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Abstract
We present a new way to generate type-error messages in a poly-
morphic, implicitly, and strongly typed language (specifically
Caml). Our method separates error-message generation from type-
checking by taking a fundamentally new approach: we present to
programmers small term-level modifications that cause an ill-typed
program to become well-typed. This approach aims to improve
feedback to programmers with no change to the underlying type-
checker nor the compilation of well-typed programs.

We have added a prototype implementation of our approach to
the Objective Caml system by intercepting type-checker error mes-
sages and using the type-checker on candidate changes to see if
they succeed. This novel front-end architecture naturally decom-
poses into (1) enumerating local changes to the abstract syntax tree
that may remove type errors, (2) searching for places to try the
changes, (3) using the type-checker to evaluate the changes, and
(4) ranking the changes and presenting them to the user.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.3.4 [Programming Languages]:
Compilers

General Terms Languages, Design

Keywords Type-Checking, Type-Inference, Error Messages, Ob-
jective Caml, Seminal

1. Introduction
The benefits of sophisticated polymorphic type systems (for safe
and flexible programming) and type inference (for eliding cum-
bersome types) hold for programs that type-check. Ill-typed “pro-
grams” have no meaning and type-checkers’ attempts at produc-
ing useful error messages are widely acknowledged as needing im-
provement. Prior attempts to improve error messages have modi-
fied the type-checker to maintain additional information (e.g., con-
straint dependencies) that is unnecessary for determining if a pro-
gram type-checks. This approach has several disadvantages:

1. Maintenance: Type-checking algorithms are often elegant be-
fore they are modified for error-message generation. The ex-
tra information can make type-checkers much more difficult to
write and change, impeding type-system improvements.
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2. Correctness: Type-checkers are trusted components of most
safe-language implementations. Making them more compli-
cated can introduce compiler defects even though error-message
content need not be trusted.

3. Speed: Type-checkers must be efficient enough in practice to
validate large programs. Assuming a large program contains
mostly code that type-checks, the vast majority of time and
space spent maintaining extra information is wasted.

A solution for issues (2) and (3) is to maintain two type-
checkers — a simple, fast one that makes little effort to isolate the
source of ill-typedness and a slower, untrusted one that provides
better feedback. However, naı̈vely following this approach exacer-
bates problem (1) because we have the difficulties of maintaining a
complicated good-message type-checker plus the new task of keep-
ing it consistent with the trusted type-checker. This paper presents
a new way to describe type-errors and a new compiler front-end
that produces good messages while avoiding the disadvantages just
enumerated. Our system is called SEMINAL (Searching for Error
Messages IN Advanced Languages).

The new way to describe type-errors is to find a “small change”
to the program that results in a similar program that type-checks.
For example, if the expression f x y does not type-check then
perhaps f (raise DummyExn) y or f y x or f (x y) will.
This style of error message complements the conventional ap-
proach of describing why type inference failed. First, it focuses
on terms instead of types, which may better match the program-
mer’s view of the program. Second, it is independent of the type-
inference algorithm, allowing it to suggest a change in a program
location far from where type inference discovered an inconsistent
constraint.

Our compiler architecture has three key pieces: The changer
takes an ill-typed program and generates small changes that may
make the program type-check. The changer itself decomposes into
an enumerator that suggests local syntax changes and a searcher
that guides where to attempt changes. The type-checker is un-
changed but assumes a new role as a decision procedure that de-
termines which generated changes succeed. The ranker prioritizes
successful changes and displays messages accordingly. Key to the
approach’s maintainability is that the changer and ranker are un-
trusted and do not assume anything about the type system (i.e., one
could change the type system without changing them).

The compile-time computational cost of calling the type-
checker many times with slightly different programs is justified
on two grounds. First, we do so only for ill-typed files; the ap-
proach adds zero cost to type-checking well-typed files. Second,
we assume the consumer of our error messages is a human. Peo-
ple are slow and expensive: if a couple seconds at compile-time
can produce a useful suggested change that the human would have
found in a few minutes, the computation is well worth the cost.

We have built a prototype implementation of our approach for
Objective Caml and consider it a work-in-progress. As hoped, we



Figure 1. The SEMINAL architecture

have made no changes to the type-checker. Instead, we implement
a “wrapper” in the compiler that intercepts the type-checker’s error
messages and tries to produce better ones. The implementation
and its interaction with the type-checker are made easier by ML
being the compiler-implementation language and the language-
being-compiled, but we hope the approach applies broadly.

The rest of this paper is organized as follows. Section 2 gives an
overview of our system and some examples of the sort of changes
we consider. Sections 3, 4, and 5 describe the enumerator, searcher,
and ranker respectively. Section 6 extends our approach with de-
pendent modifications, which lead to a more elegant and efficient
interaction between the enumerator and the searcher. Section 7 de-
scribes the current status of our prototype and our plans for future
work. Section 8 discusses related work, and Section 9 concludes.

2. Overview
SEMINAL’s error-message generation operates on untyped abstract
syntax trees (ASTs). That is, the code we add to the compiler
front-end sits between parsing (which converts a token stream to
an untyped AST) and type-checking (which converts an untyped
AST to a typed AST). An AST provides much more structure than
a token stream, which makes it easy to search for relevant places to
make changes to the program (Section 2.2). An untyped AST lets
us enumerate slightly different ASTs without needing to produce
types (Section 2.3).

2.1 Compiler Architecture
Figure 1 shows how the pieces of our implementation fit together.
Initially, the AST resulting from parsing is passed to the type-
checker unchanged. If type-checking succeeds, compilation pro-
ceeds unchanged. Otherwise, the type-checker raises an excep-
tion. SEMINAL intercepts this exception and transfers control to the
changer.

