
JDuck: Building a Software Engineering Tool

in Java as a CS2 Project

Michael Godfrey Dan Grossman

University of Waterloo Cornell University

email: migod@plg.uwaterloo.ca email: danieljg@cs.cornell.edu

Abstract

This paper describes our experiences in having students
build a software engineering tool as a course project in
a CS2 course. The tool, which we called JDuck (Java
Documenter of Code, oK), was modelled on the javadoc
tool that is part of Sun Microsystem's standard Java
Development Kit (JDK). That is, a working version of
JDuck would be able to read in Java source code and
generate HTML �les that summarize the basic structure
of the provided classes. We discuss how we set up the
project, what we think the students learned, what they
told us they learned, and what we would do di�erently
next time.

1 Introduction

One of the challenges in teaching a CS2 course is design-
ing assignments that the students will �nd both intellec-
tually compelling and fun. Our CS2 course at Cornell
University, CS211, has the additional feature that it is
required for all engineering undergraduates. (Cornell
University has two distinct CS2 courses: CS211, which
is taught in Java, and CS212, which is taught in a func-
tional style using a language such as Noodle or ML.
This latter course is intended primarily for CS majors.)
Consequently, the majority of the class members are not
CS majors, and some of these students can be di�cult
to reach and to motivate. We very much wanted all
of the students to come out of this course with both a
solid grounding in the material as well as a real appre-
ciation of computer science. We decided that the best
approach would be to have the students complete a non-
trivial course project that they would �nd interesting.

1.1 Goals

We had several goals in mind for the project; in partic-
ular, we felt that it should

� serve to re-enforce the lecture material of object-
oriented programmingand introductory data struc-
tures,

� be non-trivial in size and scope,
� require students to learn how to function within a
team,

� be constrained enough to be doable in an obvious
manner,

� employ a staged delivery approach with obvious
milestones, so that students could receive partial
credit if they failed to complete the project,

� be
exible enough for students to express some cre-
ativity, and

� accomplish a real and useful task.

2 JDuck: A Simple Software Engineering Tool

A simple software engineering tool seemed to be a good
candidate for the project. We decided to ask the stu-
dents to create a simpli�ed version of the tool javadoc
[4], which is part of Sun Microsystem's standard Java
Development Kit (JDK) package [3]. javadoc exam-
ines Java source class de�nitions, extracts information
about the classes and their interrelationships, and cre-
ates a set of HTML pages that a naive user may browse
as a reference document. For example, given a set of
classes written in Java, javadoc will create a web page
for each class that summarizes:

� the variables, methods, and constructors de�ned by
that class (including precise syntax and comments
extracted from the source code), and

� which classes/interfaces/packages the class inherits
from, implements, imports, or otherwise uses.

For ease of browsing, javadoc structures these web page
summaries in a uniform manner, and create hypertext
links between referenced entities that are de�ned in
other classes.

We designed our proposed tool, which we called
JDuck (Java Documenter of Code, oK), as a simpli-
�ed version of javadoc. The basic idea would be the
same, but we would provide some of the system, and

we would allow the students to make some simplifying
assumptions about Java syntax.

3 Overview of the Project

3.1 Preparation

The infrastructure for the JDuck project required signif-
icant preparation. One teaching assistant (TA) created
a special-purpose lexer for Java using the JLex tool from
Princeton University [1]. Another TA created a simpli-
�ed grammar for Java. We also created a candidate
solution in advance, and began to generate interesting
test scripts for use in evaluating the students' submis-
sions later on.
We tried to prepare the students for the task during

the course. For example, one of the early assignments
required students to process a set of simple text com-
mands, where each command might take di�erent num-
bers and kinds of arguments. This gave the students
some preliminary experience in parsing and the idea of
how the current state of a computation can in
uence
the next action taken.
We also had the TAs give several tutorials on aspects

of the project: there was one tutorial on simple scanning
and parsing, and another on on basic HTML, visual
design, and writing simple Java programs that produced
HTML fragments.

