A Solver-Aided Language for Test Input Generation

TALIA RINGER, University of Washington, USA
DAN GROSSMAN, University of Washington, USA
DANIEL SCHWARTZ-NARBONNE, Amazon
SERDAR TASIRAN, Amazon

Developing a small but useful set of inputs for tests is challenging. We show that a domain-specific
language backed by a constraint solver can help the programmer with this process. The solver can
generate a set of test inputs and guarantee that each input is different from other inputs in a way
that is useful for testing.

This paper presents Iorek: a tool that empowers the programmer with the ability to express
to any SMT solver what it means for inputs to be different. The core of Iorek is a rich language
for constraining the set of inputs, which includes a novel bounded enumeration mechanism that
makes it easy to define and encode a flexible notion of difference over a recursive structure. We
demonstrate the flexibility of this mechanism for generating strings.

We use lorek to test real services and find that it is effective at finding bugs. We also build Iorek
into a random testing tool and show that it increases coverage.

CCS Concepts: eSoftware and its engineering — Domain specific languages; Software
testing and debugging; Constraints;

Additional Key Words and Phrases: solver-aided languages, test input generation, generators

ACM Reference format:

Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017. A Solver-Aided
Language for Test Input Generation. PACM Progr. Lang. 1, OOPSLA, Article 91 (October 2017),
25 pages.

DOI: 10.1145/3133915

1 INTRODUCTION

Coming up with an interesting set of test inputs for a software service is a time-consuming,
tedious, and error-prone task. This is precisely the kind of task that constraint solvers are
ideal for. In the case of testing, solvers can generate a set of test inputs for some code and
guarantee that each input is both a legal input according to a specification and different
from other inputs in a way that is useful for testing.

Consider, for example, the purchasing workflow for a retail website. The API for this
code specifies legal inputs: Items have names, categories, and prices. A programmer who is
testing this code likely does not want to test every single item—there may be hundreds of
millions of items. The programmer can instead specify what it means for two items to be
different for the sake of testing: Two items may be different if they are in different categories
(say, Music and Shoes) or have prices at least $50 apart. A constraint solver can guarantee

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner /author(s).

(© 2017 Copyright held by the owner/author(s). 2475-1421/2017/10-ART91 $

DOI: 10.1145/3133915

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:2 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

that every individual item it generates for this test has a name, category, and price, and
that every pair of items are in different categories or have prices at least $50 apart.

Our tool Iorek (pronounced your-ik) helps programmers express this. Iorek combines
a testing framework with a domain-specific language backed by a constraint solver—a
solver-aided language (Torlak and Bodik 2013). A Torek programmer writes an incomplete
test and leaves some inputs blank. For every blank input, lorek generates many inputs that
satisfy a specification and are different in the way the programmer defines.

Torek exposes a constraint language to express what it means for any two inputs to be
different. In this way, Iorek empowers the programmer with control over the space of
inputs. The constraint language can express relations (for example, strings of different
lengths, or numbers at a certain distance), combinations of constraints, and a novel bounded
enumeration mechanism. The enumeration mechanism makes it possible to express the
notion of a representative set of values for a recursive structure over an infinite domain and
encode it for any SMT solver. This enables programmers to define expressive combinations
of constraints over structured data. It also provides a level of abstraction: Programmers can
leave reasoning about SMT-supported datatypes like numbers and strings to the solver.

We demonstrate the power and flexibility of the enumeration mechanism in generating
string inputs. To accomplish this, we extend Rosette (Torlak and Bodik 2013) with strings
and regular expressions (regexes), which are recent additions to SMT (Bjgrner et al. 2012;
Liang et al. 2014; Trinh et al. 2014; Uhler and Dave 2013; Zheng et al. 2013). For example,
our evaluation suggests that using the structure of a regex to define inputs can sometimes
increase code coverage. That is, a programmer generating three tests with inputs constrained
by [a-z]+|[0-9]+| may prefer "abc", "1234" and " " over "123" "4567" and "89012".
The enumeration mechanism makes it easy to express this to a solver. The use of an SMT
solver allows programmers to combine this mechanism with other notions of difference (such
as strings of different lengths) and leave reasoning about strings to the solver.