Conceptually, the changer searches for places in the AST to
make changes and enumerates a collection of possible changes
at all such places. It then calls the type-checker with the AST
corresponding to each change, discards the ASTs that do not type-
check, and passes the remaining ones to the ranker for presentation
to the programmer.

In practice, searching, enumeration, and type-checking interact
at a finer level. First, the search itself uses the type-checker to avoid
enumerating changes where it is fruitless (Section 2.2). Second, we
type-check each change as soon as it is enumerated. This approach

is more efficient and allows dependent modifications (Section 6)
in which the success of one change guides whether we attempt
other changes. One could also imagine interleaving ranking with
searching and enumeration (i.e., not try changes if better changes
have already succeeded), but we do not currently do so.

2.2 Searching the AST
Given an AST that does not type-check, we wish to identify “in-
teresting” nodes in the tree, i.e., nodes where we should enumerate
local changes to produce new ASTs. Treating every node as inter-
esting is too expensive since there are many nodes and we are not
shy about enumerating many changes for each interesting node.

A simple top-down procedure can quickly eliminate most nodes
from consideration. Starting at the root, replace a node with a
“wildcard” (e.g., an expression like raise DummyExn that can
have any type) and pass the resulting program to the type-checker.1

If the result type-checks, deem the node interesting and recur on its
children to find more interesting nodes. If not, deem the node and
all its descendents uninteresting.

This procedure has several nice properties. First, it always finds
interesting nodes (e.g., the root is always interesting). Second, it
does not recur into subtrees where no change can fix the type error.
Third, the type-checker gives useful information about the wildcard
replacement: the type inferred for the wildcard is something we
can report to the user without the searcher understanding the type
system. (This information is already computed by the type-checker
but unnecessary for our search procedure; it is essentially a “bonus”
from SEMINAL’s perspective.)

Fourth, the procedure is not limited to one path in the AST (so
given let x = e1 in e2, it can find interesting nodes in e1 and
e2), and it is not constrained by type inference. An alternate search
procedure might start at the node n where the type-checker reported
an error and consider ancestors, descendents, and neighbors of n.
We believe doing so restricts SEMINAL counterproductively, since
it is well-known that type inference can identify locations that are
arbitrarily far from the error source.

This search procedure has limitations. Most importantly, it does
not do well with programs that have multiple independent type
errors. If two typing problems in the source program require two
separate changes, then only a shared ancestor of the changes is

1 In languages without expressions that have any type, interacting with the
type-checker would require additional work.



print_string "a" ^ "b"

sumList [5, 6, 7]

match x with
| A1 -> 1
| A2 -> match y with

| B1 -> 11
| B2 -> 21

| A3 -> 5

print_string "a"
This expression has type
unit but is here used
with type string

5, 6, 7
This expression has type
int * int * int but is here used
with type int

A3
This pattern matches values of type
a but is here used to
match values of type b

print_string ("a" ^ "b")
print_string "a" [[..infix..]] "b"

with [[..infix..]] : unit->string->’a
[[...]] "a" ^ "b"

with [[...]] : string->string

sumList [5; 6; 7]
sumList [[...]]

with [[...]] : int list
[[...]] [5, 6, 7]

with [[...]] : (int*int*int) list -> ’a

match x with
| A1 -> 1
| A2 -> (match y with

| B1 -> 11
| B2 -> 21)

| A3 -> 5

Figure 2. Three examples of type errors, OCaml error messages, and some suggested changes

deemed interesting. Handling multiple errors is important future
work, but we mitigate the problem by considering each top-level
binding separate from what follows it in a module (just as the ML
type-checker does).

2.3 Enumerating Other ASTs
Sometimes identifying an interesting node with the procedure
above is all we need to do. For example, for the trivial program

let a = "hello" in
(a+3)*(a+2)

the search procedure determines that replacing the expression
"hello" with an int suffices for type-checking. (It also deter-
mines that replacing (a+3)*(a+2) with any well-typed expression
suffices, but the ranker prefers the former, smaller change to this
larger one.)

Other times, this sort of “wildcard replacement” (replacing an
expression with one of any type) is a less informative suggested
change. For the program

let f x y = print_string (x ^ (string_of_int y))
in f 3 "hello";

f 4 "world"

a good change is to replace f x y with f y x, yet no wildcard
replacement comes close to approximating it.

Therefore, for each interesting node, we enumerate all local
changes to the AST and see if the resulting new trees type-check.
The changes we consider depend on the particular AST node type.
For the example above, function parameter lists lead to possible
changes including parameter rearranging (as above), parameter re-
moval, and parameter addition (adding a wildcard argument).

While developing our collection of local changes (discussed
more completely in the next section), we have been guided by a
realization that a given change can be more or less justified in terms
of a tree edit. For example, swapping function parameters is just
swapping the order of children at an AST node, a simple operation
worth trying at many nodes. Other “tree-based” changes include
rotations (which often resolve precedence errors) and additions
(which can resolve partial-application errors).

At the other extreme, some local changes account for peculiari-
ties of the source language, i.e., they are not derived from first prin-
ciples of trees. As an example, [1,2,3] is a list containing one
triple, so we try [1;2;3], a list of three integers. In the AST, this
change involves deleting a node (for the triple) and making its chil-

dren be children of its parent. So it is “tree-based,” but we do not
believe this transformation (move children up one level) is worth
applying in general.

By separating the enumerator in our architecture, adding new
possible modifications for a particular sort of AST node requires
just a couple lines of code. Also, completeness is not a major
concern because the lack of highly-specific modifications hurts
only possible error messages for that node, and we can always fall
back to reporting a wildcard replacement or the underlying type-
checker’s error message. For example, we have little experience
with Caml’s object-oriented features, so we do not yet enumerate
any changes for them.