3.2 The Project Overview

Once the project was ready to be presented to the stu-
dents, we distributed the prepared handout and dis-
cussed it in lecture. We described to the students
an overall approach that we felt would lead to suc-
cess. In essence, the desired approach used student-
written parsing methods to generate an abstract syn-
tax tree (AST) containing the appropriate information.
These parsing methods use the provided lexer to re-
trieve tokens from the input. Nodes in the AST are
student-de�ned objects which have methods to gener-
ate HTML fragments describing themselves. Thus, a
solution would generate a single HTML �le describing a
(restricted) Java class by performing the following steps:

� Take as input the name of a Java class. Create a
lexer object with the appropriate input �le name.
Create an appropriately-named �le for output.

� Parse the input, creating an AST.
� Generate an HTML summary of the class by \walk-
ing" the AST, based on the output criteria set forth
in the project handout.

We gave students a simple, object-oriented interface
to the lexer: a lexer object is created by passing a
�le name to the constructor, and a lexer object has
a nextToken() method which returns an object which
has methods getText() and getTokenType(). We also
held a tutorial session to teach students how to use the
lexer and reason about input-processing. We wrote sev-
eral sample programs, such as one to \return the text

of the third identi�er after the fourth semicolon, or the
empty string if the �le has fewer than four semicolons."

3.3 The Grammar

We provided students a pseudo-grammar for the input
format speci�cation. The entire grammar is given below
(Fig. 1). CAPS denotes an identi�er, [a] denotes that
an item is optional, ajb denotes alternatives, and a�
denotes a Kleene closure. All other terminals are literals
and have distinct token types. Method bodies are not
described by the grammar, as we told students to ignore
them. Several aspects of this Java subset and the lexer
deserve notice:

� Some syntactically-awkward elements of Java, such
as arrays, have been omitted.

� The lexer removes all comments, except for the spe-
cial \//Variables" and \//Methods" comments.

� All variable declarations precede all method dec-
larations. This simpli�es disambiguation consider-
ably.

� The order of declaration modi�ers is �xed for the
sake of simplicity.

� The grammar can be parsed without any \look-
ahead," except for one place. When the �rst iden-
ti�er in a method declaration is encountered, one
cannot determine whether it is the return type of a
regular method or the name of a constructor until
the next token is read. Students had to distinguish
between methods and constructors based on this
next token.

� Method bodies are ignored. To skip a method body,
we instructed students to \count braces" until the
number of \f\ equaled the number of \g." This
was as easy as it sounds; we explicitly told the
students that the lexer was intelligent enough to
correctly handle braces that occurred in unusual
contexts, such as within comments or explicit char-
acter strings.

The project handout explained in detail how to inter-
pret the grammar. We spent part of one lecture teaching
students the basic ideas of parsing the grammar. We
taught them to \determine which tokens might come
next, and for each possibility record the necessary in-
formation and determine which tokens might come after
that, and so on." Although we hinted which control con-
structs correspond to grammar constructs (while for �,
for example), we were deliberately vague and concep-
tual.

3.4 Output Speci�cation

Most of the output speci�cations were straightforward;
for example, we required that students provide a hyper-
link to the JDuck page of a class's inheritance parent.
A more interesting requirement was that class members
(i.e., variables and methods) should be grouped by kind

in the output, e.g., static variables should be grouped

File = [import LIBRARY;]*
[package PACKAGE;]
[public] [abstract] [�nal] class CLASS [extends SUPERCLASS]
[implements INTERFACE [,INTERFACE]*]
f

//Variables
Variables*
//Methods
Method*

g

Variables = [public j private j protected] [static] [�nal] TYPE VAR [, VAR]*;

Method = [public j private j protected] [static] [abstract] [�nal]
[TYPE] METHOD ([TYPE PARAM [, TYPE PARAM]*]) f...g

Figure 1: Grammar of the Java subset the students used.

and listed separately from instance variables. This im-
plicitly forced the students to generate an intermediate
representation of the class and its members rather than
allowing the members to be completely processed \on
the
y" in the ordered encountered in the class de�-
nition. In so doing, the students gained experience in
designing and using an interesting tree-like data struc-
ture, which was one of the main goals of the project.
The required order of presentation for class members

in the output was

1. static variables
2. instance variables
3. constructors
4. static methods
5. instance methods

While our grammar speci�ed that all variable de�nitions
would precede all methods de�nitions within a class,
there were no restrictions on the relative ordering of
di�erent kinds of variables and methods.
We did not specify the visual appearance of their

generated HTML pages. Apart from hinting that they
should probably use certain HTML structural elements,
such as lists, we left the design up to them. We warned
them that while we would be happy to see creative web
designs, they should be wary not to spend too much
time on the visual aspects of the project until they were
satis�ed that their main \engine" was working correctly.

