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Abstract
Advanced type systems often need some form of type inference to
reduce the burden of explicit typing, but type inference often leads
to poor error messages for ill-typed programs. This work pursues
a new approach to constructing compilers and presenting type-
error messages in which the type-checker itself does not produce
the messages. Instead, it is an oracle for a search procedure that
finds similar programs that do type-check. Our two-fold goal is to
improve error messages while simplifying compiler construction.

Our primary implementation and evaluation is for Caml, a lan-
guage with full type inference. We also present a prototype for C++
template functions, where type instantiation is implicit. A key ex-
tension is making our approach robust even when the program has
multiple independent type errors.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.3.4 [Programming Languages]:
Compilers

General Terms Languages, Design

Keywords Type-Checking, Type-Inference, Error Messages, Ob-
jective Caml, Seminal

1. Introduction
Advanced type systems play an increasingly important role in many
modern programming languages. They have widely touted benefits
for detecting errors, expressing invariants, and enforcing abstrac-
tions. They are central to many languages that originated in the re-
search community (such as ML and Haskell), and features such as
parametric polymorphism are quickly gaining popularity in more
commercially popular languages (such as Java and C#).

Unfortunately, when types get complicated, it can be burden-
some to require programmers to write down explicit types (e.g., on
variables, function arguments, and type applications), so modern
languages typically provide some form of type inference. In par-
ticular, for the languages considered in this paper, Caml requires
almost no type annotations and C++ often allows implicit instan-
tiation of template functions. While inference is amazingly conve-
nient for programs that typecheck, it often leads to inscrutable error
messages for ill-typed programs. In particular, the type-checker of-
ten reports error locations that are far from the simplest source of
the problem, an issue that has been acknowledged for decades [22].
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Improving type-error messages would positively affect many
programmers and would make type-system advances more widely
embraced, but addressing the problem can be a thankless task. Pro-
ducing good messages during inference is an engineering challenge
that can lead to a larger, slower (even for code that type-checks),
less maintainable, and potentially buggier compiler. Researchers
developing novel uses for types generally focus on programs that
type-check, but bad messages for those that do not can hinder
adoption of the ideas. Researching the error-message problem it-
self leads to a difficult evaluation question: if an ill-typed program
is “semantically meaningless,” how can we evaluate whether one
error message is better than another?

We are pursuing a new approach to producing better type-error
messages in the face of inference. Our approach requires no change
to a compiler’s existing type-checker. Instead, a search procedure
looks for a program close to the original one that does type-check.
The search procedure has no knowledge of type-system specifics; it
simply uses the existing type-checker as an oracle to see if a change
type-checks, which in turn guides further search. The messages
complement the conventional approach of reporting a type error by
reporting changes that lead to type-correct programs. For example,
a message might say that f(x,y) (in the original code) does not
type-check but f(y,x) (at the same location) does.

This general approach has several advantages. (1) By not chang-
ing the type-checker, it imposes no burden to compiler correctness
or compile-time efficiency for well-typed programs. The computa-
tional cost of searching should be measured against the speed of
the human writing the program. (2) It can free the type-checker
implementor from worrying about error messages, which often re-
quires maintaining extra state or traversing the program in a less
convenient order. (3) It can produce better error locations because it
can search for a small change independently of how type inference
works. (4) It can produce more concise and useful error messages
because the compiler architecture makes it easy for the compiler
writer to “try a slightly different expression” at a relevant location.
In short, we believe searching for error messages is a rare win-win
situation where we can simplify compiler construction (by decou-
pling error-message generation from type-checking) while improv-
ing the programmers’ experience (by producing better messages).

In a recent workshop paper [16] we described an initial pro-
totype of our approach for Caml, which we called SEMINAL (for
Searching for Error Messages IN Advanced Languages). In ex-
tending this work to make it practical and evaluate its effective-
ness, we have (1) developed an extended search procedure that
works even when a function has multiple independent type errors,
(2) compared the error-message quality of our system to the very
mature Caml type-checker on a large corpus of automatically col-
lected programs, and (3) implemented a second prototype for C++
template-function errors. Our quantitative results for Caml show
that we do better than the underlying type-checker and that support
for multiple independent errors is important. Our preliminary expe-
rience with C++ suggests that the type-checker’s messages (specif-



Figure 1. The compiler architecture for our approach

ically gcc) can be so bad that any complementary technique is use-
ful. Adapting the approach to C++ raises some new technical chal-
lenges, but overall the two systems are reassuringly similar.

The rest of this paper is organized as follows. Section 2 presents
a complete description of our approach, proceeding in stages to
present more sophisticated versions of our search. Section 3 de-
scribes our empirical evaluation on Caml files we collected auto-
matically from students. Section 4 describes our prototype for C++
templates, emphasizing the differences due to the language and the
platform. Section 5 discusses related work. Section 6 concludes.

2. Our Approach
This section explains how we produce type-error messages using a
search procedure that does not require changing the type-checker.
For specificity, we describe our Caml system and use Caml exam-
ples, though the approach generalizes.

The algorithm takes as input an untyped abstract-syntax tree that
does not type-check. That is, the new compiler code sits between
parsing and type-checking and is bypassed entirely for files that
type-check. The output is a ranked list of error messages (though
we often present only one to the programmer). Figure 1 shows how
the main components of our system interact. The changer produces
modified untyped abstract-syntax trees and uses the type-checker to
see which ones type-check. These results guide subsequent search.
Those that succeed in type-checking are also passed to the ranker,
which sorts them.

To explain how the changer and ranker work in more detail, we
proceed by describing increasingly more sophisticated techniques
in our search procedure. Section 2.1 considers only changes that
“remove” parts of the program, which suffices to understand our
compiler architecture and how our approach can produce better
error-message locations. Section 2.2 adds “constructive changes,”
which lets the system produce error messages that can sometimes
identify the particular mistake in the program. Section 2.3 adds
changes that identify when the problem is that a well-typed subex-
pression is used incorrectly. Finally and most importantly, Sec-
tion 2.4 modifies the search procedure so that it can find a precise
type-error location if the input has multiple independent errors.

