
Input-Covering Schedules for Multithreaded Programs

Tom Bergan Luis Ceze Dan Grossman
University of Washington, Department of Computer Science & Engineering

{tbergan,luisceze,djg}@cs.washington.edu

Abstract
We propose constraining multithreaded execution to small
sets of input-covering schedules, which we define as follows:
given a program P, we say that a set of schedules Σ covers all
inputs of program P if, when given any input, P’s execution
can be constrained to some schedule in Σ and still produce a
semantically valid result.

Our approach is to first compute a small Σ for a given
program P, and then, at runtime, constrain P’s execution to
always follow some schedule in Σ, and never deviate. We
have designed an algorithm that uses symbolic execution to
systematically enumerate a set of input-covering schedules,
Σ. To deal with programs that run for an unbounded length
of time, we partition execution into bounded epochs, find
input-covering schedules for each epoch in isolation, and
then piece the schedules together at runtime. We have im-
plemented this algorithm along with a constrained execution
runtime for pthreads programs, and we report results.

Our approach has the following advantage: because all
possible runtime schedules are known a priori, we can seek
to validate the program by thoroughly verifying each sched-
ule in Σ, in isolation, without needing to reason about the
huge space of thread interleavings that arises due to conven-
tional nondeterministic execution.

Categories and Subject Descriptors D.1.3 [Programming
Languages]: Concurrent Programming; D.3.4 [Program-
ming Languages]: Processors—Compilers, Run-time envi-
ronments

Keywords static analysis; symbolic execution; constrained
execution; determinism

1. Introduction
Multithreaded programs are notoriously difficult to test and
verify. In addition to the already daunting task of reason-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509508

ing about program behavior over all possible inputs, testing
and verification tools must reason about a large number of
possible thread interleavings for each input—the number of
possible interleavings grows exponentially with the length of
a program’s execution. Tools can systematically explore the
interleaving space in part, but in practice, the interleaving
space is too massive to be explored exhaustively [8, 31].

We avoid this problem by constraining execution to a
small set of input-covering schedules. Given a program P,
we say that a set of schedules Σ covers the program’s inputs
if, for all inputs, there exists some schedule S ∈ Σ such that
P’s execution can be constrained to S and still produce a
semantically valid result. In our system, a schedule is simply
a partial order of dynamic instances of program statements
paired with thread ids, i.e., a happens-before graph.

Given a program P, we first enumerate a small input-
covering set Σ using symbolic execution. Then, we attach
a custom runtime system to P that constrains execution to
follow only those schedules in Σ. This combination of pro-
gram and runtime system is essentially a new program, P′,
that accepts all possible inputs and produces semantically
correct behavior, like the original program, but uses fewer
schedules. We always run the constrained program P′ in de-
ployment. The result is that Σ contains the complete set of
schedules that might be encountered during deployment—
this simplifies the verification problem by reducing the num-
ber of schedules that must be considered.

It is not obvious that small sets of input-covering sched-
ules should exist for realistic multithreaded programs. The
key word is small—an input-covering set Σ is of no help
when it is so intractably large that it cannot be enumer-
ated in a reasonable time. An important contribution of this
work is defining Σ in a way that makes finding small input-
covering sets more tractable. Notably, programs that run for
unbounded periods of time can require unboundedly many
schedules, making the set Σ intractably large. We avoid this
problem by partitioning execution into bounded epochs—
we find input-covering schedules for each epoch in isolation,
and then piece those schedules together at runtime.

1.1 System Overview

Enumerating Σ. We use an algorithm based on symbolic
execution to systematically enumerate input-covering sched-
ules for a given program. Figure 1 gives a demonstration. On

1 input X

2 global Lock A,B

3
4 Thread 1 Thread 2

5 for (i in 1..5) { for (i in 1..5) {

6 if (X == 0) { if (X == 0) {

7 lock(A) lock(A)

8 unlock(A) unlock(A)

9 } else { } else {

10 lock(B) lock(B)

11 unlock(B) unlock(B)

12 } }

13 } }

for X == 0:

Thread 1: lock(A)
unlock(A)

Thread 2:
...

(alternates)

for X != 0:

Thread 1:

Thread 2:

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(B)
unlock(B)

...
(alternates)lock(B)

unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

exit

exit

exit

exit

Figure 1. On the left is a simple multithreaded program. On the right is one set of input-covering schedules for the program.

the right side of Figure 1 is a set of input-covering sched-
ules, Σ, that our algorithm might produce when given the
program on the left. Each schedule in Σ is paired with an in-
put constraint that describes the set of inputs under which
the schedule can be followed. Schedules are specified as
happens-before orderings of synchronization statements.

Runtime System. At runtime, we constrain execution
to follow schedules in Σ. We have implemented a custom
runtime system that captures the program’s inputs, finds a
pair (I,S) ∈ Σ such that the program’s inputs satisfy input
constraint I, and then constrains execution to S, ensuring that
execution never deviates from S.

Verification Strategy. Finally, and most importantly,
testing and verification become simpler under the assump-
tion that programs always execute using our custom run-
time system. Given this assumption, the input-covering set
Σ contains the complete set of schedules that might be fol-
lowed at runtime, and as a result, verification tools can focus
on schedules in Σ only, avoiding the need to reason about a
massive nondeterministic interleaving space.

For a simple example, consider deadlocks. We can de-
termine if a schedule deadlocks by simply looking at it—if
any thread does not terminate with an exit statement, then
the schedule deadlocks. We can perform this check for each
schedule in Σ independently. If a deadlocking schedule is
found, we can use the schedule’s associated input constraint
to present the programmer with a concrete input and sched-
ule that leads to deadlock. If no deadlocking schedules are
found, we have proven that we will never encounter a dead-
lock when execution is constrained by our runtime system.

More generally, we can reason about each schedule in iso-
lation by serializing the original multithreaded program into
|Σ| single-threaded programs, where each single-threaded
program Pi is constructed by serializing the original mul-
tithreaded program P according to schedule Si ∈ Σ. This re-
duces the worst-case number of possible program behaviors
from O(k! · i) to O(|Σ| · i), where k is the length of execu-
tion and i is the number of possible inputs. This approach is

called schedule specialization and it has been shown to have
real benefits [39]. For example, consider the following code:

Thread 1 Thread 2

lock(L) lock(L)

if (x%2!=0) if (x%2!=0)

x++ fail()

unlock(L) unlock(L)

There is an assertion failure in T2 when it executes before T1

with an odd value for x. This bug can be difficult to find in
conventional systems because it depends on specific combi-
nations of input (x) and schedule (ordering of lock acquires).
Our approach computes just one schedule for this code snip-
pet (say, T1 before T2), which reduces the verification prob-
lem from a hard thread interleaving problem to a simpler
(but still difficult) single-threaded reachability problem. We
refer to Wu et al. [39] and Yang et al. [41] for more detailed
arguments in favor of schedule specialization.

Assumptions. Our schedule enumeration algorithm as-
sumes data race freedom. When this assumption is broken,
we do not compute a true input-covering set—execution may
diverge from the expected schedule after a data race. We
make this assumption to simplify our analysis in a number
of important ways that will be mentioned later.

We also assume that each program has a bounded number
of live threads at any given moment. If the number of live
threads is input-dependent, we expect the programmer to
supply an upper bound for that input. Bounding the number
of threads allows us to represent each thread explicitly in the
schedule, as shown in Figure 1.

1.2 Comparison to Related Work

Deterministic Execution. Our runtime system selects
schedules deterministically for each input, giving our system
all the benefits of determinism that have been championed
by many prior authors (see [3] for a summary). Since we as-
sume data race freedom, we provide weak determinism as in
Kendo [34]. However, our primary goal is not determinism
per se—we could just as easily record multiple schedules

for each input constraint in Σ and randomly select from
those schedules at runtime. This added flexibility increases
schedule diversity, which has potential benefits for security,
fault-tolerance, and performance [3].

Schedule Memoization. Our system generalizes ideas
introduced by TERN [11] and PEREGRINE [12]. Those sys-
tems memoize schedules from a few tested inputs, so they
provide best-effort schedule memoization only, while our
system enumerates a complete input-covering set. Comput-
ing input-covering sets requires solving a number of techni-
cal challenges not faced by any prior system.

1.3 Contributions and Outline
The primary contribution of this paper is the identification of
the input-covering schedules problem, which to our knowl-
edge has not been introduced previously. Our solution to this
problem depends on a carefully determined representation of
schedules that we describe in §2. Additionally, we make the
following contributions:

• We have designed an algorithm for finding input-covering
schedules (§3). We use a number of optimizations to
avoid combinatorial explosion problems (§4) and to im-
prove the performance and utility of epochs (§5).
• We have implemented our algorithm on the Cloud9 [7]

symbolic execution engine, and we have implemented
a runtime system that constrains execution to input-
covering schedules produced by our algorithm (§6). Our
implementation targets C programs that use pthreads.
• We have performed the first empirical evaluation to ad-

dress the fundamental question: “how large are sets of
input-covering schedules?” (§7) We organize our eval-
uation as a set of case studies to carefully characterize
the program analysis challenges inherent to enumerat-
ing input-covering schedules for realistic multithreaded
C programs.