3.5 Extra Credit

For extra credit, students were asked to parse as many
inheritance ancestor (parent, grandparent, etc.) classes
as existed in the same directory, and use this informa-
tion to list inherited members. More precisely, each in-
herited member needed to be documented exactly once
if it was not overridden in the child class, and not listed
as inherited if it was overridden. The extra credit re-
quirement has an elegant recursive solution since the
inherited members of the child are essentially the union

of the inherited members of the parent and the members
de�ned in the parent, minus the members overridden in
the child.
Students who attempted the extra credit were warned

that they would have to address some additional prob-
lems. For example, constructors and private members
are not inherited. Also, determining equality on method
types is an interesting exercise; parameter types must
match, but parameter names need not.

3.6 Staged Development

Finally, we were concerned that some students might
have trouble building their projects without some guid-
ance on what process to follow. For example, it is dif-
�cult to complete the parsing correctly without gener-
ating the AST. Therefore, we recommended that stu-
dents used a staged development approach [5] to build-
ing their JDuck implementation. We told them to work
in stages by �rst getting a basic infrastructure working,
and then successively adding more and more elements of
the grammar to their solution. Fortunately, the gram-
mar partitions easily into class declaration, variable dec-
larations, and method declarations. Furthermore, aug-
menting a completed project with the extra credit re-
quires almost no change to existing code.

4 A Simple Example

Figure 2 shows a short class de�nition that conforms
to the grammar given in Fig. 1. Figure 3 shows the
corresponding HTML for one possible correct solution,
and Figure 4 shows the output as viewed in Internet
Explorer 4.0.

5 Evaluating the Solutions

We designed and distributed the source code for a sim-
ple GUI front-end that all students had to conform to.
This proved to be very useful during the grading; only

class Duck extends Fowl {

//Variables

int age, birthday;

static private int numDucks;

public Duck mother;

//Methods

protected void newDay(int day) {

if (day==birthday) age++;

}

public Duck(int bday) {

birthday=bday; age=0;

}

public Duck() {

birthday=age=0;

}

}

Figure 2: Example Input

a few of the submissions needed to be hand-tweaked to
get them to compile and run.
Students handed in their solution on a diskette, plus

printouts of their source code and the results of a single
test run of their own devising. The graders then com-
piled and ran each submission against a standardized
set of test programs and reviewed the results against
the expected answers. There were 145 submissions for
the 270 students (most students worked as part of a
team of two).
The test suites used to grade the submissions were not

released to the students beforehand. We warned them
that we would be thorough in our test designs, and en-
couraged them to freely exchange test cases of their own
design among themselves. However, few teams actually
participated in this.
The submissions were graded mostly on correctness

and style, with only �ve per cent of the grade allocated
to visual design of the web pages. The students were
warned that they should not spend too much time de-
signing the visual look-and-feel of the web pages unless
the rest of their project was already complete.
Five of the best submissions were selected to receive

the Golden Duck Award, which we implemented as a T-
shirt. The criteria for selection included passing all of
the correctness tests, good style, and a compelling visual
appearance. The pages generated by these solutions can
be found on the JDuck website; the URL is given below.

6 Conclusions: JDuck as a Learning Experience

We now summarize what we think that the students
learned, what they told us they learned, and what we
would do di�erently next time.

6.1 What the Students Learned

We feel that JDuck gave the students useful experience
in several areas of computer science and software engi-

<HTML><BODY>

<H2><CENTER>Class Information </CENTER></H2>

<HR>

<h1> Class Duck</h1>

Class Attributes:

 Visibility: package

Extends:Fowl

Static Variables:

numDucks of type int is private.

Constructors:

1 argument: bday of type int

no arguments

Instance Variables:

age of type int is package.

birthday of type int is package.

mother of type Duck is public.

Instance Methods:

newDay takes

day of type int

and has return type void.