2.1 Top-down Removal
To understand the top-down nature of our search procedure, con-
sider the ill-typed Caml program on the left of Figure 2. The func-
tion map2 correctly creates a list by applying f to corresponding
elements of the two lists aList and bList. However, it expects f

to take two arguments in curried form but the use of map2 in the
binding of lst provides a function expecting one pair argument.
Hence this expression does not type-check and the type-checker re-
ports an error. However, its decision to report an error for the addi-
tion expression x + y makes sense only to someone familiar with
unification-based type inference and even then it requires nontrivial
reasoning and “manual type-checking” to determine the true source
of the error. The type-checker’s error message is thus (1) nonlo-
cal (the location is not where the error was made), (2) inaccurate
(the error has nothing to do with addition), and (3) misleading (no
change at that location will make the program type-check).

The searcher begins with the abstract syntax for the entire ill-
typed file and descends recursively to find small subexpressions1

that could be changed in some way to produce a type-correct
program. The searcher works by constructing variations of the
input program and calling the type-checker to see if the changes
are successful. The searcher first tests increasingly-long prefixes
of the top-level definitions to find the first top-level definition that
has a type error. In our example, the searcher finds that while the
definition of map2 type-checks by itself, the definitions of map2 and
lst together do not. It does not examine the third top-level binding
because the second one already causes a type error. After localizing
the type error to the second top-level binding, the searcher proceeds
to examine its initializer expression, i.e.,

map2 (fun (x, y) -> x + y) [1;2;3] [4;5;6]

The searcher “removes” this entire expression, by which we ac-
tually mean it replaces it with a “wildcard” expression that will
always type-check in any context, and discovers that the modified
program now type-checks. In presenting error messages, we write
[[...]] for the wildcard replacement expression. For communi-
cating with the type-checker, we use raise Foo (where Foo is any
exception) as the wildcard, since it is always legal and introduces
no constraints on type-checking.2

After learning that removing the entire initializer expression
eliminates the type error, the searcher attempts to localize the type
error by examining each of its subexpressions in turn and recur-
sively testing whether removing that subexpression alone is suf-
ficient to remove the type error. In this example, removing either
map2 or (fun (x, y) -> x + y) removes the type error, but re-
moving [1;2;3] or [4;5;6] does not. Further recursion on the
two successful subexpressions does not identify any smaller subex-
pressions whose removal eliminates the type error, so the searcher
is done. In particular, no change to x + y (the expression identified
by the type-checker) can produce a well-typed program.

The searcher has identified two candidate error locations, both
of which are less misleading than the one found by Caml’s type-
checker. Our ranker prefers changes closer to the leaves in the
abstract-syntax tree, but in this case the two suggestions are tied
by this metric. Therefore, the ranker would present both, favoring
the removal of (fun (x, y) -> x + y) since there is a heuristic
for preferring the expression on the right in a function application.
The next section explains that our system actually produces a much
more precise message for this example.

Another example where search outperforms the type-checker is
let x = e1 in e2 where e1 type-checks but does not have the
type the programmer intended and e2 uses x many times. The type-
checker reports an error at a use of x but fixing this error only leads
to another error at another use. Assuming e1 is smaller than e2, our
algorithm will suggest removing e1 (or a subexpression therein).

1 The searcher also tries changing members of other syntax categories (e.g.,
patterns and bindings), but our explanation focuses on expressions.
2 In other languages, the lack of an expression with any type could compli-
cate top-down search; see Section 4 for how we deal with C++.



(* List.combine : ’a list -> ’b list -> (’a * ’b) list *)
(* List.map : (’a -> ’b) -> ’a list -> ’b list *)
(* List.filter : (’a -> bool) -> ’a list -> ’a list *)

let map2 f aList bList =
List.map (fun (a, b) -> f a b)

(List.combine aList bList)

let lst = map2 (fun (x, y) -> x + y) [1;2;3] [4;5;6]

let ans = List.filter (fun x -> x==0) lst

Type-checker:
The expression x+y has type int
but is here used with type ’a->’b

Our approach:
Try replacing fun (x, y) -> x + y
with fun x y -> x + y
of type int -> int -> int
within context let lst =

map2 (fun x y -> x + y)
[1;2;3] [4;5;6]

Figure 2. A program where the approach outlined in Sections 2.1 and 2.2 produces a better error message than the underlying type-checker.
(The actual type-checker prints line/column information instead of expressions, but that is an orthogonal issue.)

2.2 Constructive Changes
For each expression for which its removal succeeds in type-
checking, we also try more specific modifications. What modi-
fications we try depends on the kind of expression encountered
(such as function application, conditional expression, pattern-
match, etc.) but does not depend on any type information. For
function definitions that take a single tupled argument (such as
(fun (x, y) -> x + y)), we try among other things chang-
ing them to take curried arguments (e.g., (fun x y -> x + y)),
which for our example leads to an ideal result. The type re-
ported in our message is simply what the type-checker gave to
(fun x y -> x + y); all we do is print it in case it is help-
ful. In our example, the algorithm also tries several other con-
structive changes, such as permuting the arguments to map2,
uncurrying the arguments to map2, and adding arguments to
(fun (x, y) -> x + y), but these are unsuccessful.

Because our ranker prefers constructive changes to removals,
the error message in Figure 2 is ranked highest for the exam-
ple. Though we have experimented with various principled ranking
measures such as tree-edit distance, we have found simple heuris-
tics such as this one suffice.

Creating Constructive Changes The quality of error messages
often depends on whether the algorithm attempts a constructive
change that concisely summarizes the reason the program does not
type-check. Therefore, it is important to have an architecture that
makes it easy for the compiler writer to define changes and try them
efficiently, and it is important to create an effective methodology for
thinking of changes.