2.4 Examples
Figure 2 shows three snippets of ill-typed programs, the node and
error message reported by the Caml type-checker, and the sug-
gested changes reported by SEMINAL. The syntax [[...]] is just
how we print raise DummyExn since the latter is an implementa-
tion trick. These examples demonstrate situations where SEMINAL
benefits from a global search (rather than focusing on where type
inference failed) and specific term-level changes (rather than fo-
cusing on the type system). The first suggestion in each case is a
specific change. Wildcard-replacement messages, which show the
type inferred for the wildcard, are as informative (though perhaps
less straightforward) as the OCaml error message.

3. Enumerating Modifications
Every AST modification replaces a subtree with a new one, in the
hope that the resulting AST typechecks. For any subtree, one sim-
ple approach is to replace the subtree with a “wildcard”, a tree that
imposes no type constraints. For example, an expression subtree
should be replaced by one of type α. This replacement’s general-
ity makes it widely applicable, but more refined modifications con-
sider the structure of the node being changed. As such, enumerating
modifications is easily organized by type of AST node; let-nodes
suffer from different errors and can be resolved by different modi-
fications than match-nodes, for instance.

Figure 3 summarizes several modifications that SEMINAL at-
tempts. Section 3.1 considers in more detail how we identify use-
ful changes at individual syntax nodes. Section 3.2 explains how
our framework addresses the problem of nested match expressions.
Section 3.3 discusses how we define modifications in our imple-
mentation.



Generic replacements

e1 raise DummyExn Replace any expression with a
wildcard of type ’a

p1 _ Replace any pattern with a wild-
card of any type

t1 ’a Replace any explicit type with a
fresh type variable

Identifiers

id1 id2 Try another variable in scope

r.fld <- e r.otherfld <- e Try another field name in scope

Function applications

fExp a1 a2 a3 ... an fExp a1 a2 (raise DummyExn) a3 ... an Insert an arbitrary new argument

fExp a1 a3 ... an Delete an extraneous argument

fExp a3 a2 a1 ... an Swap any two arguments

fExp a2 a3 a1 ... an Move a single argument to a new
location

fExp (a1 a2 a3 ... an) Reassociate function arguments

fExp (a1, a2, a3, ... an) Uncurry function arguments into a
tuple

fExp (a1 a2 a3 ... an) f a1 a2 a3 ... an Unassociate function arguments

fExp (a1, a2, a3, ... an) f a1 a2 a3 ... an Curry tupled arguments

r.fld := e r.fld <- e Mutable binding instead of field or
array assignment

Let bindings

let p1 = e1 in e2 let rec p1 = e1 in e2 Toggle the rec flag to mark a self-
referential e1

let p1 = e1 in let p2 = e2 in e3 let rec p1 = e1 and p2 = e2 in e3 Hoist nested lets into one let rec

Match expressions

match e with p1 -> e1 | p2 -> ... match e with p2 -> e2 | ... Remove a single match case

match e with ... | _ -> raise DummyExn Add a catch-all case at the end

match e1 with
| p1 -> match e2 with

| p2 -> e3
| p3 -> e4

| p4 -> e5

match e1 with
| p1 -> (match e2 with

| p2 -> e3
| p3 -> e4)

| p4 -> e5

Reassociate inner cases of match
expressions outward.

Miscellaneous

[x, y, z] [x; y; z] Convert a list of a single tuple into
a list of the tuple’s members

let p : t1 = e1 let p = e1 Remove unnecessary type con-
straints

Figure 3. Selected modifications that SEMINAL tries for various expression forms



type astThing = Exp of Parsetree.expression
| Pat of Parsetree.pattern
| Typ of Parsetree.typ
| ...

type astRepl = { revision : (unit -> astThing);
tag : int;
loc : Location.t;
validate : (unit -> bool);
... }

Figure 4. Record type defining SEMINAL modifications; some de-
tails omitted

3.1 Simple Changes
Consider the Caml expression fExp a1 a2 a3 ... an. Several
kinds of errors are specific to this expression: arguments to the
function might be missing or extraneous; arguments might be in
the wrong order; because of operator precedence the expression
might be mis-parsed; arguments might be tupled instead of cur-
ried; etc. Other errors are not endemic to this particular node:
any of the subexpressions fExp, a1, . . . , an might itself be erro-
neous. We therefore consider them separately, when later exam-
ining their respective nodes. To determine what modifications to
try for a given AST node, it is useful to organize modifications
into two broad categories: principled, tree-based modifications, and
language-specific, expert-knowledge modifications.

The appropriate repairs for several of these problems, such
as missing or extraneous arguments, or mis-parsed precedence
among arguments, are natural tree manipulations. For instance,
mis-parsed infix operator precedence is resolved by a tree rota-
tion: compare the ASTs resulting from the type-incorrect pars-
ing (print_string "hello") ^ "world" versus the intended
print_string ("hello" ^ "world"). Tree manipulations gen-
erally include node deletions, node insertions, and node rearrange-
ments [1, 4, 17]; we also found subtree insertions and deletions
and node rotations useful. Tree manipulations are easy to enumer-
ate, since there are a fixed number of operations, and a finite-sized
node on which to apply them. In practice, when implementing the
modifications applicable to a new AST node, we start by consider-
ing the ways a tree manipulation could fit the new node, and then
implementing the relevant ones.

The remaining problems, such as incorrectly tupled or curried
arguments, are less usefully described by their associated tree ma-
nipulations. As the SEMINAL implementors, we conceive of cur-
rying tupled arguments, and then code it up by removing an AST
node (for the tuple) and making its children be children of its par-
ent (the application node). Such modifications are motivated by
specific knowledge of Caml and its syntax. Expert knowledge of
common mistake patterns is necessarily “incomplete,” since every-
one makes different kinds of errors. However, SEMINAL does not
require exhaustive knowledge to be useful, and it easily supports
incremental improvements via the definition of new modifications.