Its visibility is protected.

<HR> This page generated by Stu Dent's CS211 Project

</BODY></HTML>

Figure 3: Example Output

neering:

� They designed and used non-trivial object-oriented
data structures (e.g., the abstract representation of
a Java class and its members).

� They were exposed to a real software engineering
tool (javadoc), and implemented a simpli�ed ver-
sion of it.

� They were introduced gently to some advanced CS
topics, such as scanning and parsing. We feel this
was especially bene�cial to those students who may
not take further courses in computer science.

� They gained practical experience in the use of a
simple design pattern [2] (the iterator, which they
had seen in lecture).

� They learned basic HTML.

Furthermore, the students learned how to write part of
a larger system:

� Most students worked in pairs, and thus gained ex-
perience in working in a small team.

� The project was too large and complex to be imple-
mented in an ad hoc manner, forcing the students
to plan and think carefully.

� Students gained experience in using a staged devel-
opment process to create a software system.

Class Information

Class Duck
Class Attributes:

l Visibility: package
l Extends:Fowl

Static Variables:

l numDucks of type int is private.

Constructors:

l 1 argument: bday of type int
l no arguments

Instance Variables:

l age of type int is package.
l birthday of type int is package.
l mother of type Duck is public.

Instance Methods:

l newDay takes
� day of type int

and has return type void.
Its visibility is protected.

This page generated by Stu Dent’s CS211 Project

Figure 4: Browser Output

� Students were not given access to the test suite
ahead of time, forcing them to consider carefully
the correctness of their projects, as well as how to
design test suites on their own.

6.2 Feedback from the Students

The student feedback surprised us somewhat. A com-
mon remark was that the project appeared very daunt-
ing at �rst, but turned out to be easier than they had
expected. We had been afraid that the project might be
too di�cult for some of the students, especially those
who would not be taking another CS course in their
degree. However, only a very few students failed to
complete a signi�cant portion of the project; we had
pessimistically expected more students to \fall o� the
edge".

Many students said that they enjoyed being \held by
the hand" through the development of an interesting
system. One student said that he was interested to see
how a real software development tool (i.e., javadoc)
could be constructed from basic concepts learned in a
CS2 course.

Several other students remarked that they particu-
larly enjoyed learning about HTML and web page con-
struction. It was also evident that many students en-
joyed the opportunity to express some creativity in their
web page designs.

6.3 What We Would Do Di�erently Next Time

Overall, we feel that JDuck was very successful as a CS2
project. Given the opportunity, we will likely reuse the
project; there are many ways of tweaking the project or
adding new requirements to make it su�ciently di�erent
to be able to use it again. However, given the chance to
do it all over again we would make a few changes:

� We would add a few more requirements to the as-
signment. We feel we slightly underestimated the
abilities of the students.

� Wewould release one \nasty" test suite beforehand.
This would give the students an indication of what
kinds of cases we would be checking for without
giving away too much. We would also encourage
the students more strongly to exchange their own
test suites with each other.

7 Available Materials

We have prepared a website that contains all of the
pertinent information, including example output from
the Golden Duck award winners, and the test suites we
used: http://plg.uwaterloo.ca/ migod/jduck/. No
solution is provided on the website, but one may be ob-
tained by sending email to migod@plg.uwaterloo.ca.

8 Acknowledgments

We wish express our particular thanks to Max Khavin,
who created the customized JDuck lexer using JLex,
and also wrote the preliminary version of the assignment
handout. We would also like to thank Linda Lee, who
designed the Golden Duck Award, Kristen Summers,
who created the tutorial on web page design, and the
other TAs who were instrumental in the success of the
project: Evan Gridley and Martin Handwerker.

References

[1] Elliot Berk, The JLex Home Page,
http://www.cs.princeton.edu/~appel/modern/

java/JLex/

[2] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns, Elements

of Reusable Object-Oriented Software, Addison-
Welsley, 1995.

[3] The Java Development Kit
Home Page, Sun Microsystems,
http://java.sun.com/products/jdk/

[4] The Javadoc Home Page, Sun Microsystems,
http://java.sun.com/products/jdk/javadoc/

[5] Steve McConnell, Rapid Development, Microsoft
Press, 1996.