In our experience, the best approach when defining constructive
changes for a kind of syntax node is to exploit both “straightfor-
ward tree manipulations” (e.g., swapping the positions of children)
and ad hoc knowledge of the language (e.g., that currying versus tu-
pling can lead to errors). Figure 3 describes some of the changes we
try, including examples of both sorts. (For additional examples, see
our prior work [16].) A key feature of our approach is that trying
something unusual is a local decision that does not pollute type-
checking (many of the changes would be extremely awkward in
the type-checker) and has no more cost beyond additional calls to
the type-checker. Special cases are encouraged rather than discour-
aged. For example, to the type-checker, := is just another function
(with infix syntax), but it can be misused in ways worthy of special
cases.

Modular Implementation To manage the various changes, we
decompose the changer into a searcher and an enumerator. The
role of the enumerator is to take a syntax node and return a “list of
things to try” (though we refine this notion below). The enumerator
is essentially a giant case expression that matches on the sort of
node it is given and produces a list of modifications. It also returns

the syntax children for the purpose of recursive descent. The role
of the searcher is to manage a worklist of changes to try and where
in the overall abstract-syntax tree a change is being attempted (so
that it can “plug in the change” and call the type-checker).

By separating out the enumerator, adding a new constructive
change typically requires only a few lines of code in the compiler
and never requires modifying the core search procedure. One could
even imagine an open framework where programmers could add
possible changes (especially since it does not threaten compiler
correctness), but we leave this to future work.

More Efficient Search Keeping the number of changes tractable
is necessary for efficiency. For example, trying all permutations
of function arguments is exponential, so we should not try them
all indiscriminately. Therefore, the enumerator/searcher interface
is not just a large flat list of changes to try. Rather, the enumerator
produces a structured collection of changes where some changes
are attempted only if other changes succeed or fail. For example,
we can try changing (e1,e2,e3) to (raise Foo, raise Foo,
raise Foo), to test whether any 3-tuple would type-check in this
location, and follow up with trying permutations (e1,e3,e2),
(e2,e3,e1), etc., only if this succeeds. The follow-up changes are
also computed lazily so that we reduce the amount of syntax created
as well as reducing calls to the type-checker. For more details and
more sophisticated examples, see our prior work [16].

2.3 Adaptation to Context
Consider the code if e1 e2 then e3 else e4, where e1 has
type string->string and e2 has type string. The algorithm as
presented thus far will give the sort of concise and local message
that compiler writers do not mind and programmers do:

Try replacing e1 with [[...]]
of type string->bool
within context if e1 e2 then e3 else e4

This suggestion belies the fact that the function call e1 e2 does
type-check—it just does not type-check within its parent, which
expects a bool at that location. It focuses on e1 rather than e1 e2;
the ranker preferred it to the larger change of replacing all of
e1 e2.

Fortunately, improving the algorithm amounts to adding just
one more attempted change that is as general as removal but is
ranked more highly: see if the expression would type-check if its
result type were not constrained by its parent in the syntax tree. We
call this change adaptation (to context). In Caml, the simplest way
to test this is to replace e with adapt e where we define:3

let adapt x = raise Foo

3 (e; raise Foo) works just as well.



Example syntax node Example change Description
f a1 a2 a3 f a1 a3 Remove an argument from a function call
f a1 a2 a3 f a1 [[...]] a2 a3 Add an argument to a function call
f a1 a2 a3 f a3 a2 a1 Reorder arguments in a function call
f a1 a2 a3 f (a1 a2 a3) Reassociate to make a nested call
f a1 a2 a3 f (a1,a2,a3) Put call-arguments in a tuple
f (a1, a2, a3) f a1 a2 a3 Curry arguments instead of tupling
e1.fld := e2 e1.fld <- e2 Replace reference-update with field-update
[e1, e2, e3] [e1; e2; e3] Make an n-element list, not a 1-element list of an n-tuple
let f x = e1 in e2 let rec f x = e1 in e2 Make a function recursive

Figure 3. A small sample of constructive changes: some are systematic, such as rearranging a function call’s arguments; others are specific
to idiosyncrasies of Caml’s concrete syntax.

The function adapt has type α → β. Other languages may not
have functions of such a general type, which could require a more
complicated syntax-transformation to achieve the same effect.

The one place where adaptation is not just another construc-
tive change is the ranker. We prefer adapting larger expressions,
whereas with other changes we prefer modifying smaller expres-
sions. This preference is intuitive since it finds a place high in the
syntax tree where a type constraint was unsolvable. It is also nec-
essary for our example. After all, adapting e1 also succeeds, which
is only a bit more useful than the message without adaptation.

Overall, the ranker prefers adaptation to removal, but prefers
constructive changes to adaptation.

2.4 Triage for Multiple Errors
The algorithm as presented thus far makes a fundamental assump-
tion that the program has one type error. If there is more than one,
the only changes likely to succeed involve removing an ancestor
in the syntax-tree that includes all the errors. Even within one top-
level function, this result can be terrible. Consider:

let x = 3 + true in
... (* many lines of correct code *) ...
4 + "hi"
... (* many more lines of correct code *) ...

Suggesting this entire code fragment be replaced does not help
the programmer find the errors. In contrast, the conventional type-
checker’s messages do not suffer from this problem: the type-
checker reports the first error it encounters.

Extending our algorithm to find multiple small changes simul-
taneously seems daunting especially since the number of errors is
unknown. It is also of questionable worth since we expect program-
mers will often fix one error and recompile. Therefore, we extend
our algorithm to recursively search for good error messages in one
subtree while simultaneously removing one or more other problem-
atic subtrees. We call this approach triage because it ignores some
other parts of the program to focus on one problem. In this way, we
recover the specificity the type-checker has by reporting one error
while still leveraging our algorithm’s ability to search for effective
locations and constructive changes.

Consider first a simple scenario where the function application
e1 e2 e3 e4 does not type-check, some of the four subexpres-
sions are large, removing the entire application succeeds in elimi-
nating the type error, and removing no single one of the four subex-
pressions succeeds. The changer would deem the suggested change
too large and enter triage mode to find a more specific error in this
portion of the program. As before, the changer recursively searches
(i.e., focuses on) each subexpression e1, . . . , e4 in turn, but in triage
mode it does so in a context where some of the other ei are also re-
moved. By focusing on one subexpression and removing some sib-
ling subexpressions (thereby removing their type constraints), we
aim to find better error messages for the focused-on subexpression.