We show that Iorek is effective at finding bugs, increases code coverage, and scales to
complex queries: We integrate a protoype into a framework at Amazon and use it to find
four bugs in real services in development—developers have accepted three of these bugs.!
We also use lorek to generate inputs for the fully-automatic testing tool Randoop (Pacheco
and Ernst 2007) and find that the inputs Iorek generates increase code coverage on 15 of 18
benchmarks in a string benchmark suite. Finally, we show that compared to three alternative
ways of querying a solver for many different values, the approach that Iorek uses is the only
approach that leads to acceptable performance across all the kinds of queries Iorek makes.

In summary, we contribute the following:

(1) We design and implement Iorek: a solver-aided language and tool for generating
test inputs that lets programmers define what makes test inputs different.

(2) We introduce a novel bounded enumeration mechanism that generates a representa-
tive set of values and formulate a way to express this mechanism to a solver. We
demonstrate the power and flexibility of this mechanism in the domain of strings.

(3) We build a prototype of Torek into a testing framework at Amazon and use it to
find bugs in real services in development.

(4) We use Iorek to generate inputs for an automatic testing tool and show that it
increases code coverage and that the flexibility it provides is useful.

(5) We evaluate the performance of different mechanisms for querying a solver for many
different values and show that Iorek scales to large and complex queries.

1The other does not cause unexpected behavior for Amazon customers.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:3

Outline fe======--cc e e - ,

1
lorek

prepare program

Solver

Fig. 1. lorek JUnit framework

2 USING IOREK

The core of Torek is a solver-aided intermediate representation (IR) that is designed to
interface easily with existing languages. This way, we can integrate lorek with testing
frameworks in many different languages. So far, we have implemented an interface (Figure 1)
that lets programmers write lorek tests in JUnit.

To see Torek in action, consider the calendar service API specified in Figure 2. Every
calendar event has a name, which may end in a time string. The calendar can infer
information about the time of an event from its name. The calendar also interacts with a
messaging system, and can import and display flight information and adjust the time zone
of events accordingly. That is, if Alice flies to Vancouver at 10:00 AM on October 21st, it
shows all of her events before 10:00 AM on October 21st in her local time, but all events
after the time of arrival in Pacific Daylight Time.

We want to make sure that the calendar still passes a sanity check when Alice is abroad:
If Alice creates two events, one that contains a time as the suffix of its name (for example,
"meeting 7:00 PM" with an empty time field) and another that contains the same name
and time as separate fields ("meeting" with the time field set to 7:00 PM that same day),
the two events should be identical:

assertEquals(create(name + suffix, none), create(name, of(suffixTime)));

We would like to make sure that this works when Alice flies anywhere in the world. We
do not want to exhaustively test every event name and flight location (there are infinitely
many event names). Instead, we want to generate event names with times that exercise
different branches in the time string specification:

{{05:00}, {21:22}, {12:00 AM}, {5:00 PM}, ...}

And we want to pair each time with flight locations that are in different time zones:
{{05:00, Pittsburgh}, {05:00, Amsterdam}, {05:00, Vancouver}, ...}

We can write this test in the Iorek JUnit framework (Figure 1). We pass Iorek three

things:

(1) The input specification (Figure 2), which describes legal service inputs (events).
(2) A number n (Figure 3) of test inputs to generate (in this case, 100).
(3) A test outline (Figure 3) that defines:

(a) a JUnit test with blank inputs, and
(b) what makes any two test inputs different.

The input specification for the service API from Figure 2 exists already, as is common
in industry. To write the test outline in Figure 3, we write a normal JUnit test, but
in place of concrete times and locations like "05:00" and "Pittsburgh", we write blank

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:4 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

QRunWith(Iorek.class)

"igh": {
@Specification("calendar.json")
"type": "Regex", public class CalendarTests {
"pat”: "(1[0-2]1[1-91): [0-51\d(\s)? (AMIPI) " // ... other definitions omitted
} private Event create(name, suff, loc, st, dur) {
"24n": { EventName en = new EventName(name, suff);
"type": "Regex", return cut.create(new Event(en, loc, st, dur));
"pat": "(([0-1]17\d) |2[0-3]):[0-5]\a" }
} QGenerate (100)
"time": {"type": "Regex", "pat": "$12h|$24h"} public void testSanity() {
"timeSuff" : {"type": "Str", "pat": "$time?"} Location loc = ?Location; // blank input