Another “expert-knowledge” example arises with r.fld := v
where r.fld is a mutable field of the same type as v. If the intent
was to mutate the record’s field, the correct code is r.fld <- val.
OCaml implements the first (assignment to a reference) as a library
function, while the second (field mutation) is special syntax. As
such, the tree modification turns a function application into an as-
signment when the function argument is a particular library func-
tion (:=). While easy to implement, generalizing this tree modifi-
cation is not useful.

3.2 Nested Match Changes
A common mistake with nested match expressions is forgetting to
close the inner match so that subsequent cases are grouped with
the outer match. If the patterns in the cases have different types,
a type conflict occurs. This error is an artifact of Caml’s concrete
syntax: there is no “end-match” token, so the ambiguity is akin to
the dangling-else problem, and is resolved in the same way. Similar
ambiguities arise with try...with... and fun... expressions;
for simplicity we illustrate the problem with match expressions.

Resolving a nested-match error requires modifying the structure
of the expression’s subtree, including nodes for an arbitrary number
of nested matches. This operation is more sophisticated than the
other modifications in Figure 3. Nevertheless, the modification is
still “local,” since it changes only the nodes for the nested match
expressions. When SEMINAL encounters an “interesting” match
expression, it recursively gathers into a flat list all the cases and
match tests from all the nested matches. The goal is to recreate
the possible nesting structures which could have produced that list,
hoping that one of them—the one with the correct association of
cases to matches—type checks.

Once the match cases have been gathered, SEMINAL could con-
struct a massive list of modifications, where each one suggests an
alternate way of grouping the internal match cases. In the exam-
ple shown, SEMINAL considers three regroupings: that the B1 case
alone be grouped with the match y expression, that B1 and B2 be,
or that B1, B2, and A3 be. In this example, where we assume that
the An and Bn patterns match distinct types, only the second mod-
ification type-checks, but the enumerator has no understanding of
the type system. In general, patterns can match values of multiple
types, so multiple solutions might be found.

The algorithm just described is simple, but suffers from severe
performance problems: there are simply too many regroupings of
nested expressions. In the simplest case, where all the nesting
occurs in the very first cases of each nested subexpression, the
problem is one of choosing m places to put close-parentheses from
a list of n match cases, where m is the number of nested match
subexpressions. (Recall “n choose m” is exponential in m.) In
other cases, when cases and match subexpressions interleave, the
total number of ways can be exponential in the number of match
cases, which in practice is much larger.

We do not actually compute every possible regrouping eagerly.
Instead we try to parenthesize just a prefix of the cases and use
these intermediate modifications to guide ones that parenthesize
more cases. Doing so requires modifications that can enumerate
more modifications, which is the key generalization that we defer
to Section 6.

3.3 Implementation of Modifications
The task of enumerating the set of modifications applicable to a
particular AST node is conceptually defined by a decomposition
routine, enumerate : astThing -> astRepl list.2 Special-
ized for each syntactic category (expressions, patterns, types, etc.),
this routine simply defines a catalogue of possible modifications for
each AST node type.

The type defining a modification is partially shown in Figure 4.
The key field is the revision thunk, which evaluates to a new
AST subtree with which to replace an older one. For instance, the
astRepl record that defines the generic “replace expression with
α” modification contains a thunk that returns the AST for raise
DummyExn. Similarly, the record that defines the “change mutable
binding to field assignment” modification uses the subexpressions
of r.fld := e in its revision thunk to produce the AST for
r.fld <- e. The enumerator, however, knows nothing about the

2 Later sections change the return type.



surrounding AST in which this subtree exists. It relies on its caller
to retain that context, within which to place the new subtree so as to
rebuild the entire AST. This context is maintained by the searcher
(see Section 4).

We construct the replacement AST lazily to improve space and
time performance. Many modifications come in groups, such as
inserting an extra argument into a function application: the same
operation can be performed before or after any of the existing
arguments. This commonality lets us share values (the original
argument list and the inserted argument) until actually computing
the distinct replacements (constructing the new argument list with
the inserted argument at a unique position). We can then reclaim
the space sooner: it is unlikely that all the proposed modifications
will succeed, so the failed ones can be discarded quickly. The time-
performance reasons arise in Section 6; in essence we extend the
laziness of computing replacements to the laziness of evaluating
them as well.

The remaining fields of the astRepl assist ranking (for tag and
loc, see Section 5) and dependent modifications (for validate,
see Section 6).

4. Searching for Modifications
The goal of the searcher is to identify AST nodes where enumerated
changes may succeed. In this section, we summarize our algorithm
for finding such nodes, qualitatively evaluate its effectiveness, and
describe its implementation in terms of contexts as often seen in
language semantics.

4.1 Search Locations
Since the goal is to eliminate from consideration as much of the
AST as possible, SEMINAL takes a top-down approach to exam-
ining the AST, looking for the “interesting” nodes as sketched in
Section 2.

We first find the earliest top-level binding that does not type-
check. In ML, subsequent bindings cannot be relevant so we re-
move them (i.e., we truncate the file).3 In our current prototype,
we also assume the preceding top-level bindings have the correct
types. By caching these types (essentially creating a signature for
them), we can avoid type-checking them more than once. Hence
our repeated calls to the type-checker involve exactly one top-level
function or expression.

Within this top-level let-binding, we start by replacing the
entire bound subexpression with a wildcard. This change eliminates
the error, so we recursively descend deeper into the AST, to try
removing subexpressions of the parent and seeing if those changes
also resolve the error.

Conceptually, the search routine maintains a worklist of inter-
esting nodes at which to search. When removing a node from the
worklist, it uses the enumerator to list local modifications as de-
scribed in the preceding section. In practice, the enumerator also
returns the node’s children because this information is easy for the
enumerator—which is already specialized for each AST node—to
determine. If replacing a node with a wildcard fixes the type error,
then the searcher tries the other modifications and places the node’s
children on the worklist. Otherwise, the search continues with the
rest of the worklist.4 All successful modifications, including wild-
card replacements, are retained for the ranker.