Consider focusing on e1. Which of e2, e3, e4 should also be
removed such that some modification of e1 can be type-checked?
One approach removes them all, searching within e1 in the context

e1 [[...]] [[...]] [[...]]

to find an e1’ such that e1’ [[...]] [[...]] [[...]] type-
checks, but removing all n− 1 other expressions may leave e1 less
constrained than necessary. Another approach exhaustively com-
putes minimal subsets of the n − 1 expressions to remove with
which e1 can be fixed, but this is potentially exponential. We cur-
rently use an algorithm between these extremes. We cumulatively
remove the other n − 1 expressions one at a time in some order,
test each context to see if it permits any fix for e1, and recur with
the first one that succeeds. So for this example we would try the
following contexts in sequence:4

1. [[...]] e2 e3 e4

2. [[...]] e2 e3 [[...]]

3. [[...]] e2 [[...]] [[...]]

4. [[...]] [[...]] [[...]] [[...]]

For example, if (1) failed but (2) succeeded, then we would recur on
e1 in the context e1 e2 e3 [[...]]. (The first failure implies e4
overconstrains the typechecker; the second success implies some
fix exists for e1—at the very least, it can be removed.) We use
the same procedure to find contexts to use for focusing on e2, . . . ,
e4. The results of the four recursive searches are passed to the
ranker, which in addition to its preference for small changes has
a preference for removing fewer of the other n− 1 expressions.

While Section 3 demonstrates that triage is important, our intu-
ition is that the details of the algorithm for removing other expres-
sions are less important. There are many variations we could try,
but our current procedure has proven effective.

Handling Binding Occurrences The example above did not in-
volve an expression with variable bindings, such as a pattern-match
expression. For such expressions, we cannot delete the binding oc-
currences and expect other subexpressions to type-check since they
may now refer to unbound variables. We therefore refine the triage
search for such expressions to include phases.

As an example, we describe how triage works for the pattern
match in Figure 4. The first phase focuses on the scrutinee (x,y),
type-checking it in a context where the patterns and correspond-
ing expressions have been removed. If this does not type-check,
the changer would just recur on it in the reduced context and not
proceed to subsequent phases, skipping searching the patterns and
expressions. In this example, the scrutinee does type-check, so we
proceed. In the second phase, we add the patterns, type-checking
the scrutinee and the patterns in a context where the corresponding

4 We need not actually try the first one since we already know it failed nor
the last one since it must always succeed.



Original expression:
(* val x : int *)
(* val y : ’a list *)
match (x, y) with

0, [] -> []
| n, [] -> n
| _, 5 -> 5 + "hi"

First phase: scrutinee only
match (x, y) with

_ -> [[...]]

Second phase: patterns
match (x, y) with

0, [] -> [[...]]
| n, [] -> [[...]]
| _, 5 -> [[...]]

Third phase: entire expression
match (x, y) with

0, [] -> []
| n, [] -> n
| _, 5 -> 5 + "hi"

Figure 4. A pattern match with several type errors, and the three
phases that triage attempts to isolate them.

expressions have been removed. If the combination of the scruti-
nee and the patterns type-checks, then we would proceed to the
third phase, where we would perform triage on the corresponding
expressions. In this example, the patterns do not type-check. With
a triage procedure similar to that for subexpressions (trying each
pattern with a greedy subset of others that work), we can report:

Your code has several type errors. If you ignore
the surrounding code, try replacing 5 with _ in

match (x, y) with
0, [] -> [[...]]

| n, _ -> [[...]]
| _, _ -> [[...]]

Triage is crucial for reaching this result because two of the triaged
expressions fail to type-check (the first two branches have incom-
patible types and 5+"hi" is always ill-typed). In this example, hav-
ing an algorithm that is robust to multiple errors avoids telling the
programmer to remove an entire match expression, which is almost
never useful.

Integrating Triage and Search Extending the architecture in Fig-
ure 1 to support triage is nontrivial because, unlike adding new con-
structive changes or adaptation, it affects the core search procedure.
As described above, the searcher maintains a mode for each syntax
node of interest and switches from regular to triage mode when the
only regular suggestion for a node with a nontrivial number of de-
scendents is removing it. We have a second enumerator for triage
mode since the work for ordering the changes into phases and the
greedy algorithm for deciding what branches to prune are quite dif-
ferent from the regular changes. When the searcher recurs for each
focused subexpression in triage it again uses regular mode, which
can in turn invoke additional triage on its subtrees.

The ranker prefers triaged solutions least of all. When compar-
ing different triaged solutions, it prefers small changes. The details
of the ranking are less important than the nontrivial question of how
to present results using triage to the programmer. We first print only
the small change found as a result of triage and a message indicat-
ing triage occurred (i.e., that other type errors remain, meaning the
change will not make the program type-check by itself). We also
print a representation of which parts of the program were triaged,
but our experience is this information is only occasionally useful.

3. Empirical Evaluation for Caml
To evaluate our approach’s effectiveness, we collected Caml pro-
grams from students and manually inspected the error messages
from (1) the underlying type-checker, (2) our approach without
triage, and (3) our approach with triage. The results show that:

• For most programs, our approach and the type-checker produce
messages of comparable quality (suggesting it is reasonable to
pursue our approach in lieu of type-checker messages as a way
to simplify compiler construction).

• For a significant number of programs, our approach produces a
message that is at a better location or significantly more accu-
rate in identifying the problem (suggesting that our approach
adds value even for compilers that already have good type-
checker messages).

• Triage provides a significant improvement over the system with
triage disabled.

Section 3.1 discusses our methodology, which tries to minimize
the inevitable subjectivity of the evaluation. Section 3.2 presents
overall statistics. Section 3.3 presents some real examples where
our approach works well.

