
Programming Language Tools and Techniques for
3D Printing

Chandrakana Nandi, Anat Caspi, Dan Grossman, and
Zachary Tatlock

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA
{cnandi, caspian, djg, ztatlock}@cs.washington.edu

Abstract
We propose a research agenda to investigate programming language techniques for improv-

ing affordable, end-user desktop manufacturing processes such as 3D printing. Our goal is to
adapt programming languages tools and extend the decades of research in industrial, high-end
CAD/CAM in order to help make affordable desktop manufacturing processes more accurate,
fast, reliable, and accessible to end-users. We focus on three major areas where 3D printing
can benefit from programming language tools: design synthesis, optimizing compilation, and
runtime monitoring. We present preliminary results on synthesizing editable CAD models from
difficult-to-edit surface meshes, discuss potential new compilation strategies, and propose runtime
monitoring techniques. We conclude by discussing additional near-future directions we intend to
pursue.

1998 ACM Subject Classification D.2.4 Software/Program Verification; D.3.4 Processors; I.2.2
Automatic synthesis

Keywords and phrases 3D printing, rapid prototyping, desktop manufacturing, compilers, veri-
fication, synthesis

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Affordable desktop-class 3D printers, laser cutters, and Computer Numerical Control (CNC)
mills will soon be available to millions of people [4]. The potential social benefits of broad,
end-user access to these technologies have been much hyped, but the current reality is that
desktop-class hardware and tools are often significantly less accurate, fast, and reliable than
their industrial counterparts. In industry, these processes take place on expensive, high-end
machines managed by trained experts. While desktop-class hardware will continue to improve,
we believe that without key software improvements, democratized manufacturing practice by
end-users on affordable hardware is bound to fall short of its ambitious promise.

Many programming language techniques can be adapted to address analogous problems
in desktop manufacturing—developing Computer Aided Design (CAD) models and editing
existing objects are analogous to synthesis; generating accurate, efficient tool paths (paths
the print head of a 3D printer follows) from a CAD model is analogous to optimizing
compilation; automatically tracking operations to ensure safety and halt before bogus
operations is analogous to runtime monitoring. Much as RAID software [26] enabled cheap,
unreliable storage hardware to compete with expensive, reliable alternatives, we believe
that programming language tools can significantly improve the state of the art in desktop

© Chandrakana Nandi, Anat Caspi, Dan Grossman, Zachary Tatlock;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Programming Language Tools and Techniques for 3D Printing

Figure 1 The 3D Printing Development Cycle. To 3D print a device: (1) An engineer first designs
a 3D model using standard CAD tools (e.g., SolidWorks [13]). (2) This model is compiled into a
sequence of low-level G-code commands that corresponds to basic actions the printer can take (move
the print head, start/stop extrusion, lower the build plate, etc.). (3) The printer directly executes
the G-code, producing a physical object.

manufacturing.1 In the remainder of this paper we focus on one type of desktop manufacturing,
3D printing, but we believe the proposed research can be generalized to other processes like
laser cutting and milling.
We propose a three-part research agenda to begin tackling these challenges for affordable,
end-user desktop manufacturing:

In Section 3, we discuss program synthesis techniques to generate easy-to-edit CAD
models from difficult-to-edit surface meshes, and eventually to enable optimization and
refactoring of complex CAD models.
In Section 4, we discuss compiler techniques to improve printer performance via paral-
lelization, and eventually to automatically account for observed errors in output prints.
In Section 5, we discuss runtime monitoring for 3D printers to aid debugging, automatically
detect printing errors, and eventually fix errors on the fly.

2 Background on 3D printing

3D printers come in a wide variety of designs, from lithography-based resin printers to
inkjet-based powder printers. The challenges and techniques described in this paper apply
to many of these designs, but to make the discussion more concrete, we focus on “cartesian
fused filament fabrication” (FFF) printers (Figure 2, a), the most common and affordable
type of printer. Figure 1 depicts the typical workflow for using such a device:

1. Design Users first design their model using CAD tools. There is a diverse array of available
CAD tools including freely available options such as OpenScad [5] or SketchUp [11] and
proprietary packages like Rhinoceros [8] and SolidWorks [13] which can cost thousands
of dollars. In this paper, we focus on OpenSCAD since it conveniently represents CAD
models as programs and is widely used on design sharing websites such as Thingiverse [14].
Figure 3 shows two CAD programs in OpenSCAD. OpenSCAD provides various primitive
3D structures (e.g., cube), transformations (e.g., translate) and combinators (e.g.,
difference), that can be used together to create complex 3D models. While OpenSCAD
is programmatic, many CAD tools, such as Rhino [8], are GUI based. Irrespective of the
interface, the models designed using these tools are declarative in nature, i.e., they only
describe the 3D structure and parameters of a model, not how to manufacture it.