This paper focuses on the fundamental problem of enu-
merating input-covering schedules. We built a runtime sys-
tem to demonstrate its feasibility and to check the correct-
ness of our schedule enumeration algorithm, but have not yet
optimized the runtime system thoroughly. We also have not
yet explored verification strategies in any significant detail,
though we have implemented a simple deadlock checker that
we describe in §6.3. We end this paper with a formal state-
ment of the guarantees provided by our system (§8), a more
thorough discussion of related work (§9), and concluding re-
marks (§10).

2. Representing Schedules
We represent each schedule as a happens-before graph over
a finite execution trace, where graph nodes are labeled by the
triple (program-counter, thread-id, dynamic-counter) and
edges are induced from program order and synchroniza-
tion in the usual way, such as between release and acquire

operations on the same lock. The program-counter label
represents a synchronization statement in the program, such
as a call to pthread mutex lock, and the pair (thread-id,
dynamic-counter) is a Lamport timestamp [26]. Notice that
ordinary memory accesses are not included in the happens-
before graph, as we assume data race freedom.

We return to the example in Figure 1. On the left is a sim-
ple program in which each thread acquires a different global
lock depending on the value of the input X. A conventional
nondeterministic execution might follow one of 240 possible
schedules (5! when X==0, and another 5! when X!=0). How-
ever, just two schedules are necessary to cover all inputs for
this program—one schedule for X==0, and another for X!=0.
This is illustrated by the right side of Figure 1, which shows
one possible set of input-covering schedules, Σ. (The sched-
ules have been abbreviated for space.)

Importantly, for each pair (I,S) ∈ Σ, the constraint I
should include only those conditions that affect whether
the schedule S can be followed. That is, constraint I should
be a weakest precondition of the schedule S. For example,
suppose we modify the program in Figure 1 to perform a
complex computation in each loop iteration. As long as this
computation does not mutate X or perform synchronization,
the set of input-covering schedules shown in Figure 1 will
be equally correct for our modified program.

The above representation works well for programs that
read their entire input up front (e.g., from the command line
or a file) and then perform a bounded-length computation
on that input. We extend the above representation to support
unbounded-length programs in §2.1. To support programs
that read inputs continuously, we follow the suggestion made
by TERN [11] to represent schedules using a schedule tree in
which nodes are program statements that read new input and
edges are partial schedules that start at an input statement
and end at either another input statement or program exit.
As most details of this approach are prior work, from here
forward we make the simplifying assumption that programs
read all inputs at program entry. We will return to continuous
inputs in §6.2.

2.1 Bounded Epochs
We support programs of unbounded length by partitioning
execution into bounded epochs. In practice, we care not only
about programs of truly unbounded length, but also about
programs that execute for a “very long” time. For example,
consider the following simple program with two threads:

Thread 1 Thread 2

for (i in 1..X) { for (i in 1..Y) {

lock(L) lock(L)

unlock(L) unlock(L)

} }

If X and Y are program inputs, then any set of input-covering
schedules must have a unique schedule for each pair (X,Y).
If X and Y are 32-bit integers, there are 264 possible inputs,

so any set of input-covering schedules must contain 264

total schedules. Equally problematic: the longest of these
schedules must contain 264 total synchronization operations.

Our basic idea is to define schedules one loop iteration at
a time. We do this by partitioning the program into bounded
epochs that are separated by epoch markers. We statically
analyze the program to find all loops that perform synchro-
nization, and then place an epoch marker at the entry of such
loops. The details of this process are explained in §3.1. In
short, the above program would be annotated as follows:

Thread 1 Thread 2

for (i in 1..X) { for (i in 1..Y) {

epochMarker() epochMarker()

lock(L) lock(L)

unlock(L) unlock(L)

} }

Epoch markers act as barriers during program execution,
forcing threads to execute in a bulk-synchronous manner.
For example, suppose a program’s threads begin executing
from some initial state. The threads will execute concur-
rently until each thread is blocked on synchronization, has
terminated, or has reached a future epoch marker (possibly
the same epoch marker the thread started at, e.g., if the thread
went back around the same loop). This quantum of execution
corresponds to a single bounded epoch. Execution repeats
in this bulk-synchronous manner until all threads terminate.
We include “is blocked” in the end-of-epoch condition to
avoid deadlock when thread T1 attempts to acquire a lock
that is held by T2 while T2 is stalled at an epoch marker.
Note that, in practice, we can use loop unrolling to reduce
the frequency of epoch markers (see §5).

We now require a set of input-covering schedules for each
bounded epoch. A bounded epoch E is named by a list of
pairs (pci, callstacki), where pci represents the current pro-
gram counter of thread Ti (i.e., the pc of an epoch marker)
and callstacki is a list of return addresses that represents
the calling context. Our algorithm, defined in §3, enumer-
ates all reachable bounded epochs E and computes an input-
covering set ΣE for each E ∈ E. The initial bounded epoch
starts at program entry, and its inputs are the program’s in-
puts. All other epochs start from a point in the middle of
a program’s execution. The “input” to these epochs is, po-
tentially, the entire state of memory, which introduces chal-
lenges for our runtime system that we will address in §6.2.

2.2 Discussion
Bounded epochs make an intractable problem tractable—
they limit combinatorial explosion by bounding both the
length of each computed schedule as well as the total number
of schedules—but they introduce necessary approximations,
as we will demonstrate in §3.3. Further, bounded epochs do
not eliminate all causes of explosion in the size of Σ. For
example, consider a thread that determines which locks to
acquire using a sequence of conditionals as in the following:

Thread 1

if (X[0]) { if (X[1]) { if (X[n]) {

lock(L[0]) lock(L[1]) ... lock(L[n])

unlock(L[0]) unlock(L[1]) unlock(L[n])

} } }

In this case, the set of locks acquired by thread T1 is uniquely
determined by the value of the bitvector X. If X has 32 bits,
any set of input-covering schedules must have 232 unique
schedules. This is a source of explosion in the size of Σ that
we can think of no good way to eliminate. Since our under-
lying problem is undecidable, anyway, we focus our current
work on programs without such pathological behavior.

Challenges. Bounded epochs introduce two challenges
that we will address in §5. First, how can epochs be made
performant? Since epochs are runtime barriers, a concern is
imbalance of work across threads.

Second, since schedules terminate at epoch boundaries,
how can verification be effective? We observe the following:
any bug that can be detected by examining a single point of
execution can be detected by examining a single epoch in
isolation, perhaps by using schedule specialization on each
epoch. Bugs identifiable from a single point of execution
include deadlocks and assertion failures. However, as we
will describe shortly, some schedules may actually be infea-
sible—leading to false-positives—and some mechanism of
detecting those infeasible schedules is desirable. Other bugs
can be detected only by examining sequences of instructions.
Atomicity violations are one such example. To simplify de-
tection of these bugs, epochs should be long enough so that
most buggy instruction sequences will be contained within
either one epoch or one short sequence of epochs.

3. Finding Input-Covering Schedules
Our algorithm for enumerating input-covering schedules is
shown in Figures 2–5. The input is a program P, and the
output is a mapping from epochs E ∈ E to a set of input-
coverings schedules ΣE for each epoch, where E is a set of
bounded epochs that may be reachable.

We first invoke PlaceEpochMarkers to instrument the
program with epoch markers. We then invoke Search to tra-
verse all reachable bounded epochs, starting from an ini-
tial bounded epoch representing the call to main(). For
each epoch E, Search invokes SearchInEpoch(E), which
performs a depth-first search to enumerate a set of input-
covering schedules for E along with the set of epochs reach-
able from E. We describe each function below.

3.1 Placing Epoch Markers
The basic constraint for epoch marker placement is the fol-
lowing: we must ensure there are a bounded number of syn-
chronization operations between each epoch marker. This
ensures that schedules cannot grow to an unbounded length.

Naı̈vely, we could satisfy this requirement by plac-
ing epoch markers in all loops that perform synchroniza-

1 PlaceEpochMarkers(p: Program) {

2 covered = {"epochMarker","pthread_barrier_wait"}

3 worklist = {all fns that directly perform sync}

4 while (!worklist.empty()) {

5 F = worklist.popfront()

6 foreach (loop L in F, bottom-up) {

7 if (L may perform synchronization

8 && !IsTrivialLoop(L)

9 && @ epoch marker that must-execute in L)

10 place epoch marker at L.entry

11 }

12 if (∃ epoch marker that must-execute in F)

13 covered.add(F)

14 worklist.pushback(immediate callers of F)

15 }

16 }

Figure 2. Algorithm to place epoch markers

tion, including loops that perform synchronization either
directly (e.g., by calling pthread mutex lock) or indi-
rectly (e.g., by calling a function that transitively calls
pthread mutex lock).1 However, it is important to min-
imize the number of epoch markers—a large number of
epoch markers can lead to a large number of epochs in E.

Our actual algorithm, PlaceEpochMarkers, is more
careful. We use a bottom-up traversal of the call graph start-
ing from functions that directly perform synchronization
(lines 3–5 and 14). For each visited function, we place epoch
markers in all loops that perform synchronization and are not
pruned by one of the following three optimizations:

Ignore trivial loops. We ignore simple loops of the form:

while (!condition)

pthread_cond_wait(cvar, mutex)

This is the common idiom for using pthreads condition vari-
ables. We observe that this loop can execute an unbounded
number of synchronization operations only if the condi-
tion variable cvar can be notified an unbounded number of
times. So, as long as we ensure that all loops containing no-
tifications are covered by an epoch marker, we can avoid
placing an epoch marker in the above loop.