3.1 Methodology
Data Collection: Students in one of the author’s courses were
asked to volunteer to use a modified version of the Caml compiler
that stored to the local disk (1) any file passed to it that did not
type-check and (2) a timestamp for the file. This compiler did
not have our approach implemented; it was just a data collector.
Students then emailed the collected files to us. So volunteers opted
in twice: when they installed the modified compiler and when they
sent us results. The saved files had comments obfuscated (e.g., (*
hi mom *) replaced with (* XX XXX *)) since we thought this
might encourage participation.

The course was a graduate-level programming-languages course
for part-time students with at least two years professional software-
development experience. We believe this population is particularly
interesting: they were not beginner programmers but they were
new to Caml. We analyzed 5 homework assignments, each requir-
ing 100–200 lines of code. We plan to make the assignments and
data available. 10 of 44 class members participated.

Analysis: When manually analyzing a file and the quality of
the three error messages, it is necessary to identify the actual
problems. Doing so is inherently subjective, so we simply removed
any files for which it was unclear. Two factors make this process
less subjective. First, using the time-sorted files we can see what the
programmers actually changed in the near-future. Second, the code
is for a specific programming task; we are not trying to determine
the purpose of arbitrary code.

When a collection of files in time sequence all have the same
problems, we count them only once (choosing a representative file
from the equivalence class). This quotienting of results is important
for two reasons. First, it normalizes for different programmers’
behavior since some programmers tend to try recompiling much
more often than others. Second, the programmers were getting only
the type-checker’s messages. So in cases where our approach is
superior one would expect a misleading type-checking message to
lead to several files with the same problem while the programmer
discovers the misdiagnosis. Counting each of these files separately
would make our approach look better.

A second potential source of subjectivity is determining whether
an error message accurately describes one of the real type-checking
problems. However, the program location identified by a message
is not subjective, so we separately counted whether a message iden-
tified a good location and whether a message described the prob-
lem at that location correctly. Considering only location strictly in-
creases the number of good results for each of the three error mes-
sages, but only slightly, so due to space constraints we have chosen
only to report the theoretically more subjective measurements.



(a) Results separated by programmer (b) Results separated by assignment

Figure 5. Results separated by programmer and by homework assignment; programmer experience increases for higher-numbered assign-
ments. Moving from bottom to top, the stacked bars represent files where (1) both approaches (type-checker and our approach) produce an
equally good message even without triage, (2) both approaches produce an equally good message but triage is necessary, (3) our approach is
better even without triage, (4) our approach is better but triage is necessary, and (5) our approach is inferior to the type-checker.

Figure 6. Size of groups of files that are the same problem. In
results, only one file from each group is counted. Note log-scale.

Validity: In addition to the subjective evaluation described above,
we can identify some other threats to validity. Because we wrote
the homework assignments and taught Caml programming, we
could have implicitly encouraged a programming style or designed
homeworks for which one error-message style is better. There could
also have been bias in the self-selection of participants.

On the other hand, we should not discount our overall conclu-
sion that our approach is usually comparable to the type-checker’s
messages and is often better. Our prototype is still preliminary com-
pared to the mature type-checker which has been used and refined
for many years. We also did not allow ourselves to modify the im-
plementation after we started analyzing the files. The data suggests
a few new constructive changes we can easily add to our tool. This
feedback and the ease of exploiting it is a benefit of our approach
and would, of course, significantly improve our results.

3.2 Aggregated Results
We start by presenting our primary results and then provide some
additional data to describe our set of sample files and the efficiency
of our prototype. For each file we analyze (recalling that for a
group of files in time-sequence with the same error we analyze only
one), we consider three messages (from the type-checker, from our
approach, and from our approach with triage disabled). We then
place the file in one of these five categories:

1. Our approach produces a message comparable in quality to the
type-checker, and triage is unnecessary to achieve this “tie.”

2. Our approach produces a message comparable in quality to the
type-checker, and triage is necessary to achieve this “tie.”

Figure 7. Cumulative distribution of time to run our prototype on
the analyzed files. The bottom curve is for our full tool. The middle
curve disables one constructive change with a performance bug.
The top curve disables triage.

3. Our approach produces a message better than the type-checker,
and triage is unnecessary to achieve this “win.”

4. Our approach produces a message better than the type-checker,
and triage is necessary to achieve this “win.”

5. The type-checker produces a message better than our approach.

As the TOTAL bars in Figure 5(a) and Figure 5(b) show, our
approach is better (the sum of categories 3 and 4) 19% of the time
and the underlying type-checker is better 17% of the time. Adding
together categories 1–4, our approach is no worse 83% of the time,
supporting our claim that one could feasibly not rely on the type-
checker’s messages at all.

Triage increases by 44% the files for which our approach pro-
duces a better result (category 4 divided by category 3) and in-
creases the ties by 19% (category 2 divide by category 1). In all,
triage improves our results for 16% of the files (sum of categories
2 and 4). Qualitatively, in the cases where triage helps, it helps a
lot—without it, the messages are typically much worse than those
from the type-checker.

Not shown in the graphs is a distinction between ties where
both approaches produce a good message and ties where both
approaches produce a bad message. We deemed 9% of the files
“ties where no approach was very helpful,” suggesting that type
errors could still be improved, though this number is inflated by
input programs too nonsensical for a reasonable message.

Figure 5(a) separates the results by programmer to see if per-
sonal coding style might affect the results. Figure 5(b) separates the



(* List.mem : ’a -> ’a list -> bool *)
let add str lst = if List.mem str lst

then lst
else str::lst

(* ... in a function later in the file ... *)
add vList1 s

Type-checker:
The expression s has type string
but is here used with type string list list

Our approach:
Try replacing add vList1 s
with add s vList1
...

Figure 8. Example where our approach finds a better message.

results by homework assignment; programmers are more familiar
with Caml on later homeworks. While there is significant variation,
sample sizes are moderate and we can draw no firm conclusions.

Figure 6 shows how big the equivalence classes of time-ordered
files with the same problem are. While most equivalence classes are
very small, we would have been over-counting by having hundreds
more data points had we not chosen representatives from each class.
In all, we analyzed 1075 files from a total of 2122 collected.