1 Some gap between industrial and desktop manufacturing will always remain. Two ton CNC mills are
inherently more rigid and stable than ten kilogram mini-mills after all.

C.Nandi, A. Caspi, and D. Grossman, Z. Tatlock 23:3

Figure 2 a) Major printer components. b) Perimeter and infill cross-section.

2. Compilation Compilation happens in two phases: (A) A CAD model is translated to
an intermediate representation, typically in STereoLithography (STL) format [18]. This
represents the surface mesh in the form of polygons in a 3D coordinate system. (B) The
STL is “sliced” to obtain G-code. The G-code is a sequence of imperative commands that
control extrusion, movement and temperature. The slicer determines the tool path which
refers to the path the print head should follow while printing. A typical slicing strategy
is discussed in Section 2.1 in more detail.

3. Print The printer runs firmware that interprets the G-code and sends low-level hardware
control signals to motors, heating elements, and cooling fans. An extruder melts print
material and pushes it through a nozzle to build up the part layer-by-layer starting with
the first layer directly on the build plate. There are many physical phenomena involved
in this step that affect the print quality—the inertia on the print head, thermal expansion
of the print material, the temperature and humidity of the environment, etc.

4. Iterate Finally, there is an implicit fourth step which is to repeat the above steps until
the 3D object comes out as expected.

2.1 Baseline Slicing
At a high level, common slicers [10, 9, 3, 12] take a 3D surface geometry in STL and divide it
into a sequence of 2D slices parallel to the xy-plane at regular intervals of height h (typically
h ≈ 0.1mm). Thus the ith slice represents the perimeters of the object to be printed at height
i × h. To generate G-code, the slicer computes tool paths to trace the perimeters at each
height and fill the space between perimeters with a regular pattern at some user-specified
density (see Figure 2 b). Within these layers, the slicer inserts G-codes to start and stop
extrusion during movements along perimeters and over fill areas. The slicer then inserts
additional G-code between the instructions for each layer to increment the printer’s z axis
by h. Finally, the slicer inserts an initial preamble to set fan speeds as well as build plate
and extruder temperatures to appropriate values for the material being printed. Throughout
the slicing process, the compiler performs optimizations to minimize the travel time of the
print head.

2.2 Challenges in 3D printing
CAD/CAM and related computer-aided manufacturing are some of the oldest areas of
computer science [31]. However, work in this space is often targeted at an industrial setting

CVIT 2016

23:4 Programming Language Tools and Techniques for 3D Printing

w = 33; d = 20; h = 30;
difference () {

cube ([w, d, h]);
translate ([-1, 3, 3])

cube ([w + 2, 7, h + 1]);
translate ([w/2 - 19/2 , 13, -1])

cube ([19 , 3.5, h + 2]);
}

w = 33; d = 28; h = 30;
difference () {

cube ([w, d, h]);
translate ([-1, 3, 3])

cube ([w + 2, 7, h + 1]);
translate ([w/2 - 19/2 , 13, -1])

rotate ([-15, 0, 0])
cube ([19 , 3.5, h + 6]);

}

Figure 3 Renderings of a tea scoop holder with the original CAD program and the modified
CAD program with the wall thickness and angle of the holder changed (changes are underlined).

where accurate, fast (and therefore expensive) equipment is operated by highly motivated
experts. The advent of affordable, desktop-class 3D printers for end-users gives rise to
new challenges that we believe programming language techniques can help address. While
improving hardware trends will inevitably ease some challenges with 3D printing, we believe
that new software techniques will be essential for narrowing the gap between what’s possible
on affordable hardware and industrial practice. Toward that end, we propose initially focusing
on three challenge areas:
Design CAD tools have been widely used for decades, but still present users with a steep

learning curve—even if one can clearly describe the desired model in plain English, it is
not obvious what buttons to click and menus to navigate in the CAD tool to actually
make that model from scratch. One possibility is to customize existing CAD models
to meet new requirements. Unfortunately, most of the models shared in large online
repositories like Thingiverse [14] are not the CAD models—they contain only the surface
mesh in the form of STL which is difficult to edit successfully since much of the high-level
information about the design (e.g. structural constraints) has been compiled away.