Similarly, we ignore loops where the only form of syn-
chronization is a call to pthread create or pthread join.
These loops must be bounded since we assume a bounded
number of threads are live at any given moment (recall §1.1).

Don’t Cover the Same Loop Twice. We consider a
loop covered when there exists an epoch marker that must-
execute on each iteration of the loop. For example, if loop
A contains loop B where B contains an epoch marker, and
if at least one iteration of B must-execute for each iteration

1 Our current implementation does not support recursive functions that
synchronize. This can be remedied by transforming recursive functions into
equivalent iterative functions, either manually, or automatically as in [28].

let hd = thread. slice.head in

if (!Postdominates(hd, branch)

|| WritesLiveVarBetween(branch, hd)

|| SyncOpBetween(branch, hd))

Take(branch)

Figure 3. How precondition slicing handles branches (our
additions are in italics)

of A, then we can avoid placing an epoch marker in loop A
because that is subsumed by the marker placed in loop B.

We implement this optimization by visiting the loop for-
est bottom-up (line 6). Then, we ignore each loop that must-
execute a previously placed epoch marker (line 9). The vari-
able covered contains a set of functions that must execute
an epoch marker, so the check at line 9 is implemented
by checking if there must-exist a call to a function in the
covered set—notice that at line 2, we initialize covered to
include the epochMarker function.

Barriers are epoch markers. Since epoch boundaries
are runtime barriers, we might as well end epochs at explicit
program barriers. So, at line 2, we initialize covered to in-
clude pthread barrier wait so the optimization at line
9 will ignore loops that must-execute a barrier. In this way,
each call to pthread barrier wait is treated as an im-
plicit epoch marker.

3.2 Enumerating Schedules for a Single Epoch
The function SearchInEpoch (Figure 5) uses ExecutePath
to symbolically execute a single path from a given initial
state. This path completes when all threads have reached
an epoch marker, terminated, or deadlocked. ExecutePath
can follow any path and may context switch between threads
arbitrarily, as long as it follows a path that is feasible given
the initial input constraint. If the path did not end in program
termination or deadlock, it ended at a new bounded epoch
that we add to the set of reachable epochs (lines 18–19).
EpochId extracts the epoch identifier (recall from §2.1 that
an epoch is named by the calling contexts from which each
of its threads begins execution).

For each path, we extract the schedule and then com-
pute a conservative weakest precondition of the schedule us-
ing precondition slicing [10], where a precondition slice is
computed from an execution trace and includes only those
statements from the trace that might affect whether the final
statement was executed. The set of branching statements in
a precondition slice combine to form a precondition of the
final statement. We have modified the algorithm from [10]
to instead enumerate all statements from the trace that might
affect the set of synchronization operations that would be
performed. We call this a synchronization-preserving slice.

The original algorithm in [10] works much like a stan-
dard dynamic backwards slicing algorithm: it iterates back-
wards over an execution trace, uses a live set to track data
dependencies, and adds statements to the slice if they modify

1 Search(p: Program) {

2 worklist = {MakeInitialState(p)}

3 output = {}

4
5 while (!worklist.empty()) {

6 // Explore another bounded epoch

7 state = worklist.remove()

8 (schedules, reachable) = SearchInEpoch(state)
9

10 // Found an input-covering set for this epoch

11 output.add(EpochId(state), schedules)

12
13 // Add unexplored epochs to the worklist

14 for (e in reachable)

15 if (e not yet visited)

16 worklist.add(MakeStateForEpoch(e))
17 }

18
19 return output

20 }

Figure 4. Exploring all reachable epochs

items in the live set. Branches are handled as shown in Fig-
ure 3: a branch is included in the slice if either (a) the current
head-of-slice is control-dependent on the branch (this is the
Postdominates check, which is computed with a standard
postdominators analysis), or (b) some other path through the
branch (not taken in the given trace) might modify an item
in the live set (this is the WritesLiveVarBetween check,
which is computed with a static alias analysis).

We make three modifications. First, we include all syn-
chronization statements in the slice to ensure that all control
and data dependencies of synchronization are included in the
slice. Second, we construct a separate slice for each thread
so that all control-flow checks in Figure 3 remain single-
threaded. Finally, we include a branch in the slice if some
other path through the branch (not taken in the given trace)
might perform synchronization (this is the SyncOpBetween
check in Figure 3). The final addition ensures that a branch
is included in the slice if it may affect synchronization.

Because we assume data race freedom, our slicing al-
gorithm does not need to account for potentially-racing ac-
cesses when computing data dependencies. Relaxing this as-
sumption would involve a much more complicated imple-
mentation of WritesLiveVarBetween that would require a
conservative may-race analysis, as we describe in §9.

Shortest-Path First. It is correct for ExecutePath
to follow any feasible path. However, it is optimal for
ExecutePath to execute the shortest feasible path—longer
paths should be executed only as necessary to cover inputs
not covered by the shortest path. Determining the true short-
est feasible path is not decidable, so at each branch our
heuristic is to select the branch edge with the shortest static
distance to a statement that either returns from the current
function or exits the current loop.

1 SearchInEpoch(initState: SymbolicState) {

2 reachableEpochs = {}

3 schedules = {}

4 constraints = {true}
5
6 while (!constraints.empty()) {

7 // Explore a new input constraint

8 state = initState.clone()

9 state.applyConstraint(constraints.remove())

10 (finalState, trace) = ExecutePath(state)
11
12 // Update set of schedules

13 slice = PrecondSlice(trace)
14 schedules.add(MakeConstraint(slice.branches),

15 trace.schedule)

16
17 // Update set of reachable epochs

18 if (!IsTerminatedOrDeadlocked(finalState))

19 reachableEpochs.add(EpochId(finalState))
20
21 // Accumulate unexplored input constraints

22 inputConstraint = true
23 for (b in slice.branches) {

24 c = inputConstraint ∧ ¬b
25 if (c not yet covered)

26 constraints.add(c)

27 inputConstraint = inputConstraint ∧ b

28 }

29 }

30
31 return (schedules, reachableEpochs)

32 }

Figure 5. Enumerating schedules within a single epoch

3.3 Exploring All Reachable Epochs
The function Search enumerates input-covering schedules
for all epochs that are uncovered by SearchInEpoch. In
Search, the key is a call to MakeStateForEpoch, which
computes, for a given epoch, an initial symbolic state that
will be explored by SearchInEpoch. Each symbolic state
includes a set of calling contexts (one per thread), along
with a set of constraints on memory. The calling contexts
are provided directly by the epoch identifier, but the memory
constraints must be computed by MakeStateForEpoch.

How does MakeStateForEpoch compute the initial
memory constraints? The difficulty is that we must compute
constraints that are abstract enough to cover all possible
concrete initial states of the epoch. The most conservative
option is to use a completely unconstrained initial memory,
represented by the constraint true, but this is obviously an
over-approximation—SearchInEpoch will waste time ex-
ploring many infeasible paths. The most precise option is to
symbolically enumerate all paths from program entry to the
beginning of the epoch, then summarize those paths to com-
pute a very precise initial state, but this will be prohibitively

expensive—it suffers from exactly the sort of state-space
explosion that bounded epochs are designed to avoid.

Our approach uses a collection of static dataflow analyses
as a compromise between those two extremes. The dataflow
analyses were designed to remove a few common sources of
infeasible paths, but they are necessarily conservative.2 We
refer to a separate technical report for the details [4], but the
following example demonstrates the general idea:

1 Thread 1 Thread 2

2 void RunA() { void RunB() {

3 Foo(&thelock) Bar(&thelock)

4

5 } }

6 void Foo(Lock *a) { void Bar(Lock *b) {

7 for (i in 1..X) { for (k in 1..Y) {

8 epochMarker() epochMarker()

9 lock(a) lock(b)

10

Suppose we are given an epoch in which threads T1 and T2

begin executing from line 8. To execute this epoch symboli-
cally, ExecutePath needs to answer questions such as: Do a
and b alias? (If so, the critical sections in T1 and T2 must be
serialized.) And, does any thread hold lock a when the epoch
begins? (If so, T1 must block until the lock is released.) The
techniques described in [4] enable precise answers to these
questions in many common scenarios, including the above
scenario. For example, we learn that a and b refer to the
same lock (namely, &theLock), and we learn that no locks
are held at the beginning of the epoch at line 8.

Although the analyses from [4] are adept at removing
common sources of imprecision, they are necessarily con-
servative, so infeasible paths may remain.

4. Avoiding Combinatorial Explosion
Avoiding combinatorial explosion is essential. This section
describes two categories of optimization:

First, we define optimizations that exploit redundant
schedules (§4.1). These optimizations allow us to cover
more inputs with fewer schedules. Precondition slicing can
be viewed as one such optimization, but the optimizations
in §4.1 go further by observing that schedules that are not
obviously the same can sometimes be treated as if they are.

Second, we deal with unbounded loops that contain syn-
chronization using bounded epochs, but what about un-
bounded loops that do not contain synchronization? We are
hesitant to place epoch markers in every loop since a large
number of epoch markers can lead to a large number of
epochs. Instead, we deal with unbounded synchronization-
free loops using a technique we call input abstraction (§4.2).

2 Our data race freedom assumption makes these analyses more effective.
For example, it enables using interference-free regions to reason about
cross-thread interference [13].