Finally, Figure 7 presents a cumulative distribution function of
the time our prototype took to run on the analyzed files. The full
approach completed in less than 4 seconds on over 75% of files and
less than 30 seconds on over 90% of files.5 We conclude that the
prototype is already usually efficient enough to replace the conven-
tional approach and is almost always a complementary technique
worth using while puzzling over the type-checker’s message. More
importantly, our collected files now give us our first opportunity to
debug the performance of our system. (Recall we made no changes
to the system after we started the manual analysis.) The additional
data in Figure 7 suggest improving performance will be easy. First,
about one third of the files that take longer than 4 seconds do so be-
cause of a single performance bug in a single constructive change
that has to do with reparenthesizing nested match-expressions. Sec-
ond, without triage—the newest part of our system and therefore
the part that we have optimized least—not a single file takes longer
than 4 seconds and over 95% take less than 2 seconds.

3.3 Examples
In analyzing the files we collected from real programmers, we
found many compelling situations where our approach produced
better locations, produced more accurate messages, or used triage
to avoid a poor message. Here we share a few examples. 6

Figure 8 shows the definition and subsequent use of a function
add intended as a simple utility for adding a string to a list. The pro-
grammer passed the arguments to add in the wrong order, but add
actually has the polymorphic type ’a -> ’a list -> ’a list,
so the first argument of type string list constrains the second
to have type string list list. Hence the type-checker’s error
message is in a reasonable location, but only programmers used to
the idiosyncrasies of polymorphic types and unification-based type
inference find this message intuitive.

5 Qualitatively, time is not correlated with size of the file; the search quickly
descends into a small portion of the file.
6 As in Figure 2, we modify the type-checker’s messages to use expressions
rather than line numbers.

type move = For of int * (move list) | (* ... *)

let rec loop movelist x y dir acc =
(* ... some other local bindings ... *)
match movelist with

[] -> acc
| For(moves, lst)::tl ->

let rec finalLst index searchLst =
if (index = (moves-1))
then []
else (List.nth searchLst)

::(finalLst (index+1) searchLst)
in loop (finalLst 0 lst) x y dir acc

| (*... branches for other kinds of moves ...*)

Type-checker:
The expression (finalLst 0 lst) has type
(int -> move) list
but is here used with type move list

Our approach:
Try replacing (List.nth searchLst)
with (List.nth searchLst [[...]])
...

Figure 9. Example where our approach finds a better location.

Figure 9 shows a larger example where our approach finds a
better location. The code, extracted from an attempt to write a
small-step interpreter for a simple Logo-like language, defines a
recursive local helper function finalLst that is supposed to re-
turn a move list. However, the call to List.nth has one too
few arguments, which is not in itself an error because this is just
a partial application of a curried function. In fact, finalLst still
type-checks, but as a function that returns a list of functions (type
(int -> move) list). Hence the type-checker reports no er-
ror until the result of a call to finalLst is passed to the outer
function loop, which due to its pattern-match expression needs a
move list. Our top-down search finds small suggestions both in
the body of finalLst and its use, but only in the former is there a
constructive change (adding an argument to the call to List.nth),
which becomes the top-ranked suggestion.

Most examples with triage are too large to be shown in their
entirety, but we can describe a scenario where it is necessary for
doing as well as the type-checker. Suppose the programmer calls
print in each branch of a match-expression where the actual
standard-library function is called print_string. The underlying
type-checker works well, finding one use of print and reporting
it as an unbound variable. Our approach without triage is terrible,
suggesting removal of the entire match expression. With triage,
we determine that the match-expression type-checks except for
the expressions in the branches and that one of the branches can
be fixed by removing a call to print. In fact, because removing
print works but replacing it with adapt print does not, we
can conclude that print is an unbound variable. Improving our
tool’s presentation to report “unbound variable” when removing a
variable works but adapting it does not would be straightforward
and is independent of the search algorithm.

There are coding practices for which our approach is ill-suited.
As an extreme example, consider again let x = e1 in e2 where
x is used many times in e2. Savvy ML programmers who change
e1 to have a different type may rely on the type-checker to find
all the uses of x. Our approach will instead suggest changing e1
(perhaps back to what it was), which is clearly not desired.



4. Prototype for C++ Template Functions
While our approach is ideal for an ML-like language (type infer-
ence creates a need, and polymorphic types for expressions like
raise Foo aid the implementation), the benefits extend beyond
strongly typed functional languages. As a proof of concept, we
have developed a prototype for producing error messages for C++
programs that use template functions, which are common because
template functions pervade the Standard Template Library (STL).
This section explains our focus on template functions (Section 4.1),
describes how we modify our approach for the C++ language (Sec-
tion 4.2), and sketches our prototype (Section 4.3).

4.1 The Problem with Templates
C++ does not generally suffer from nonlocal type-error messages
because all variables and functions have explicit, monomorphic
types, so we see insufficient need to change how most type-error
messages are produced. Template functions, however, are fertile
ground: they take type parameters the caller need not specify, and
some type-checking of template bodies is delayed until each use.

Misuse by a client often manifests itself as a type error several
layers deep in template calls. As a simple example, consider this
template function in the commonly used gcc extension to the STL:

template <class _Operation1, class _Operation2>
compose1(const _Operation1& __fn1,

const _Operation2& __fn2) {
return unary_compose<_Operation1,_Operation2>

(__fn1, __fn2);
}

The function is a polymorphic wrapper around a template class
(unary_compose) for representing the composition of two “func-
tors.”7 Not seen here is that arguments to compose1 must have par-
ticular STL types or an error arises in the body of unary_compose.
Compilers like gcc do report the location of the outermost template
call, but the programmer must still manually dissect the error and
call-chain to determine how to change the client code.

Continuing our example, consider the C++ code in Figure 10.
The intended effect is to initialize the elements of outv with a
function of the inv values. Using the higher-order features of the
STL keeps myFun concise and at a high level of abstraction; we
generally encourage code in this style. It is also almost type-correct.
The problem is compose1 expects to receive two functors, and
labs is merely a function pointer. The STL provides a function
ptr_fun to convert a function pointer to a functor; the fix is to
“adapt” labs by writing ptr_fun(labs). The use of functors is
not universal, however; other places in template libraries require
function pointers. In short, this sort of error is simple, easy to make,
and (with the right diagnosis) easy to fix.