Performance 3D printing is a slow process—it can take more than a day to print a large
complex model. It is also generally unclear when and where the process can be made
faster—going too fast in regions with fine detail can ruin a print because the material
may not have time to cool sufficiently before the next layer.

Popular slicers such as Simplify3D [9], Cura [3], and ReplicatorG [7] cannot generate
G-code that takes advantage of multiple print heads simultaneously, and thus in practice
most printers with multiple print heads use only one. As discussed later, exploiting such
latent parallelism significantly complicates the slicing strategy.

Furthermore, 3D printing typically involves manual inspection and tweaking. Users
must often repeat the process several times to get the print they expected. Each
iteration requires manually editing the CAD model, slicer parameters, or the printer
settings. Ideally, users could avoid such manual fixes if slicers were able to automatically
compensate for errors between iterations.

C.Nandi, A. Caspi, and D. Grossman, Z. Tatlock 23:5

Reliability 3D printing depends on the type of printer, the material being printed, and
environmental conditions such as temperature. Even with perfect designs that have
been correctly sliced, some problems that arise during printing can only be noticed while
printing. It would be ideal if whenever an error occurs, we could halt the print to avoid
wasting time and material and then work backwards to identify which command in the
G-code led to the failure. Ideally, this information could even be used to repair errors
automatically on the fly.

3 Synthesis

For many users, designing a part from scratch is challenging due to CAD’s steep learning
curve. They avoid this challenge by downloading, slicing, and printing parts shared as STL
files in online repositories like Thingiverse [14]. Some users scan parts they wish to print using
3D scanners which also produce STL-like representations. These approaches are sufficient
when the part is standalone and fits the user’s needs. However, it is insufficient when the user
wants to combine or modify parts. This is because many modifications are difficult in surface
geometry representations like STL. STL tools like Blender [2] or AutoDesk’s MeshMixer [1]
can easily scale and rotate a design, but cannot effectively modify parts where some aspects
depend on others (e.g., a gear whose tooth count depends on its radius). Even when CAD
programs are made available, they can still be difficult to edit as end users often do not
parameterize their designs or incorporate the structural constraints that make expert-written
models easy to modify.

Past research in computer graphics and animation has focused on obtaining higher level
representations from low level polygon meshes. For example, Krishnamurthy et al. [20]
have shown how to fit smooth surfaces to irregular polygon meshes using B-splines and
displacement maps. While smoothing can convert dense polygon meshes to aesthetically
pleasing and more user-friendly representations, the output of these manipulations contains
limited structural information about the model (e.g., if the model is a gear, what are the
dimensions, orientations, and angles of its teeth?). Having this information is particularly
important for desktop class 3D printing where users might want to individually customize
functional parts by changing the relationships between its subcomponents (by varying
the design parameters). On the other hand, in graphics and animation, aesthetics and
performance are of key importance. The main difference between the idea we present here
and prior work on fitting surfaces to polygon meshes is that we are primarily interested
in recovering underlying structural information from polygon meshes and presenting it in
the form of editable CAD models so that modifications and manipulations of subparts
becomes straightforward. With this motivation, we propose synthesizing well-engineered and
easy-to-edit CAD models from surface geometry representations like STL.

For example, consider the model of a tea scoop holder in Figure 3. In order to make the
tea scoop fit better, we wanted to change the angle of the holder which required increasing
the thickness of the base so that the holder would not cut through the walls due to the
rotation. As Figure 3 shows, this change was very easy to make in the CAD model (changes
underlined). In general, such changes are difficult to make by editing the STL surface mesh
because some parts of the object remain unchanged while others are scaled and yet others
are independently rotated.

As another example, consider the model of a chicken in Figure 4. The legs of this model
are too thin and hence broke easily during printing. We wanted to make them thicker while
keeping the rest of the model at the same scale and ensuring that the chicken still balances

CVIT 2016

23:6 Programming Language Tools and Techniques for 3D Printing

Figure 4 a) CAD model of a chicken. b) Tool path produced by slicer

stably on its feet. The most convenient way to do this is to simply increase the radius of
the leg cylinders in CAD. However, the CAD model for the chicken was not available—we
only had access to the surface mesh in the form of an STL file. By reverse engineering the
CAD from the surface mesh, we were able to easily thicken the legs and successfully print
the model.