4.1 Pruning Redundant Schedules
4.1.1 Ignoring Prefix Schedules
Programs are often implemented using a defensive coding
style: they frequently check for errors (e.g., via assertions
or by checking return codes from system calls) and termi-
nate the program when a failure is detected. Since we in-
clude “thread exit” events in our schedules, it appears that
enumerating a complete set of input-covering schedules re-
quires enumerating all ways in which the program can exit.
In the limit, this requires enumerating all feasible assertion
failures, which is a very hard problem on its own.

We avoid this problem using the concept of prefix sched-
ules. Suppose a thread executes the following code fragment:

lock(A)

if (X == 0) { abort() }

lock(B)

Concretely, there are two feasible schedules: (1) the thread
locks A and then aborts the process, and (2) the thread locks
A and then locks B. We consider the first schedule a prefix of
the second schedule: at runtime, execution can always fol-
low the second schedule, and then stop early if the abort
statement is reached. To support prefix schedules, we mod-
ify ExecutePath and PrecondSlice to ignore branches
that exit the process before performing any synchronization.
For the above fragment, our optimized algorithm outputs
just the second schedule, paired with the input-constraint
true. We arrive at this output by ignoring the true branch of
if(X==0). Note, however, that we would require two sched-
ules if there was a call to lock() just before the abort().

4.1.2 Ignoring Library Synchronization
Users of our tool can opt to ignore internal synchronization
used by library functions such as printf to ensure consis-
tency of internal library data structures. With this option, our
algorithm produces schedules that do not include internal
library synchronization—such synchronization will be per-
formed nondeterministically at runtime. Our rationale is that
developers are more concerned about testing their own code
than library internals, so it is sensible to ignore library inter-
nals and construct input-covering schedules for application
code only. This option works especially well with the pre-
fix schedules optimization (§4.1.1), as programs often call
printf just before aborting the program.

4.1.3 Symbolic Thread Ids
Redundant schedules can also arise across epoch boundaries.
For example, consider a program in which N threads each
execute the following code:

1 while(X) { epochMarker() ... }

2 ...

3 epochMarker()

If X evaluates differently for each thread, then naı̈vely, we
need one epoch in which all threads start at the epoch marker

at line 1, another in which T1 starts at line 3 while all other
threads start at line 1, another in which just T2 starts at line
3, another in which just T1 and T2 start at line 3, and so on.
In total, there are 2N epochs.

The above combinatorial explosion arises if we assign
each thread a concrete thread id during symbolic execution.
We can avoid this problem by instead assigning each thread
a symbolic thread id during symbolic execution. Now, we
need to consider just N+1 total epochs: one epoch in which
all threads start at line 1, another epoch in which one thread
starts line 3, another in which two threads start at line 3, and
so on. The idea is that the specific assignment of thread ids
to calling contexts does not matter, so the EpochId function
should return a multiset of calling contexts, rather than an
ordered list. This optimization requires some cooperation
with our runtime system. Specifically, at each runtime epoch
boundary, we must dynamically map each symbolic thread
id to a concrete thread id—we defer details to §6.2.

More generally, if we extend the above example to use k
epoch markers, then we explore kN epochs using concrete
thread ids, and just

((
k
N

))
epochs using symbolic thread ids,

where
((

k
N

))
is k-choose-N with repetitions. However, if

we further modify the above example so that each thread
Ti executes a unique function fi, where each fi includes k
epoch markers, then we must explore kN epochs because
there are that many unique combinations of calling contexts.

4.1.4 Redundancy from Code Duplication
We run our schedule enumeration algorithm after a com-
piler optimization pass, as this has been shown to speed-up
symbolic execution [9]. However, optimizations can some-
times introduce schedule redundancies by duplicating syn-
chronization. One example is the following transformation,
which is called jump threading in LLVM:

if (X == 0) { f() } if (X == 0)

lock() => { f(); lock(); g() }

if (X == 0) { g() } else { lock() }

Our algorithm starts by executing one path through the
optimized code (on the right). Suppose we execute the false
branch. Precondition slicing will notice the lock() call in
the true branch and direct us down that path as well, and
the end result is an input-covering set with two schedules,
one for X==0 and X!=0. However, both of these schedules
are the same schedule—the choice of schedule has no real
dependency on input X.

Our current approach is to disable all transformations
that might duplicate code, but unfortunately, this is not al-
ways possible. Notably, we cannot disable the following
loop transformation because it is fundamental to the way
many compilers reason about loops:

while (foo()) { if (foo()) {

... => do { ... } while (foo())

} }

If foo() performs synchronization or contains an epoch
marker, duplication of the call to foo() can lead to redun-
dant schedules that we cannot avoid.

4.2 Abstracting Input Constraints
Unbounded synchronization-free loops can cause an explo-
sion in the number of paths explored by SearchInEpoch.
The following code fragment is a good example:
TreeNode* T = TreeSearch(x)

if (T) { lock(L) ... }

In this example, a thread searches for a value in a binary tree,
and then performs synchronization if the value is found. Our
problem is that symbolic execution will eagerly enumerate
all concrete trees for which the expression T!=0 evaluates
to true. Specifically, it attempts to enumerate the following
infinite set of input constraints:
root->x == x

root->x > x && root->left && root->left->x == x

root->x > x && root->left && root->left->x > x ...

...

Our approach is a form of abstraction: instead of execut-
ing TreeSearch symbolically, we treat TreeSearch as an
uninterpreted function and add TreeSearch(x)!=0 to the
path constraint. There are two subtleties in this approach:

What Do We Abstract? We abstract all synchronization-
free loops and recursive functions that produce live-out val-
ues that might affect synchronization. Notice that we do
not abstract loops that contain synchronization, since those
loops are already bounded by epoch markers. We start by
assuming that no loops or recursive functions need to be ab-
stracted. Then, during each call to PrecondSlice (line 13
of Figure 5), we check if any value added to the slice’s live
set was defined in a synchronization-free loop L or recursive
function R. If such an L or R is found, it must be abstracted.

How Do We Construct Abstractions? We construct
a symbolic function FL(x) = y, where x is the set of live-
ins for loop L and y is the set of live-outs, where x and y
can potentially be constructed with some form of summa-
rization, such as the summarization algorithms proposed by
Godefroid et al. [16, 18] (see §9 for a discussion). However,
this is difficult in general since x and y can each include
unboundedly many heap objects. Due to this difficulty, we
currently construct each FL manually. This process is inter-
active: we first run our algorithm from §3; if our algorithm
finds a loop L that must be abstracted, it halts and reports L;
we then produce a hand-written abstraction for L and re-run
our algorithm.

During symbolic execution, we execute the abstraction
FL in place of the actual loop L. Each FL should model the
terminating behaviors of L. We require each FL to terminate
to ensure that our algorithm terminates as well. Of course,
the actual loop L may not terminate, and we preserve that
behavior—when the program is executed with our runtime
system, we execute the actual loop L, not FL.

Each FL is allowed to be an over-approximation of loop
L’s terminating behaviors. This eases construction of FL but
adds potential to explore infeasible paths. Producing each
FL is usually not hard in practice, as the loops to abstract
are often hidden behind natural abstraction boundaries. Con-
tinuing the above example, suppose the binary tree inter-
face includes TreeAdd and TreeDelete. These appear dif-
ficult to abstract since they can mutate unboundedly many
heap objects (e.g., to rebalance the tree), but as long as
all modifications and traversals are performed behind the
Tree* interface, we can conservatively model TreeAdd and
TreeDelete by simply generating a fresh symbolic value
that represents the new root of the tree.

Although the above explanation is phrased in terms of
loops, recursive functions can be abstracted in the same way.

5. Forming Efficient Bounded Epochs
So far we have assumed that in a given epoch, no thread exe-
cutes beyond its next epoch marker. Why might this be inef-
ficient? First, runtime performance is optimal when threads
execute a balanced amount of work per epoch, but naı̈vely
stopping at the next epoch marker can lead to imbalance.
Second, epochs should be long enough so that ordering-
dependent bugs, such as atomicity violations, are usually
contained within a single epoch.

It is more efficient to allow each thread to bypass a fi-
nite number of epoch markers within each bounded epoch.
Since epoch markers are placed in loops, we consider this
is a form of loop unrolling. This optimization coordinates
with our runtime system as follows: for each epoch marker
bypassed by ExecutePath, we add a special node to the
current happens-before schedule so that our runtime system
will bypass that marker at runtime. We use the following
heuristics to bypass epoch markers:

Minimum Epoch Length. A large body of prior work
has made the empirical observation that most ordering-
dependent bugs occur over a short execution window con-
taining at most W instructions per thread. For example, [30]
estimates that W is “thousands of instructions” in the worst
case, but “hundreds” in the common case; [29] estimates
W = 3000; [8] and [35] support this observation but do
not give concrete estimates for W , although [8] observes
that many “hard” atomicity violations have the form if(x)
compute(x), where W spans the short window between the
condition and the computation. This prior work suggests the
simple heuristic that each thread should execute a minimum
of W instructions per epoch.

Balanced Epoch Lengths. Each thread should execute
approximately the same number of instructions per epoch.
For example, suppose we are about to end an epoch with T1

and T2 stalled at epoch markers. If len(T1) > len(T2) + k,
where len(Ti) is the number of instructions executed by Ti

in the current epoch and k is a heuristically-chosen constant,
then we continue executing T2 up to its next epoch marker.