String suffix = ?timeSuff; // blank input
"eventName": {
Iorek.constrain(suffix, Iorek.coverRegexp(time));

"name": {"type": "Str"},
Iorek.constrain(loc, Iorek.differentTimeZones());

"timeSuff": "timeSuff"

} TimeZone zn = alice.getDefaultTimeZone();
Date flightT = new Date(2017, 10, 21, 10, 0, 0, zn);
"Event": { Event flight = create("trip", loc, of(flightT), 10);
"eventName": "eventName", cut.setCurrentTime (f1ightT.plusHours(24));

"location": {"type": "Location"}, Date evT = parse(time, loc.getTimeZone());

"startTime": {"type": "Date", "req": "false"}, Event fst = create('meeting", suffix, loc, none, 1);
"duration": {"type": "Integer", "minimum": 0} Event snd = create("meeting", "", loc, of(evT), 1);
} assertEquals(fst, snd);
}

Fig. 2. JSON specification for events in the cal- }
endar service APl in a format similar to Swag-
ger® API framework specifications. An event
has a name, location, optional start time, and
positive duration. The name is a string that
may end in a time, which may be a 12 hour
time or a 24 hour time.

Fig. 3. Calendar service JUnit test outline, with lines
that are specific to lorek highlighted. @Specification
tells lorek where to find the input specification file from
Figure 2. The ? syntax denotes the blank inputs (a
built-in Location and specification-defined timeSuff).
The constrain function tells lorek what it means for
http://swagger.io/specification/ each generated input to be different.

inputs: 7timeSuff and ?Location. These are the blank inputs that Iorek generates 100
(the argument to @Generate) concrete inputs for. We use these blank inputs to create two
events, which we assert (using JUnit’s assertEquals) are the same. We also define (using
constrain) what makes any two times and locations different.

We annotate the test outline with two top-level annotations: @Specification tells Iorek
where to find the specification file. @RunWith(Iorek.class) tells JUnit to run the outline
with the Iorek TestRunner.? The TestRunner uses the specification file, number n, and test
outline to run tests in two passes:

(1) Prepare, which generates inputs.
(2) Run, which runs the outline with the generated inputs.

Prepare translates the specification from Figure 2 and the outline from Figure 3 into a
Torek program (in fact, the one in Figure 8 in Section 4.2). It then runs the Iorek program
(not the code under test, or CUT), which queries a solver for 100 time-location pairs that
satisfy the specification from Figure 2 and are different in the way we specify in Figure 3.
It saves the 100 time-location pairs as an input file. Run invokes the test outline with the
CUT 100 times (once with each input from the input file), replacing every blank input with
a generated input. Each run produces a result (success or failure).

2http://junit.sourceforge.net/junit3.8.1/javadoc/junit/textui/TestRunner.html

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

http://swagger.io/specification/
http://junit.sourceforge.net/junit3.8.1/javadoc/junit/textui/TestRunner.html

A Solver-Aided Language for Test Input Generation 91:5

In this calendar example, we took a black-box view of testing, thinking about inputs rather
than properties of the CUT. We could just as well use specifications for properties of the
CUT. Ultimately, Iorek is agnostic to whether the approach is black-box or white-box. Iorek
is a tool to express what it means for test inputs to be different—it gives the programmer
control of what “different” means.

3 OUR CONSTRAINT PROBLEM, CONTRASTED

We formulate test input generation as a constraint solving problem: A solver-aided testing
tool generates many different satisfying assignments (a set of inputs) for a specification.
This means that every individual input should satisfy the specification and every pair of
inputs should be different. That is, for some set of values v1,...,v,, some assertion A about
each individual value, and some constraint C relating values:

V1<i<n, A(v;) AV1<j<n,(i#j= C(viv5))

This problem is different from the problem traditional synthesis (Solar Lezama 2008)
and angelic execution (Bodik et al. 2010) tools solve. These tools find a single satisfying
assignment—a program that is correct for all inputs. We use an interface that is inspired by
the synthesis tool SKETCH (Solar Lezama 2008) because it is clean and simple to use.