We have designed and implemented an early prototype synthesis algorithm (Algorithm 1)
that achieves some of the goals above. This is essentially a form of decompilation: given
an STL file S, find a simple CAD model which, when rendered, yields S. The algorithm is
based on the principle that every CAD model can be synthesized by either subtracting one
part from another part or unioning two parts together. Like many early program synthesis
projects, this algorithm is a combinatorial search that is intractable for models with more
than a dozen parts. However, in our problem domain, that is often plenty—OpenSCAD for
example has only 4 types of primitive solid objects that can be combined to build various
complex models. Figure 3 (column 2) shows example outputs of our algorithm.

Future directions

We believe that the intersection of CAD modeling and program synthesis is ripe with interest-
ing problems. As one concrete example, our prototype synthesis algorithm tends to produce
overly verbose CAD programs for highly symmetric parts since the algorithm’s search omits
looping constructs. More generally, we believe research should explore synthesis techniques
for minimizing CAD models, similar to copy paste detection [21], and also for superoptimizing
G-code, similar to techniques used in highly parallel low-power architectures [27].

We also propose further synthesis of high level models from surface meshes, but for
more constrained targets than full CAD models. In particular, “peeling” based modeling
where an object is approximated by composing interlocking flat sheets. Such designs have
the advantage of being printable as only flat sheets, which is faster and packs tighter than
traditional solid printing designs. Another natural generalization of this approach is exploring
how designs can be synthesized to take advantage of flexible filaments, e.g., by generating
origami-inspired hinged designs.

C.Nandi, A. Caspi, and D. Grossman, Z. Tatlock 23:7

Algorithm 1 Synthesis algorithm for generating CAD models
procedure Search(model)

if empty(model) then return [Empty()]
else

candidates = []
for b in primitiveBounds(model) do

diff = subtract (b, model)
for c in search (diff) do

candidates.append(Diff (b,c))
for m1, m2 in split (model) do

cs1 = search (m1)
cs2 = search (m2)
for c1 in cs1 do

for c2 in cs2 do
candidates.append(Union(c1, c2))

return candidates

4 Compilers for 3D Printing

3D printing seeks to efficiently compile an abstract object description to an actual, physical
object. As described in Section 2, this compilation is typically composed of three stages: (1)
CAD to STL, (2) STL to G-code, and (3) G-code to low-level hardware control signals. Just
as traditional compiler research often focuses on middle-ends, here we focus on stage (2),
also known as the slicer. The slicer is an ideal target as it typically has the greatest impact
on print time and quality and also translates between standard languages independent of
front-end CAD details and back-end printer firmware details.

In addition to the core compilation strategy presented in Section 2, slicers provide
additional important features, as shown in Figure 4 (right). These include inserting support
structures under part overhangs beyond some threshold angle d (typically d ≈ 45°) and
inserting a “raft,” a thick set of initial layers to improve part adhesion to the print bed.
These additions are often essential for successfully printing complex parts and we hope to
explore their design space in future work. However, we propose that initial PL research
in this area should begin by focusing on the core compilation challenges of performance,
accuracy, and correctness.

Parallelization

Many desktop class printers have multiple extruders which, in principle, should enable
parallelism during the printing process. In practice, these extruders are only used one at
a time to support features such as multi-color prints or using dissimilar raft and support
materials. Exploiting the latent parallelism of multiple print heads requires extending the
slicing algorithm to partition the tool paths within each layer to sets of paths for each head.
This is challenging because the print heads are in a fixed orientation relative to one another
(typically mounted linearly along the printer’s upper gantry). Thus, all extruders move
together at fixed offsets from one another. Correctly generating G-code to manage the timing
of all the coordinated movements presents a significant compilation challenge. Recently, some
researchers have started focusing on parallelizing 3D printing for specially-built industrial
printers [6], but the techniques used are proprietary and it is still unclear how they can be

CVIT 2016

23:8 Programming Language Tools and Techniques for 3D Printing

applied to help end-users operating desktop class printers.
Our goal is to explore how classic compiler techniques such as peephole optimizations

can be applied to achieve parallelism. We suggest building directly upon the simple baseline
slicing strategy without making additional assumptions about printer hardware, since, as
mentioned above, an important objective is maintaining accessibility for end users. As a first
step, we will develop a G-code analysis to identify situations where a secondary extruder
will entirely traverse an extrusion path parallel to one that the primary extruder would
eventually extrude anyway. In these scenarios, we can keep the G-code produced by the
traditional slicing algorithm and merely tweak it to both (1) enable the secondary extruder
as it traverses the parallel future path, (2) remove the G-code for the primary extruder
following the subsequent path, and (3) patch up movements to connect the G-code before
and after the removed path.