6. Implementation
6.1 Symbolic Execution Engine
We implemented the above algorithms in a version of the
Cloud9 [7] symbolic execution engine extended with the
techniques described in [4]. Cloud9 executes multithreaded
C programs that use pthreads and compile to LLVM byte-
code. To support unmodified C programs, Cloud9 includes
hand-written symbolic models for the Linux system call
layer and the pthreads library, and it models other C li-
brary functions by linking with an actual libc implementa-
tion (uClibc). We have instrumented Cloud9’s pthreads li-
brary to dynamically capture a happens-before schedule dur-
ing symbolic execution.

Limitations. Our implementation has a few limitations
that we consider minor but list for completeness: async sig-
nals, C++ libraries, and floating point arithmetic. First, we
do not support asynchronous delivery of POSIX signals.
This has not been a problem so far. Should it become an is-
sue, we can support asynchronous delivery by buffering sig-
nals until epoch boundaries, similarly to [5] or [24]—such a
buffering scheme would eliminate the need to reason about
a combinatorial explosion of possible signal delivery points.

Second, Cloud9 ships with a standard C library (uClibc)
but not a standard C++ library, and this limits our ability to
run C++ programs. Third, our underlying theorem prover,
STP [15], does not support floating-point arithmetic. Cloud9
makes progress through floating point arithmetic by con-
cretizing values, which means the resulting path constraints
will be incomplete for paths that branch on the result of a
floating-point computation. This is often not an issue for
our algorithm in practice, since many programs compute
floating-point results but do not using floating-point values
to decide when to synchronize. However, this does prevent
us from analyzing some programs, as we discuss in §7.

Challenges. The effectiveness of precondition slicing is
heavily dependent on the presence of a good whole-program
alias analysis. The critical operation is the WritesLiveVar-
Between check (Figure 3)—alias analysis imprecision can
lead to the incorrect belief that a live variable was written,
which results in an overly strong schedule precondition,
which results in the exploration of redundant schedules.

Our implementation uses DSA [27], which, in whole-
program mode, degrades to a field-sensitive Steensgaard
(equality-based) analysis. Our experience suggests that an
inclusion-based analysis is vital. The problem intensifies be-
cause we link with an entire C library—all pointer variables
passed to library functions are effectively merged in the
points-to graph. We unfortunately could not find a publicly
available alias analysis for LLVM that is more powerful, so
we duct-taped this problem by dividing pointer variables into
two classes: application code and library code. Variables in
the later class are assumed to alias anything, while variables
in the former class are analyzed with DSA.

Global state
struct ScheduleFragment {

nextSelectorId: int

schedule: map (threadId, list of H-B-Node)

}

selectors: map(int, (void)->ScheduleFragment*)

currCallstacks: map(threadId, int)

currFragments: list of ScheduleFragment*

Schedule selection at epochs
EpochBarrier() {

isLast = barrier.arrive()

if (isLast) { // last thread?

epochId = hash(sort(currCallstacks.values))

currFragments.clear()

currFragments.append(selectors[epochId]())

barrier.release()

} else {

barrier.wait()

}

}

Figure 6. Key components of our runtime system

6.2 Compiler Instrumentation and Runtime System
Our symbolic execution engine outputs a database of input-
covering schedules that our runtime system follows faith-
fully. Recall from §3 that this database maps each epoch E
∈ E to an input-covering set ΣE for E.

At a high-level, our runtime system is mostly straight-
forward. The global variable currFragments contains the
happens-before schedule for the currently executing epoch.
At the beginning of the program, we compare the current in-
puts with the database of input constraints to select the initial
schedule. Similarly, epoch markers are turned into barriers,
and when all threads reach an epoch barrier, a single thread is
selected (arbitrarily) to update currFragments for the next
epoch. Then, at each synchronization statement, the runtime
system inspects the calling thread’s current happens-before
node, waits until all incoming happens-before dependencies
are satisfied, and then advances to the next node.

A more detailed view is given in Figure 6. We map each
epoch E to a schedule selector function FE for each epoch.
Schedules contain a list of happens-before nodes for each
thread. There are three technical challenges: At each epoch
barrier, how do we efficiently determine the next epoch id E?
How do schedule selector functions check input constraints?
And, how do we deal with continuous inputs?

Determining the Next Epoch. Each epoch id E is de-
fined by a multiset of per-thread call stacks (recall §4.1.3).
We instrument the program to record each thread’s call stack
in a globally-visible location. Then, the last thread to arrive
at an epoch barrier can compute the next epoch id E by sort-
ing this list of call stacks (note that a multiset can be repre-
sented by a sorted list). The sorting operation is made effi-

cient by representing callstacks using hash values as in [6].
The algorithm in [6] has only probabilistic guarantees that
each calling context is given a unique hash value, but since
we know the complete set of epoch ids, we can ensure a pri-
ori that a unique hash value is computed for each epoch.

Schedule Selector Functions. When invoked, the se-
lector FE looks for a pair (I,S) ∈ ΣE such that constraint
I matches the current input, then it return S. This is im-
plemented by compiling ΣE into a decision tree. Our cur-
rent implementation selects each schedule as a determinis-
tic function of the given input, though this could easily be
changed to select schedules nondeterministically when mul-
tiple options are available.

Recall that an epoch’s input can include the state of mem-
ory. The difficulty is that the choice of schedule can de-
pend on thread-local variables. Since FE is executed by one
thread only, how does it reason about state local to other
threads? Our solution is to instrument the program to main-
tain a globally-visible shadow copy of each local variable
that is used in input constraints. In practice this is a very
small percentage of all variables, as we demonstrate in §7.3.
Note that we must also make shadow copies of variables
that are needed to reach heap objects used in input con-
straints. For example, if a constraint depends on the value of
x->next->data, where x is a local variable, then we must
maintain a shadow copy of x to ensure that the data field is
globally reachable.

Supporting Continuous Inputs. We represent sched-
ules as a tree of schedule fragments. At the beginning of an
epoch, each thread follows the initial fragment, represented
in Figure 6 as currFragments[0]. Each fragment f ends in
program exit, in an epoch boundary, or with a new input read
by thread T . In the later case, thread T invokes the selec-
tor function named by f->nextSelectorId, then appends
the selected fragment to currFragments. As other threads
arrive at the end of fragment f , they must wait for T to se-
lect the next fragment before proceeding. We ignore inputs
that are pruned by precondition slicing (§3.2), so updates to
currFragments occur only after the arrival of inputs that
can affect synchronization.

Continuous inputs introduce a further challenge, best il-
lustrated by the following sequence of events:

1 EpochBarrier()

2 z += 5

3 ReadInput(&x)

4 if (x == z && y == w) { lock() }

The selector function invoked at line 3 will evaluate the term
x == z0+5, where z0 is the value of z at the beginning of
the epoch. This value has been lost due to the update at line
2, so we need to snapshot z at line 1. Note, however, that we
do not need to snapshot y or w—the condition y==w does not
depend on input x, so it can be lifted into the epoch’s selector
function that is invoked at line 1.

Chances for Further Optimization. Runtime system
optimization has not been our focus. We see at least three
potential improvements: (1) we can apply a transitive reduc-
tion [40] on each happens-before schedule to reduce cross-
thread synchronization; (2) for each term evaluated by se-
lector function FE , we can memoize the value of that term
as computed by FE to avoid recomputation during actual
program execution; and (3) we can parallelize FE to avoid
serializing FE at each epoch boundary (this last proposed
improvement is perhaps the most complex).

6.3 Verifying Deadlock Freedom
We already check for deadlocks during our search for input-
covering schedules (see Figure 5, line 18). So, in a sense,
we get deadlock checking for “free.” Our algorithm either
outputs a set of non-deadlocking schedules, in which case
we are guaranteed to never deadlock at runtime, or its output
will include at least one pair (I,S) where schedule S dead-
locks, in which case we may deadlock at runtime. In the
later case, we cannot prove that deadlock will actually oc-
cur at runtime because input constraint I may be infeasible
(recall §3.3). In this way, our deadlock checker is imperfect.
Currently, we manually inspect deadlocking schedules to de-
termine if they are actually feasible, but we hope to use more
sophisticated strategies for removing infeasible paths in fu-
ture work to make these manual checks unnecessary.

7. Evaluation
Our evaluation is organized in three parts. We start with a
set of case studies (§7.1) that evaluate the effectiveness of
our schedule enumeration algorithm on a range of applica-
tions. Our case studies include selections from the SPLASH2
and PARSEC benchmark suites, as well as pfscan, a parallel
implementation of grep. We also characterize the effective-
ness of our optimizations (§7.2) and runtime system (§7.3).

We ran all experiments on a 4-core (2-way hyper-threaded)
2.4 GHz Intel Xeon E5462 with 10GB RAM. For each ap-
plication, we marked all command-line parameters as input,
with the exception of the “num threads” parameter, which
we fix to the values 2, 4, and 8 to reveal how our analysis and
our runtime system scale with increasing thread counts. Cap-
turing command-line inputs required a minor code change
of about 10 lines per application, though other inputs (i.e.,
values returned by system calls) are captured automatically.
In some applications, we made two additional code changes
as described in §7.1.2 and §7.1.4, respectively.