The error messages reported by gcc for this error are shown
in Figure 11. The first eight lines do describe the problem, but in
terms of a bad template call several layers deep in the functional
library. The remaining lines describe a “no template found” error
that is a cascading error resulting from the first problem. As in-
scrutable as these messages may seem, we have chosen an exam-
ple where they are tractably small. If we had made the same mis-
take for an operation over vector<vector<long> > instead of
vector<long> (and vectors of vectors are certainly a realistic use
of the STL), the messages would have been over twice as long.

Our approach, of course, produces an error message indicating
that changing labs to ptr_fun(labs) eliminates the typing errors
in myFun. Because ptr_fun is just a library function, it is an ad

7 This STL term for classes representing function closures should not be
confused with the functors of ML or category theory.

#include <algorithm> // for transform
#include <vector> // for vector
#include <functional> // for multiplies, bind1st, ptr_fun
#include <ext/functional> // for compose1
#include <cmath> // for labs
using namespace std;

using namespace __gnu_cxx;

// compute outv[i] = labs(5 * inv[i])
void myFun(vector<long>& inv, vector<long>& outv){
transform(inv.begin(), inv.end(), outv.begin(),

compose1(bind1st(multiplies<long>(),5),
(labs))); // type error

}

Figure 10. An STL client with a type error

hoc constructive change to try wrapping function pointers with it.
Trying this change is justified by its usefulness.

4.2 Our Approach in C++
The algorithm we use for Caml largely works for C++, but there are
interesting differences in how we perform top-down search, what
constructive changes we try, how we do adaptation, and how we
call the type-checker. We highlight the most important differences.

Top-Down Search and Adaptation Because C++ is explicitly
typed, we do not find it necessary to perform search over the en-
tire program. Rather, we consider only a function containing a
template-call error8 and any template functions it may call (transi-
tively). Within a function body, removing statements and initializer
expressions is trivial because we can just delete them.

However, removing or adapting an expression proves more dif-
ficult because we do not have the convenience of expressions like
raise Foo (which can have any type) or adapt (which can take
any expression and have any return type). Ironically, we can (ab)use
a template function to create expressions of the right type:

template <class A, class B>
B magicFun(A x) { for ( ; ; ) ; } ;

Now, “removing an expression e” can mean replacing it with
magicFun(0) and adapting it can mean replacing it with
magicFun(e). Unfortunately, using magicFun is imperfect be-
cause C++, for deep reasons involving ambiguity and overloading,
does not have full inference. So in many contexts, magicFun(0)
or magicFun(e) will not type-check because an appropriate return
type cannot be resolved.

As a result, our changer often resorts to alternate techniques to
determine which subexpressions contain typing errors. Most sim-
ply, we can hoist expressions (e.g., replace e0(e1,e2); with e0;
e1; e2;), taking some care to circumvent odd C++ restrictions
(e.g., function names cannot appear as top-level expressions).9 Full
hoisting is sometimes avoidable with additional C++ chicanery.
For example, given x = e, we can retain the constraint that e
has a type compatible with x by replacing the assignment with
magicFunAssign(x,e) where we define:

template <class A, class B>
A magicFunAssign(A& x, B e) {

x = adapt<A>(e); return x;
}

8 Simple processing of the error message identifies the location, and the
abstract-syntax tree indicates that the location contains a template call.
9 It suffices to wrap the expressions with a void-returning variant of
magicFun.



/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/functional: In instantiation of
‘__gnu_cxx::unary_compose<std::binder1st<std::multiplies<long int> >, long int ()(long int)>’:

../tester2.cpp:9: instantiated from here
/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/functional:128: error: ‘long int ()(long int)’ is not a class, struct, or union type
/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/functional:136: error: ‘long int ()(long int)’ is not a class, struct, or union type
/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/functional:131: error: field

‘__gnu_cxx::unary_compose<std::binder1st<std::multiplies<long int> >, long int ()(long int)>::_M_fn2’
invalidly declared function type

/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_algo.h: In function
‘_OutputIterator std::transform(_InputIterator, _InputIterator, _OutputIterator, _UnaryOperation)
[with _InputIterator = __gnu_cxx::__normal_iterator<long int*, std::vector<long int, std::allocator<long int> > >,
_OutputIterator = __gnu_cxx::__normal_iterator<long int*, std::vector<long int, std::allocator<long int> > >,
_UnaryOperation = __gnu_cxx::unary_compose<std::binder1st<std::multiplies<long int> >, long int ()(long int)>]’:

../tester2.cpp:9: instantiated from here
/usr/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_algo.h:789: error: no match for call to

‘(__gnu_cxx::unary_compose<std::binder1st<std::multiplies<long int> >, long int ()(long int)>) (long int&)’

Figure 11. The error message from gcc for Figure 10, with additional linebreaks to improve readability.

Constructive Changes As expected, each language has different
common errors worth detecting. For C++, we try several language-
level changes (e.g., switching e.f to e->f and vice-versa), as
well as changes specific to the STL (such as adding or removing
ptr_fun). Other changes are just like in Caml, such as rearranging
arguments at a call-site.

Calling the Type-Checker As explained below, instead of mod-
ifying gcc, we print each change in concrete syntax and call the
type-checker. Because C++ is prone to cascading errors during
compilation, we focus solely on the first error and specifically on
the line it cites as “instantiated from here.” However, we maintain
all the reported error lines, so that we can properly evaluate whether
a modification succeeded or not: if it eliminates some errors while
introducing no new ones, it is a success. Partially implicit in this
definition is a notion of triage: we ignore any later erroneous code,
so that we can focus on suggestions for one statement.