Future Directions

Analogous to the bad old days of early compilers, users must occasionally manually tweak
the generated G-code to fix some print errors. This can be due to misbehavior of the printer
hardware (e.g., certain movements may cause a stepper motor to "skip" a position, especially
at high speeds, and require a small G-code tweak to mitigate) or bugs in the slicer (e.g.,
failure to retract the filament before a long movement, leading to smearing). We propose
that future slicer research investigate improving accuracy by incorporating error from earlier
trials into subsequent re-slicings. For example, if a generated part is 0.3mm too narrow in
the x direction due to printer hardware inaccuracy, the slicer could automatically insert
“padding” in x movements to compensate. We also hope to explore formalizing both STL
and G-code in order to reason formally about the correctness of slicing algorithms. Such a
formal foundation will also enable implementing more sophisticated slicing algorithms with
confidence by proving them equivalent to simpler strategies.

5 Runtime Monitoring

Desktop-class 3D printers are currently affordable because they use inexpensive stepper
motors, basic extruder designs, and lightweight frames. While these economical choices are
precisely what make the technology broadly available, they also lead to unreliability and
error. Even with a perfect CAD design and error-free slicing, prints can still fail due to
motors skipping steps, nozzles clogging, and environmental variations in temperature and
humidity. Future hardware improvements may mitigate some of these concerns, but even
experts operating high-end equipment still must often iteratively refine their process to get
the best results. Debugging failures and making performance tweaks is difficult because the
operation of the printer is opaque as it interprets tens of thousands of lines of G-code to
generate a part. In this section we propose video-based runtime monitoring techniques to
help debugging, detect printing errors, and address failures on the fly. These techniques take
inspiration from traditional programming language runtimes which aid debugging and ensure
safety by providing facilities to handle exceptions, prevent errors like division by zero or
array out of bounds accesses, and dynamic type checking.

Record. Resemble? Respond!

Sitthi-Amorn et al. [29] have shown the use of depth cameras in runtime monitoring to repair
height errors on the fly in their 3D printing platform, MultiFab. They use image processing

C.Nandi, A. Caspi, and D. Grossman, Z. Tatlock 23:9

and 3D scanning to identify pixels with varying depths and add pixel-wise corrective layers
to the printing process. We propose extending these techniques to validate and repair
other properties (e.g., dimensional accuracy) while also keeping the hardware requirements
affordable and performance overhead low.

A first step in aiding low cost print failure debugging is to log operations using commodity
cameras to record prints and tag each frame with the currently executing G-code instruction.
The logs can help users identify where the G-code may need to be tweaked to address poor
printer performance. These logs can also help printer firmware developers tune and debug
the low-level control code that translates G-code operations into carefully timed motor
commands.

With this simple foundation laid, the next natural step would be to develop analyses which
compare G-code programs and printing video streams to ensure that execution correctly
matches expected behavior. Such analyses can be used to abort print jobs early or selectively
disable printing in independent regions where something has gone wrong. This can be useful
when a long-running job printing multiple copies of a complex part goes wrong for just one of
the copies. Currently, the printer blindly continues executing G-code, oblivious to the small
localized failure. This often causes cascading errors as subsequent extrusions over the failed
area do not adhere correctly and are dragged over to interfere with the printing of other
copies which, independent of the initial failure, would have otherwise successfully printed. If
instead a runtime monitor could detect that an execution is no longer faithfully simulating
the behavior specified by the input G-code program, printing could be halted early for failed
parts, allowing other parts to successfully finish printing and to avoid wasted material.

Future Directions

A major challenge with video-based runtime monitoring for 3D printers is that responses
must be carried out quickly in order to be effective, but printers typically only contain cheap
microcontrollers for executing firmware. Future research should explore hybrid analysis
techniques where partial evaluation of a video-based analysis is carried out at slicing time,
before the first G-code instruction for a part is ever sent to the printer. Video-based analyses
should also be investigated to enable coordination of printers with other manufacturing
processes, e.g., a robotic arm. Such coordination could enable more sophisticated multi-
process desktop manufacturing, e.g., by enabling a pick-and-place machine to embed magnets
or metal fixtures within a part as it is being printed.