Some solver-aided languages such as Kaplan (Koksal et al. 2012) can enumerate all
satisfying assignments to a specification. Bounded exhaustive testing (BET) tools (Daniel
et al. 2007; Goodenough and Gerhart 1975; Khurshid and Marinov 2004; Rosner et al.
2014; Senni and Fioravanti 2012) generate all structures up to a bound. Relational logic
solvers such as Kodkod (Torlak and Jackson 2007) are useful for this style of testing. While
Torek can express BET, it is not our goal—many inputs will be redundant. We expose a
new mechanism for enumeration that allows the programmer to define what it means for
structures to be different. This is similar to what SciFe (Kuraj et al. 2015) accomplishes,
except we can express our enumerators to any SMT solver. This means that we can use
established solvers, abstract away reasoning about data, and support constraints on strings
(which most similar tools do not support).

Torek is a tool to help programmers write tests, not a fully-automatic test generation
tool. The core of Torek is a DSL for controlling input generation. In this regard, it is
similar to QuickCheck (Claessen and Hughes 2000), a widely used DSL for property-based
testing. QuickCheck programmers guide the search process for test inputs by writing
constructive generators (Claessen and Hughes 2000; Kuraj et al. 2015) which assign weights
to all of the possibilities of the input space; these generators are probabilistic. The DSL
Luck (Lampropoulos et al. 2017) makes it easier to write this style of generator. Iorek exposes
constraints to specify what makes inputs different—these constraints are not probabilistic,
and can be used structurally to limit the search space like constructive generators, but
are concise like declarative generators (Boyapati et al. 2002; Senni and Fioravanti 2012).
Furthermore, Iorek queries existing SMT solvers, which abstracts details of SMT-supported
datatypes and frees the developer to focus on structural ways to constrain those datatypes,
or on the high-level structure of datatypes in which they are embedded.

Some random testing tools such as Randoop (Pacheco and Ernst 2007) use feedback
from executing tests to rule out redundant inputs. Many tools (Anand et al. 2007; Cadar
et al. 2006; Chipounov et al. 2011; Fraser and Arcuri 2011; Godefroid et al. 2005; Sen et al.
2005; Tillmann and De Halleux 2008) combine symbolic execution with automatic testing
techniques to produce useful tests that explore different paths. ITorek is close in spirit to
Grammar-Based Whitebox Fuzzing (Godefroid et al. 2008), which uses grammar-based

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:6 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

def

eNVempty = (define trueg (A (M) #t)) (define (A Al A2)
(@, A(M).#t, X(Ma, My)-#£) (define never (A (M1 M2) #£)) - an
Vi var — val (define (++ Vi V2) (and (A1 1) (A2110)))
A : Model — boolean A W <d?/f\if(1e v)01 €2
. (if (v €W M1 M2
C : (Model, Model) — boolean viv] (or (C1 M1 M2)
Model : symbolic — concrete (env-V em) [v1))) (C2 M1 M2))))
Fig. 4. Environment (V, A, C) Fig. 5. Algebraic identities and lifted operators

specifications to generate interesting inputs that trigger invalid program states. Unlike these
tools, Iorek gives the programmer control over what it means to generate an interesting set
of inputs, and is thus agnostic to whether the approach is black-box or white-box. Torek
also provides a way for programmers to generalize existing test suites to create better tests.

Torek is ultimately a tool for writing better and more expressive tests and can be used
alongside fuzzing and testing tools. We demonstrate the use of Iorek with Randoop in
Section 7. We discuss more related work in Section 9.

4 |10REK DESIGN AND IMPLEMENTATION

Torek allows programmers to specify not only properties about individual inputs, but also
properties about the space of generated inputs. Iorek encodes this information for a solver
and ensures that all sets of inputs returned by the solver are different in the specified way.

Torek includes an IR for generating inputs (described in Section 4.1 and formalized in
Section 4.2), an embedded language of built-in constraints on the space of inputs (Section 4.3),
and combinators to define new expressive constraints (Section 4.4), including a novel
combinator for enumeration (Section 4.5).

