purely Functional Language. http://www.haskell.org/onlinereport/,
1999.

[131] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: A portable
assembly language that supports garbage collection. In International Con-
ference on Principles and Practice of Declarative Programming, volume 1702
of Lecture Notes in Computer Science, pages 1–28, Paris, France, September
1999. Springer-Verlag.

[132] Brian Kernighan and Dennis Ritchie. The C Programming Language, 2nd
edition. Prentice-Hall, 1988.

[133] A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in
the presence of polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290–311, April 1993.

[134] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric
multi-level blocking. In ACM Conference on Programming Language Design
and Implementation, pages 346–357, Las Vegas, NV, June 1997.

[135] Sumant Kowshik, Dinakar Dhurjati, and Vikram Adve. Ensuring code safety
without runtime checks for real-time control systems. In ACM International
Conference on Compilers, Architectures and Synthesis for Embedded Sys-
tems, pages 288–297, Grenoble, France, October 2002.

[136] Dexter Kozen. Efficient code certification. Technical Report 98-1661, De-
partment of Computer Science, Cornell University, January 1998.



352
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