6 Related work

Several projects have explored new analyses of 3D models, slicing techniques, and user
interfaces to help mitigate current limitations in 3D printing. These results appear across
a diverse array of venues, from graphics to HCI, and many focus on industrial settings or
specialized hardware which future economies of scale or hardware improvements may make
broadly accessible. The programming languages community has only recently started looking
into these problems, e.g., in OpenFab [34], a framework for programmatically specifying
material and texture with the help of a domain specific language. Below we highlight
some noteworthy and inspirational examples from other communities attacking 3D printing
challenges.

The strength of a 3D printed part is non-uniform due to stronger adhesion within a
layer than across layers. Umetani et al. developed a static analysis of CAD models to
determine optimal printing orientations for maximizing mechanical strength [33]. Galjaard et

CVIT 2016

23:10 Programming Language Tools and Techniques for 3D Printing

al. explored optimizing CAD models to minimize material use while maintaining key strength
performance properties [17]. Teibrich et al. [32] introduced a patching technique to repair
already printed objects to avoid printing again from scratch, thereby saving material. Delfs
et al. [15] developed a tool that can optimize the orientation of a part during 3D printing in
order to make the surface smoother.

In terms of speeding up early prints, Mueller et al.’s work on WirePrint [23] and faB-
rickator [25] provide creative examples of how non-uniform height slicing and hybrid build
approaches (in this case using LegoTM) can radically reduce turnaround time when developing
prototypes. Mueller et al. [24] have also introduced laser cutting based techniques for rapid
prototyping using folding and stretching of an object instead of cutting joints.

Stava et al. [30] proposed a technique based on structural analysis that automatically
detects and fixes structural problems in models. Zhou et al. [35] proposes another structural
analysis for 3D printable objects that uses material and geometric properties. FlatFitFab [22]
is an interactive interface that allows users to specify functional parts and provides real-time
simulations that visualize stress. Dumas et al. [16] recently proposed a texture synthesis
algorithm that takes a surface mesh and an example pattern as inputs and generates a
texture.

New 3D printing applications are also constantly emerging, particularly within medical
contexts such as tissue and organ fabrication; customized prosthetics and implants; and drug
manufacturing, dosage forms, delivery, and discovery [19, 28].

7 Conclusion

In this paper, we proposed an early research agenda for using programming language
techniques to help make affordable, desktop-class manufacturing processes (such as 3D
printing) more accurate, fast, and accessible to end-users. Even as the available hardware
improves, we believe there will continue to be opportunities for software to narrow the gap
between expensive, high-end processes and the widely available, democratized means of
production. Here, we discussed three major domains where 3D printing in particular can
benefit from such research—applying program synthesis techniques to improve the design
process, applying compiler techniques to speed up and improve prints, and applying runtime
monitoring approaches to ease debugging. We are eager to further explore these particular
lines of work and look forward to seeing how the PL community can help address these
challenges more broadly.

8 Acknowledgements

We thank Michael D. Ernst for sharing interesting CAD and STL models with us. Doug Woos
and John Toman were very helpful in providing feedback on earlier drafts of the paper. We
are especially grateful to our shepherd Jonathan Ragan-Kelley and the anonymous reviewers
for pointing us to interesting related working and guiding several key improvements to the
paper. Finally, we thank the members of the UW PLSE lab for their camaraderie and putting
with many hours of noisy 3D printing.

References
1 Autodesk. Meshmixer. http://www.meshmixer.com/.
2 blender. Creative freedom starts here. https://www.blender.org/.
3 Cura Software. https://ultimaker.com/en/products/cura-software.

http://www.meshmixer.com/
https://www.blender.org/
https://ultimaker.com/en/products/cura-software