3 This simplified approach does not handle details of signature ascription.
A full solution must first remove the signature, and then proceed to truncate
the bindings as above.
4 There are additional interactions possible between modifications, which
can improve search efficiency; see Section 6.

4.2 Effectiveness of Search
This top-down search ensures that SEMINAL finds the smallest
expressions that can be changed to cause the program to type-
check. This technique also prunes irrelevant side branches effi-
ciently, since unsuccessful wildcard replacements eliminate unin-
teresting nodes quickly, high in the AST.

The most striking feature of this algorithm, however, is its com-
plete independence from the type checker’s inner workings. Nor-
mally, the type checker produces some location at which it reports
the error, and this location can be unintuitively far from the actual
cause of the problem. SEMINAL is not guided by these locations,
however, and might instead find the actual problematic location.
Moreover, the type checker could be changed drastically (algorithm
M replaced with algorithm W , or with a non-Hindley/Milner al-
gorithm for a different language) and SEMINAL would still find in-
teresting nodes to replace and modifications to suggest.

While this algorithm works well in practice, there are impor-
tant extensions that would improve its explanatory capabilities.
SEMINAL’s algorithm constantly looks for local changes to each
node. By delegating the responsibility for decomposing each node
onto the enumerators, it relies on the enumerator to list the relevant
locations of its children, for use with future searching. This locality
is an artifact of the datatype used to represent the AST.

If the datatype cannot represent certain relationships in the code
as a “local” property of the nodes, SEMINAL cannot take advantage
of it to find more effective locations to search. Foremost among
these useful relationships is the ability to jump from an expression
using an identifier to the defining expression for that identifier, in
the hope that if replacing one use might resolve one error, changing
the definition might resolve errors at multiple uses later in the file.

Generalizing this problem, we see that some expressions can-
not be repaired except with multiple, coordinated modifications.
Consider let x = 1.0 in (x+1) +. (x+1). Either the defini-
tion of x and the floating-point addition must be simultaneously
replaced, or the integer additions with 1 must be simultaneously re-
placed. Currently, SEMINAL can suggest only let x = 1.0 in
raise DummyExn as an appropriate change. When multiple co-
ordinated changes are necessary, SEMINAL will currently produce
wider error locations than the underlying type-checker.

4.3 Implementation of Search
The key role of recursively descending into the AST is to narrow
the scope of the changes to the most precise region of code that
can be modified to resolve the type error. This requires that each
recursive step maintain context describing the rest of the AST sur-
rounding the active subtree. To do so, we decompose the program
into two pieces that can be reconstituted into the entire AST: A
subtree of the AST and an AST with a “hole” in it. The latter is
represented by a function that takes an AST, fills the hole with it,
and returns the resulting complete AST. That is, we can represent
an “interesting place” via a pair of this type:

astThing * (astThing -> astThing)

This approach is essentially a use of contexts as often seen in
programming-language semantics. Our notion of an active context
is one in which the active node is interesting and is being exam-
ined for possible modification. For example, suppose the second
element of a tuple (e1, e2, e3) is interesting. SEMINAL essen-
tially describes this context as the pair (e2, (fun x -> (e1, x,
e3))), where by (e1,x,e3) we actually mean the AST for a triple
built from the ASTs bound to e1, x, and e3. This encoding of con-
texts permits a clean and uniform search, regardless of the type of
AST node being examined.

Descending from a parent to a child in the AST requires com-
posing a “global context” (the context that takes the parent’s re-



placement and produces a new program) with a new “local con-
text” (the context that describes how to rebuild the parent node af-
ter changing the child node). The searcher’s conceptual worklist has
items of type astThing * (astThing -> astThing) where the
latter is the global context for the item and the former is passed to
the enumerator. The enumerator returns a list of new ASTs to “plug
into the hole” and a list of child nodes to visit recursively (if doing
so is useful).5 For elements of the latter, the enumerator returns an
astThing * (astThing -> astThing) where the astThing is
a child node and the function describes only how to recreate the
parent node given a new child node. This function is the “local
context” for the new worklist item, but the searcher can create the
child’s “global context” via function composition with the parent’s
“global context”.

In practice, we maintain for each worklist item the “global con-
text” (which allows us to create an AST for passing to the type-
checker) and a “sliding window” of the 5 most recent “local con-
texts”. These local contexts are useful for printing error messages
that include some surrounding context. When recurring in the AST,
the sliding window simply discards the fifth most-distant local con-
text and replaces it with the local context returned from the enu-
merator. When a modification succeeds, we return a “fairly local
context” built from the information in the sliding window.

As a final detail, we do not actually maintain an explicit work-
list, relying instead on the call-stack implicit in our recursive search
procedure.

By using contexts and having the enumerator generate local
contexts, our entire search procedure (including the extensions
in Section 6) is small enough that it appears (with very modest
simplifications) in the Appendix.

5. Ranking Successful Modifications
Given a collection of successful changes, we must decide which
ones to present to the programmer and in what order. Choosing
the “best change” is inherently ill-defined; the source program is
semantically meaningless and we do not know the programmer’s
intent. Nonetheless, presenting all successful changes in arbitrary
order is unacceptable: There are typically many and SEMINAL’s
goal is to produce a concise, useful error message. Therefore, we
combine heuristics and explicit guidance from the enumerator to
rank the changes.

Three techniques filter out changes where a “clearly better”
change is also successful. The first exploits a general property of
trees; the others encode knowledge of our ad hoc changes.