We attempted to analyze most programs that were ana-
lyzed by the related schedule memoization system PERE-
GRINE [12], but occasionally ran into limitations of our
implementation (recall §6.1 and footnote 1). Specifically,
we could not run: barnes and ffm from SPLASH2, which
perform synchronization in recursive functions; pbzip,
which uses C++ libraries; and ocean, fluidanimate, and

streamcluster, which use floating-point arithmetic to
control synchronization.

7.1 Case Studies
For each case study, we address the following major ques-
tions: Is a set of input-covering schedules enumerable in a
reasonable amount of time? And if so, how large is E and
how large is each ΣE? We also attempt to characterize how
many of those schedules are infeasible.

Overall results for our fully optimized algorithm are sum-
marized in Table 1. Column 2 gives the maximum num-
ber of threads live at any given instant (this is a function
of the application’s “num threads” parameter, which we fix
to 2, 4, and 8 as described above). Columns 3–9 summa-
rize our algorithm’s final output: Column 3 is the number
of reachable epochs (|E|); Columns 4–6 give statistics that
summarize the number of schedules per epoch (|ΣE |); and
Columns 7–9 give statistics that summarize schedules across
all epochs (|Σ|), including the total number of infeasible
schedules and deadlocking schedules. Column 10 states the
number of input abstractions needed for the given applica-
tion (recall §4.2). Column 11 gives the overall analysis run-
time in seconds (s), minutes (m), or dnf when our algorithm
did not finish within 2 hours.

For all but one program, we proved that Σ was deadlock-
free. We determined the number of infeasible schedules
through manual inspection of Σ. For pfscan, the sched-
ules were too numerous for manual inspection, so we give a
lower bound in Table 1.

Table 2 characterizes the benefits of our optimizations.
For brevity, Table 2 includes just a representative subset of
applications. Columns 3–4 give the number of epoch mark-
ers added by PlaceEpochMarkers, both with and without
optimizations described in §3.1. Columns 5–16 show the re-
sults of running our algorithm with specific optimizations
disabled. For “naı̈ve §3.3”, we use a naı̈ve implementation
of MakeStateForEpoch that leaves memory completely un-
constrained, and for the remaining column groups, we dis-
able the stated optimization. In each group of columns, |E|
is the number of enumerated epochs, |Σ| is the total number
of enumerated schedules (summed across all epochs), and
time is the analysis runtime. We refer to Table 2 in the case
studies below, and give a further discussion in §7.2.

7.1.1 The Trivial Case: Fork-Join Parallelism
blackscholes (from PARSEC) uses fork-join parallelism with
no other synchronization. It is so simple that we consider
it the “hello world” of synchronization analysis. swaptions
(also from PARSEC) is equally simple. Our algorithm easily
infers that these applications need exactly one schedule for
a given thread count.

7.1.2 Case Study: Barrier-Synchronized Parallelism
fft (from SPLASH2) uses fork-join parallelism with a static
number of barriers. Our algorithm infers that fft needs just

|ΣE | Summary of Schedules (|Σ|) # Input Analysis
App # Thr |E| min max avg Total Infeasible Deadlocked Abstracts. Runtime

blackscholes 3,5,9 1 1 1 1 1 0 0 0 5 s, 6 s, 14 s
swaptions 3,5,9 1 1 1 1 1 0 0 0 4 s, 9 s, 65 s
fft 2,4,8 1 2 2 2 2 0 0 0 7 s, 306 s, 90 m
lu∗ 2,4,8 2 1 2 1.5 3 0 0 0 8 s, 7 s, 11 s
radix∗ 2 5 1 2 1.8 9 2 0 0 9 s
radix∗ 4 5 1 8 3.4 17 10 0 0 10 s
radix∗ 8 5 1 64 14.8 74 65 0 0 53 s
pfscan∗ 3 30 2 1209 110.7 3321 203+unk. 203 1 343 s
pfscan∗ 5 50+ 2 3792 404.8 12774+ unk. 87+ 1 dnf

Table 1. Overall results. This is the fully-optimized algorithm. Applications marked with ∗ use “join on all threads” (§7.1.2).

epoch markers naı̈ve §3.3 no §4.1.1 no §4.1.3 no §4.1.4
App # Thr w/ §3.1 no §3.1 |E| |Σ| time |E| |Σ| time |E| |Σ| time |E| |Σ| time

blackscholes 9 0 2 — — — 1 3 6 s — — — — — —
lu 8 0 2 2 486+ dnf 1+ ∞ dnf 5 9 22 s 4 7 18 s
radix 8 2 4 2+ 131+ dnf 5 86 53 s 42 622 619 s — — —
pfscan 3 3 7 159 11272 799 s 30 3356 350 s 50 4772 405 s — — —

Table 2. Cost of removing optimizations. Compare bold values in columns 5–16 with columns 3, 7, and 11 in Table 1. We
mark columns with a dash (—) when the corresponding optimization has no effect. The time limit for dnf is 2 hours.

two schedules for a given thread count. The high analysis
runtime is due to the presence of long sequences of condi-
tionals that use division and modulo arithmetic in a way that
our SMT solver (STP) finds pathologically challenging.

lu (from SPLASH2) synchronizes using a dynamic num-
ber of barriers. Our algorithm divides lu’s schedules into
two epochs: one that begins at program entry (E1), and one
that begins within lu’s main parallel loop (E2). We need just
one schedule for epoch E1 and two schedules for epoch E2.
In epoch E2, one schedule traverses one lock-step iteration
of the parallel loop, and the other exits the program.

lu introduces two program analysis challenges. First,
we must infer that all threads execute the main parallel
loop in lockstep. Failure to infer this fact results in infea-
sible schedules, as shown in column 6 of Table 2—a naı̈ve
MakeStateForEpoch does not make this inference.

Second, lumakes calls of the form pthread join(t[i])
that are deceptively difficult to analyze. We are unable to
uniquely identify each t[i], so we must analyze three paths
per call: one in which t[i] is an invalid thread id, another in
which t[i] refers to a thread that has already exited, and an-
other in which t[i] refers to a thread that has not yet exited.
In total, to join with N threads, we analyze 3N paths, even
though just one of those paths is feasible. We avoid this dif-
ficulty by replacing calls to pthread join with a high-level
“join on all threads” operation that is easy to analyze. Each
application marked with an asterisk in Table 1 was modified
to use this operation in place of pthread join.

7.1.3 Case Study: Barriers and Semaphores
radix (from SPLASH2) is barrier-synchronized like lu, but
with the addition of two parallel phases that use semaphores

to coordinate a tree-based reduction. These semaphores
present the major difficulty—as shown in Table 1, we ex-
plore a number of infeasible schedules.

The following example demonstrates the problem:

1 Thread 1 Thread 2

2 for (...) { for (...) {

3 epochMarker() epochMarker()

4 sem_wait(&s) sem_post(&s)

5

MakeStateForEpoch cannot prove that s.count==0 at the
beginning of the epoch. (In the actual code, this is difficult
because each &s is selected from an array.) As a result, we
explore an infeasible schedule in which T1 does not block
at line 4 because it assumes that s.count>0. This schedule
incorrectly synchronizes T1 and T2, which can lead to the
(incorrect) conclusion that the program contains data races.

It is actually quite easy to prove that the above schedule
is infeasible. Our insight is to exploit Σ, which pairs each
schedule with an input constraint I. For the above schedule,
I is s.count>0. Let E be the epoch containing that sched-
ule. Our job is to show that each schedule Si ∈ Σ that ter-
minates at epoch E always terminates with ¬I resolving to
true. This is easy to show using rely-guarantee reasoning: we
add ¬(s.count>0) as an assertion to the end of each Si;
we add ¬(s.count>0) as an assumption to the beginning
of epoch E; and then we symbolically execute each epoch
in E to ensure that the assertions are always satisfied. Note
that the assumption is necessary because epoch E contains a
schedule that “loops back” to itself.

It would be possible to automatically discharge the neces-
sary verification conditions. We have not implemented this

feature, but we have applied this approach to radix by man-
ually annotating the program with assumption and assertion
annotations to drive the verification procedure. We verified
that the 65 schedules listed as “infeasible” in Table 1 are
truly infeasible.

Why were we able to prove infeasibility so easily both in
the above example and for radix’s 65 infeasible schedules?
The reason is that each input constraint I happens to be a
function of synchronization state only. If some I was instead
a function of arbitrary program state, we would need to
consider all paths that terminate at epoch E, rather than just
all schedules. The interesting novelty in our proof is that,
since we had a small number of schedules to consider, we
could reason about each schedule in isolation by reusing
sequential rely-guarantee reasoning techniques.

7.1.4 Case Study: Task Queues and Locks
pfscan uses task parallelism with one producer thread and
multiple worker threads, and it uses locks to guard shared
data. The queue is implemented with locks and condition
variables. pfscan has the following high-level structure:

1 Producer Consumers

2 for (f in files) while (dequeue(&f))

3 enqueue(f) scanfile(f)

scanfile implements string matching. We had to abstract
one loop (in scanfile) using the technique described in
§4.2. This loop computes the next matching substring—its
live-ins include a string buffer and a current position, and
its live-out is the position of the next match. With 5 threads,
were unable to enumerate a complete set of input-covering
schedules within a two hour time limit.

Interestingly, the prefix schedules optimization (no §4.1.1
in Table 2) does not help pfscan much at all. The reason is
that pfscan acquires a lock on almost every failure path to
perform logging. In fact, the majority of schedules enumer-
ated for pfscan are needed to handle these failure paths:
with 3 threads, at least one thread executed a failure path on
2092 out of 3321 total schedules. Since all failure paths ac-
quire the same lock, they could conceivably be merged into
one schedule—this is an interesting direction for future re-
search.