4.1 The lorek IR

The Torek language centers around the notion of a model. A model maps symbolic values (as
in some integer v) to concrete values (as in the integer 3). The Iorek environment (Figure 4)
is a triple (V, A, C). V maps variables to (possibly symbolic) values. A is an assertion about
each individual model. C'is a constraint that relates every pair of models.

The Iorek IR is implemented as a deep embedding in Rosette (Torlak and Bodik 2013).
Rosette extends Racket with symbolic values that can be used interchangeably with concrete
values. For example, in Rosette a programmer can add a symbolic integer v to the concrete
integer 3. Iorek uses Rosette’s angelic execution primitives (to find some v for which an
assertion holds).

We use the syntax M[v] and (evaluate v model) (the latter from Rosette) to denote
the value of v in the model M when v is symbolic, and v itself when v is concrete. For
convenience, we define algebraic identities truea for assertions and never for constraints
(Figure 5). We define ++ to combine variable maps, and we lift v, A, and - to work with
assertions and constraints. Figure 5 shows A for assertions and Vv for constraints; the rest
are analogous.

In an environment (V; A, C), a Iorek test outline evaluates to a set of models {Mj, ..., M, }
that satisfies the environment (when possible): The assertion A holds for every individual
model, and the constraint C' holds for every pair of models. When n is the size of the
model space and C' is inequality, this evaluates to the set of all models satisfying A, and is
deterministic. Otherwise, {Mi,..., M,} can be any set of satisfying models in any order.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:7

default(V, My, M,)dZEf (define (extend-A en A)
’ Y (env (env-V en) (A A (env-A en)) (env-C en)))
Fv € range(V'), My[v] # My[v]

def (define (find-model en)
models(Mi, ..., My, V, A) = (coerce (solve (env-a en)) (env-v en)))

V1l <i<n,
(define (next-different en)
(dom(M;) C range(V)) A A(M;) (define V (env-V en))

different(M, . .., Mn, V,C) def (define C (env-C en))
(if (eq? C never) (default V) (A (default V) C)))
V1<i,j<ni#j=

default (V, M, M)A (define (gen n en)
(match n
((C = never) v C(M;, My)) o {31

def [
My, ..., M, V,AC) = -
! "): () (define M (find-model en))
models(My, ..., Mn, V, A)A (define Apezt (curry (next-different en) M))
different(Mu, ..., My, V,C) (W {M} (gen (- n 1) (extend-A en Apest)))]1))

Fig. 6. The satisfiability criteria, which Fig. 7. Pseudocode for lorek's generation loop, which im-
checks that all assertions in an environ- plements the satisfiability criteria from Figure 6. The loop
ment hold for each individual model, and finds a model for the assertion in the environment, making
that all constraints hold for every pair of sure (via coerce) that every symbolic value in the model
models. The default criteria ensures no maps to some concrete value. It then adds an assertion
two models are the same, even when the that the next model should be different (defaulting to the
programmer does not define C. default constraint defined in Figure 6).

Figure 6 formalizes this satisfiability criteria. Figure 7 implements the criteria in a loop,
generating results over a sequence of queries.

The key insight to the generation loop is that while a constraint maps (Model, Model) —
boolean, we can also think of it in its curried form, Model — Model — boolean. Any
constraint holds vacuously with one model. For each subsequent model, we can encode the
requirement that the model is different from all previous models as a Model — boolean—in
other words, an assertion.

The generation loop (Figure 7) implements this: It curries the constraint in the environment
with each model it receives from the solver and asserts that the next model should be
different. These assertions accumulate into a single assertion that consists of a linear number
of constraints on the model with respect to n for any given query, yet guarantees that all
generated models are different. This loop is built to be efficient and generalizable. There
are many alternative ways to express this notion of difference between all models to a solver;
we evaluate them in Section 8.

4.2 Syntax and Semantics

Figure 8 shows an example lorek program, and Figures 9 and 10 show the grammar and
semantics. A program is a sequence of global statements {e)* (which typically correspond
to a service specification) followed by (model-gen)s (which correspond to individual test
outlines to generate values for). Iorek (val)s are values (for example, strings, lists, and
objects), which for now come from Java values.