C.Nandi, A. Caspi, and D. Grossman, Z. Tatlock 23:11

4 Forecast: 3D Printers, Worldwide, 2015. https://www.gartner.com/doc/3132417.
5 OpenSCAD. http://www.openscad.org/.
6 Project Escher. http://projectescher.com/.
7 ReplicatorG lowering the barrier to 3d printing. http://replicat.org/.
8 Rhinoceros. https://www.rhino3d.com/.
9 SIMPLIFY3D. https://www.simplify3d.com/.
10 Skeinforge. http://reprap.org/wiki/Skeinforge.
11 SketchUp. http://www.sketchup.com/.
12 Slic3r. http://slic3r.org/.
13 Solidworks. http://www.solidworks.com/.
14 Thingiverse. http://www.thingiverse.com/.
15 P. Delfs, M. T̈ows, and H.-J. Schmid. Optimized build orientation of additive manufac-

tured parts for improved surface quality and build time. Additive Manufacturing, 12, Part
B:314 – 320, 2016. Special Issue on Modeling & Simulation for Additive Manufactur-
ing. URL: http://www.sciencedirect.com/science/article/pii/S2214860416301142,
doi:http://dx.doi.org/10.1016/j.addma.2016.06.003.

16 Jérémie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. By-example syn-
thesis of structurally sound patterns. ACM Trans. Graph., 34(4):137:1–137:12, July 2015.
URL: http://doi.acm.org/10.1145/2766984, doi:10.1145/2766984.

17 Salomé Galjaard, Sander Hofman, and Shibo Ren. New Opportunities to Opti-
mize Structural Designs in Metal by Using Additive Manufacturing, pages 79–93.
Springer International Publishing, Cham, 2015. URL: http://dx.doi.org/10.1007/
978-3-319-11418-7_6, doi:10.1007/978-3-319-11418-7_6.

18 T. Grimm. User’s Guide to Rapid Prototyping. Society of Manufacturing Engineers, 2004.
URL: https://books.google.com/books?id=o2B7OmABPNUC.

19 G.T. Klein, Y. Lu, and M.Y. Wang. 3d printing and neurosurgery– ready for prime time?
World Neurosurgery, 80(3):233–235, 9 2013.

20 Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, pages 313–324, New York, NY, USA, 1996. ACM. URL:
http://doi.acm.org/10.1145/237170.237270, doi:10.1145/237170.237270.

21 Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: A tool for
finding copy-paste and related bugs in operating system code. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 20–20, Berkeley, CA, USA, 2004. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1251254.1251274.

22 James McCrae, Nobuyuki Umetani, and Karan Singh. Flatfitfab: Interactive modeling
with planar sections. In Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology, UIST ’14, pages 13–22, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2642918.2647388, doi:10.1145/2642918.2647388.

23 Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer,
François Guimbretière, and Patrick Baudisch. Wireprint: 3d printed previews for fast
prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’14, pages 273–280, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2642918.2647359, doi:10.1145/2642918.2647359.

24 Stefanie Mueller, Bastian Kruck, and Patrick Baudisch. Laserorigami: Laser-cutting
3d objects. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’13, pages 2585–2592, New York, NY, USA, 2013. ACM. URL:
http://doi.acm.org/10.1145/2470654.2481358, doi:10.1145/2470654.2481358.

CVIT 2016

https://www.gartner.com/doc/3132417
http://www.openscad.org/
http://projectescher.com/
http://replicat.org/
https://www.rhino3d.com/
https://www.simplify3d.com/
http://reprap.org/wiki/Skeinforge
http://www.sketchup.com/
http://slic3r.org/
http://www.solidworks.com/
http://www.thingiverse.com/
http://www.sciencedirect.com/science/article/pii/S2214860416301142
http://dx.doi.org/http://dx.doi.org/10.1016/j.addma.2016.06.003
http://doi.acm.org/10.1145/2766984
http://dx.doi.org/10.1145/2766984
http://dx.doi.org/10.1007/978-3-319-11418-7_6
http://dx.doi.org/10.1007/978-3-319-11418-7_6
http://dx.doi.org/10.1007/978-3-319-11418-7_6
https://books.google.com/books?id=o2B7OmABPNUC
http://doi.acm.org/10.1145/237170.237270
http://dx.doi.org/10.1145/237170.237270
http://dl.acm.org/citation.cfm?id=1251254.1251274
http://doi.acm.org/10.1145/2642918.2647388
http://dx.doi.org/10.1145/2642918.2647388
http://doi.acm.org/10.1145/2642918.2647359
http://dx.doi.org/10.1145/2642918.2647359
http://doi.acm.org/10.1145/2470654.2481358
http://dx.doi.org/10.1145/2470654.2481358

23:12 Programming Language Tools and Techniques for 3D Printing

25 Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baud-
isch. fabrickation: Fast 3d printing of functional objects by integrating construction kit
building blocks. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’14, pages 3827–3834, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2556288.2557005, doi:10.1145/2556288.2557005.