For pfscan, our algorithm produces a set Σ that in-
cludes deadlocking schedules. These deadlocks are all in-
feasible. The deadlocks include two scenarios: (1) the pro-
ducer believes the queue is full while the consumers have
already exited, and (2) the consumers believe the producer
has exited without first setting the “done” flag. We enu-
merate these false deadlocks because our implementation
of MakeStateForEpoch is not powerful enough to pro-
duce constraints that precisely relate the queue’s capacity,
count, and done fields.

We also explore redundant schedules that arise from code
duplication. Recall from §4.1.4 that compilers transform
while loops to an if-then-do-while form. This transforma-

DTree Size Norm. Exec Time
App IPE LI max avg 2thr 4thr 8thr

blackscholes all 0 0 0 1.0 1.0 1.0
fft all 0 1 1 1.0 1.0 1.0
lu 200M 1 4 1.75 1.0 1.0 1.0
radix 1B 4 6 2.95 1.0 1.05 1.05
pfscan 6K 7 24 2.2 1.6 — —

Table 3. Runtime system characterization: IPE is avg. in-
structions per epoch; LI is # local variables instrumented.

tion duplicates the dequeue call made by each consumer
thread in line 2 of the above code snippet. If this transfor-
mation could be disabled, we would explore 7 fewer epochs
and 326 fewer schedules for 3 threads, and at least 11 fewer
epochs and 479 fewer schedules for 5 threads.

7.2 Optimizations Characterization
Table 2 shows that an effective MakeStateForEpoch is
vital. An effective MakeStateForEpoch not only reduces
the number of explored paths, but it also improves analysis
runtime by providing a more tightly constrained initial state
that our symbolic engine has n easier time reasoning about.
To see this effect, compare the rate of schedule enumeration
in columns 6–7 of Table 2 (4 schedules per minute for lu)
with the rate of enumeration in Table 1 (16 schedules per
minute for lu).

The prefix schedules optimization (§4.1.1) is also essen-
tial. Without this optimization enabled, our algorithm ex-
plores an essentially unbounded number of failure paths in
lu and never escaped the first epoch. (The number of failure
paths could be bounded by applying input abstraction to two
loops, but the key point is that lu does not require input ab-
straction when the prefix schedules optimization is enabled.)

The optimization to avoid code duplication (§4.1.4) im-
proved lu only. However, as we observed in §7.1.4, we ex-
plored redundant schedules in pfscan as a result of a form
of code duplication that this optimization could not elimi-
nate.

7.3 Runtime System Characterization
Table 3 characterizes our runtime system in three ways, as
described below. All numbers in Table 3 are based on ex-
ecutions of the final instrumented program which is linked
with our custom runtime system. These executions are con-
strained to the input-covering schedules summarized in Ta-
ble 1, and, except where otherwise mentioned, the “num
threads” was set to 2 for pfscan and 4 for everything else.

In Table 3, Column 2 reports the average number of in-
structions executed per thread in a single epoch (IPE). We
counted instructions by instrumenting LLVM bytecode, so
actual the number of x86 instructions executed may differ
slightly. As discussed in §5, IPE should ideally be large
enough to span most ordering bugs. Our average IPE is well

over the window of 3K instructions that was suggested by
Lucia et al. in [29]. Although the averages are generally
much higher than 3K, we noticed some variability. For ex-
ample, IPE for radix fluctuated between 30K instructions
and 1B instructions, depending on the parallel phase.

Columns 3–5 characterize the amount of work performed
to compute a new schedule. Column 3 states the number of
local variables instrumented to maintain shadow copies, and
columns 4 and 5 state the maximum and average number of
arithmetic and boolean operators used by schedule selector
decision trees (recall §6.2).

Columns 4–6 characterize our runtime overheads. Each
column states the execution time of the final instrumented
program (linked with our runtime system) normalized to
nondeterministic execution with the same number of threads.
A value of 2.0 means “twice as long.” For benchmark ap-
plications, we used standard benchmark workloads, and for
pfscan, we performed a search in a directory containing
50 files. For barrier-synchronized applications, overhead is
minimal—the programs are already designed to execute in
a bulk-synchronous fashion. For pfscan, we were unable
to measure how well our runtime scales with increasing
threads, since we were unable to enumerate input-covering
schedules for more than 2 threads within our time limit.

8. Discussion of Guarantees
Given a program P, our schedule enumeration algorithm out-
puts a set of bounded epochs E along with a set of input-
covering schedules ΣE for each epoch E ∈ E. Our schedule
enumeration algorithm and runtime system combine to pro-
vide the following guarantees, which we state without proof:

Property 1 (Completeness of ΣE0). Suppose execution
begins from program entry with initial memory state M0,
where M0 contains nothing except the program’s inputs. If
ΣE0 is the set of input-covering schedules for E0, the epoch
at program entry, then for all valid M0, there must exist a
pair (I, S) ∈ ΣE0 such that M0 satisfies constraint I .

Property 2 (Soundness and Completeness of E and all ΣE).
Suppose execution begins from a program context corre-
sponding to some epoch E ∈ E, and suppose the initial
memory state is M .

Then, for all pairs (I, S) ∈ ΣE where M satisfies con-
straint I , if our runtime system forces execution to follow S,
then either: (a) execution will encounter a data race; or (b)
execution will follow schedule S without deviation. In case
(b), schedule S must terminate at program exit, at a dead-
lock, or at some subsequent epoch E′ ∈ E. If schedule S ter-
minates at epoch E′, then execution must arrive at E′ with a
memory state M ′ such that there exists a pair (I ′, S′) ∈ ΣE′

where M ′ satisfies constraint I ′.

Properties 1 and 2 establish that our system is both sound
and complete for race-free programs. By sound, we mean
that for any epoch E ∈ E and any pair (I, S) ∈ ΣE , it

must be possible for execution to follow schedule S when
given an appropriate initial memory state. By complete, we
mean that, for all possible program inputs, execution will
proceed through a (possibly nonterminating) sequence of
epochs E0, E1, E2, · · · , where each Ei exists in E, and as
execution arrives at each epoch Ei, there must exist a sched-
ule Si ∈ ΣEi

such that execution can be constrained to
Si within that epoch. Soundness is established by Property
2, and completeness is established by Property 1 combined
with inductive application of Property 2.

The important consequence of Properties 1 and 2 is that
verification tools can reason soundly and completely even
when they consider only those schedules contained in Σ. Of
course, these properties hold only when the program’s execu-
tion is constrained by our runtime system—when execution
does not use our runtime system, Σ under-approximates the
set of schedules that might be followed and our verification
guarantees are voided. This is why we intend to use our run-
time system in all executions of a given program.

Additionally, our system is subject to two categories of
limitations that we summarize below:

Fundamental Assumptions. As stated in §1.1, our ap-
proach fundamentally assumes, first, that programs are data
race free, and second, that programs have a bounded number
of live threads at any moment. When the first assumption
is broken, our schedule enumeration algorithm is unsound
and execution can diverge from the expected schedule at run-
time. When the second assumption is broken, our schedule
enumeration algorithm will not terminate.

Limitations of our Implementation. As stated in §6.1,
our implementation has limited support for async signals,
C++ libraries, and floating point arithmetic. As stated in
footnote 1 in §3.1, our implementation does not support re-
cursive functions that synchronize. Properties 1 and 2 do not
hold for programs that exceed these limitations. However,
these limitations are specific to our implementation and are
not fundamental to our approach.

Full proofs of Properties 1 and 2 are beyond the scope of
this paper. Full proofs would require a model of execution, a
model of the runtime constraint system, and either assuming
correct or proving correct our slicing algorithm (based on
precondition slicing, which was described without a formal
proof of correctness [10]), our underlying symbolic execu-
tion engine [7], and our underlying SMT solver [15].

9. Related Work
Schedule Memoization. The most closely related work is
schedule memoization from TERN [11] and PEREGRINE [12].
As already mentioned, those systems provide best-effort
schedule memoization only, while our system enumerates
a complete input-covering set. Our notion of epochs is re-
lated to TERN’s idea of windowing, which handles a specific
kind of unboundedness—event loops in server programs.

TERN’s windowing requires programmer annotations, while
we introduce epoch boundaries automatically.

PEREGRINE uses a similar slicing algorithm to approx-
imate weakest preconditions. A key technical difference is
that PEREGRINE’s algorithm does not assume data race free-
dom. Instead, PEREGRINE uses a static may-race analysis
to find memory access pairs that may-race and then adds
a happens-before edge to the schedule for each such pair.
Adopting this approach in our setting would result in a more
complex analysis and more symbolic path explosion due to
the need to consider many possible may-race pairs. Note
that path explosion is not a problem in PEREGRINE’s set-
ting, where slicing is used to compute an input constraint for
tested paths only, but not to select more symbolic paths.

Finally, TERN allows developers to explore multiple
schedules for the same input and then discard those sched-
ules that trigger bugs. This is a form of automatic bug avoid-
ance that could be adopted by our system as well.

Deterministic Execution. See our comparison in §1.2.
A further comparison can be found in the critique by Yang
et al. [41], who observe that, while determinism reduces the
number of schedules to one schedule per input, determinism
does not necessarily reduce the total number of schedules
by a significant amount. Yang et al. argue—and we agree—
that reducing the total number of schedules provides a more
significant benefit to testing and verification tools.