Both (a) and (c) evaluate in embedded languages (|}, and). Primitive assertions (p-a)

and primitive constraints (p-c) map (val) to assertions (A) and constraints (C'), respectively.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:8 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

(program calendarTests (declare event 70Object)
(declare 12hr "(1[0-2]|[1-91):[0-5]\d(\s)?(AM|PI)") (specify event
(declare 24hr "(([0-1]7\d)|2[0-3]):[0-5]\d") (with eventName eventName)
(declare time (re-union 24hr 12hr)) (with location ?Location)
(declare name ?String) (with startTime ?(Option Date))
(declare timeSuff ?String) (with duration duration))
(specify timeSuff (matches (re-? time)))
(declare duration 7Integer) (generate testSanity 100
(specify duration (gte 0)) (declare loc ?Location)
(declare suffix ?timeSuff)
(declare eventName ?0bject) (constrain-solutions suffix
(specify eventName (cover-regexp time))
(with name name) (constrain-solutions loc
(with timeSuff timeSuff)) different-time-zones)))

Fig. 8. A lorek program that generates 100 times and locations, where the inputs either exercise
different branches of the time specification or have locations in different time zones. Location and
different-time-zones are primitives in an extensible language. The with syntax defines object fields
(we omit a straightforward formalization of objects and fields). The highlighted lines correspond to the
test outline and the rest correspond to the service specification.

(program) ::= (e)* {model-gen)+ (val) == (symbolic) | (concrete)
(model-gen) ::= generate (outline-name) (n) (e)* (symbolic) = ...

(outline-name) ::= (racket-symbol) (concrete) == (n) | ...

(e) ::= (declare) | (specify) | (constrain) (a) == and (a) (a) | or (a) (a)

(declare) ::= declare (var) (t) | ite (t) (a) (a) | not (a) | (p-a) (t)+
(specify) ::= specify (var) (a) (p-a) == ...

(constrain) ::= constrain-solutions (var) (c) (¢) ::= all-of {¢) (c) | some-of {c) (c)

(t) == (var) | (val) | not (c) | (p-c) (t)+

(var) = (racket-symbol) (p-¢) :== ... // see Figure 12

Fig. 9. lorek grammar

That is, if (p-a) is (A (&) (A M) (> M[h] 0)))), passing numHours returns (A (M) (> M[
numHours] 0)), an assertion (A) that numHours is non-negative. We introduce the notation
a(val) and c(val) to denote this.

The embedded language for assertions and the primitive assertions currently come from
the specification language for an existing framework in use at the company Amazon. We
extend the language so that developers can express additional properties. We discuss the
embedded language for constraints (c¢) and some primitive constraints (p-c) in Section 4.3.
Both embedded languages can add to the environment: The embedded assertion language
can add variables to V', and the embedded constraint language can add both variables to V'
and assertions to A. This is necessary for the powerful enumeration construct we define in
Sections 4.4 and 4.5.

There are three commands that affect the environment: The declare command defines
a (var) (Racket symbol) and maps it to a (val) in V. The specify command evaluates
an assertion (a) about a variable and adds the resulting (A) to A as a conjunction. The
constrain-solutions command evaluates a constraint (c¢) about a variable and adds the
resulting (C) to C' as a disjunction. All three can occur in the main program body (in which
case they are global) or within a (model-gen) (in which case they are local).

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:9

((es, gens), V,A,C) § r
PROGRAM

(es, 0, true 4, never) | (V, A, C) (gens,V,A,C) | r

((es, gens), D, true 4, never) | r

‘ (gens, V,A,C) § r ‘

MODEL-GENS MODEL-GEN
(gh,V,A,C)»U:Th (gt,‘/,A,C)U/Tt (687‘/71470)‘[1’(‘//714/70/) Ml:"'an ':(VlvAlzc/)
(gn 1 9¢, VA, C) Jrp Wy (generate(nm,n,es) :: (), V, A, C) § {nm — {M1,...,Mn}}
EMPTY (es, V;A,C) 4 (V', A, C")

(0,V,4,0) 4 (V;A,C)