• “Smaller” changes are better than “larger” ones: If one modifi-
cation changes code that is strictly contained in code changed
by another modification (a subtree), we discard the latter in fa-
vor of the former. Moreover, a modification that deletes an en-
tire subtree is a “larger” change to the AST than one that mod-
ifies just the root node of that subtree, even though they span
the same region of code. The loc field in Figure 4 enables this
filter.

• Enumerated changes can specify a preference order: We can
specify that one local change to an AST node is always prefer-
able to another. For example, reparenthesizing match expres-
sions is preferable to deleting cases from a match expression.
Specifying a preference is simple using the tag field in Fig-
ure 4.

• Enumerated changes can specify whether they should be dis-
played at all using the validate field in Figure 4. As we will
show, the intermediate steps in computing a reparenthesized

5 Actually, the two lists are merged and a datatype distinguishes the two
sorts of elements.

match expression are each legitimate modifications, but should
not be presented to the user.

These filters rarely conflict, but we apply the latter ones first since
they account for specific sorts of changes.

We then rank the remaining changes. We give “shorter changes”
higher rank given some metric for defining distance. At present, we
have implemented three such metrics:

• Textual length of code. This metric is the simplest, but least
accurate, as source-code comments affect a change’s length.

• String-edit distance [20] of pretty-printed code. This metric is
similar but slightly more robust, as it normalizes the text into
some standard form. However, it too can be biased: longer
identifiers increase length.

• Tree-edit distance [1] of the two ASTs. This metric is the
most expensive to compute (and for large trees we skip it), but
produces a metric robust to the problems of the first two. It
suffers from the reverse problem, of not being sensitive enough
to textual changes in the code.

In practice, we suspect that a combination of these metrics will
yield the best results. We are still experimenting with these metrics,
so we have implemented SEMINAL such that it is trivial to replace
or combine distance metrics.

After ranking, we currently print the changes in ranked order.
In future work, we intend to address relevant user-interface issues.
For example, is it better to print only n changes, perhaps providing
a way to see more (“click here for more suggestions”)? Also,
can the programmer provide feedback about which change was
best (perhaps implicitly via subsequent editing)? Can we adapt the
ranker to programmers’ preferences?

6. Dependent Modifications
As described so far, SEMINAL tries every modification suggested
by the enumerator for every interesting node. In fact, the “things to
try” that the enumerator returns are structured such that the searcher
tries some later modifications only if some earlier modifications
succeed. This generalization has two benefits: it can encode the
procedure for finding interesting nodes (Section 6.1), and it permits
an efficient algorithm for finding nested-match error (Section 6.2).

To support dependent modifications, we allow one list of modi-
fications `2 to depend on another `1 as follows: The modifications
in `2 are attempted only if there exists a modification in `1 that suc-
ceeds. To extend this notion arbitrarily deeply, we use the astMod
type defined in Figure 5; the enumerator then returns a value of
type astMod list. In this list, values of the form Recur v are
child nodes and their local contexts, as explained in Section 4.3.
Values of the form Replace v contain an astRepl list contain-
ing modifications that will be tried (an `1) and a computation to
produce another astMod list (the `2) should any of them suc-
ceed.

With this generalization, we may wish to try modifications for
the sole purpose of determining whether it is worthwhile to try
other modifications. In this case, a modification’s success should
not be passed to the ranker. The validate field in astRepl en-
codes this distinction: If a modification succeeds, the thunk in
validate is called and only if it returns true is the modification
given to the ranker.

6.1 Finding Interesting Nodes, Revisited
Recall our top-down algorithm for finding interesting nodes, i.e.,
nodes where we try enumerated changes and recur on the children:
We see if replacing the node with raise DummyExn succeeds and
try other modifications only in this case. Now with our astMod



type astMod =
Recur of astThing * (astThing -> astThing)

| Replace of astRepl list * (unit -> astMod list)

Figure 5. Datatype defining dependent modifications

definition, we can describe this by having the enumerator return
only one modification (“replace with raise DummyExn”) but with
all the other modifications depending on it.

For example, consider three modifications we might try for a
pair (e1,e2): recur on e1, recur on e2, and swap the children
(replace (e1,e2) with (e2,e1)). The case of the enumerator
for tuples would make an astMod list (call it `2) of length 3
with these modifications. The enumerator then wraps this list by
creating:

Replace([makeDummyRaise()], fun () -> `2)

where makeDummyRaise() creates the wildcard replacement. This
wrapping step can be centralized because we do it for all expres-
sions.

This technique encodes the fact that the searcher should recur
on a node’s children or try other modifications, but only if there
is some way that changing the node can cause the program to
type-check. Using this encoding simplifies the rest of the searching
algorithm.

6.2 Nested Match Changes, Revisited
As discussed in Section 3, the number of ways a nested match
expression could be re-parenthesized can be exponential in the total
number of match cases. However, with dependent modifications we
can encode an algorithm that builds up partial solutions in stages.
The algorithm runs efficiently in practice and always finds a full
parenthesization that type-checks if one exists.6

The key idea is to try to find placements iteratively for the
nth case among the available match expressions, but only after
finding a placement for the first n−1 cases that type-checks. When
placing the nth case, there are at most m possibilities where m
is the number of match expressions that have not had their “close
parentheses” used when placing the first n−1 cases. (There may be
multiple ways to organize the first n− 1 cases so they type-check,
each of which would lead to trying more modifications to place
the nth case.) While this algorithm sketch is admittedly subtle, the
interesting point in terms of SEMINAL is that we can implement it
efficiently with dependent modifications.

In terms of dependent modifications, the enumerator lazily
builds an entire tree of dependent modifications where each length-
n path from the root corresponds to a particular placement of the
first n cases. The laziness is crucial for not investigating any sub-
trees where we can determine just from the first n cases that the
grouping cannot type-check. In practice only very few groupings
of the first few cases will type-check, so our algorithm does not
visit most of this conceptual tree.