26 David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of
inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’88, pages 109–116, New York, NY, USA, 1988.
ACM. URL: http://doi.acm.org/10.1145/50202.50214, doi:10.1145/50202.50214.

27 Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Scaling up superoptimization. SIGPLAN Not., 51(4):297–310, March 2016. URL: http:
//doi.acm.org/10.1145/2954679.2872387, doi:10.1145/2954679.2872387.

28 C. Schubert, M.C. van Langeveld, and L.A. Donoso. Innovations in 3d printing: a 3d
overview from optics to organs. British Journal of Ophthalmology, 98(2):159–161, 2014.

29 Pitchaya Sitthi-Amorn, Javier E. Ramos, Yuwang Wangy, Joyce Kwan, Justin Lan, Wen-
shou Wang, and Wojciech Matusik. Multifab: A machine vision assisted platform for
multi-material 3d printing. ACM Trans. Graph., 34(4):129:1–129:11, July 2015. URL:
http://doi.acm.org/10.1145/2766962, doi:10.1145/2766962.

30 Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. Stress relief:
Improving structural strength of 3d printable objects. ACM Trans. Graph., 31(4):48:1–
48:11, July 2012. URL: http://doi.acm.org/10.1145/2185520.2185544, doi:10.1145/
2185520.2185544.

31 Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In
Proceedings of the SHARE Design Automation Workshop, DAC ’64, pages 6.329–6.346,
New York, NY, USA, 1964. ACM. URL: http://doi.acm.org/10.1145/800265.810742,
doi:10.1145/800265.810742.

32 Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan Neu-
bert, and Patrick Baudisch. Patching physical objects. In Proceedings of the 28th An-
nual ACM Symposium on User Interface Software & Technology, UIST ’15, pages
83–91, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2807442.
2807467, doi:10.1145/2807442.2807467.

33 Nobuyuki Umetani and Ryan Schmidt. Cross-sectional structural analysis for 3d printing
optimization. In SIGGRAPH Asia 2013 Technical Briefs, SA ’13, pages 5:1–5:4, New
York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2542355.2542361,
doi:10.1145/2542355.2542361.

34 Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. Openfab:
A programmable pipeline for multi-material fabrication. ACM Trans. Graph., 32(4):136:1–
136:12, July 2013. URL: http://doi.acm.org/10.1145/2461912.2461993, doi:10.1145/
2461912.2461993.

35 Qingnan Zhou, Julian Panetta, and Denis Zorin. Worst-case structural analysis. ACM
Trans. Graph., 32(4):137:1–137:12, July 2013. URL: http://doi.acm.org/10.1145/
2461912.2461967, doi:10.1145/2461912.2461967.

http://doi.acm.org/10.1145/2556288.2557005
http://dx.doi.org/10.1145/2556288.2557005
http://doi.acm.org/10.1145/50202.50214
http://dx.doi.org/10.1145/50202.50214
http://doi.acm.org/10.1145/2954679.2872387
http://doi.acm.org/10.1145/2954679.2872387
http://dx.doi.org/10.1145/2954679.2872387
http://doi.acm.org/10.1145/2766962
http://dx.doi.org/10.1145/2766962
http://doi.acm.org/10.1145/2185520.2185544
http://dx.doi.org/10.1145/2185520.2185544
http://dx.doi.org/10.1145/2185520.2185544
http://doi.acm.org/10.1145/800265.810742
http://dx.doi.org/10.1145/800265.810742
http://doi.acm.org/10.1145/2807442.2807467
http://doi.acm.org/10.1145/2807442.2807467
http://dx.doi.org/10.1145/2807442.2807467
http://doi.acm.org/10.1145/2542355.2542361
http://dx.doi.org/10.1145/2542355.2542361
http://doi.acm.org/10.1145/2461912.2461993
http://dx.doi.org/10.1145/2461912.2461993
http://dx.doi.org/10.1145/2461912.2461993
http://doi.acm.org/10.1145/2461912.2461967
http://doi.acm.org/10.1145/2461912.2461967
http://dx.doi.org/10.1145/2461912.2461967

	Introduction
	Background on 3D printing
	Baseline Slicing
	Challenges in 3D printing

	Synthesis
	Compilers for 3D Printing
	Runtime Monitoring
	Related work
	Conclusion
	Acknowledgements