4.3 Implementation
Our prototype is implemented as a plugin for the Eclipse 3.2 IDE,
using the CDT 3.1 plugin (which provides an abstract syntax tree
for C++) and gcc (since we assume the type-checker’s error mes-
sages are in a particular format). We take an abstract syntax tree,
change it, and use the CDT to print it to a file, which we then pass
to gcc. While this architecture makes for an expedient prototype,
the process and I/O overhead of printing and parsing the program
for each change is too high for interactive use. On the other hand,
by using an IDE we have the ability to perform our algorithm in
the background. Moreover, our presentation of error messages uses
Eclipse’s support for “problem markers” and “quick fixes.” That is,
we provide a marker in the user interface that brings up a menu
item, such as, “replace this expression by wrapping it in ptr_fun.”

5. Related Work
This work extends and evaluates the approach advocated in our
recent workshop publication [16]. We discuss our relation to
that work before discussing other approaches to improving type-
checker error messages and other related techniques.

5.1 SEMINAL

We have extended our prior work in the following important ways:

• Our prior work had no way to give good error messages when
the same function had multiple independent type errors. Triage
(Section 2.4) overcomes this fundamental problem, and our
results demonstrate that triage is significant in practice.

• Our approach of adapting expressions to their context (Sec-
tion 2.3) is new, can sometimes lead to much more accurate

messages, and requires a different approach to ranking since a
large expression may need only a small adaptation.

• Our prior work had no evaluation of the system’s effectiveness
(only that it was reasonably efficient). Our analysis on actual
files (Section 3) is, to our knowledge, the only evaluation of its
kind ever completed and encompasses a larger sample set than
anything considered by another system.

• Our prototype for C++ template-function instantiation errors is
entirely new and requires different techniques than in Caml.

Our prior publication includes more details on the implementa-
tion of the SEMINAL system for Caml, particularly the interaction
between the searcher and the enumerator.

5.2 Other type-checker approaches
While SEMINAL was hardly the first project to attempt to address
the nonlocal and unintuitive nature of ML-style type-error mes-
sages, all prior approaches of which we are aware made pervasive
changes to the type-checker. Doing so makes compiler construc-
tion and the efficient compilation of well-typed programs more dif-
ficult. Such changes take many forms, including trying different
program-traversal orders (thereby changing the order of the under-
lying unification problem) [15, 17], maintaining slice information
to record what expressions affect what parts of the unification prob-
lem [5, 10, 21], and providing an interactive environment revealing
the internals of the type-inference algorithm [4, 20]. Heeren’s re-
cent summary [11] of these systems and others [1, 2, 7, 8, 9, 13, 22]
provides more details.

The approach most similar to ours is from McAdam [18]. He en-
riches the type-checker with type-level “linear morphisms” that can
be used to make a program type-check that otherwise would not.
For example, a morphism from τ1 → τ2 → τ3 to τ2 → τ1 → τ3

would allow f x y to type-check even if it should be f y x.
The resulting error message can then show what morphisms were
used. While this clearly has commonalities with our constructive
changes, it has the same nonlocal problems as the conventional ap-
proach (it never searches for other locations) and presents messages
in terms of types that the programmer never wrote.

For C++ template errors, there are ad hoc tools available that
post-process error messages to make them more readable [24]. The
process largely involves regular-expression matching to trim out
namespaces and other irrelevant features of error messages. We
view the existence of such tools as evidence of a problem rather
than as a complete solution. Unlike our tool, the result is still in
terms of types and does not analyze the source program.



5.3 Other work
Parsing errors can also be nonlocal and unintuitive. Structurally, the
problems are different because parsing takes a token stream instead
of an abstract syntax tree. Nonetheless, the approach by Burke and
Fisher [3] is similar in that an error-finder separate from the parser
tries single-token changes (by directly changing the parse-stack)
and seeing which ones lead to more progress in parsing.

Also note that a compiler may often treat as a type error what
the programmer views as a parsing error. For example, in Caml
[1,2,3] is a list holding one triple whereas [1;2;3] is a list of
three integers. Our tool presents a good message in this case be-
cause it always tries replacing a list with one tuple with a list hold-
ing the tuple’s elements. In the tool this is a syntax-tree transforma-
tion, but the actual error message is in concrete syntax, giving the
illusion of suggesting a parsing change.

The dynamic testing technique of delta-debugging is another
example of automatic search to produce a concise error. Recent
work has focused on changing dynamic program state [6]. Older
work on changing the program code worked by applying a subset
of changes between two versions [23] under the assumption that
the new version had a bug the old version did not. In our setting,
it is much less clear this assumption is valid or that consulting a
previous version of the code would be fruitful.

Ongoing work on adding “concepts” to C++ [12, 19] aims to
make type-checking for templates more modular. This work ac-
knowledges that nonlocal errors and long messages (hundreds or
thousands of lines) are real problems with templates. It is men-
tioned that preliminary experience with concepts shows they can
improve the situation. In terms of the example in Figure 10, us-
ing concepts in the STL would probably lead to the correct error
location (in the client), but not make the fix any more intuitive.
Concepts add additional static checking via more-explicit type in-
formation (template writers indicating requirements about template
parameters), so less-annotated code would remain problematic.

6. Conclusions
By decoupling type-checking from the generation of type-error
messages, we have pursued a novel approach to circumventing the
tension among type inference, efficient type-checking, and quality
error messages. We have developed proofs-of-concept in two quite
different settings and carefully evaluated the effectiveness of one of
the systems. Our approach often finds good messages that describe
different program locations and are more concise than the conven-
tional approach of producing error messages in the type-checker.
Being robust when programs have an unknown number of inde-
pendent type errors proved to be an important advance.

There are several directions for future work beyond the obvi-
ous steps of attacking new languages with inference and improv-
ing the systems we have. First, we would like to integrate our
systems into IDEs and focus on the user-interface issues that are
clearly important for error-message quality. Second, a controlled
user study could bolster our conclusions. Third, an open system
where programmers could describe new search strategies or con-
structive changes to try would increase usefulness. In particular,
when embedding a domain-specific language in a general-purpose
language, the domain-specific language implementor would like to
define error messages in higher-level terms [14] and our approach
should make this easier than it has been.
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