To actually generate an AST modification for the first n cases,
we simply truncate the remaining cases (but add cases of the form
| _ -> raise DummyExn as necessary to ensure matches are ex-
haustive).

If we find a modification that uses all the original match cases
and type-checks, we report this success to the ranker. However,
none of the intermediate points where we match fewer cases should
be reported. The validate field suffices to make this distinction.

6 Pathological cases exist where many intermediate stages could be paren-
thesized in many different ways, but such situations require many patterns
that have the right type for multiple match expressions.

Test (error type)
# Nodes
explored

# Calls
to TC

Time
(sec)

Function application 27 111 0.230
Argument currying 34 131 0.138
Field access 5 8 0.020
Missing function arguments 11 24 0.072
Reaching definitions 19 52 0.134
Function rotations 15 58 0.117
Tuple-to-list errors 21 79 0.144
Single nested-match error 37 154 0.456
Multiple nested-match errors 29 516 1.744
Datatype errors 41 88 0.259
Seminal itself 81 268 2.664

Figure 6. Runtime performance for several test cases

7. Current Status and Ongoing Work
As currently implemented, our prototype is both fast enough and
accurate enough to be useful for many common errors. This section
presents quantitative experiments that verify feasibility and identify
bottlenecks, discusses qualitative evaluation that is still in progress,
and identifies important areas of future work.

7.1 Current Quantitative Results
We built SEMINAL by taking OCaml version 3.08.4, adding one
3700-line (heavily commented) module, and making a few tiny
changes in other files (such as adding a command-line option and
intercepting exceptions thrown by the type-checker). Our perfor-
mance results are for running this modified compiler (itself com-
piled to native code) on a 2.8GHz Linux workstation.

Figure 6 describes the run-time for SEMINAL on several files
with type errors. The first column is the number of AST nodes that
are changed at any point. (These are interesting nodes and nodes
deemed uninteresting after replacing them with raise DummyExn
is unhelpful.) The second column is the number of calls to the
type-checker; it is greater than the first column because we try
multiple modifications at some nodes. The third column is total
wall-clock time, including parsing. (We do no code generation
since the programs do not type-check.)

The tests are grouped by relative complexity: the first set con-
tains short unit tests that illustrate a particular type of modifica-
tion; the middle set contains two thirty-line programs with differ-
ent match-nesting complexities; and the final set shows a moderate
(130 line) and a long (3700 line) test (the latter being SEMINAL it-
self seeded with a single typing error near the end of the file). In all
cases, SEMINAL produces short and accurate error messages, but of
course we created the files ourselves (see below for more objective
in-progress evaluation).

Overall, the results are encouraging. None of the tests take more
than a couple seconds, which we feel is reasonable for feedback
directed to humans. Moreover, our searcher explores very few AST
nodes, even for large files.

We also instrumented SEMINAL to determine where the time is
spent. It turns out the vast majority of the time is in the type-checker
— each call to the type-checker takes a few milliseconds (but much
longer for a large file without the optimization described below).
That is, SEMINAL’s algorithms are not the bottleneck, but calling
the type-checker too many times is. To improve performance, we
should spend more time in SEMINAL deciding what changes to try
rather than simply trying more changes. Put another way, we can
try a few thousand modifications before compile-times exceed a
few seconds.

SEMINAL’s performance on large files requires avoiding un-
necessary re-typechecking. In particular, re-typechecking all the



toplevel bindings preceding the one with the type error is wasted
work—doing it would increase the time for our largest experiment
by about a factor of 8. While it is probably not difficult to “check-
point” the type-checker state at the point after these toplevel bind-
ings have been processed, we did not actually modify the type-
checker to do so. Instead, we extract the top-level bindings that
type-check, put their types in a signature, and type-check the “prob-
lem binding” assuming this signature. A more fine-grained ability
to checkpoint should improve performance considerably, but would
require some changes to the type-checker.

While SEMINAL is currently efficient for certain large files with
certain errors, it is possible to creates files that lead to several thou-
sand attempted modifications. (In particular, errors nested within
large nested matches lead to too much wasted work in our cur-
rent implementation.) As described above, we believe additional
caching of type-checker state will solve this bottleneck. We also
believe that SEMINAL runs that take longer than a few seconds
may still prove worthwhile for programmers, especially if run in
the background.

7.2 Future Evaluation
While the quantitative results above show our implementation is
feasible, it does not describe the utility of our approach for pro-
grammers. To address this, we are pursuing two sources of feed-
back: a post-facto analysis, using SEMINAL, of real users’ errors;
and a user study to solicit their real-time opinions while using
SEMINAL.

We are currently collecting data from thirteen volunteers who
are students in our Master’s level course on programming lan-
guages.7 These volunteers have a background particularly interest-
ing for pedagogy and functional programming: They are all full-
time software developers, but they do not have prior experience
with an ML-like language. These students are using a modified
Caml compiler that saves a copy of every file that is passed to the
compiler whether the file type-checks or not. Timestamps preserve
the files’ creation order.

So far we have collected almost two-thousand files, though we
expect the data is largely repetitive. (To encourage participation, we
promised not to look at the files until the course ends in mid-June.)
We will run SEMINAL on each file that does not type-check to
estimate how useful it would have been in identifying the students
errors.

This off-line analysis of collected files cannot reproduce the
experiences of real users, so we are designing a study to examine
the reactions of users to SEMINAL’s suggestions. In particular, we
intend to run a controlled study that evaluates different ranking
strategies and SEMINAL’s messages compared to the underlying
type-checker’s messages.

7.3 Future Algorithmic Improvements
In addition to our ongoing work on improving our implementation
in natural ways (making it more efficient, adding new modifica-
tions, etc.), we have five more substantial additions we intend to
pursue soon.