DECLARE-VAL DECLARE-VAR

(es, Vvar — wal], A,C) § (V', A’,C") (es, Vvary — Vivars]], A, C) | (V/, A’,C")
(declare(var,val) :: es, V, A,C) || (V', A", C") (declare(vary, vars) :: es, V, A,C) | (V' A’ C")
SPECIFY

(Via(V[var])) da (V', A") (es, V/,ANA",C) § (V" A", C")
(specify(var, a) :: es, V, A,C) || (V"' A" C")

CONSTRAIN
(V, A, e(Vvar])) Yo (V', A", C") (es, V', A',Cv ')y (V' A", C")

(constrain(var, c) :: es, V, A,C) | (V" A", C")

Fig. 10. lorek semantics

Every (model-gen) takes an (outline-name), a number (n), and a body (e)* and generates
a result: either UNSAT, or a mapping from its name to a set of models My, ..., M, that
satisfies the environment that (e)* evaluates to.

4.3 Controlling the Space of Solutions

Programmers can define what it means for models to be different using constrain-solutions.
We provide a language of built-in constraints for this (Figures 11 and 12).

By default, Iorek ensures that every generated model is not equal to any other generated
model—that is, that at least one symbolic value is mapped to a different concrete value for
every pair of generated models.

For example, if we are testing an authentication service with different usernames, we add
the following assertion to the environment between subsequent runs of the gen loop:

(# username (evaluate username model))

The default constraint ensures that the solver does not return the same model twice.
When n is the size of the model space, this amounts to BET using an assertion as a bound.
This is not always sufficient for testing: Modern solvers purposely explore close spaces by
undoing as few choices as possible (Barrett et al. 2008a,b). That is, if the first username is
"aaa", the second username may be "aab", which is likely not different enough from "aaa"
to test a different case.

We can instead generate usernames of different lengths:

(# (string-length username) (string-length (evaluate username model)))

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:10 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

(V,4A,¢) Je (V' A',0)

ALL
(V,A,e1) e (Vi,A1,C1) (VA c2) Je (Va, A2, C2) ALWAYS

(V, A,c1 A Cg) Je (‘/'1"'+‘/27 A1 NA2,C1 A Cg) (V, A, always) Je (V', A, /\(M1 , MQ).#t)

SOME NEVER
(V’Aacl)'U’C (Vl,Al,Cl) (V7A702) Ye (V2’A27C2)

(V,A,e1 Vea) be (Vi++Va, A1 A Ag, C1 V Ca) (V, A,never) {c (V, A, \(M1, M2) #£)

NOT RELATION
(V,A,c) Ue (V',A',C) (V, A, rel(val)) e (V, A, C)

(V, A, =) e (V! A, =C) (V, A, relation(val, rel)) . (V, A, C)

Fig. 11. Constraint semantics

(p-c) ::= always | never | relation (val) (relation) | coverage (coverage) | ...
(relation) ::= not-equal | different-lengths | numeric-distance (t) | edit-distance (t) ...

(coverage) ::= cover-regexp (t) | cover-json (t) | ...

Fig. 12. Some built-in constraints

If we have an edit distance function, we can generate usernames at a minimum distance:
(> (edit-distance username (evaluate username model)) min-distance)

More generally, we can assert the result of any relation between two values:
(A (model) ((X\ (vl v2) ...) username (evaluate username model)))

In doing so, we guarantee that all values relate in this way, regardless of whether the
relation is transitive, since the assertions accumulate.?> We implement primitive relations
(not-equal, different-lengths, and so on) this way.

4.4 Combining Constraints

Programmers can combine constraints using built-in combinators. The simplest of these are
some-of and all-of, which evaluate to v and A respectively (Figure 11).

Torek also exposes a novel combinator that encodes a new mechanism for bounded
enumeration: the enumeratex combinator tells the solver to choose* from a list of assertions
and to always make a different choice.

The enumerate* combinator works as follows: It takes a list of assertions as and a list
of constraints cs, and returns a new environment extended with an assertion that chooses
among as and a constraint that the next model is different. Each c; in cs describes what it
means for two models that satisfy a; in as to be different. A different choice is a model that
either satisfies c;, or a different assertion a; from as, where c; describes what it means for
two models that satisfy a; to be different. In the simplest case, when every c; is never (the
identity co