Synchronization Analysis. Static analyses have been
developed to summarize synchronization behavior. These
include may-happen-in-parallel analysis [33] and barrier
matching [1, 42]—see Rinard’s survey for a summary [37].
These analyses are cheap to compute but they construct
schedules approximately, while our analysis is expensive
to compute but constructs schedules precisely; thus, these
approaches occupy two opposite ends of the performance/-
precision tradeoff.

Symbolic Execution. We faced three main technical
challenges: infeasible paths (§3.3), redundant schedules
(§4.1), and unbounded loops (§2 and §4.2). Each challenge
represents a specific instance of symbolic execution’s path
explosion problem, which has been studied extensively. For
example, our optimizations to avoid schedule redundancies
are reminiscent of various partial-order reductions devel-
oped for model checking [14, 20], though that prior work
identifies schedule redundancies given a fixed input, while
we identify redundancies across inputs (cf. §4.1.1).

Further, in §4.2 we observed that some form of input ab-
straction is necessary to achieve good scalability of sym-
bolic execution. Other authors have made the same obser-
vation, most notably Anand et al. [2] and Godefroid [17].
Anand et al. [2] propose using manually-written abstrac-
tions (as we do), and they propose a methodology for writing
those abstractions. Relatedly, abstractions can be created us-
ing programmer-written contracts [38] or via automatically
constructed summaries [16, 18].

Finally, one can view our use of bounded epochs as a
form of path merging [19, 21], where epoch boundaries rep-
resent path merge-points. Classical path merging algorithms
execute all paths connecting control-flow points A and B,
then merge the resulting states at B. This is made feasible by
keeping the distance between A and B short. Our algorithm
does not execute all paths within each epoch, making it more
challenging to construct initial states for middle-of-program
epochs, so we rely on other techniques [4].

Program Verification. A large body of prior work has
focused on the verification of multithreaded programs. Much
of this work has used preemption bounding—a schedule is
preemption bounded to depth k if the schedule includes no
more than k preemptions. Musuvathi et al. used this idea in a
model checker for multithreaded programs [31, 32]. Qadeer
and Wu showed how to reduce a multithreaded program into
a sequential program given a fixed k [36], and subsequent
authors have defined more advanced reductions [22, 23, 25].
Although this approach grows exponentially more costly
as k increases, it has been shown empirically that many
concurrency bugs can be found with k ≤ 2, making this
approach practical. For example, Qadeer and Wu used this
technique to find data race bugs in Windows device drivers.

The idea to analyze a multithreaded program by first re-
ducing it to an equivalent sequential program is shared by the
technique of schedule specialization [39] that we summa-
rized in §1.1. Unfortunately, all of the above reductions are
incomplete in practice, in the sense that they do not analyze
all possible schedules. Specifically, preemption bounding is
incomplete unless k ≈ ∞, and schedule specialization is in-
complete unless all schedules are available. By constraining
execution to a small set of input-covering schedules, our ap-
proach can make these promising reductions complete. No-
tably, the approach to schedule specialization taken by Wu
et al. [39] can be directly applied to our proposed system by
producing a specialized program for each schedule in Σ.

10. Conclusions
This paper opens two new research directions. First, we
have introduced the input-covering schedules problem. We
showed how to make this problem more tractable by par-
titioning execution into bounded epochs. We designed and
implemented an algorithm for enumerating input-covering
schedules. An empirical evaluation demonstrates that it
is possible to enumerate a complete set of input-covering
schedules for at least some realistic programs.

Second, by constraining execution to a set of input-
covering schedules, we open the door for new verification
techniques that exploit the fact that, in such a constrained
environment, all thread schedules are known a priori. We
took a small first step in this direction by designing and
implementing a simple deadlock checker.

The source code for our implementation will be made
available at http://sampa.cs.washington.edu/.

Acknowledgements
We thank the anonymous reviewers for their valuable com-
ments. We also thank the members of the Sampa and PLSE
groups at UW for their feedback and fruitful discussions.
This work was supported in part by the National Science
Foundation CAREER award 0846004, a Google Ph.D. Fel-
lowship awarded to Tom Bergan, and a gift from Microsoft.

References
[1] A. Aiken and D. Gay. Barrier Inference. In POPL, 1998.
[2] S. Anand, C. S. Păsăreanu, and W. Visser. Symbolic Execution

with Abstract Subsumption Checking. In SPIN, 2006.
[3] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The Determin-

istic Execution Hammer: How Well Does it Actually Pound
Nails? In Workshop on Determinism and Correctness in Par-
allel Programming (WoDet), 2011.

[4] T. Bergan, D. Grossman, and L. Ceze. Symbolic Execution
of Multithreaded Programs from Arbitrary Program Contexts.
Technical Report UW-CSE-13-08-01, Univ. of Washington.

[5] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic
Process Groups in dOS. In OSDI, 2010.

[6] M. D. Bond and K. S. McKinley. Probabilistic Calling Con-
text. In OOPSLA, 2007.

[7] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel Sym-
bolic Execution for Automated Real-World Software Testing.
In EuroSys, 2011.

[8] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In ASPLOS, 2010.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In OSDI, 2008.

[10] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: Securing Software by Blocking Bad Input. In SOSP,
2007.

[11] H. Cui, J. Wu, C. che Tsai, and J. Yang. Stable Deterministic
Multithreading Through Schedule Memoization. In OSDI,
2010.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
Deterministic Multithreading through Schedule Relaxation.
In SOSP, 2011.

[13] L. Effinger-Dean, H.-J. Boehm, P. Joisha, and D. Chakrabarti.
Extended Sequential Reasoning for Data-Race-Free Pro-
grams. In Workshop on Memory Systems Performance and
Correctness (MSPC), 2011.

[14] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduc-
tion for Model Checking Software. In POPL, 2005.

[15] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-
vectors and Arrays. In CAV, 2007.

[16] P. Godefroid. Compositional Dynamic Test Generation. In
POPL, 2007.

[17] P. Godefroid. Higher-Order Test Generation. In PLDI, 2011.
[18] P. Godefroid and D. Luchaup. Automatic Partial Loop Sum-

marization in Dynamic Test Generation. In ISSTA, 2011.
[19] T. Hansen, P. Schachte, and H. Sondergaard. State Joining

and Splitting for the Symbolic Execution of Binaries. In Intl.
Conf. on Runtime Verification (RV), 2009.

[20] V. Kahlon, C. Wang, and A. Gupta. Monotonic Partial Order
Reduction: An Optimal Symbolic Partial Order Reduction
Technique. In CAV, 2007.

[21] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient
State Merging in Symbolic Execution. In PLDI, 2012.

[22] S. La Torre, P. Madhusudan, and G. Parlato. Context-Bounded
Analysis of Concurrent Queue Systems. In TACAS, 2008.

[23] S. La Torre, P. Madhusudan, and G. Parlato. Reduc-
ing Context-Bounded Concurrent Reachability to Sequential
Reachability. In CAV, 2009.

[24] O. Laadan, N. Viennot, and J. Nieh. Transparent, Lightweight
Application Execution Replay on Commodity Multiprocessor
Operating Systems. In SIGMETRICS, 2010.

[25] A. Lal and T. Reps. Reducing Concurrent Analysis Under a
Context Bound to Sequential Analysis. In CAV, 2008.

[26] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7), July
1978.

[27] C. Lattner. Macroscopic Data Structure Analysis and Opti-
mization. PhD thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, May 2005.

[28] Y. A. Liu and S. D. Stoller. From Recursion to Iteration: What
are the Optimizations? In PEPM, 1999.

[29] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: Architectural
Support for Debugging and Dynamically Avoiding Multi-
Variable Atomicity Violations. In ISCA, 2010.

[30] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and Surviving Atomicity Violations. In ISCA, 2008.

[31] M. Musuvathi and S. Qadeer. Iterative Context Bounding
for Systematic Testing of Multithreaded Programs. In PLDI,
2007.

[32] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. In OSDI, 2008.

[33] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An Efficient
Algorithm for Computing MHP Information for Concurrent
Java Programs. In FSE, 1999.

[34] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ASPLOS, 2009.

[35] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity
Violation Bugs from their Hiding Places. In ASPLOS, 2009.

[36] S. Qadeer and D. Wu. KISS: Keep It Simple and Sequential.
In PLDI, 2005.

[37] M. Rinard. Analysis of Multithreaded Programs. In Static
Analysis Symposium (SAS), 2001.

[38] S. Tobin-Hochstadt and D. Van Horn. Higher-Order Symbolic
Execution via Contracts. In OOPSLA, 2012.

[39] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound and Pre-
cise Analysis of Parallel Programs through Schedule Special-
ization. In PLDI, 2012.

[40] M. Xu, M. Hill, and R. Bodik. A Regulated Transitive Reduc-
tion for Longer Memory Race Recording. In ASPLOS, 2006.

[41] J. Yang, H. Cui, and J. Wu. Determinism Is Overrated: What
Really Makes Multithreaded Programs Hard to Get Right and
What Can Be Done About It. In HotPar, 2013.

[42] Y. Zhang and E. Duesterwald. Barrier Matching for Programs
With Textually Unaligned Barriers. In PPoPP, 2007.