First, we would like to be able to provide better results when
a top-level binding suffers from multiple independent type errors.
To do so, we need to extend our search to support multiple simul-
taneous “wildcard replacements”. This problem is made more dif-
ficult by not knowing how many such replacements to allow, and
we believe there are connections to clustering problems where the
number of clusters is unknown. It is also possible the programmer
could help guide this process.

7 http://www.cs.washington.edu/education/courses/csep505/06sp/

Second, we would like to support searching via nodes that are
conceptually close neighbors even if they are not close neighbors in
a particular program representation such as an AST. Use-def chains
are probably the most important example.

Third, we would like to use our dependent modifications more
aggressively to improve performance. Based on our experience
with nested matches, we believe we can reduce the number of
modifications we try for function applications by sequencing the
changes more carefully. As a simple example, if changing f x y
to (raise DummyExn) x y does not work, then f y x will not
work.

Fourth, we would like to integrate ranking into the search pro-
cedure to reduce the number of calls to the type-checker. That is,
we believe it is often more efficient to determine a modification is
dominated by an already-successful one that it is to see if the mod-
ification will succeed.

Finally, we would like to be able to combine enumerated
changes automatically to create larger changes. For example, if the
enumerated changes try replacing (e1,e2,e3) with (e2,e1,e3)
and (raise DummyExn,e2,e3), SEMINAL will not try (e2,raise
DummyExn,e3) unless that is also an explicitly enumerated change.

8. Related Work
Prior work has taken several approaches to improving type-error
messages in the presence of type inference. Systems can differ in
how they analyze the ill-typed program and in how they present
results to the programmer. Unlike SEMINAL, all work we are aware
of modifies the underlying type-checker or changes the definition
of what should type-check.

Following Heeren’s excellent summary [11], we can loosely
group prior work into: systems changing the order of unifica-
tion [14, 15], explanation systems [2, 13], reparation systems [9,
12, 16], program slicing systems [6, 10, 19], and interactive sys-
tems [5, 18]; Heeren’s own approach fits within the first two cat-
egories. Our work is closest to the reparation systems because we
suggest modifications to the source program that eliminate the type
errors, but SEMINAL is unique in that it does not look at the types
assigned to expressions by the type-checker. Our work also resem-
bles slicing systems because it computes the set of interesting nodes
to examine, but is unique in that it does so without any analytical
techniques.

The most similar reparation system is from McAdam [16]. He
extends the type checker with a grammar of “linear morphisms”
to resolve type errors. A morphism from (τ1 ∗ τ2) → τ3 to
τ1 → τ2 → τ3, for example, can make a currying error type-
check. The system can consult what morphisms were generated to
produce an error message. (However, this process involves partial-
evaluation technology and may not adapt well to other languages.)
In addition to working at the type-level, this system also does not
search for interesting locations: it is constrained to trying mor-
phisms at the program location where type-inference failed. That
is, McAdam’s work can present a repair only where the unchanged
type-checker would have produced an error message. On the plus
side, McAdam’s framework can automatically compose morphisms
to discover a sequence of changes whereas we can create sequences
only via explicit dependent modifications.

Other approaches attempt program analyses (such as slicing) or
changes to the type-checker’s unification algorithm to determine
all the locations that contribute to a program being ill-typed. Prior
work [21, 6, 3, 7, 8, 19, 10] indicates that this is a feasible solution
to a sound reporting of erroneous code. However, our work dodges
many of the difficulties in a proper program analysis, relying in-
stead on the type checker to throw out any invalid suggestions on
our part. We also have the ability to make changes rather than just
identifying the cause of an inconsistency.



9. Conclusions
We have attacked the ML type-inference error-message problem
with an approach that circumvents all the type-inference issues. By
finding similar programs that type-check, we have a system that
presents a new flavor of error message without changing the type-
checker, adding to the trusted computing base, or slowing down
compilation of well-typed programs. It is easy to augment our
approach with new “changes to try” or new ranking functions for
ordering successful changes. Our approach is also robust to changes
to the underlying type system.

More speculatively, we believe our approach may improve pro-
grammer productivity and pedagogy in ML and other languages
with type inference. Fixing type errors by changing the source pro-
gram matches well how programmers think about their program,
so our approach to error messages helps automate what was previ-
ously a human-intensive task.
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Appendix
Figure 7 shows the entire recursive search procedure. It calls
enumerate to retrieve enumerated changes and children on which
to recur. For each modification, it uses doesItTypecheck to de-
termine if the modification succeeds. It maintains a global context
and a local context-window as described in Section 4. It returns a
list of modifications that is passed to the ranker.



(* types astThing, astRepl, and astMod defined in previous figures *)
val doesItTypeCheck : astThing -> bool
val shiftWindow : (astThing->astThing) array -> (astThing->astThing) -> (astThing->astThing) array
val widestContext : (astThing->astThing) array -> astThing
val enumerate : astThing -> astMod list

let rec search (wholeCtxt : astThing->astThing)
(ctxtWindow : (astThing->astThing) array)
(astNode : astThing) =

let trySingleRepl (r : astRepl) = doesItTypeCheck (wholeCtxt (r.revision ())) in
let rec tryMod md =

match md with
Recur (childNode,ctx) -> search (fun x -> wholeCtxt (ctx x)) (shiftWindow ctxtWindow ctx) childNode

| Replace (replacements, followups) ->
let successes = List.filter trySingleRepl replacements in
if successes = []
then []
else

let validMods = List.filter (fun r -> r.validate ()) successes in
let validWithCtxts = List.map (fun r -> (r, widestContext ctxtWindow, wholeCtxt)) validMods in
let followupResults = List.flatten (List.map tryMod (followups ())) in
List.append validWithCtxts followupResults

in
List.flatten (List.map tryMod (enumerate astNode))

Figure 7. The SEMINAL search engine


